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Abstract. We formulate a unified display calculus proof theory for the four principal

varieties of bunched logic by combining display calculi for their component logics. Our

calculi satisfy cut-elimination, and are sound and complete with respect to their standard

presentations. We show how to constrain applications of display-equivalence in our calculi

in such a way that an exhaustive proof search need be only finitely branching, and establish

a full deduction theorem for the bunched logics with classical additives, BBI and CBI. We

also show that the standard sequent calculus for BI can be seen as a reformulation of

its display calculus, and argue that analogous sequent calculi for the other varieties of

bunched logic are very unlikely to exist.
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1. Introduction

Bunched logics, originating in O’Hearn and Pym’s BI [22], constitute a rel-
atively recent addition to the menagerie of substructural logics with prac-
tical importance in computer science. Of their better-established cousins,
bunched logics most resemble relevant logics [25] in that they feature both
multiplicative (a.k.a. ‘intensional’) and additive (a.k.a. ‘extensional’) logical
connectives, with the difference between the two types characterised as a
matter of which structural principles are admitted by each. However, while
in relevant logics certain of the additive connectives are barred in order to
exclude the paradoxes of material implication and other ‘relevance-breaking’
principles, in bunched logics one simply takes a full set of additive connec-
tives as equal partners alongside the multiplicatives. Thus bunched log-
ics can be seen as the result of freely combining an ordinary propositional
logic with a multiplicative fragment of linear logic. These simple-minded
constructions give rise to a resource interpretation of bunched logics via
their Kripke semantics: formulas are interpreted as sets of resources, with
the additive connectives having their standard propositional meanings and
the multiplicatives, roughly speaking, denoting resource composition proper-
ties [24]. In computer science, such resource readings of bunched logic have
very successfully been exploited to obtain customised logics for program
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analysis. Most notably, separation logic [28] — a Hoare-style framework
that interprets bunched logic in models of heap memory — has spawned a
host of program analysis applications that discover and reason about the
structure of heap memory during program execution (recent examples in-
clude [10, 11, 13]). Bunched logic has also been variously employed in ad-
dressing other computing problems such as polymorphic abstraction [12],
tree update [9], typed reference update and disposal [3] and informational
dependence and independence [1].

In this paper, we examine bunched logic from the general proof-theoretic
perspective. While there has been considerable interest in the semantics of
bunched logics, owing mainly to the computational significance of the re-
sulting models [15, 14, 17, 24], their proof theory by contrast has received
comparatively little attention. As observed by Pym [23], it is natural to
consider four principal varieties of bunched logic, characterised by the pres-
ence or otherwise of classical negation in the additive and multiplicative
fragments or, equivalently, by the underlying additive and multiplicative al-
gebras (see Figure 1). However, to date there has been no proof-theoretical
analysis corresponding to this general characterisation. On the one hand,
both a complete natural deduction proof system satisfying normalisation,
and a complete sequent calculus satisfying cut-elimination have been given
for O’Hearn and Pym’s original bunched logic BI [23]. On the other hand,
similarly well-behaved analogues of these syntactic proof systems for the
other varieties of bunched logic have been conspicuously absent from the
literature. This is less than ideal from the theoretical point of view but also
from a practical perspective since, in particular, separation logic and many
of the aforementioned related program analysis tools are based on BBI, the
Boolean variant of BI. Usually, proof systems for BBI are formulated in a
crude manner by adding a sufficiently powerful axiom or inference rule to the
corresponding proof system for BI, the inclusion of which typically breaks
any previously extant normalisation or cut-elimination properties. Extend-
ing the current BI proof systems to BBI (or other variants) without breaking
these properties is known to be highly problematic.

A potential resolution to this technical impasse is suggested by our earlier
work with Calcagno on Classical BI (CBI) [5], in which we showed that CBI
could be naturally presented as a display calculus with the cut-elimination
property. Display calculi, due to Belnap [2], are consecution calculi à la
Gentzen which were originally employed primarily as a device for giving a
disciplined proof theory to relevant and modal logics. The distinguishing
feature of display calculi is the display property : any consecution can always
be rearranged so that a given part appears alone on the appropriate side
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BI
(Heyting, Lambek)

decidable [15]

BBI
(Boolean, Lambek)
undecidable [7, 20]

CBI
(Boolean, de Morgan)

undecidable [7]

dMBI
(Heyting, de Morgan)

¬∼

∼¬

Figure 1. The bunched logic family. The (additive, multiplicative) subtitles indicate the
underlying additive and multiplicative algebras. The arrows denote the addition of either
additive (¬) or multiplicative (∼) classical negation.

of the proof turnstile. To ensure this property we need both a richer form
of consecution than that of typical Gentzen-style sequents, and a set of
auxiliary “display” rules for rearranging them in the required fashion. The
extra complexity is compensated for by an elegant, symmetric presentation
of the calculus, analogous to that of Gentzen’s sequent calculi. Furthermore,
Belnap showed that cut-elimination is guaranteed for any display calculus
whose rules obey a set of 8 easily verifiable syntactic conditions.

In this paper, we obtain a unified display calculus proof theory for all
four principal bunched logics in Figure 1. First, we formulate display calculi
for the elementary logics which characterise the additive and multiplicative
components of these four logics. Since Belnap’s original display apparatus
does not adapt to the intuitionistic components (because it relies on the
presence of classical negation), we instead exploit the residual relationship
between conjunction and implication to obtain a display property, as hap-
pens in a number of papers on display calculus [16, 27, 29]. We then obtain
display calculi for the bunched logics by combining the display calculi for
their additive and multiplicative components. Since these elementary cal-
culi are entirely orthogonal to one another, combining them preserves their
main desirable structural properties: the display property, cut-elimination
and soundness / completeness with respect to a standard presentation of
the corresponding logic. In addition to cut-elimination, we show how to
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constrain the use of display-equivalence in proofs so that only finitely many
rearrangements of any consecution need be considered. This ensures that
an exhaustive proof search in any of our calculi is finitely branching. (How-
ever, we cannot guarantee that such a proof search will terminate in general;
indeed, both BBI and CBI are known to be undecidable [7, 20].) Addition-
ally, in the case of BBI and CBI, we establish a full deduction theorem
for our display calculi (analogous to that established for full propositional
linear logic by Lincoln et al. [21]), showing that arbitrary theories may be
faithfully encoded inside proof judgements. Finally, in the case of BI, we
establish translations between cut-free proofs in our display calculus and
cut-free proofs in its standard sequent calculus (given by Pym in [23]), thus
demonstrating that this sequent calculus can be seen as an “optimised” ver-
sion of our display calculus. The fact that our display calculi for the other
bunched logics cannot be similarly optimised into sequent presentations —
due to their seemingly non-eliminable use of unary structural connectives
as well as binary ones — goes some way to explaining why, in our opinion,
well-behaved sequent calculi for these logics are very unlikely to materialise.

The remainder of this paper is organised as follows. In Section 2 we
present the four main bunched logics in Figure 1 as free combinations of
elementary logics. Section 3 presents our unified display calculus proof the-
ory for the principal bunched logics and their components. Section 4 covers
cut-elimination for our calculi and shows how the use of display-equivalence
may be constrained in proofs. Section 5 presents our deduction theorem
for the BBI and CBI display calculi. In Section 6 we compare our display
calculus for BI with its bunched sequent calculus. Section 7 concludes.

This is a revised and expanded journal version of a conference paper [4].
In particular, most of the material in Sections 4 and 5 is entirely new. We
have endeavoured to include proofs in as much detail as space permits.

2. From elementary logics to bunched logics

In this section, we define the four principal bunched logics (cf. Figure 1) as
free combinations of well-known elementary logics.

We assume a fixed infinite set V of propositional variables. Formulas are
constructed from propositional variables using the logical connectives given
in Figure 2: any P ∈ V is a formula, and so is the result of applying a
logical connective to the appropriate number of formulas. We restrict the
syntax of formulas in a given logic by stipulating which formula connectives
are permitted to occur. We write F,G,H, etc., to range over formulas.

We regard a logic L as being specified by: (a) the set of logical connectives
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Additive symbol Multiplicative symbol Arity Generic meaning
> >∗ 0 truth
⊥ ⊥∗ 0 falsity
¬ ∼ 1 negation
∧ ∗ 2 conjunction

∨ ∗∨ 2 disjunction
→ —∗ 2 implication

Figure 2. Logical connectives.

(Ax)
F ` F

(>)
F ` >

(⊥)
⊥ ` F

i ∈ {1, 2} (∨I)
Gi ` G1 ∨G2

F ` G F ` H
(∧I)

F ` G ∧H

F ∧G ` H
========= (→)
F ` G → H

i ∈ {1, 2} (∧E)
G1 ∧G2 ` Gi

F ` H G ` H
(∨E)

F ∨G ` H

F ` G G ` H
(MP)

F ` H

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(¬)
¬F a` F → ⊥

(¬¬)
¬¬F ` F

Figure 3. Basic presentations of IL and CL. IL is by given by the axioms and rules above
the dotted line. CL is obtained by adding the axioms below the dotted line.

which may occur in formulas of the logic; and (b) a basic proof system for
entailments of the form F ` G, where F and G are formulas. We write an
axiom with conclusion F a` G to abbreviate two axioms with respective
conclusions F ` G and G ` F , and we write a rule with a double-line
between premise and conclusion to indicate that it is symmetric, i.e., that
the premise and conclusion may be exchanged. We specify four well-known
elementary logics, which form the additive and multiplicative components
of the bunched logics in Figure 1, as follows:

• Intuitionistic logic, IL, has logical connectives >, ⊥, ∧, ∨ and →. Clas-
sical logic, CL, adds the negation ¬. We present IL and CL in Figure 3.

• Lambek multiplicative logic, LM (a.k.a. multiplicative intuitionistic lin-
ear logic), has as logical connectives >∗, ∗ and —∗. De Morgan multi-
plicative logic, dMM (a.k.a. multiplicative classical linear logic), extends
these by ⊥∗, ∼ and ∗∨. We present LM and dMM in Figure 4.
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(Ax)
F ` F

(Assoc.)
F ∗ (G ∗H) a` (F ∗G) ∗H

(>∗)
F ∗ >∗ a` F

(Comm.)
F ∗G ` G ∗ F

F1 ` G1 F2 ` G2

(∗I)
F1 ∗ F2 ` G1 ∗G2

F ∗G ` H
========= (—∗)
F ` G —∗ H

F ` G G ` H
(MP)

F ` H

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(⊥∗)
⊥∗ a` ∼>∗

(∗∨)
F ∗∨ G a` ∼(∼F ∗ ∼G)

(∼)
∼F a` F —∗ ⊥∗

(∼∼)
∼∼F ` F

Figure 4. Basic presentations of LM and dMM. LM is by given by the axioms and rules
above the dotted line. dMM is obtained by adding the axioms below the dotted line.

We write E = {IL,CL,LM,dMM} for this set of elementary logics. By
the free combination L1 + L2 of two logics L1,L2 ∈ E , we mean the logic
whose logical connectives and presentation are the unions of, respectively, the
logical connectives and the presentations of L1 and L2. The bunched logics
B = {BI,BBI,dMBI,CBI} in Figure 1 can then be defined very straightfor-
wardly in terms of their elementary components:

• BI, the ‘logic of bunched implications’ (cf. [22, 24]), is given by IL+LM;

• BBI, a.k.a. Boolean BI (cf. [14]), is given by CL + LM;

• dMBI, standing for “de Morgan BI”, is given by IL + dMM;

• CBI, a.k.a. Classical BI (cf. [5]), is given by CL + dMM.

Our proof-theoretic definition of the logics in E ∪ B above will be taken
as the baseline with respect to which our display calculi for these logics are
later proven correct. This has the benefit of freeing our analysis from un-
necessary semantic considerations. However, we note that our definitions of
the bunched logics B can be seen to be in agreement with those found else-
where in the literature. For example, our presentations of BI and BBI agree
with their counterparts in [24] and [14] respectively. (To our knowledge,
dMBI has not appeared in the literature before, while a display calculus for
CBI was presented in [5]; in the next section, we will reconstruct this sys-
tem as part of our unified proof theory for B, and show it agrees with our
characterisation of CBI here.)
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3. Display calculi for the principal bunched logics

In this section we give display calculi for the elementary logics E given in Sec-
tion 2, and combine them to obtain display calculi for the principal bunched
logics B. As a preliminary, we first present the basic notions that we require
in order to specify a display calculus in the spirit of Belnap [2].

Structures are constructed from formulas using the structural connectives
given by Figure 5: any formula is a structure, and so is the result of applying
a structural connective to the appropriate number of structures. We write
all unary connectives as prefix operators, and all binary connectives as infix
operators. We write W,X, Y,Z, etc., to range over structures. If X and Y

are structures then X ` Y is called a consecution. There is a classification of
the substructure occurrences in a consecution into antecedent and consequent
parts, which extends the left-right division created by the proof turnstile by
taking into account the “polarities” of the structural connectives.

Additive Multiplicative Arity Antecedent meaning Consequent meaning
∅ ∅ 0 truth falsity
] [ 1 negation negation
; , 2 conjunction disjunction
⇒ ( 2 undefined implication

Figure 5. Structural connectives.

Definition 3.1 (Antecedent / consequent part). Each substructure occur-
rence in a structure X is classified as either a positive part or a negative part
of X, as follows:

• X is a positive part of X;

• if Z is a negative (positive) part of X then it is a positive (negative) part
of ]X and [X;

• if Z is a positive (negative) part ofX1 orX2 then it is a positive (negative)
part of X1 ; X2 and X1 , X2;

• if Z is a negative (positive) part of X1 or a positive (negative) part of
X2, then it is a positive (negative) part of X1 ⇒ X2 and X1 ( X2.

Z is said to be an antecedent (consequent) part of a consecution X ` Y

if it is a positive (negative) part of X or a negative (positive) part of Y .

Consecutions are interpreted as entailments between formulas as follows.



8 James Brotherston

Definition 3.2 (Consecution validity). For any structure Z we define the
formulas ΨZ and ΥZ by mutual structural induction as follows:

ΨF = F
Ψ∅ = > Ψ∅ = >∗

Ψ]X = ¬ΥX Ψ[X = ∼ΥX

ΨX;Y = ΨX ∧ΨY ΨX,Y = ΨX ∗ΨY

ΨX⇒Y = undefined ΨX(Y = undefined

ΥF = F
Υ∅ = ⊥ Υ∅ = ⊥∗

Υ]X = ¬ΨX Υ[X = ∼ΨX

ΥX;Y = ΥX ∨ΥY ΥX,Y = ΥX
∗∨ ΥY

ΥX⇒Y = ΨX → ΥY ΥX(Y = ΨX —∗ ΥY

X ` Y is said to be valid in the logic L iff ΨX ` ΥY is provable in L.

We remark that, in each of our display calculi, we shall restrict the form of
consecutions by stipulating which of the structural connectives may appear
as the main (i.e. outermost) connective of an antecedent or consequent part.
In doing so, we ensure that the restrictions on the structural connectives
match the available formula connectives, so that validity of consecutions is
always well defined. In particular, neither ⇒ nor ( will ever be permitted
to appear as the main connective of an antecedent part of a consecution.

The defining feature of a display calculus is the availability of a display-
equivalence on consecutions: an equivalence relation such that, for any an-
tecedent (consequent) part of a given consecution, one can obtain by re-
arrangement an equivalent consecution in which that part appears as the
entire antecedent (consequent).

Definition 3.3 (Display-equivalence). Let <>D be a symmetric relation on
consecutions and let ≡D be the equivalence relation given by the reflexive-
transitive closure of <>D. We say that ≡D is a display-equivalence if, for
any antecedent part Z of X ` Y , one can construct a structure W such
that X ` Y ≡D Z ` W , and for any consequent part Z of X ` Y one
can construct a structure W such that X ` Y ≡D W ` Z. The process of
rearranging X ` Y into Z ` W or W ` Z is called displaying Z.

A display calculus DLL for a logic L is then specified by the following:

Antecedent / consequent structural connectives: The sets of struc-
tural connectives that are permitted to appear as the main connective of
an antecedent / consequent part of a consecution, respectively.
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Display postulates: A set of symmetric rules of the form C <>D C ′,
where C and C ′ are consecutions, such that the reflexive-transitive clo-
sure ≡D of <>D is a display-equivalence (cf. Defn. 3.3).

Logical rules: Proof rules for the formula connectives, typically divided
into pairs of left- and right-introduction rules for each logical connective
in the manner familiar from sequent calculus. Note that, since we can
appeal to the display-equivalence ≡D, these rules may be written so that
the formula introduced by a rule is displayed (alone) in its conclusion.

Structural rules: Proof rules for the structural connectives.

In addition to the logical and structural proof rules given by their spec-
ification, all our display calculi share a common set of identity rules:

(Id)
P ` P

X ` F F ` Y
(Cut)

X ` Y

X ′ ` Y ′

X ` Y ≡D X ′ ` Y ′ (≡D)
X ` Y

where P ranges over propositional variables. We remark that a display
calculus specified as above is not guaranteed to obey any particular proof-
theoretic properties over and above the availability of display-equivalence;
as is well-known, display calculi may fail to enjoy cut-elimination, inter-
polation, or decidability. However, cut-elimination is guaranteed for display
calculi with sufficiently well-behaved logical and structural rules, as famously
demonstrated by Belnap [2]. (In Section 4, we show that all of our display
calculi meet Belnap’s conditions for cut-elimination.)

We give display calculus specifications for the elementary logics IL, CL,
LM and dMM in Figures 6, 7, 8 and 9 respectively. Some remarks on our
formulation of these elementary display calculi are in order.

Firstly, the display postulates for the classical logics CL and dMM es-
sentially follow Belnap [2] although, for convenience, we build in commu-
tativity of the semicolon and comma on the left hand side of consecutions
(since both ∧ and ∗ are commutative). Note that, by simple manipulations,
both X ` Y ≡D X ` ]]Y and ]X ` Y ≡D X ` ]Y hold in DLCL, and their
analogues (with [ in place of ]) hold in DLdMM.

Secondly, in the case of the calculi for the intuitionistic logics IL and LM,
we cannot employ “classical” display postulates of the type used in DLCL and
DLdMM, because the required de Morgan relationships between connectives
do not hold; in particular, IL and LM lack the classical negations necessary
to interpret ] and [. Instead, we allow the structural connectives ⇒ and (

to occur in consequent position only (interpreted as → and —∗ respectively),
and we allow semicolon and comma to occur in antecedent positions only



10 James Brotherston

Antecedent structure connectives: ∅ ;
Consequent structure connectives: ⇒

Display postulates: X ; Y ` Z <>D X ` Y ⇒ Z <>D Y ; X ` Z

Logical rules: (⊥L)
⊥ ` X

∅ ` X
(>L)

> ` X
(>R)

X ` >

F ` X G ` X
(∨L)

F ∨G ` X

X ` Fi i ∈ {1, 2}
(∨R)X ` F1 ∨ F2

F ; G ` X
(∧L)

F ∧G ` X

X ` F X ` G
(∧R)

X ` F ∧G

X ` F G ` Y
(→L)

F → G ` X ⇒ Y

X ; F ` G
(→R)

X ` F → G

Structural rules:

∅ ; X ` Y
======= (∅L)
X ` Y

W ; (X ; Y ) ` Z
============= (AAL)
(W ; X) ; Y ` Z

X ` Z
(WkL)

X ; Y ` Z

X ; X ` Y
(CtrL)

X ` Y

Figure 6. Specification of DLIL.

(interpreted as ∧ and ∗). Using such consecutions, the logical rules have
simple formulations, and our display postulates just capture the residual
connection between implication and conjunction. The same idea is employed
in a number of other works on display calculus [16, 27, 29]. Indeed, in these
works, conjunction and implication are Gentzen duals, so that the same
structural connective is used to represent conjunction in antecedent position
and implication in consequent position. We use distinguished structural
connectives ⇒ and ( for the implications to avoid confusion with the use of
comma and semicolon to represent disjunction in consequent positions in CL
and dMM. This approach also allows us to translate DLL consecutions into
formulas using a single translation function for all L ∈ E ∪ B in Defn. 3.2.

Thirdly, note that because we allow ∅ and the semicolon to occur only in
antecedent positions in DLIL consecutions, we are forced to employ structure-
free formulations of the rules (∨L) and (⊥L). For the sake of symmetry and
convenience, we also use structure-free formulations of (∧R) and (>R), and
use the same formulations of these rules in DLCL. We have chosen the
structural rules of DLCL and DLdMM to be convenient, rather than minimal:
for example, the rules (MAL) and (MAR) are interderivable in DLdMM.

Now we obtain display calculi for B by defining, for L1 ∈ {IL,CL} and
L2 ∈ {LM,dMM}:

DLL1+L2
=def DLL1

+DLL2

where DLL1
+DLL2

is the display calculus whose antecedent and consequent
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Antecedent structure connectives: ∅ ] ;
Consequent structure connectives: ∅ ] ;

Display postulates: X ; Y ` Z <>D X ` ]Y ; Z <>D Y ; X ` Z

X ` Y ; Z <>D X ; ]Y ` Z <>D X ` Z ; Y
X ` Y <>D ]Y ` ]X <>D ]]X ` Y

Logical rules:

(⊥L)
⊥ ` X

X ` ∅
(⊥R)

X ` ⊥

∅ ` X
(>L)

> ` X
(>R)

X ` >

]F ` X
(¬L)

¬F ` X

X ` ]F
(¬R)

X ` ¬F

F ` X G ` X
(∨L)

F ∨G ` X

X ` F ; G
(∨R)

X ` F ∨G

F ; G ` X
(∧L)

F ∧G ` X

X ` F X ` G
(∧R)

X ` F ∧G

X ` F G ` Y
(→L)

F → G ` ]X ; Y

X ; F ` G
(→R)

X ` F → G

Structural rules:

∅ ; X ` Y
======= (∅L)
X ` Y

W ; (X ; Y ) ` Z
============= (AAL)
(W ; X) ; Y ` Z

X ` Z
(WkL)

X ; Y ` Z

X ; X ` Y
(CtrL)

X ` Y

X ` Y ; ∅
======= (∅R)
X ` Y

W ` (X ; Y ) ; Z
============= (AAR)
W ` X ; (Y ; Z)

X ` Z
(WkR)

X ` Y ; Z

X ` Y ; Y
(CtrR)

X ` Y

Figure 7. Specification of DLCL.

structure connectives, display postulates, and logical and structural rules
are, respectively, given by the unions of those of DLL1

with those of DLL2
.

We remark that DLCBI as presented here is equivalent to its earlier formu-
lation in [5], while DLBI, DLBBI and DLdMBI are new. However, DLdMBI is
very nearly equivalent to Restall’s display calculus for the well-known rele-
vant logic RW obtained from R by removing the multiplicative contraction
rule [27]. The two calculi differ only because RW lacks the additive intu-
itionistic → and ⊥ of dMBI (which can however be added conservatively).
In Section 6, we compare DLBI with the BI sequent calculus.

We now demonstrate that each of our specifications does indeed give rise
to a true display calculus, in the sense that the display property holds.

Proposition 3.4 (Display). For all L ∈ E ∪B, the equivalence ≡D induced
by the display postulates of DLL is a display-equivalence for DLL.

Proof. We must show that an arbitrary substructure occurrence Z in a
consecution X ` Y of DLL can be displayed (as the entire antecedent or
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Antecedent structure connectives: ∅ ,

Consequent structure connectives: (

Display postulates: X,Y ` Z <>D X ` Y ( Z <>D Y,X ` Z

Logical rules:

∅ ` X
(>∗L)

>∗ ` X

F , G ` X
(∗L)

F ∗G ` X

X ` F G ` Y
(—∗L)

F —∗ G ` X ( Y

(>∗R)
∅ ` >∗

X ` F Y ` G
(∗R)

X , Y ` F ∗G

X , F ` G
(—∗R)

X ` F —∗ G

Structural rules:

∅ , X ` Y
======== (∅L)
X ` Y

W , (X , Y ) ` Z
============= (MAL)
(W , X) , Y ` Z

Figure 8. Specification of DLLM.

consequent as appropriate) using the display postulates of DLL. By induc-
tion on the depth at which Z occurs in X or Y (defined in the obvious way),
it suffices to show that each of the immediate substructures of X and Y can
be displayed. This fact may be verified essentially by eye for each L ∈ E (in
fact, we need only check e.g. DLIL and DLCL since the consecution syntax
and display postulates of DLLM and DLIL are isomorphic, as are those of
DLdMM and DLCL). It follows immediately that the immediate substruc-
tures of X ` Y can be displayed for each L ∈ B, using the display postulates
from the display calculus for the appropriate component logic.

Theorem 3.5 (Soundness). For all L ∈ E ∪ B, if a consecution of DLL is
provable in DLL then it is valid.

Proof. As usual, we prove that each rule of DLL preserves validity from
premises to conclusion. In practice this means deriving the rule in L under
the translation (X ` Y ) 7→ (ΨX ` ΥY ) from consecutions to formula entail-
ments given by Defn. 3.2. In the case of the display rule (≡D), it suffices
to show that each individual display postulate is L-derivable under transla-
tion. This is a long and tedious verification for each of the elementary logics
L ∈ E . For L ∈ B, the local soundness property is then immediate since,
clearly, if any DLLi

rule is Li-derivable under translation for i ∈ {1, 2}, then
the rules of DLL1

+DLL2
are derivable under translation in L1 + L2.

We show the cases of a display postulate and a logical rule, both taken
from DLdMM. In the following we treat ∗ as being associative and commu-
tative, and omit explicit applications of the corresponding axioms. We also
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Antecedent structure connectives: ∅ [ ,

Consequent structure connectives: ∅ [ ,

Display postulates: X , Y ` Z <>D X ` [Y , Z <>D Y , X ` Z

X ` Y , Z <>D X , [Y ` Z <>D X ` Z , Y

X ` Y <>D [Y ` [X <>D [[X ` Y

Logical rules:

(⊥∗L)
⊥∗ ` ∅

X ` ∅

(⊥∗R)
X ` ⊥∗

∅ ` X
(>∗L)

>∗ ` X

(>∗R)
∅ ` >∗

[F ` X
(∼L)

∼F ` X

X ` [F
(∼R)

X ` ∼F

F ` X G ` Y
(∗∨L)

F ∗∨ G ` X , Y

X ` F , G
(∗∨R)

X ` F ∗∨ G

F , G ` X
(∗L)

F ∗G ` X

X ` F Y ` G
(∗R)

X , Y ` F ∗G

X ` F G ` Y
(—∗L)

F —∗ G ` [X , Y

X , F ` G
(—∗R)

X ` F —∗ G

Structural rules:

∅ , X ` Y
======== (∅L)
X ` Y

W , (X , Y ) ` Z
============= (MAL)
(W , X) , Y ` Z

X ` Y , ∅
======== (∅R)
X ` Y

W ` (X , Y ) , Z
============= (MAR)
W ` X , (Y , Z)

Figure 9. Specification of DLdMM.

write the rule label (MP), (A) to denote an abbreviated application of (MP)
of which one (suppressed) premise is an instance of the axiom (A).

Case X ` Y <>D [Y ` [X. Using the definition of Ψ− and Υ−, it suffices
to show that F ` G and ∼G ` ∼F are interderivable in dMM for any
formulas F and G. We can derive ∼G ` ∼F from F ` G as follows:

F ` G

(Ax)
G —∗ ⊥∗ ` G —∗ ⊥∗

(—∗)× 2
G ` (G —∗ ⊥∗) —∗ ⊥∗

(MP)
F ` (G —∗ ⊥∗) —∗ ⊥∗

(—∗)× 2
G —∗ ⊥∗ ` F —∗ ⊥∗

(MP), (∼)
G —∗ ⊥∗ ` ∼F

(MP), (∼)
∼G ` ∼F

For the reverse direction, we can derive ∼∼F ` ∼∼G from ∼G ` ∼F using
the first part, from which we can derive F ` G using (MP) with the fact
that F ` ∼∼F is (easily) derivable and ∼∼G ` G is an axiom.
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Case (—∗L). It suffices to show that F —∗ G ` ∼A ∗∨ B is derivable from
A ` F and G ` B in dMM. First, we derive A —∗ B ` ∼A ∗∨ B.

(Ax)
A —∗ B ` A —∗ B

(—∗)
A ∗ (A —∗ B) ` B

(∼)
∼B ` B —∗ ⊥∗

(—∗)× 2
B ` ∼B —∗ ⊥∗

(MP)
A ∗ (A —∗ B) ` ∼B —∗ ⊥∗

(—∗)
A ` (A —∗ B) —∗ (∼B —∗ ⊥∗)

(MP), (∼∼)
∼∼A ` (A —∗ B) —∗ (∼B —∗ ⊥∗)

(—∗)× 3
A —∗ B ` (∼∼A ∗ ∼B) —∗ ⊥∗

(MP), (∼)
A —∗ B ` ∼(∼∼A ∗ ∼B)

(MP), (∗∨)
A —∗ B ` ∼A ∗∨ B

We can then construct the required derivation as follows:

A ` F

(Ax)
F —∗ G ` F —∗ G

(—∗)× 2
F ` (F —∗ G) —∗ G

(MP)
A ` (F —∗ G) —∗ G

(—∗)
(F —∗ G) ∗A ` G G ` B

(MP)
(F —∗ G) ∗A ` B

(—∗)
F —∗ G ` A —∗ B

(see above)
·
·
·

A —∗ B ` ∼A ∗∨ B
(MP)

F —∗ G ` ∼A ∗∨ B

This completes the case, and the proof.

Proposition 3.6. Any DLIL derivation may be transformed into a DLCL

derivation by replacing all structures of the form X ⇒ Y by the structure
]X;Y and possibly inserting some applications of (WkR). Similarly, any
DLLM derivation may be transformed into a DLdMM derivation by replacing
all structures of the form X ( Y by the structure [X, Y .

Proof. In the case of DLIL and DLCL, one just verifies by eye that every
proof rule and display postulate of DLIL becomes a proof rule or display
postulate of DLCL under the uniform replacement of structures of the form
X ⇒ Y by ]X;Y . The exception to this is the DLIL rule (∨R), which is
however derivable from its DLCL analogue by applying (WkR). The case of
DLLM and DLdMM is similar.
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Lemma 3.7 (Identity). For all L ∈ E ∪ B, and for any formula F of L, the
consecution F ` F is provable in DLL.

Proof. By structural induction on F , distinguishing a case for every possi-
ble logical connective of L. In the case F = P ∈ V we are immediately done
by (Id). The other cases are straightforward by induction hypothesis.

Lemma 3.8. For all L ∈ E ∪ B, the following rules are derivable in DLL,
where Ψ− and Υ− are the functions given in Definition 3.2:

X ` Y
(ΨL)

ΨX ` Y
(ΨR)

X ` ΨX

(ΥL)
ΥX ` X

Y ` X
(ΥR)

Y ` ΥX

Proof. We show the derivability of all four rules simultaneously by induc-
tion on the structure of X, distinguishing a case for each possible structural
connective of X. In the case where X is a formula, we appeal to Lemma 3.7
for (ΨR) and (ΥL). The other cases are straightforward using the logical
and display rules for the appropriate logic and the induction hypotheses.

Because of the rules (ΨR) and (ΥL), Lemma 3.8 subsumes Lemma 3.7.

Theorem 3.9 (Completeness). For all L ∈ E ∪ B, if a consecution of DLL

is valid then it is provable in DLL.

Proof. Suppose that X ` Y is DLL-valid, i.e. that ΨX ` ΥY is L-provable.
To show that X ` Y is DLL-provable, it suffices by (Cut) and the rules (ΨR)
and (ΥL) given by Lemma 3.8 to show that ΨX ` ΥY is DLL-provable.
In practice this simply entails showing that each proof rule of L is DLL-
derivable, which is an easy exercise for each L ∈ E . The result then follows
immediately for all L ∈ B because it is clear that, if DLL1

and DLL2
can

derive every rule of L1 and L2 respectively, then DLL1
+ DLL2

can derive
every rule of L1 + L2. We show a typical case, the axiom ( ∗∨) of dMM, the
two directions of which are derived in DLdMM as follows (note that we use
the derived rules of Lemma 3.8):

(ΨR)
F ` F

(ΨR)
G ` G

(∗∨L)
F ∗∨ G ` F,G

(≡D)
[F, [G ` [F ∗∨ G

(ΨL)
∼F ∗ ∼G ` [F ∗∨ G

(≡D)
F ∗∨ G ` [(∼F ∗ ∼G)

(∼R)
F ∗∨ G ` ∼(∼F ∗ ∼G)

(ΨR)
[F ` ∼F

(ΨR)
[G ` ∼G

(∗R)
[F, [G ` ∼F ∗ ∼G

(≡D)
[(∼F ∗ ∼G) ` F,G

(∗∨R)
[(∼F ∗ ∼G) ` F ∗∨ G

(∼L)
∼(∼F ∗ ∼G) ` F ∗∨ G

This completes the case, and the proof.
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4. Cut-elimination and proof search

In this section we address the problem of constraining proof search in our
display calculi DLL presented in the previous section. First, we prove that
cut is eliminable in each of our calculi by demonstrating that they meet Bel-
nap’s well-known cut-elimination conditions C1–C8 (see [2]). Then we show
that, in addition, applications of the display rule (≡D) can be restricted so
that only finitely many rearrangements of any consecution need be consid-
ered. As a result, all infinite branching points can be eliminated from the
proof search space.

A display calculus proof is cut-free if it contains no instances of (Cut).

Theorem 4.1 (Cut-elimination). For all L ∈ E∪B, any DLL proof of X ` Y

can be transformed into a cut-free proof of X ` Y .

Proof. Given that DLL satisfies the display property (Proposition 3.4), it
suffices to verify that the proof rules of DLL meet Belnap’s conditions C1–
C8 guaranteeing cut-elimination [2]. Since these conditions appear in many
places in the literature (e.g. [2, 18]) and C1–C7 are easily verified properties
of the individual proof rules, we just consider the most complicated condi-
tion C8 here. Note that a formula occurrence in an instance I of a proof rule
R is said to be principal in I if (a) it is displayed (alone) in the conclusion
of I and (b) it is not part of a structure assigned to a structure variable in
our statement of the rule R.

C8: Eliminability of matching principal formulas. If there are inferences I1
and I2 with respective conclusions X ` F and F ` Y and with F principal
in both I1 and I2, then either X ` Y is one of X ` F and F ` Y , or there is
a derivation of X ` Y from the premises of I1 and I2 in which every instance
of cut has a cut-formula which is a proper subformula of F .

Verification. If F is a propositional variable P then X ` F and F ` Y are
both instances of (Id). Thus we must have (X ` F ) = (F ` Y ) = (X ` Y ),
and are done. Otherwise, by inspection of the proof rules, F is introduced
in I1 and I2 respectively by the right and left introduction rule for the main
connective of F . We show a typical case, F = F1 ∧ F2, in which case L
contains either IL or CL and the considered principal cut is of the form:

X ` F X ` G
(∧R)

X ` F ∧G

F ; G ` Y
(∧L)

F ∧G ` Y
(Cut)

X ` Y
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If L contains IL, we can reduce this cut as follows:

X ` F

X ` G

F ; G ` Y
(≡D)

G ` F ⇒ Y
(Cut)

X ` F ⇒ Y
(≡D)

F ` X ⇒ Y
(Cut)

X ` X ⇒ Y
(≡D)

X ; X ` Y
(CtrL)

X ` Y

The subcase where L contains CL rather than IL follows by Proposition 3.6.
The cases for the other connectives are similar. This completes the verifica-
tion, and the proof.

From a proof search perspective, Theorem 4.1 eliminates the infinite
branching points provided by the cut rule. However, the display rule in-
troduces another source of (potentially) infinite branching in proof search.
Namely, in any of DLCL, DLdMM, DLBBI, DLdMBI and DLCBI, an unbounded
number of ]s and/or [s can be introduced into any consecution via the dis-
play postulates X ` Y <>D •Y ` •X <>D • •X ` Y , where • is ] or [. As
a result, for any consecution of these calculi there are infinitely many other
consecutions that are display-equivalent to it. (This problem does not arise
for DLIL, DLLM, and DLBI, because these calculi do not use ] or [.)

We shall show that an exhaustive proof search need only consider display-
rearrangements of consecutions which are bounded in the number of ]s and
[s they contain. It follows that such a proof search is finitely branching.
Our technique for reducing proofs is adapted from the one used for the same
purpose by Kracht [18] and later Restall [27]. However, we require a slightly
more elaborate approach in order to deal with the presence in DLCBI of both
] and [, which can be arbitrarily nested within structures.

First, we require an auxiliary structural rule capturing the fact that, in
CBI, the additive and multiplicative negations commute (cf. [6]).

Lemma 4.2. The following proof rule is cut-free derivable in DLCBI:

][X ` Y
====== (][)
[]X ` Y

Proof. We show how to derive one direction of the rule; the reverse direc-
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tion is similar.
][X ` Y

(≡D)
[]X ` [][]Y

(WkL)
[]X ; ]Y ` [][]Y

(≡D)
]Y ` [][([]X ; ]Y )

(WkL)
[]X ; ]Y ` [][([]X ; ]Y )

(≡D)
][([]X ; ]Y ) ` [([]X ; ]Y )

(WkL)
[∅; ][([]X ; ]Y ) ` [([]X ; ]Y )

(≡D)
[∅ ` [([]X ; ]Y ); [([]X ; ]Y )

(CtrR)
[∅ ` [([]X ; ]Y )

(≡D)
[]X ` Y ; ∅

(∅R)
[]X ` Y

Definition 4.3. For any structure X, define the structures ]X and [X by:

]X =







Z if X = ]Z

[Z if X = []Z

]X otherwise
[X =







Z if X = [Z

]Z if X = ][Z

[X otherwise

Definition 4.4. For each L ∈ {CL,dMM,BBI,dMBI,CBI}, we write DL+
L

for the display calculus obtained from DLL as follows:

• if L ∈ {CL,BBI,CBI}, replacing the rule (→L) with its alternate version
(→L’), and if L ∈ {dMM,dMBI,CBI}, replacing the rule (—∗L) with its
alternate version (—∗L’), where (→L’) and (—∗L’) are as follows:

X ` F G ` Y
(→L’)

F → G ` ]X;Y

X ` F G ` Y
(—∗L’)

F —∗ G ` [X, Y

• in the case L = CBI only, adding the extra display postulate:

][X ` Y <>D []X ` Y

Lemma 4.5. For L ∈ {CL,BBI,CBI}, each of (→L) and (→L’) is cut-free
derivable from the other in DLL. Similarly, for L ∈ {dMM,dMBI,CBI},
each of (—∗L) and (—∗L’) is cut-free derivable from the other in DLL.

Proof. Here we just show the interderivability of (—∗L) and (—∗L’); the
case of (→L) and (→L’) is similar. There are three cases to consider.
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Case X not of the form [Z or ][Z. In this case we have [X = [X, so
the rules (—∗L’) and (—∗L) are identical and we are trivially done.

Case X = [Z. We have [X = Z. Each of (—∗L) and (—∗L’) is easily cut-free
derivable from the other in DLdMM by observing that (F —∗ G ` [[Z, Y ) ≡D

(F —∗ G ` Z, Y ) and using the display rule. The cases L = dMBI and
L = CBI follow immediately.

Case X = ][Z. We have L = CBI and [X = ]Z. Then, using the derived
DLCBI rule of Lemma 4.2, each of (—∗L) and (—∗L’) is cut-free derivable from
the other as follows:

][Z ` F G ` Y
(—∗L)

F —∗ G ` [][Z, Y
(≡D)

][Z ` [F —∗ G, Y
(][)

[]Z ` [F —∗ G, Y
(≡D)

F —∗ G ` ]Z, Y

][Z ` F G ` Y
(—∗L’)

F —∗ G ` ]Z, Y
(≡D)

[]Z ` [F —∗ G, Y
(][)

][Z ` [F —∗ G, Y
(≡D)

F —∗ G ` [][Z, Y

This completes the proof.

We remark that, as a consequence of Lemmas 4.2 and 4.5, cut-free prov-
ability in DLL and in DL+

L
coincide for all L ∈ {CL,dMM,BBI,dMBI,CBI}.

Definition 4.6 (][-reduction). A structure is said to be ][-reduced if it does
not contain any substructures of the form ]]X, [[X, ][]X or [][X. The ][-
reduction r(Z) of a structure Z is the (unique) ][-reduced structure obtained
by iteratively replacing, outermost-first, all substructure occurrences in Z of
the form ]X and [X by the structures ]X and [X respectively until the
result is ][-reduced.

A consecution X ` Y is said to be ][-reduced if both X and Y are ][-
reduced, and we define r(X ` Y ) =def r(X) ` r(Y ). A DLL proof is said to
be ][-reduced if every consecution occurring in it is ][-reduced.

Lemma 4.7. For all L ∈ {CL,dMM,BBI,dMBI,CBI}, it holds in DL+
L
that

C ≡D r(C) for all consecutions C.

Proof. We just show that the reduction r(−) can be mimicked using the
display postulates. This is easy to see for L ∈ {CL,dMM,BBI,dMBI}:
where r(−) reduces a structure of the form ]]Z or [[Z to Z, we may do
the same by using the display postulates to eliminate the “]]” or “[[” in
the obvious way. When L = CBI, we have the additional complication that
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r(−) may also reduce [][Z to ]Z or ][]Z to [Z. In such cases, we first use
the extra display postulate ][X ` Y <>D []X ` Y of DL+

CBI to commute ]

and [ as needed, then eliminate the “]]” or “[[” as before.

We are now in a position to prove our main result concerning proof search
in the refined versions of our display calculi.

Theorem 4.8. For all L ∈ {CL,dMM,BBI,dMBI,CBI}, a consecution C

has a DLL proof if and only if r(C) has a cut-free, ][-reduced DL+
L

proof.

Proof. (⇐) Given a DL+
L
proof of r(C), we easily have a DL+

L
proof of C by

inserting an application of (≡D), since C ≡D r(C) in DL+
L

by Lemma 4.7.
This may be transformed into a DLL proof of C by using Lemma 4.5 to
replace any uses of (→L’) and (—∗L’) by DLL derivations involving their
counterparts (→L) and (—∗L), and using Lemma 4.2 to replace uses of the
extra DL+

CBI display postulate ][X ` Y <>D []X ` Y by DLCBI derivations.

(⇒) Let π be a DLL proof of C. By cut-elimination (Theorem 4.1) we may
assume without loss of generality that π is cut-free. By Lemma 4.5, π may
be converted to a cut-free DL+

L
proof π′ of C by replacing all instances of

(→L) and (—∗L) by cut-free DL+
L

derivations involving their counterparts
(→L’) and (—∗L’).

Now let π′′ be the result of replacing every consecution appearing in π′

by its ][-reduction. Clearly π′′ is cut-free and ][-reduced by construction,
and has r(C) as its root. It just remains to check that π′′ is still a DL+

L
proof.

To see this, we just observe that every proof rule instance of DL+
L

remains
an instance of the same rule under ][-reduction of its premises and conclu-
sion. This is obvious for the rules that do not introduce new occurrences
of ] or [ into their conclusion, which only leaves the modified implication
rules (→L’) and (—∗L’) and the display rule (≡D). The rules (→L’) and
(—∗L’) are all right because the structures ]X and [X introduced into their
respective conclusions are ][-reduced if X is already ][-reduced. Finally, for
any instance of the display rule (≡D) with premise C1 and conclusion C2 we
have that C1 ≡D C2 in DLL. It obviously holds that C1 ≡D C2 in DL+

L
as

well, so by Lemma 4.7 we have r(C1) ≡D C1 ≡D C2 ≡D r(C2) in DL+
L

as
required. This completes the proof.

Cut-free proofs in our display calculi are easily seen to enjoy the usual
subformula property (in fact, this is Belnap’s condition C1). Thus, as is
clear by inspection of the proof rules, for any consecution C there are only
finitely many ][-reduced consecutions that can be obtained as premises of a
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proof rule instance with conclusion C. Thus an exhaustive backwards search
for a ][-reduced proof of a (][-reduced) consecution is finitely branching.

However, due to the structural rules, the structural analogue of the sub-
formula property does not hold even for cut-free, ][-reduced proofs: the
premises of a rule instance may contain structures which are not substruc-
tures of any structure in the conclusion. Thus, like in linear logic, cut-
elimination for our display calculi does not necessarily entail decidability
or interpolation1. Indeed, both BBI and CBI have recently been shown to
be undecidable [7, 20]. On the other hand, for particular display calculi it
is possible to ensure that an exhaustive proof search is indeed terminating
(cf. [27]). In particular, this should be possible for DLBI, very likely using
techniques similar to those employed by Restall [27], since BI is known to
be decidable [15]. We believe that DLdMBI is likely decidable too. However,
Kracht showed that it is sadly impossible to decide whether an arbitrary
display calculus is decidable [18].

5. Deduction theorem for DLBBI and DLCBI

In this section, we prove a classical deduction theorem for DLBBI and DLCBI,
akin to the one for propositional linear logic in [21]. That is, we show that
when arbitrary theories are added as new axioms to these systems, their
expressive power does not increase.

In the following, when we are required to produce derivations in both
DLBBI and DLCBI, we just present derivations in DLBBI, since these can
be transformed into suitable DLCBI derivations using Proposition 3.6. For
the sake of readability, we sometimes use multiple rule labels to denote
an abbreviated sequence of rule applications, and we implicitly treat the
semicolon and comma as being associative and commutative, rather than
explicitly applying the appropriate rules. We also frequently use the derived
rules given by Lemma 3.8.

Lemma 5.1. The following consecutions are derivable in DLBBI and DLCBI

for any formulas F,G,H:

1. ∅;F ` (>∗ ∧ F ) ∗ (>∗ ∧ F )

2. (∅;F ), (G;H) ` ((>∗ ∧ F ) ∗G) ∧H

1Of course this is a general phenomenon of consecution calculi, and the same could
be said, e.g., of any sequent calculus with a contraction rule. We tend to regard this as
a strength rather than a deficiency of such calculi, since cut-elimination is obviously still
desirable even for undecidable logics.
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3. ((∅;F ), G);H ` (>∗ ∧ F ) ∗ (G ∧H)

Proof. We first show that (∅;F ), (∅; ]F ) ` Z is DLBBI-derivable for any
formula F and structure Z.

(ΨR)
F ` F

(WkR)
F ` F ;Z

(≡D)
]F ;F ` Z

(≡D), (∅L)
(∅, ]F ); (F,∅) ` Z

(≡D), (WkL)
((∅;F ), (∅; ]F )); ((∅;F ), (∅; ]F )) ` Z

(CtrL)
(∅;F ), (∅; ]F ) ` Z

We now derive the three consecutions given in the lemma.

1. In the following, we write β to abbreviate the formula (>∗∧F )∗(>∗∧F ).

(>∗R)
∅ ` >∗

(WkL)
∅; ]((∅;F ) ( β) ` >∗

(see derivation above)
·
·
·

(∅; ]F ), (∅;F ) ` β
(≡D)

∅; ]((∅;F ) ( β) ` F
(∧R)

∅; ]((∅;F ) ( β) ` >∗ ∧ F
(ΨR)

∅, F ` >∗ ∧ F
(∗R)

(∅; ]((∅;F ) ( β)), (∅;F ) ` β
(≡D)

∅ ` ((∅;F ) ( β); ((∅;F ) ( β)
(CtrR)

∅ ` (∅;F ) ( β
(≡D)

∅, (∅;F ) ` β
(∅L)

∅;F ` β

2.

(ΨR)
(∅;F ), G ` (>∗ ∧ F ) ∗G

(≡D), (WkL)
(∅;F ), (G;H) ` (>∗ ∧ F ) ∗G

(ΨR)
H ` H

(∅L)
∅, H ` H

(≡D), (WkL)
(∅;F ), (G;H) ` H

(∧R)
(∅;F ), (G;H) ` ((>∗ ∧ F ) ∗G) ∧H
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3. In the following, we write γ to abbreviate the formula (>∗∧F )∗(G∧H).

(see derivation above)
·
·
·

(∅; ]F ), (∅;F ) ` G ( γ
(≡D)

(∅; ]F ), (∅;F ), G ` γ
(≡D), (WkL)

(∅; ]F ), (((∅;F ), G);H) ` γ
(≡D)

∅; ]((((∅;F ), G);H) ( γ) ` F

(>∗R)
∅ ` >∗

(WkL)
∅; ]((((∅;F ), G);H) ( γ) ` >∗

(∧R)
∅; ]((((∅;F ), G);H) ( γ) ` >∗ ∧ F

·
·
·

(contd. below)

(contd. above)
·
·
·

∅; ]((((∅;F ), G);H) ( γ) ` >∗ ∧ F

(ΨR)
G;H ` G ∧H

(≡D), (∅L)
(∅, G);H ` G ∧H

(≡D), (WkL)
((∅;F ), G);H ` G ∧H

(∗R)
(∅; ]((((∅;F ), G);H) ( γ)), (((∅;F ), G);H) ` γ

(≡D)
∅ ` (((∅;F ), G);H) ( γ; (((∅;F ), G);H) ( γ

(CtrR)
∅ ` (((∅;F ), G);H) ( γ

(≡D)
∅, (((∅;F ), G);H) ` γ

(∅L)
((∅;F ), G);H ` γ

Corollary 5.2. The following rules are derivable in DLBBI and DLCBI for
any formula F and structures X,Y,Z:

(∅;F ), (∅;F ) ` Z
(Ded1)

(∅;F ) ` Z

(∅;F ), (X ;Y ) ` Z
============== (Ded2)
((∅;F ), X);Y ` Z

Proof. We show how to derive one direction of (Ded2) using part 2 of
Lemma 5.1; the first rule and the other direction of this rule are derived
similarly using parts 1 and 3 respectively.

(Lemma 5.1, pt. 2)
·
·
·

((∅;F ), X);Y ` (>∗ ∧ F ) ∗ (ΨX ∧ΨY )

(∅;F ), (X ;Y ) ` Z
(ΨL)

(>∗ ∧ F ) ∗ (ΨX ∧ΨY ) ` Z
(Cut)

((∅;F ), X);Y ` Z
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If C is a DLL consecution, we write DLL+C for the proof system obtained
by extending DLL with an axiom (0-premise) rule with conclusion C.

Theorem 5.3 (Deduction theorem). Let L ∈ {BBI,CBI}, and let W ` Z

be a DLL consecution. Then X ` Y is provable in DLL + (W ` Z) if and
only if (∅; ΨW —∗ ΥZ),X ` Y is provable in DLL.

Proof. (⇐) Given a DLL proof of (∅; ΨW —∗ ΥZ),X ` Y , we directly
construct a proof of X ` Y in the extended system DLL + (W ` Z):

W ` Z
(ΥR)

W ` ΥZ
(ΨL)

ΨW ` ΥZ
(∅L)

∅,ΨW ` ΥZ
(—∗R)

∅ ` ΨW —∗ ΥZ

·
·
·

(∅; ΨW —∗ ΥZ), X ` Y
(≡D)

ΨW —∗ ΥZ ` ]∅;X ( Y
(Cut)

∅ ` ]∅;X ( Y
(≡D)

∅;∅ ` X ( Y
(CtrL)

∅ ` X ( Y
(≡D)

∅, X ` Y
(∅L)

X ` Y

(⇒) By assumption we have a proof of X ` Y in DLL + (W ` Z). With-
out loss of generality, we consider applications of the display rule (≡D) in
this proof to abbreviate sequences of applications of individual display pos-
tulates. We show by induction on the height of the proof of X ` Y that
(∅; ΨW —∗ ΥZ),X ` Y is provable in DLL. We distinguish a case for each
proof rule and display postulate of DLBBI and DLCBI, and for the new axiom
W ` Z. We show some of the more interesting cases in Figure 10.

6. Relationship between display and sequent calculi for BI

Of the four bunched logics B, only BI is known to possess a sequent calculus
with cut-elimination, given by Pym [23]. Thus it is natural to compare this
calculus, LBI, with our display calculus DLBI. The sequents of LBI are of
the form Γ ` F where F is a BI-formula and Γ is a bunch, given by:

Γ ::= F | ∅ | ∅ | Γ ; Γ | Γ , Γ
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(ΥL)
ΨW —∗ ΥZ ` W ( Z

(WkL)
∅; ΨW —∗ ΥZ ` W ( Z

(≡D)
(∅; ΨW —∗ ΥZ) , W ` Z

(I.H.)
·
·
·

(∅;α), X ` F

(I.H.)
·
·
·

(∅;α), G ` Y
(≡D)

G ` (∅;α) ( Y
(—∗L)

F —∗ G ` ((∅;α), X) ( ((∅;α) ( Y )
(≡D)

(∅;α), (∅;α) ` (F —∗ G) ( (X ( Y )
(Ded1)

∅;α ` (F —∗ G) ( (X ( Y )
(≡D)

(∅;α), F —∗ G ` X ( Y

(I.H.)
·
·
·

(∅;α), X ` F

(I.H.)
·
·
·

(∅;α), G ` Y
(≡D)

G ` ((∅;α) ( Y )
(→L)

F → G ` ]((∅;α), X); ((∅;α) ( Y )
(≡D)

((∅;α), X);F → G ` (∅;α) ( Y
(Ded2)

(∅;α), (F → G;X) ` (∅;α) ( Y
(Ded2)

((∅;α), F → G);X ` (∅;α) ( Y
(≡D)

(∅;α), (((∅;α), F → G);X) ` Y
(Ded2)

((∅;α), (∅;α), F → G);X ` Y
(≡D)

(∅;α), (∅;α) ` (F → G) ( (]X; Y )
(Ded1)

∅;α ` (F → G) ( (]X;Y )
(≡D)

(∅;α), F → G ` ]X;Y

(I.H.)
·
·
·

(∅;α), ]Y ` ]X
(≡D)

]Y ` (∅;α) ( ]X
(WkL)

X; ]Y ` (∅;α) ( ]X
(≡D)

(∅;α), (X; ]Y ) ` ]X
(Ded2)

((∅;α), X); ]Y ` ]X
(≡D)

X ` Y ; ]((∅;α), X)
(∅L)

∅, X ` Y ; ]((∅;α), X)
(≡D)

∅ ` X ( (Y ; ]((∅;α), X))
(WkL)

∅;α ` X ( (Y ; ]((∅;α), X))
(≡D)

((∅;α), X); ((∅;α), X) ` Y
(CtrL)

(∅;α), X ` Y

Figure 10. Various cases of the proof of the (⇒) direction of Theorem 5.3: top left, the
new axiom W ` Z; top right, (—∗L); bottom left, (→L); bottom right, one direction of the
display postulate X ` Y <>D ]Y ` ]X. In all cases α is an abbreviation for the formula
ΨW —∗ ΥZ , and (I.H.) denotes a proof given by induction hypothesis.



26 James Brotherston

where F ranges over BI-formulas. Coherent equivalence, ≡, is defined on
bunches as the least congruence closed under the equations:

(Γ1 ; Γ2) ; Γ3 ≡ Γ1 ; (Γ2 ; Γ3) (Γ1 , Γ2) , Γ3 ≡ Γ1 , (Γ2 , Γ3)
Γ1 ; Γ2 ≡ Γ2 ; Γ1 Γ1 , Γ2 ≡ Γ2 , Γ1

Γ ≡ ∅ ; Γ Γ ≡ ∅ , Γ

The right-introduction rules for the logical connectives have standard intu-
itionistic formulations. The left-introduction rules, and the structural rules,
are written so as to apply to formulas occurring at arbitrary positions within
a bunch, using the notation Γ(∆) for a bunch Γ with a distinguished sub-
bunch occurrence ∆. We present the rules of LBI in Figure 11.

Note that bunches are exactly the structures that can occur as antecedent
parts of DLBI consecutions. Thus every LBI sequent is a DLBI consecution,
and the left hand side of any DLBI consecution is a bunch. We demonstrate
a correspondence between cut-free proofs in the sequent calculus LBI and in
our display calculus DLBI.

Lemma 6.1. For any LBI sequent Γ ` F there is an injective, constructive
map from LBI proofs of Γ ` F to DLBI proofs of Γ ` F . Moreover, this map
preserves cut-freeness of proofs.

Proof. We show that each of the proof rules of LBI is derivable in DLBI.
The right-introduction rules of LBI have direct equivalents in DLBI. Appli-
cations of the rule (Equiv) for coherent equivalence are translated into DLBI

as combinations of the display-equivalence rule (≡D), the associativity rules
(AAL) and (MAL) and the unit rules (∅L) and (∅L).

The left-introduction rules, and the structural rules can be seen in DLBI

as a “macro” for first displaying the active part of the conclusion, then ap-
plying the corresponding left-introduction rule of DLBI and finally reversing
the original display process to restore the bunch context. E.g., we derive the
(—∗L) rule of LBI as follows:

∆ ` F1

Γ(F2) ` F
(≡D)

F2 ` X
(—∗L)

F1 —∗ F2 ` ∆ ( X
(≡D)

Γ(∆ , F1 —∗ F2) ` F

where X is a placeholder for the consequent structure that results from
displaying Z in Γ(Z) ` F . The other left-rules are similar.
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Identity rules:

(Id)
F ` F

∆ ` G Γ(G) ` F
(Cut)

Γ(∆) ` F

Logical rules:

(⊥L)
Γ(⊥) ` F

Γ(∅) ` F
(>L)

Γ(>) ` F
(>R)

Γ ` >

Γ(F ; G) ` H
(∧L)

Γ(F ∧G) ` H

Γ(F ) ` H Γ(G) ` H
(∨L)

Γ(F ∨G) ` H

∆ ` F Γ(∆ ; G) ` H
(→L)

Γ(∆ ; F —∗ G) ` H

Γ ` F Γ ` G
(∧R)

Γ ` F ∧G

Γ ` Fi

i ∈ {1, 2}(∨R)
Γ ` F1 ∨ F2

Γ ; F ` G
(→R)

Γ ` F → G

Γ(∅) ` F
(>∗L)

Γ(>∗) ` F

Γ(F , G) ` H
(∗L)

Γ(F ∗G) ` H

∆ ` F Γ(G) ` H
(—∗L)

Γ(∆ , F —∗ G) ` H

(>∗R)
∅ ` >∗

Γ ` F ∆ ` F
(∗R)

Γ , ∆ ` F ∗G

Γ , F ` G
(—∗R)

Γ ` F —∗ G

Structural rules:

Γ(∆) ` F
(WkL)

Γ(∆;∆′) ` F

Γ(∆;∆) ` F
(CtrL)

Γ(∆) ` F

Γ′ ` F
Γ ≡ Γ′ (Equiv)

Γ ` F

Figure 11. The LBI sequent calculus.

Definition 6.2. For any DLBI consecution X ` Y define its display-normal
form pX ` Y q to be the consecution obtained by applying transformations

X ` Y ⇒ Z 7→ X ; Y ` Z

X ` Y ( Z 7→ X , Y ` Z

until no further such transformations are possible. Note that for any DLBI

consecution X ` Y we have that X ` Y ≡D pX ` Y q and pX ` Y q is a
unique LBI sequent of the form Γ(X) ` F .

Lemma 6.3. For any DLBI consecution X ` Y there is a constructive map
from DLBI proofs of X ` Y to LBI proofs of pX ` Y q. Moreover, this map
preserves cut-freeness of proofs.

Proof. We show that each proof rule of DLBI is derivable in LBI under the
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translation p−q. For example, in the case of the DLBI rule (—∗L) we have:

pX ` Fq pG ` Y q

pF —∗ G ` X ( Y q

=
X ` F Γ(G) ` H

Γ(X , F —∗ G) ` H

and we are immediately done since the translated rule instance is simply the
(—∗L) rule of LBI. The other rules are similar. In the case of the display
rule we treat each display postulate individually: applications of display
postulates either collapse under p−q or boil down to the commutativity of
the comma or semicolon, which is handled by the LBI rule (Equiv).

Corollary 6.4. Any cut-elimination procedure for DLBI may be construc-
tively transformed into a cut-elimination procedure for LBI, and vice versa.

Proof. For the first direction, given a proof of Γ ` F in LBI we can con-
struct a cut-free proof of Γ ` F in DLBI using Lemma 6.1 and the assumed
cut-elimination procedure for DLBI, whence by Lemma 6.3 we can construct
a cut-free LBI proof of pΓ ` Fq = Γ ` F . The other direction is similar,
using the additional fact that X ` Y ≡D pX ` Y q in DLBI.

While Lemma 6.1 demonstrates that a cut-free LBI proof is essentially a
cut-free DLBI proof with some display steps omitted, Lemma 6.3 indicates
the converse: any cut-free DLBI proof can be viewed as a cut-free LBI proof
by bringing each consecution into a “display-normal form”. We suggest that
analogous normal forms probably do not exist in any meaningful sense for
DLBBI, DLdMBI and DLCBI (and so Lemma 6.3 does not adapt), because
of the seemingly essential presence of the structural negations ] and/or [

in these calculi. While a single such connective can be straightforwardly
eliminated in the presence of a single associative and commutative binary
connective (e.g., X ; (]Y ; Z) ` W can be reexpressed as X ; Z ` Y ;
W in our calculi using display and associativity rules), it is far from clear
whether we can do without them when structures are fundamentally tree-
like rather than “flat”. For example, in the setting of DLBBI, if we consider
the consecution F , ]G ` ]H then it is clear that there is no structurally
equivalent consecution to this one in which ] does not occur. Thus any
cut-free sequent calculus for BBI without such a unary negative structuring
must represent cut-free DLBBI proofs in a rather non-trivial way, and it
appears more than likely that attempts to formulate such a calculus are
fundamentally doomed — an observation borne out by our own experience
and that of others [23]. Similar remarks apply to dMBI and CBI. (Of course,
this does not rule out other, less syntax-directed approaches such as labelled
deduction based on tableaux [15, 19] or hybrid logics [26].)
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7. Conclusion

Our main contribution in this paper is a unified proof theory for the principal
varieties of bunched logic, formulated using display calculi. As far as we
know, this represents the first proof-theoretic treatment of bunched logic
as a whole to appear in the literature. In particular, we provide the first
cut-free proof system for BBI, which underlies separation and spatial logics
employed in program analysis, and we (incidentally) substantiate O’Hearn
and Pym’s suggestion that display logic technology might apply to BI [22].
We demonstrate cut-elimination for each of our calculi, as well as soundness
and completeness with respect to basic presentations of the corresponding
logics. In addition, we show that the use of display-equivalence can be
controlled so that only finitely many rearrangements of any consecution need
be considered during a proof, and in the case of BBI and CBI we establish
a full deduction theorem for our display calculi. Finally, we establish a
translation between cut-free proofs in our display calculus for BI and those
in its standard bunched sequent calculus. By doing so, we observe not only
that this sequent calculus can be seen as an optimised display calculus, but
also that the display calculi for the other bunched logics cannot be pared
down to a sequent calculus in the same way. These observations provide
additional evidence that our formulation of the proof theory of bunched
logics in terms of display calculi is indeed canonical.

The fact that each bunched logic can individually be presented as a dis-
play calculus is relatively unsurprising in light of the earlier display calculus
for CBI presented in [5], and the intuitionistic display technology, based on
residuated pairs of connectives, to be found in [16, 27, 29]. As well as re-
alising these calculi explicitly, we obtain our proof theory in a unified and
economical way, by first formulating and then combining calculi for the ele-
mentary additive and multiplicative components of the bunched logics. Our
treatment takes advantage of the compositionality of the display property
and of Belnap’s cut-elimination conditions: given that these properties hold
for two “elementary” display calculi DLL1

and DLL2
, it is easy to establish

that the same properties hold of their orthogonal combination DLL1
+DLL2

.

Though complete cut-free proof systems for bunched logic are of clear
theoretical interest, from the practical perspective it remains to be seen
whether our proof theory will find application in automated theorem-proving
tools. The need for such tools is quite real, e.g., in the setting of separation
logic, which is based on BBI, but since both separation logic and BBI are
fundamentally undecidable [7], compromises are clearly necessary. (In fact,
separation logic is significantly more complicated than pure BBI, as it must
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also account for specific properties of the heap-like models on which it is
based.) We suggest that our work might be applied in two main directions.
First, the display property intuitively corresponds to “pointing” or “focus-
ing” in a proof attempt, where one selects part of a subgoal to work on. Thus
our display calculi might well find application in semi-automated or interac-
tive proof assistants, where the proof search is partially or wholly guided by
the user. Second, it might be possible to obtain useful fully-automated but
incomplete proof search tools by imposing constraints on the use of struc-
tural rules. A further possibility might be to look at obtaining deep inference
calculi, which abandon the distinction between logical connectives and struc-
tural ones [8], for bunched logics by attempting to extract formula-rewriting
rules from their cut-free display calculi. Our approach may also open new
avenues for display-style proof theories for other computer science logics.
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[8] Brünnler, Kai, ‘Deep inference and its normal form of derivations’, in Proceedings

of CiE, vol. 3988 of LNCS, 2006, pp. 65–74.

[9] Calcagno, Cristiano, Philippa Gardner, and Uri Zarfaty, ‘Context logic as

modal logic: Completeness and parametric inexpressivity’, in Proceedings of POPL-

34, ACM, 2007, pp. 123–134.

[10] Chang, Bor-Yuh Evan, and Xavier Rival, ‘Relational inductive shape analysis’,

in Proceedings of POPL-35, ACM, 2008, pp. 247–260.



Bunched Logics Displayed 31

[11] Chin, Wei-Ngan, Cristina David, Huu Hai Nguyen, and Shengchao Qin, ‘En-

hancing modular OO verification with separation logic’, in Proceedings of POPL-35,

ACM, 2008, pp. 87–99.

[12] Collinson, Matthew, David Pym, and Edmund Robinson, ‘Bunched polymor-

phism’, Mathematical Structures in Computer Science, 18 (2008), 6, 1091–1132.

[13] Distefano, Dino, and Matthew Parkinson, ‘jStar: Towards practical verification

for Java’, in Proceedings of OOPSLA, ACM, 2008, pp. 213–226.

[14] Galmiche, Didier, and Dominique Larchey-Wendling, ‘Expressivity properties

of Boolean BI through relational models’, in Proceedings of FSTTCS, vol. 4337 of

LNCS, Springer, 2006, pp. 357–368.
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