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Abstract. We present a framework for inductive definitions in the logic
of bunched implications, BI, and formulate two sequent calculus proof
systems for inductive reasoning in this framework. The first proof sys-
tem adopts a traditional approach to inductive proof, extending the usual
sequent calculus for predicate BI with explicit induction rules for the in-
ductively defined predicates. The second system allows an alternative
mode of reasoning with inductive definitions by cyclic proof. In this sys-
tem, the induction rules are replaced by simple case-split rules, and the
proof structures are cyclic graphs formed by identifying some sequent
occurrences in a derivation tree. Because such proof structures are not
sound in general, we demand that cyclic proofs must additionally satisfy
a global trace condition that ensures soundness. We illustrate our induc-
tive definition framework and proof systems with simple examples which
indicate that, in our setting, cyclic proof may enjoy certain advantages
over the traditional induction approach.

1 Introduction

The mechanised verification of properties of computer programs — for example,
properties expressing safety, liveness, or correctness — is an important and very
challenging problem currently attracting considerable interest in the computer
science research community. A source of inconvenience, though, is the tendency
of real-life computer programs to be written in low-level languages employing
pointer arithmetic and similar operations that directly alter data stored in shared
mutable structures, such as the heap. Because the (potentially dangerous) effects
of these operations are hard to analyse, programs written using such languages
have so far proven very much less amenable to formal reasoning than those writ-
ten in, e.g., high-level functional programming languages, which are typically
more well-behaved from a mathematical standpoint. The logic of bunched impli-
cations (BI), formulated by O’Hearn and Pym [19], addresses this problem by
offering a convenient formalism for expressing properties of programs that access
and modify some shared resource [16]. In this paper, we extend BI with a frame-
work for inductive definitions, and formulate sequent calculus proof systems for
formal reasoning in this extension.
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Inductive definitions are an important and well-established tool for represent-
ing many structures commonly used in the specification of computer programs,
such as linked lists and binary trees. For any inductively defined structure, there
are naturally associated inductive proof principles allowing us to reason about
the structure by exploiting the recursion in its definition. Most often, these prin-
ciples are encoded as inference rules or axioms in the native reasoning framework;
but one can also reason with inductive definitions via a natural mode of cyclic
proof [8, 9]. In contrast to the usual finite tree proofs, cyclic proofs are regu-
lar infinite trees — represented as a finite (cyclic) graph — satisfying a global
condition ensuring soundness. For inductively defined relations, this soundness
condition is manifested as a generalisation of the principle of infinite descent à
la Fermat [10].

By considering particular models of BI, one can obtain logics suitable for
carrying out verification in specific programming languages. One very successful
such logic is the separation logic of O’Hearn, Reynolds and Yang, which is suit-
able for reasoning about C-like languages [21]. Separation logic has to date been
used in the verification of several non-trivial programs involving pointer arith-
metic, including (but not limited to) a copying garbage collector [6], a DAG
duplication program [7] and the Schorr-Waite graph marking algorithm [25]. It
has also fruitfully been employed in local shape analysis [13, 14], program termi-
nation analysis [4], and automated program verification (see e.g. [3, 2]).

However, as has been noted [5, 22], static analysis in separation logic (and
other analysis based upon BI) has so far typically relied upon ad hoc extensions of
the core logic by the particular inductive definitions needed for the development.
It is thus of clear interest to develop a formal extension of BI in which one can
define and reason about general inductive structures (over some suitable class
of definitions). We provide one such extension, which could form a basis for
theorem proving support to check logical implications in BI involving arbitrary
inductive predicates (as needed, e.g., to accelerate fixed-point computations in
shape analysis [13], or to check properties of predicates generated by inductive
recursion synthesis [15] or used in automated verification [18]). Furthermore,
our notion of cyclic proof for reasoning with inductive predicates appears to
offer a new and potentially advantageous approach to certain static analysis
applications (which we discuss later). In this paper, however, we confine ourselves
to providing the foundations necessary to develop such applications.

In Section 2, we extend first-order predicate BI with a framework for (possibly
mutual) inductively defined relations, based on simple “productions” in the style
of Martin-Löf [17], in which the multiplicative connectives of BI may occur in
the premises of definitions. This framework, though relatively simple, appears
nonetheless powerful enough to express the inductive definitions that have arisen
in practice in existing applications of separation logic to program verification.
In Section 3 we extend the usual Gentzen-style proof system for BI to obtain a
proof system supporting induction in the extended logic BIID by adding left- and
right-introduction rules for atomic formulas involving the inductive predicates of
the theory. Following the approach taken in [8–10], the right introduction rules



for an inductive predicate P are merely sequent versions of the productions
defining P , while the left-introduction rule for P embodies the natural principle
of rule induction over the definition of P . However, there is also a natural notion
of cyclic proof for the logic, for which we introduce a second proof system in
Section 4. In this system, the induction rules of the first system are replaced by
simple case-split rules. Pre-proofs in the system are “unfinished” derivation trees
in which every node to which no proof rule has been applied is identified with
a syntactically identical interior node; pre-proofs can thus straightforwardly be
understood as cyclic graphs. In general, pre-proofs are not sound, so to ensure
soundness we impose a global trace condition stipulating, essentially, that for each
infinite path in the pre-proof, some inductive definition is unfolded infinitely
often along the path. By appealing to the well-foundedness of our inductive
definitions, all such paths can be disregarded, whereby the remaining portion of
proof is finite and hence sound for standard reasons. Finally, in Section 5, we
identify the main directions for future work.

2 First-order predicate BI with inductive definitions

In this section we give the syntax and semantics of our logic, BIID, obtained
by extending first-order predicate BI à la Biering et al [5] with a framework for
(possibly mutual) inductive definitions.

A brief comment on some of our mathematical and notational conventions
is in order. We often use vector notation to abbreviate sequences, e.g. x for
(x1, . . . , xn); for any n ∈ N and i ≤ n we define the ith projection function πni
on n-tuples of sets by πni (X1, . . . , Xn) = Xi; for any n ∈ N we extend set union,
intersection and inclusion to n-tuples of sets by their corresponding pointwise
definitions; and we write Pow(X) for the powerset of a set X.

Our languages are the standard (countable) first-order languages — contain-
ing arbitrarily many constant, function, and predicate symbols — except that
we designate finitely many of the predicate symbols as inductive. A predicate
symbol that is not inductive is called ordinary. For the rest of this paper, we shall
consider a fixed language Σ containing exactly n inductive predicates P1, . . . , Pn,
and use Q1, Q2, . . . for ordinary predicates. We also assume the existence of a
denumerably infinite set V of variables, which is disjoint from Σ.

The elements of Σ are interpreted by a structure, as in first-order logic,
with the difference here that our structures include a notion of a set of possible
resource states or “worlds”, given by a partial commutative monoid. The inter-
pretation of predicates is parameterised by the elements of this monoid: in other
words, the set of (tuples of) objects in the domain of which a given predicate is
true depends on the current resource state. (However, the interpretations of the
constant and function symbols are resource-independent.)

Definition 2.1 (BI-structure). A BI-structure for Σ is a tuple:

M = (D, 〈R, ◦, e〉, cM , fM ,QM ,PM )



where D is a set (called the domain of M), 〈R, ◦, e〉 is a partial commutative
monoid and:

– cM ∈ D for each constant Σ-symbol c ∈ {c};
– fM : Dk → D for each function Σ-symbol f ∈ {f} of arity k;
– QM ⊆ R×Dk for each ordinary predicate Σ-symbol Q ∈ {Q} of arity k;
– PM ⊆ R×Dk for each inductive predicate Σ-symbol P ∈ {P} of arity k;

If X is an n-tuple of sets satisfying πni (X) ⊆ R×Dki , where ki is the arity of Pi,
for all i ∈ {1, . . . , n}, then we write M [P 7→ X] to mean the structure defined
as M except that PM [P7→X] = X.

Our structures interpret the inductive predicate symbols of Σ only for tech-
nical convenience: we shall only be interested later in those structures in which
the interpretation of the inductive predicates coincides with the standard inter-
pretation, which is determined by a fixed set of inductive definitions.

The terms of Σ are defined as usual; we write t[u/x] to denote the term
obtained by substituting the term u for all occurrences of the variable x in
the term t. We write t(x1, . . . , xn) for a term t all of whose variables occur in
{x1, . . . , xn}, where x1, . . . , xn are distinct, and in such cases write t(t1, . . . , tn)
to denote the term obtained by substituting t1, . . . , tn for x1, . . . , xn respectively
in t. Also, if M is a structure with domain D, then tM (x1, . . . , xk) : Dk → D is
obtained by replacing every constant symbol c by cM and every function symbol
f by fM in t(x1, . . . , xn).

The formulas of BIID are just the standard formulas of predicate BI1, given
by the following grammar:

F ::= > | ⊥ | I | Q(t1, . . . , tk) (k = arity of Q) | t1 = t2 |
F ∧ F | F ∨ F | F → F | F ∗ F | F —∗ F | ∃xF | ∀xF

where Q ranges over all the predicate symbols of Σ (both inductive and ordi-
nary), x ranges over V and t1, . . . , tk range over terms of Σ. We use the standard
precedences on the logical connectives, with ∗ and —∗ having the same logical
precedence as ∧ and→ respectively, and use parentheses to disambiguate where
necessary. We write ¬F to abbreviate the formula F → ⊥.

As in first-order logic, we interpret variables as elements of the domain D of a
BI-structure using environments ρ : V → D; we extend environments to all terms
of Σ in the usual way and write ρ[x 7→ d] for the environment defined exactly
as ρ except that ρ[x 7→ d](x) = d. The formulas of BIID are then interpreted by
the following satisfaction (a.k.a. “forcing”) relation:

Definition 2.2 (Satisfaction relation for BI). Let M = (D, 〈R, ◦, e〉, . . .) be
a BI-structure for the language Σ, let r ∈ R and let ρ be an environment for M .
We define the satisfaction relation M, r |=ρ F on formulas by:

1 As in [5], our “predicate BI” is propositional BI extended with the usual additive
quantifiers ∀ and ∃, as opposed to propositional BI extended with both additive and
multiplicative versions of the quantifiers, as in e.g. [19].



M, r |=ρ > ⇐⇒ true
M, r |=ρ ⊥ ⇐⇒ false
M, r |=ρ I ⇐⇒ r = e

M, r |=ρ Qt ⇐⇒ QM (r, ρ(t)) (Q ordinary or inductive)
M, r |=ρ t1 = t2 ⇐⇒ ρ(t1) = ρ(t2)
M, r |=ρ F1 ∧ F2 ⇐⇒ M, r |=ρ F1 and M, r |=ρ F2

M, r |=ρ F1 ∨ F2 ⇐⇒ M, r |=ρ F1 or M, r |=ρ F2

M, r |=ρ F1 → F2 ⇐⇒ M, r |=ρ F1 implies M, r |=ρ F2

M, r |=ρ F1 ∗ F2 ⇐⇒ r = r1 ◦ r2 and M, r1 |=ρ F1 and M, r2 |=ρ F2

for some r1, r2 ∈ R
M, r |=ρ F1 —∗ F2 ⇐⇒ for all r′ ∈ R, M, r′ |=ρ F1 and r′ ◦ r defined

implies M, r′ ◦ r |=ρ F2

M, r |=ρ ∀xF ⇐⇒ M, r |=ρ[x 7→d] F for all d ∈ D
M, r |=ρ ∃xF ⇐⇒ M, r |=ρ[x 7→d] F for some d ∈ D

(Informally, M, r |=ρ F means: “the formula F is true in M in the resource state
r and under the environment ρ”.)

We now give our schema for (possibly mutual) inductive definitions, which
extends the framework used in [8–10] and, like that framework, is based on
Martin-Löf’s “productions” [17]. Our schema allows the multiplicative connec-
tives of BI to occur in the premises of definitional clauses:

Definition 2.3 (Inductive definition set). An inductive definition set for Σ
is a set of productions, which are rules of the form:

C(x)
i ∈ {1, . . . , n}

Pit(x)

where C(x) is an inductive clause given by the following grammar:

C(x) ::= > | I | Qt(x) | Pjt(x) (j ∈ {1, . . . , n}) | t1(x) = t2(x) |
C(x) ∧ C(x) | C(x) ∗ C(x) | F̂ (x)→ C(x) | F̂ (x) —∗ C(x) | ∀xC(x)

where Q ranges over the ordinary predicate symbols of Σ and F̂ (x) ranges over
all formulas of BI in which no inductive predicate symbols occur and whose free
variables are contained in {x}.

The productions whose conclusions feature an inductive predicate P should
be read as disjunctive clauses of the definition of P , whose free variables are
implicitly existentially quantified. For some readers the following, equivalent
notation for definitions may be more familiar:

Py =def (∃x1.y = t1(x1) ∧ C1(x1)) ∨ . . . ∨ (∃xk.y = tk(xk)) ∧ Ck(xk))

where {y} ∩ {x1, . . . ,xk} = ∅ and C1(x1), . . . , Ck(xk) are inductive clauses. It
is trivial to convert from either form to the other.



As usual, the standard interpretation of the inductive predicate symbols of
Σ is obtained by taking the least fixed point of a monotone operator constructed
from the definition set Φ:

Definition 2.4 (Definition set operator). Let M = (D, 〈R, ◦, e〉, . . .) be a
BI-structure for Σ, let Φ be an inductive definition set for Σ and, for each
i ∈ {1, . . . , n}, let ki be the arity of the inductive predicate symbol Pi. We
partition Φ into disjoint subsets Φ1, . . . , Φn ⊆ Φ by defining each Φi to be the set
of productions in Φ in whose conclusion Pi occurs. We then index each definition
set Φi by j, with j ∈ {1, . . . , |Φi|}, and from each production Φi,j ∈ Φi, say:

C(x)

Pit(x)

we obtain a corresponding n-ary function ϕi,j : (Pow(R×Dk1)× . . .×Pow(R×
Dkn))→ Pow(R×Dki) as follows:

ϕi,j(X) = {(r, tM (d)) | M [P 7→ X], r |=ρ[x7→d] C(x)}

(Note that any variables occurring in the right hand side but not the left
hand side of the set expression in the definition of ϕi,j above are, implicitly,
existentially quantified over the entire right hand side of the expression.) Then
the definition set operator for Φ is the operator ϕΦ, with domain and codomain
Pow(R×Dk1)× . . .× Pow(R×Dkn), defined by:

ϕΦ(X) = (
⋃
j

ϕ1,j(X), . . . ,
⋃
j

ϕn,j(X))

Proposition 2.5. The operator ϕΦ is monotone (with respect to ⊆).

Proof. (Sketch) Assuming that X ⊆ Y, where X and Y are n-tuples of sets
of the appropriate type, one can prove by structural induction on C(x) that
M [P 7→ X], r |=ρ[x 7→d] C(x) implies M [P 7→ Y], r |=ρ[x 7→d] C(x). It follows that
ϕi,j(X) ⊆ ϕi,j(Y) for any i and j, and thus ϕΦ(X) ⊆ ϕΦ(Y) as required. ut

Example 2.6. Let ΦN be the inductive definition set consisting of the following
productions for a unary inductive predicate N :

>

N0

Nx

Nsx

Then the definition set operator for ΦN is defined by:

ϕΦN
(X) = {(r, 0M ) | r ∈ R} ∪ {(r, sMd) | (r, d) ∈ X}

In structures M in which all “numerals” (sM )k0M for k ≥ 0 are distinct, the
predicate N corresponds to the property of being a natural number.



Example 2.7. Let 7→ be an ordinary, binary predicate symbol (written infix), and
let Φls be the inductive definition set consisting of the following productions for
a binary inductive predicate ls:

I

lsxx

x 7→ x′ ∗ lsx′ y

lsx y

Then the definition set operator for Φls is defined by:

ϕΦls
(X) = {(e, (d, d)) | d ∈ D}

∪ {(r1 ◦ r2, (d, d′)) | (r1, (d, d′′)) ∈ 7→M and (r2, (d′′, d′)) ∈ X}

where d′′ in the second set comprehension is, implicitly, existentially quantified.
In separation logic, where the resource states are heaps and x 7→ y is true of a
heap h if h is a single-celled heap in which x is a pointer to y, the predicate ls is
used to represent (possibly cyclic) segments of singly-linked lists, so that lsx y
is true of a heap h if h represents a linked list whose first element is pointed to
by x and whose last element contains the pointer y.

It is a standard result for inductive definitions that the least n-tuple of sets
closed under the productions in Φ is the least prefixed point of the operator ϕΦ
(see e.g. [1]), and that this least prefixed point can be approached in iterative
approximant stages, as follows:

Definition 2.8 (Approximants). Let Φ be an inductive definition set for Σ,
and define a chain of ordinal-indexed sets (ϕαΦ)α≥0 by transfinite induction:
ϕαΦ =

⋃
β<α ϕΦ(ϕβΦ) (note that this implies ϕ0

Φ = (∅, . . . , ∅)). Then for each
i ∈ {1, . . . , n}, the set Pαi = πni (ϕαΦ) is called the αth approximant of Pi.

Definition 2.9 (Standard model). Let Φ be an inductive definition set for
Σ. Then a BI-structure M for Σ is said to be a standard model for (Σ,Φ) if
PMi =

⋃
α P

α
i for all i ∈ {1, . . . , n}.

Definition 2.9 thus fixes within a BI-structure a standard interpretation of
the inductive predicate symbols of Σ that is uniquely determined by the other
components of the structure.

Proposition 2.10. For any inductive definition set Φ not employing universal
quantification, ϕωΦ is a prefixed point of ϕΦ and thus in a standard model of
(Σ,Φ) we have PMi = Pωi for all i ∈ {1, . . . , n}. If Φ does feature universal
quantification, the closure ordinal is > ω in general.

Proof. (Sketch) One can show by structural induction on C(x) that, if C(x)
contains no occurrences of ∀, then M [P 7→ ϕωΦ], r |=ρ[x7→d] C(x) implies M [P 7→
ϕkΦ], r |=ρ[x 7→d] C(x) for some k ∈ N. It follows that ϕi,j(ϕωΦ) ⊆

⋃
k∈N ϕi,j(ϕ

k
Φ)

for any i and j, and thus that ϕΦ(ϕωΦ) ⊆ ϕωΦ as required.
For the second part of the proposition, consider a BI-structure M with do-

main N and in which the Peano axioms hold, and the inductive definition set Φ



consisting of the productions for N in Example 2.6 together with a production
with premise ∀xNx and conclusion P0 (where P is a unary inductive predicate
symbol). Then one can easily verify that the least prefixed point of ϕΦ is ϕω+1

Φ .
ut

3 A proof system for induction in BIID

In this section we give a Gentzen-style proof system suitable for formalising
traditional proof by induction in our logic BIID. We fix an inductive definition
set Φ for Σ, partitioned into Φ1, . . . , Φn as in Defn. 2.4. Our starting point will
be the standard sequent calculus for BI (cf. [20]). We write sequents of the form
Γ ` F , where F is a formula and Γ is a bunch, given by the following definition:

Definition 3.1 (Bunch). A bunch is a tree whose leaves are labelled by for-
mulas of BIID and whose internal nodes are labelled by ‘;’ or ‘,’ (denoting re-
spectively additive and multiplicative combination).

As our sequents have at most one formula occurring on the right hand side,
our proof system is intuitionistic. This is not for ideological reasons but for tech-
nical convenience; the formulation of a classical (multiple-conclusion) sequent
calculus for BI would necessitate the use of a multiplicative disjunction (for
details see [20]).

We write Γ (∆) to mean that Γ is a bunch of which ∆ is a subtree (also
called a “sub-bunch”), and write Γ (∆′) for the bunch obtained by replacing the
considered instance of ∆ by ∆′ in Γ (∆).

Definition 3.2 (Coherent equivalence for bunches). Define ≡ to be the
least relation on bunches satisfying:

1. commutative monoid equations for ‘;’ and >;
2. commutative monoid equations for ‘,’ and I;
3. congruence: if ∆ ≡ ∆′ then Γ (∆) ≡ Γ (∆′).

The usual sequent calculus rules for our version of predicate BI, plus rules
for equality and an explicit substitution rule, are given in Figure 1. Our proof
system, called LBIID, is obtained from this system by adding rules for introducing
atomic formulas of the form Pit, where Pi is an inductive predicate symbol, on
the left and right of sequents.

First, for each i ∈ {1, . . . , n} and each production Φi,j ∈ Φi, we obtain a
right-introduction rule (PiRj) for the predicate Pi as follows:

C(x)

Pit(x)
=⇒

Γ ` C(u)
(PiRj)

Γ ` Pit(u)

Before giving the rules for introducing inductive predicates on the left of
sequents, we first give a formal definition of what it means for two inductive
predicates to have a mutual definition in Φ (repeated from [8]):



Structural rules:

(Id)
F ` F

Γ (∆) ` F
(Weak)

Γ (∆;∆′) ` F

Γ (∆;∆) ` F
(Contr)

Γ (∆) ` F

Γ ′ ` F
Γ ≡ Γ ′ (Equiv)

Γ ` F

∆ ` G Γ (G) ` F
(Cut)

Γ (∆) ` F

Γ ` F
(Subst)

Γ [θ] ` F [θ]

Propositional rules:

(⊥L)
⊥ ` F

Γ (F1) ` F Γ (F2) ` F
(∨L)

Γ (F1 ∨ F2) ` F

Γ (F1;F2) ` F
(∧L)

Γ (F1 ∧ F2) ` F

(>R)
` >

Γ ` Fi

i ∈ {1, 2} (∨R)
Γ ` F1 ∨ F2

Γ ` F1 Γ ` F2

(∧R)
Γ ` F1 ∧ F2

∆ ` F1 Γ (F2) ` F
(—∗L)

Γ (∆,F1 —∗ F2) ` F

∆ ` F1 Γ (∆;F2) ` F
(→L)

Γ (∆;F1 → F2) ` F

Γ (F1, F2) ` F
(∗L)

Γ (F1 ∗ F2) ` F

Γ, F1 ` F2

(—∗R)
Γ ` F1 —∗ F2

Γ ;F1 ` F2

(→R)
Γ ` F1 → F2

Γ ` F1 ∆ ` F2

(∗R)
Γ,∆ ` F1 ∗ F2

Quantifier rules:

Γ (G[t/x]) ` F
(∀L)

Γ (∀xG) ` F

Γ ` F
x /∈ FV (Γ ) (∀R)

Γ ` ∀xF

Γ (G) ` F
x 6∈ FV (Γ ∪ {F}) (∃L)

Γ (∃xG) ` F

Γ ` F [t/x]
(∃R)

Γ ` ∃xF

Equality rules:

(=R)
Γ ` t = t

Γ (>)[u/x, t/y] ` F [u/x, t/y]
(=L)

Γ (t = u)[t/x, u/y] ` F [t/x, u/y]

Fig. 1. Sequent calculus proof rules for predicate BI with equality.



Definition 3.3 (Mutual dependency). Define the binary relation Prem on
the inductive predicate symbols {P1, . . . , Pn} of Σ as the least relation satisfying:
Prem(Pi, Pj) holds whenever Pj occurs in the premise of some production in Φi.
Also define Prem∗ to be the reflexive-transitive closure of Prem. Then we say
two predicate symbols P and Q are mutually dependent if both Prem∗(P,Q)
and Prem∗(Q,P ) hold.

Now to obtain an instance of the induction rule for any inductive predicate
Pj , we first associate with every inductive predicate Pi a tuple zi of ki distinct
variables (called induction variables), where ki is the arity of Pi. Furthermore,
we associate to every predicate Pi that is mutually dependent with Pj a formula
(called an induction hypothesis) Hi, possibly containing some of the induction
variables. Next, define the formula Gi for each i ∈ {1, . . . , n} by: Gi = Hi if Pi
and Pj are mutually dependent, and Gi = Pizi otherwise. For convenience, we
shall write Git for Gi[t/zi], where t is a tuple of ki terms. Then an instance of
the induction rule (Ind Pj) for Pj has the following schema:

minor premises Γ (Hjt) ` F
(Ind Pj)

Γ (Pjt) ` F

where the premise Γ (Hjt) ` F is called the major premise of the rule, and for
each predicate Pi that is mutually dependent with Pj , we obtain a minor premise
from every production in Φi as follows:

C(x)

Pit(x)
=⇒ CH(x) ` Hit(x) (∀x ∈ x. x 6∈ FV (Γ ))

where CH(x) is the formula obtained by replacing every formula of the form
Pkt(x) (for Pk an inductive predicate) by Gkt(x) in the inductive clause C(x).

Example 3.4. The induction rule for the predicate N from Example 2.6 is:

> ` H0 Hx ` Hsx Γ (Ht) ` F
(Ind N)

Γ (Nt) ` F

where H is the induction hypothesis associated with N and x is suitably fresh.

Example 3.5. The induction rule for the predicate ls from Example 2.7 is:

I ` Hxx x 7→ x′ ∗Hx′y ` Hxy Γ (Htu) ` F
(Ind ls)

Γ (ls t u) ` F

where H is the induction hypothesis associated with ls and x, x′, y are fresh.

Definition 3.6 (Validity). Let M be a standard model for (Σ,Φ). Then a
sequent Γ ` F is said to be true in M if M, r |=ρ φΓ implies M, r |=ρ F for
all environments ρ and resource states r, where φΓ is the formula obtained by
replacing every occurrence of ‘;’ by ∧ and every occurrence of ‘,’ by ∗ in the
bunch Γ . Γ ` F is said to be valid if it is true in all standard models.



By a derivation tree, we mean a finite tree of sequents in which each parent
sequent is obtained as the conclusion of an inference rule with its children as
premises. We distinguish between “leaves” and “buds” in the tree. By a leaf
we mean an axiom, i.e., the conclusion of a 0-premise inference rule. By a bud
we mean any sequent occurrence in the tree that is not the conclusion of a
proof rule. An LBIID proof is then, as usual, a finite derivation tree constructed
according to the proof rules that contains no buds. The following proposition is
a straightforward consequence of the local soundness of our proof rules.

Proposition 3.7 (Soundness of LBIID). If there is an LBIID proof of Γ ` ∆
then Γ ` ∆ is valid.

Example 3.8. We give an LBIID proof that the predicate N from Example 2.6
admits multiplicative weakening, i.e. that F,Nx ` Nx:

(NR1)
F ` N0

(—∗R)
` F —∗ N0

(Id)
F ` F

(Id)
Ny ` Ny

(—∗L)
F, F —∗ Ny ` Ny

(NR2)
F, F —∗ Ny ` Nsy

(—∗R)
F —∗ Ny ` F —∗ Nsy

(Id)
F ` F

(Id)
Nx ` Nx

(—∗L)
F, F —∗ Nx ` Nx

(Ind N)
F,Nx ` Nx

Note that in the application of (Ind N) in this proof we associate the induction
variable z and the induction hypothesis F —∗ Nz with the inductive predicate
N . We remark that one can easily see that this example demonstrates the need
for generalisation of induction hypotheses in this setting (at least for cut-free
proofs): it is clear that no subformula of the root sequent is sufficiently strong as
an induction hypothesis to enable us to prove the major premise of the induction.

4 A cyclic proof system for BIID

We now define a second proof system CLBIωID for BIID which admits a notion
of cyclic proof. Pre-proofs are finite derivation trees together with a function
assigning to every bud in the tree a syntactically identical interior node (a com-
panion for the bud), and thus can be viewed as cyclic graphs. Since pre-proofs
are not sound in general, we impose a global trace condition on pre-proofs, corre-
sponding to an infinite descent principle for our inductive definitions, to ensure
soundness.

The proof rules of the system CLBIωID are the rules of LBIID described in
Section 3, except that for each inductive predicate Pj of Σ, the induction rule
(Ind Pj) of LBIID is replaced by the case-split rule:

case distinctions
(Case Pj)

Γ (Pju) ` F



where we obtain a case distinction from each production in Φj as follows:

C(x)

Pjt(x)
=⇒ Γ (u = t(x);C(x)) ` F (∀x ∈ x. x 6∈ FV (Γ ∪ {F}))

Example 4.1. The case-split rule for N from Example 2.6 is:

Γ (t = 0;>) ` F Γ (t = sx;Nx) ` F
(Case N)

Γ (Nt) ` F

Example 4.2. The case-split rule for ls from Example 2.7 (modulo applying the
equality rule to eliminate some generated equalities) is:

Γ (t = u; I) ` F Γ (t 7→ x ∗ lsxu) ` F
(Case ls)

Γ (ls t u) ` F

Definition 4.3 (Companion). Let B be a bud of a derivation tree D. A non-
bud sequent C in D is said to be a companion for B if C = B.

By assigning a companion to each bud node in a finite derivation tree, one
obtains a finite representation of an associated (regular) infinite tree:

Definition 4.4 (CLBIωID pre-proof). A CLBIωID pre-proof of a sequent Γ ` ∆
is a pair P = (D,R), where D is a derivation tree constructed according to the
proof rules of CLBIωID given above and whose root is Γ ` ∆, and R is a function
assigning a companion to every bud of D.

We consider D to have a directed edge from the conclusion of each rule
instance to each of its premises, whence the graph of P is the directed graph GP
obtained from D by identifying each bud node B in D with its companion R(B).

We observe that the local soundness of our proof rules is not sufficient to
guarantee that pre-proofs are sound, due to the (possible) cyclicity evident in
their graph representations. In order to give a criterion for soundness, we formu-
late the notion of a trace following a path in a pre-proof graph, similar to that
used in [8–10, 24] but more complex due to our richer induction schema and use
of bunches in sequents:

Definition 4.5 (Trace). Let P be a CLBIωID pre-proof and let (Γi ` Fi)i≥0 be
a path in GP . A trace following (Γi ` Fi)i≥0 is a sequence (τi)i≥0 such that,
for all i, τi is a leaf of Γi (we write Fτi

to mean the formula labelling τi in Γi.)
Furthermore, for each i, one of the following conditions must hold:

1. Γi ` Fi is the conclusion of one of the following inferences, τi is the leaf of
Γi indicated by the underlined formula in the conclusion and τi+1 is one of
the leaves of Γi+1 indicated by the underlined formulas in the appropriate
premise:

Γ (F1;F2) ` F
(∧L)

Γ (F1 ∧ F2) ` F

Γ (F1, F2) ` F
(∗L)

Γ (F1 ∗ F2) ` F

. . . Γ (u = t(x);C(x)) ` F . . .
(Case Pj)

Γ (Pju) ` F



∆ ` F1 Γ (F2) ` F
(—∗L)

Γ (∆,F1 —∗ F2) ` F

∆ ` F1 Γ (∆;F2) ` F
(→L)

Γ (∆;F1 → F2) ` F

Γ (G[t/x]) ` F
(∀L)

Γ (∀xG) ` F

In the case where τi and τi+1 are the leaves indicated by the underlined
formulas in the displayed instance of (Case Pj) above, i is said to be a
progress point of the trace. An infinitely progressing trace is a trace having
infinitely many progress points.

2. τi+1 is the leaf in Γi+1 corresponding to τi in Γi, modulo any splitting of
Γi performed by the rule applied with conclusion Γi ` Fi. (Thus Fτi+1 =
Fτi

, modulo any substitution performed by the rule.) E.g. if Γi ` Fi is the
conclusion of the inference:

∆ ` F1 Γ (F2) ` F
(—∗L)

Γ (∆,F1 —∗ F2) ` F

then, if Γi+1 ` Fi+1 is the left hand premise, then τi+1 and τi are the same
leaf in ∆ and, if Γi+1 ` Fi+1 is the right hand premise, then τi+1 and τi are
the same leaf in Γ (−).

Informally, a trace follows (a part of) the construction of an inductively
defined predicate occurring in some part of the bunches occurring on a path
in a pre-proof. These predicate constructions never become larger as we follow
the trace along the path, and at progress points, they actually decrease. This
property is encapsulated in the following lemma and motivates the subsequent
definition of a cyclic proof :

Lemma 4.6. Let P be a CLBIωID pre-proof of Γ0 ` F0, and let M be a standard
model such that Γ0 ` F0 is false in M in the resource state r0 and environment
ρ0 (say). Then there we can construct an infinite path (Γi ` Fi)i≥0 in GP and
infinite sequences (ri)i≥0 and (ρi)i≥0 such that:

1. for all i, Γi ` Fi is false in Mi in the resource state ri and environment ρi;
2. if there is a trace (τi)i≥n following some tail (Γi ` Fi)i≥n of (Γi ` Fi)i≥0,

then there exists a second sequence of resource states, (r′i)i≥n, such that
M, r′i |=ρi

Fτi
for all i ≥ n and the sequence (αi)i≥n of ordinals defined by

αi = least α s.t. M [P 7→ ϕαΦ], r′i |=ρi
Fτi

, is non-increasing. Furthermore, if
j is a progress point of (τi)i≥n then αj+1 < αj.

Proof. (Sketch) To construct the required infinite sequences satisfying property
1 of the lemma just requires us to use the fact that the proof rules of CLBIωID
are locally sound (i.e., falsifiability of the conclusion of a rule instance implies
falsifiability of one of its premises).

For part 2 of the lemma, we suppose there is a trace (τi)i≥n following the
tail (Γi ` Fi)i≥n of the constructed infinite path. Since Γn ` Fn is false in
M under ρn and rn by property 1, it follows that there is a suitable substate
r′n of rn (“suitability” being given by a formal relation capturing the property



that the relationship between r′n and rn reflects the position of τn in Γn) such
that M, r′n |=ρn

Fτn
, and thus there is a least ordinal α such that M [P 7→

ϕαΦ], r′n |=ρn Fτn . Now, given any edge (Γk ` Fk, Γk+1 ` Fk+1) in the tail and
a suitable substate r′k of rk satisfying M, r′k |=ρk

Fτk
, one can find a suitable

substate r′k+1 of rk+1 satisfying M, r′k |=ρk
Fτk

. Moreover, we have:

least α s.t.M [P 7→ ϕαΦ], r′k+1 |=ρ Fτk+1 ≤ least α s.t.M [P 7→ ϕαΦ], r′k |=ρ Fτk

Furthermore, if k is a progress point of the trace, then this inequality holds
strictly. This property, which can be proven by a lengthy case analysis on the
rule with conclusion Γk ` Fk enables us to construct the required sequences
(r′i)i≥n and (αi)i≥n.

Definition 4.7 (CLBIωID proof). A CLBIωID pre-proof P = (D,R) is a CLBIωID
proof if, for every infinite path in D, there is an infinitely progressing trace
following some tail of the path.

Proposition 4.8 (Soundness). If there is a CLBIωID proof of Γ ` ∆ then
Γ ` ∆ is valid.

Proof. If Γ ` F has a CLBIωID proof P but is false in some standard model M
then we can use property 1 of Lemma 4.6 to construct an infinite path π in GP
together with a sequence of environments and resource states that falsify each
sequent along the path. Since P is a proof, there is an infinitely progressing
trace following some tail of π. Thus we can invoke property 2 of Lemma 4.6
to create a monotonically decreasing chain of ordinals which, since the trace
progresses infinitely often, must decrease infinitely often. This contradicts the
well-foundedness of the ordinals, so Γ ` F must indeed be valid. ut

Example 4.9. The following is a CLBIωID proof of the sequent F,Nx ` Nx (recall
we gave an LBIID proof in Example 3.8):

(NR1)
F ` N0

(=L)
F, x = 0 ` Nx

F,Nx ` Nx (†)
(Subst)

F,Ny ` Ny
(NR2)

F,Ny ` Nsy
(=L)

F, (x = sy;Ny) ` Nx
(Case N)

F,Nx ` Nx (†)

We use (†) to indicate the pairing of a suitable companion with the only bud in
this pre-proof. To see that it is indeed a CLBIωID proof, observe that any infinite
path π in the pre-proof graph necessarily has a tail consisting of repetitions of the
path from the companion to the bud in this pre-proof, and there is a progressing
trace following this path, denoted by the underlined formulas (with a progress
point at the displayed application of (Case N)). Thus by concatenating copies of
this trace we can obtain an infinitely progressing trace on a tail of π as required.

We remark that, unlike the situation for LBIID (cf. Example 3.8), we do not
require generalisation in this proof, i.e., the invention of new formulas in the
proof is not necessary.



Example 4.10. The following is a CLBIωID pre-proof of lsxx′, lsx′ y ` lsx y:

(Id)
lsx y ` lsx y

(≡)
I, lsx y ` lsx y

(=L)
(x′ = x; I), lsx′ y ` lsx y

(Id)
x 7→ z ` x 7→ z

(†) lsxx′, lsx′ y ` lsx y
(Subst)

ls z x′, lsx′ y ` ls z y
(∗R)

x 7→ z, ls z x′, lsx′ y ` x 7→ z ∗ ls z y
(lsR2)

x 7→ z, ls z x′, lsx′ y ` lsx y
(∗L)

x 7→ z ∗ ls z x′, lsx′ y ` lsx y
(Case ls)

(†) lsxx′, lsx′ y ` lsx y

The pairing of a suitable companion with the only bud in this pre-proof is
again denoted by (†). A trace from the companion to the bud is denoted by
the underlined formulas, with a progress point at the displayed application of
(Case ls). As in the previous example, there is only one infinite path, and one
can easily observe that the required infinitely progressing trace is obtained by
concatenating copies of the displayed trace. So this pre-proof is indeed a proof.

We remark that the standard LBIID proof of lsxx′, lsx′ y ` lsx y proceeds
by induction on lsxx′ using the induction variables z, z′ (say) and the induction
hypothesis ls z′ y —∗ ls z y, thus requiring a generalisation similar to that needed
in Example 3.8.

Proposition 4.11. It is decidable whether a CLBIωID pre-proof is a proof.

Proof. (Sketch) The property of every infinite path posessing an infinitely pro-
gressing trace along a tail is an ω-regular property, and hence reducible to the
emptiness of a Büchi automaton. A full proof (for a general notion of trace)
appears in [9]; a similar argument appears in [24]. ut

5 Conclusions and future work

In this paper, we extend BI with a fairly general class of inductive definitions,
and develop sequent calculus proof systems for formal reasoning in the resultant
extension BIID, as is needed in order to develop proper theorem proving support
for inductive reasoning in separation logic. We hope that the formal framework(s)
we present here will be of use to researchers in static analysis in providing a
sound foundation for logical reasoning in future program verification applications
employing inductively defined predicates (in a BI / separation logic context). In
a technical sense, our contribution is a reasonably straightforward extension of
the framework for inductive definitions and corresponding proof systems given
in our previous work for first-order logic with inductively defined relations [8–
10]. Thus one might reasonably hope that the key proof-theoretic results from
that work, including appropriate completeness and cut-elimination theorems,
will also extend to the systems we consider here. Certainly we expect that our
cyclic proof system CLBIωID subsumes the induction system LBIID (although we
have not checked this in detail), with the question of their equivalence presenting



similar difficulties to those discussed in [8–10]; in the setting of first-order logic
with inductively defined relations, we have conjectured but not yet proven the
equivalence of the two proof styles.

It is worth remarking that our logic BIID and the corresponding proof systems
should be straightforwardly extensible to a more powerful definitional framework
than the one we give here, for example by allowing inductive predicates to occur
“negatively” in inductive definitions, subject to an appropriate stratification of
predicates to ensure monotonicity as in iterated inductive definitions (cf. [17]).

One particularly promising avenue for further development is the develop-
ment of static analysis applications based upon cyclic proof in separation logic.
For example, our current work with Calcagno and Bornat develops a calculus
for giving cyclic proofs of program termination in a (very) simple program-
ming language, based upon a proof system of Hoare judgements which express
termination from a given program point and under a given precondition [11].
We hope that it will also be possible to directly formulate cyclic proof sys-
tems for the verification of other properties. For example, such systems might
use appropriate cyclic proof principles to establish invariants for the looping
constructs in programs, or, given such invariants, to prove appropriate postcon-
ditions. An important factor related to such developments is the potential of
cyclic proof for automated proof search. We have seen simple examples in which
cyclic proof avoids the generalisation apparently necessary in the corresponding
inductive proof (Examples 4.9 and 4.10); more generally, cyclic proof should offer
a “least-commitment” approach to proof search, whereby the induction schema,
variables and hypotheses are not chosen at the beginning of the proof, as in
traditional inductive theorem proving, but are eventually selected implicitly via
the satisfaction of the soundness condition. It would be interesting to exam-
ine the implications of these phenomena for proof search; we have previously
given proof-theoretic machinery for analysing and manipulating the structure of
general cyclic proofs [8, 9] which may be of assistance in such investigations.

References

1. Peter Aczel. An introduction to inductive definitions. In Jon Barwise, editor,
Handbook of Mathematical Logic, pages 739–782. North-Holland, 1977.

2. Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. Smallfoot: Modular
automatic assertion checking with separation logic. In Proceedings of FMCO 2005,
volume 4111 of LNCS, pages 115–137, 2005.

3. Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. Symbolic execution
with separation logic. In Proceedings of APLAS 2005, volume 3780 of LNCS,
pages 52–68. Springer, 2005.

4. Josh Berdine, Byron Cook, Dino Distefano, and Peter W. O’Hearn. Automatic
termination proofs for programs with shape-shifting heaps. In Proceedings of 18th
CAV, volume 4144 of LNCS, pages 386–400. Springer, 2006.

5. Bodil Biering, Lars Birkedal, and Noah Torp-Smith. BI hyperdoctrines and sepa-
ration logic. In Proceedings of ESOP’05, pages 233–247. Springer-Verlag, 2005.

6. L. Birkedal, N. Torp-Smith, and J.C. Reynolds. Local reasoning about a copying
garbage collector. In Proceedings of POPL’04, pages 220–231, 2004.



7. Richard Bornat, Cristiano Calcagno, and Peter O’Hearn. Local reasoning, separa-
tion and aliasing. In Proceedings of SPACE’04, January 2004.

8. James Brotherston. Cyclic proofs for first-order logic with inductive definitions.
In Proceedings of TABLEAUX 2005, volume 3702 of LNAI, pages 78–92. Springer-
Verlag, 2005.

9. James Brotherston. Sequent Calculus Proof Systems for Inductive Definitions. PhD
thesis, University of Edinburgh, November 2006.

10. James Brotherston and Alex Simpson. Complete sequent calculi for induction and
infinite descent. To appear in Proceedings of LICS-22, 2007.

11. James Brotherston, Cristiano Calcagno and Richard Bornat. Cyclic proofs of ter-
mination in separation logic. Forthcoming.

12. Alan Bundy. The automation of proof by mathematical induction. In Alan Robin-
son and Andrei Voronkov, editors, Handbook of Automated Reasoning, volume I,
chapter 13, pages 845–911. Elsevier Science, 2001.

13. Cristiano Calcagno, Dino Distefano, Peter W. O’Hearn, and Hongseok Yang. Be-
yond reachability: Shape abstraction in the presence of pointer arithmetic. In
Proceedings of SAS-13, volume 4134 of LNCS, pages 182–203. Springer, 2006.

14. Dino Distefano, Peter W. O’Hearn, and Hongseok Yang. A local shape analysis
based on separation logic. In Proceedings of TACAS-12, volume 3920 of LNCS,
pages 287–302, 2006.

15. Bolei Guo, Neil Vachharajani and David I. August. Shape analysis with inductive
recursion synthesis. To appear in Proceedings of PLDI’07, June 2007.

16. Samin Ishtiaq and Peter W. O’Hearn. BI as an assertion language for mutable
data structures. In Proceedings of POPL’01, January 2001.
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