
Classical BI

(A Logic for Reasoning about Dualising Resources)

James Brotherston ∗ Cristiano Calcagno †

Dept. of Computing, Imperial College London, UK
{jbrother,ccris}@doc.ic.ac.uk

Abstract
We show how to extend O’Hearn and Pym’s logic of bunched
implications, BI, to classical BI (CBI), in which both the additive
and the multiplicative connectives behave classically. Specifically,
CBI is a non-conservative extension of (propositional) Boolean
BI that includes multiplicative versions of falsity, negation and
disjunction. We give an algebraic semantics for CBI that leads
us naturally to consider resource models of CBI in which every
resource has a unique dual. We then give a cut-eliminating proof
system for CBI, based on Belnap’s display logic, and demonstrate
soundness and completeness of this proof system with respect to
our semantics.

Categories and Subject Descriptors F.4.1 [Mathematical Logic
and Formal Languages]: Mathematical Logic—model theory,
proof theory, computational logic

General Terms Theory, verification, languages

Keywords Classical BI, display logic, semantics, resource mod-
els, completeness, cut-elimination, bunched implications

1. Introduction
The logic of bunched implications (BI), due to O’Hearn and
Pym [24], is a substructural logic suitable for reasoning about do-
mains that incorporate a notion of resource [27]. Its best-known
application in computer science is separation logic, which is a
Hoare logic for reasoning about imperative, pointer-manipulating
programs [29]. Semantically, BI arises by considering cartesian
doubly closed categories (i.e. categories with one cartesian closed
structure and one symmetric monoidal closed structure) [26]. This
view gives rise to the following propositional connectives1 for BI:

Additive: > ⊥ ¬ ∧ ∨ →
Multiplicative: >∗ ∗ —∗

∗Research supported by EPSRC grant EP/E002536/1.
†Research supported by an EPSRC Advanced Fellowship.
1 Note that, for purposes of notational consistency with multiplicative falsity
⊥∗, we write >∗ rather than the usual I for the multiplicative unit of ∗.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’09, January 18–24, 2009, Savannah, Georgia, USA.
Copyright c© 2009 ACM 978-1-60558-379-2/09/01. . . $5.00

The interpretation of BI in models based upon the aforemen-
tioned categories is necessarily intuitionistic. By instead using the
algebraic semantics of BI, in which the multiplicatives are mod-
elled using (partially ordered) commutative monoids, the additive
connectives can be interpreted either classically or intuitionistically
according to preference [27, 26]. When the additives are interpreted
classically the resulting logic is known as Boolean BI [26], also
written BBI. The pure part of separation logic is essentially ob-
tained by considering a particular model of BBI, based on a monoid
of heaps [22]. In this paper, we show how to extend BBI to classi-
cal BI, also written CBI, in which both the additives and the mul-
tiplicatives are treated classically. Specifically, CBI includes the
multiplicative analogues of additive falsity, negation and disjunc-
tion, which are absent in BBI. We consider CBI both from the
model-theoretic and the proof-theoretic perspective.

Model-theoretic perspective: From the point of view of computer
science, perhaps the most natural semantics for BBI is its algebraic
semantics based on relational commutative monoids [17], which
can be understood as an abstract representation of resource [16].
In such models, of which the separation logic heap model is one
instance, BBI-formulas have a natural declarative reading as state-
ments about resources (i.e. monoid elements). Thus the multiplica-
tive unit >∗ denotes the empty resource (i.e. the monoid iden-
tity element) and a multiplicative conjunction F ∗ G of two for-
mulas denotes a division of resource, via the monoid operation,
into two components satisfying respectively F and G. The multi-
plicative implication —∗ functions as a right-adjoint of ∗, so that
(F ∗G)→ H and F → (G —∗ H) are semantically equivalent.

It has hitherto been somewhat unclear how to give similarly
declarative readings to multiplicative falsity ⊥∗ and multiplicative
negation ∼ (with multiplicative disjunction ∗∨ then being obtained
as the de Morgan dual of ∗ with respect to ∼). In Section 2 we
provide a solution to this problem by giving an algebraic semantics
for CBI which provides sufficient structure to admit a declarative
interpretation of the full set of multiplicative connectives. Our CBI-
models are obtained by imposing extra conditions on the usual rela-
tional commutative monoid models of BBI, the main requirement
being the presence of an involution operation on monoid elements.
The natural reading of this requirement in terms of resources is that
every resource in our models must have a unique dual. In fact, all
Abelian groups are special instances of our models, in which the
dual of an element is its group inverse.

The resulting interpretations of multiplicative falsity, negation
and disjunction in our models are similar to those employed in rel-
evant logic (see e.g. [28, 15]). For example, the interpretation of
multiplicative negation is obtained by combining the model involu-
tion and the additive negation. These interpretations, which at first
sight may seem unusual, are justified by the desired semantic equiv-
alences between formulas. For example, under our interpretation
F —∗ G is semantically equivalent to ∼F ∗∨ G.

Proof-theoretic perspective: In BI, the presence of the two impli-
cations→ and —∗ gives rise to two context-forming operations ‘;’
and ‘,’ which correspond to the conjunctions ∧ and ∗ at the meta-
level. This situation is exemplified by the following (intuitionistic)
sequent calculus right-introduction rules for the implications:

Γ;F1 ` F2

(→R)
Γ ` F1 → F2

Γ, F1 ` F2

(—∗R)
Γ ` F1 —∗ F2

Accordingly, the contexts Γ on the left-hand side of the sequents in
the rules above are not sets or sequences, as in standard sequent cal-
culi, but rather bunches: trees whose leaves are formulas and whose
internal nodes are either ‘;’ or ‘,’ denoting respectively additive and
multiplicative combinations of assumptions. The crucial difference
between the two operations is that weakening and contraction are
possible for ‘;’ but not for ‘,’. Since BI is an intuitionistic logic,
bunches arise only on the left-hand side of sequents, with a single
formula on the right. For CBI, a natural approach from a proof-
theoretic perspective would be to consider a full two-sided sequent
calculus in which ‘;’ and ‘,’ in bunches on the right of sequents cor-
respond to the two disjunctions at the meta-level. One would then
expect the additive and multiplicative negations to have the effect
of “swapping sides” with respect to ‘;’ and ‘,’ respectively:

Γ ` F ; ∆
(¬L)

Γ;¬F ` ∆

Γ, F ` ∆
(∼R)

Γ ` ∼F,∆
with (¬R) and (∼L) being symmetric, and with rules for multi-
plicative disjunction ∗∨ dual to those for ∗. Unfortunately, it is not
obvious how to formulate such a sequent calculus that admits cut-
elimination (see [6, 26] for some discussion of the difficulties), or
a similar natural deduction system satisfying normalisation2.

In Section 4, we address this rather unsatisfactory situation by
formulating a display calculus proof system for CBI that satisfies
cut-elimination, with an attendant subformula property for cut-free
proofs. Our system, DLCBI, is based on Belnap’s display logic,
which is a generalised Gentzen-style system that can be instanti-
ated to a wide class of logics simply by choosing families of con-
nectives and the structural rules governing those families [1]. The
power of display logic comes from its generic structural principles,
which are sufficient to guarantee certain desirable proof-theoretic
properties, more or less independently of the particular choice of
connective families and structural rules. As well as satisfying cut-
elimination, our system DLCBI is sound and complete with respect
to our algebraic semantics for CBI. The proofs of soundness and
completeness constitute one of the main technical contributions of
this paper, and are presented in Section 5. First, we define an exten-
sion of the usual sequent calculus for BBI by axioms that capture
the behaviour of the involution in our models. Using techniques
from modal logic, we show that this extended sequent calculus,
LBI+, is sound and complete with respect to validity in our mod-
els. (However, LBI+ does not contain primitive introduction rules
for every connective of CBI, nor does it satisfy cut elimination.)
Soundness and completeness for DLCBI then follows by proving
admissibility of DLCBI in LBI+ under a suitable embedding, and
vice versa.

Applications: (B)BI, and in particular its resource semantics, has
found application in several areas of computer science, including
polymorphic abstraction [12], type systems for reference update
and disposal [2], context logic for tree update [8] and, most ubiq-
uitously, separation logic [29] which forms the basis of many con-
temporary approaches to reasoning about pointer programs (recent
examples include [25, 11, 10]).

2 To our knowledge, there are no existing such calculi even for BBI, though
Pym and O’Hearn have given systems of both types for BI [26, 24]

We demonstrate that CBI is a non-conservative extension of
BBI. Unfortunately, this appears to rule out the naive use of CBI
for reasoning directly about some BBI-models such as the sepa-
ration logic heap model, which is not a CBI-model. On the other
hand, non-conservativity indicates that CBI is genuinely different
in character to BBI — thus of intrinsic technical interest — and
can reasonably be expected to have different applications. In Sec-
tion 3 we consider a range of example CBI-models drawn from
quite disparate areas of mathematics and computer science, includ-
ing bit arithmetic, regular languages, money and a generalised heap
model. In Section 6 we suggest some directions for future applica-
tions of CBI, as well as discussing related work.

Due to space limitations, we have abbreviated or omitted some
proofs of the results in this paper. Full proofs can be found in an
associated technical report [5].

2. Syntax and algebraic semantics of CBI
In this section we define CBI, the fully classical version of BBI
featuring additive and multiplicative versions of all the usual propo-
sitional connectives (cf. [26]). We give a class of algebraic models
for CBI, and show how to interpret CBI-formulas in these models.

Our CBI-models are based on the relational commutative
monoids used to model BBI [17, 8]. In fact, they are special
cases of these monoids, containing extra structure: an involution
operation ‘−’ on elements and a distinguished element3 ∞ that
characterises the result of combining an element with its dual un-
der involution. In particular, our models include as instances all
Abelian groups.

Note that we write P(X) for the powerset of a set X .

Definition 2.1 (CBI-model). A CBI-model is given by a tuple
〈R, ◦, e,−,∞〉, where ◦ : R × R → P(R), e ∈ R, − : R →
P(R), and∞ ⊆ R such that:

1. ◦ is commutative and associative, with x ◦ e = {x}
2. −x = {y ∈ R | x ◦ y ∩∞ 6= ∅}
3. −−x = {x}

We extend − and ◦ to P(R) and P(R) × P(R) respectively
by: −X =def

⋃
x∈X −x and X ◦ Y =def

⋃
x∈X,y∈Y x ◦ y.

Associativity of ◦ is understood with respect to this extension.

We remark that if 〈R, ◦, e,−,∞〉 is a CBI-model then 〈R, ◦, e〉
is a BBI-model, i.e. a relational commutative monoid.

Proposition 2.2. If 〈R, ◦, e,−,∞〉 is a CBI-model then:

1. ∀x ∈ R. −x is a singleton set;
2. −e =∞;
3. ∀x ∈ R. x ◦ −x ⊇ ∞;
4. ∀X ⊆ R. R \ (−X) = −(R \X).

Proof. 1. By contradiction. If−x = ∅ then−−x =
⋃

y∈−x−y =
∅, which contradicts −−x = {x}. If x1, x2 ∈ −x with
x1 6= x2, then −x1 ∪ −x2 ⊆ −−x. Also, −x1 6= −x2,
otherwise we would have {x1} = −−x1 = −−x2 = {x2}
and thus x1 = x2. Since −x1 and −x2 have cardinality > 0
(see above),−−xmust have cardinality> 1, which contradicts
−−x = {x}.

2. We have:
−e = {y ∈ R | e ◦ y ∩∞ 6= ∅}

= {y ∈ R | {y} ∩∞ 6= ∅}
= {y ∈ R | y ∈ ∞}
= ∞

3 For technical convenience, we actually define∞ to be a set of elements,
but the conditions defining our models force∞ to be a singleton set. See
Convention 2.3.

3. Using part 1, first write −x = {x′}. Then {x′} = {y ∈
R | x ◦ y ∩ ∞ 6= ∅}, so x ◦ x′ ∩ ∞ = x ◦ −x ∩ ∞ is
nonempty. By parts 1 and 2,∞ = −e is a singleton set, so we
must have x ◦ −x ⊇ ∞ as required.

4. (⊆) Suppose x ∈ R \ −X , i.e. x 6∈ −X =
⋃

y∈X −y,
so x 6∈ −y for any y ∈ X . Also, using part 1, we have
x ∈ −−x = −{z} = −z for some z. We must have z 6∈ X ,
so x ∈

⋃
z 6∈X −z =

⋃
z∈R\X −z = −(R \X) as required.

(⊇) Suppose x ∈ −(R\X), i.e. x ∈ −y for some y 6∈ X . Note
that we cannot have x ∈ −z for any z ∈ X , otherwise by part
1 we have −y = −z = {x} and thus {y} = −−y = −−z =
{z}, so y = z, which is a contradiction. Thus x 6∈

⋃
z∈X −z =

−X , i.e. x ∈ R \ −X as required.

Parts 1 and 2 of Proposition 2.2 justify the following convention.

Convention 2.3. Given a CBI-model 〈R, ◦, e,−,∞〉, for any x ∈
R the notation −x is henceforth to be understood as the unique
element z ∈ R such that −x = {z}. Similarly, ∞ is to be
understood as the unique z ∈ R such that∞ = {z}.

If 〈R, ◦, e,−,∞〉 is a CBI-model and the cardinality of x ◦ y
is ≤ 1 for all x, y ∈ R, then we understand ◦ as a partial function
R×R ⇀ R in the obvious way.

Proposition 2.4. Let 〈R, ◦, e,−,∞〉 be a CBI-model with ◦ a
partial function. If ∞ = e then ◦ is in fact a total function and
〈R, ◦, e,−〉 is an Abelian group.

Proof. First note that by part 3 of Proposition 2.2 and the fact that
◦ is a partial function, we have −x ◦ x = ∞ = e for all x ∈ R.
Now, to see that x ◦ y is defined for any x, y ∈ R, observe that
−x ◦ (x ◦ y) = (−x ◦ x) ◦ y = e ◦ y = y. Thus −x ◦ (x ◦ y) is
defined, which can only be the case if x ◦ y is defined.

To see that 〈R, ◦, e,−〉 is an Abelian group, we first observe that
〈R, ◦, e〉 is already a partial commutative monoid by the conditions
imposed on ◦ by the definition of CBI-models (Defn. 2.1). Further-
more, ◦ is a total function by the above, and −x is the unique in-
verse of x for any x ∈ R, since −x ◦ x = e and y ◦ x = e implies
−x = (y ◦ x) ◦ −x = y ◦ (x ◦ −x) = y.

We now define the syntax of CBI, and give the interpretation of
its connectives in terms of our CBI-models. We assume a fixed set
V of propositional variables.

Definition 2.5 (CBI-formula). Formulas of CBI are given by the
following grammar:

F ::= P | > | ⊥ | ¬F | F ∧ F | F ∨ F | F → F |
>∗ | ⊥∗ | ∼F | F ∗ F | F ∗∨ F | F —∗ F

where P ranges over V .

CBI-formulas extend (B)BI-formulas with a multiplicative
falsity ⊥∗, negation ∼ and disjunction ∗∨. Now in order to de-
fine the interpretation of CBI-formulas in a CBI-model M =
〈R, ◦, e,−,∞〉, we need as usual an environment for M , which is
a function ρ : V → R interpreting propositional variables as true
or false in a given “resource state” r ∈ R. We can then define a
satisfaction or “forcing” relation interpreting formulas relative to
model elements.

Definition 2.6 (CBI satisfaction relation). LetM = 〈R, ◦, e,−,∞〉
be a CBI-model and let ρ be an environment for M . Then, for any
CBI-formula F and r ∈ R, define the satisfaction relation r |= F

by induction on the structure of F as follows:

r |= P ⇔ r ∈ ρ(P)
r |= > ⇔ always
r |= ⊥ ⇔ never

r |= ¬F ⇔ r 6|= F
r |= F1 ∧ F2 ⇔ r |= F1 and r |= F2

r |= F1 ∨ F2 ⇔ r |= F1 or r |= F2

r |= F1 → F2 ⇔ r |= F1 implies r |= F2

r |= >∗ ⇔ r = e
r |= ⊥∗ ⇔ r 6=∞
r |= ∼F ⇔ −r 6|= F

r |= F1 ∗ F2 ⇔ ∃r1, r2. r ∈ r1 ◦ r2 and r1 |= F1

and r2 |= F2

r |= F1
∗∨ F2 ⇔ ∀r1, r2. −r ∈ r1 ◦ r2 implies

−r1 |= F1 or −r2 |= F2

r |= F1 —∗ F2 ⇔ ∀r′, r′′. r′′ ∈ r ◦ r′ and r′ |= F1

implies r′′ |= F2

Note that r |= F should be read informally as: “F is true in
resource state r (in the model M and under environment ρ)”.

We remark that the satisfaction relation for CBI is just an
extension of the standard satisfaction relation for BBI with the
clauses for ⊥∗, ∼ and ∗∨.

Perhaps surprisingly, multiplicative falsity ⊥∗ and multiplica-
tive negation ∼F are not interpreted in 〈R, ◦, e,−,∞〉 as the
model element ∞ and the set −F = {r | −r |= F} respec-
tively, but rather as R \ {∞} and R \ −F . These interpretations,
which essentially embed an additive negation inside the multiplica-
tive connectives, ensure that the expected semantic equivalences
hold between formulas. For example,∼F and F —∗ ⊥∗ are seman-
tically equivalent under our interpretation, but they are not if ∼F
and ⊥∗ are interpreted as −F and ∞ respectively. As expected,
multiplicative disjunction ∗∨ is interpreted as the de Morgan dual of
∗ with respect to ∼.

We say that a CBI-formula F is true in a CBI-model M =
〈R, ◦, e,−,∞〉 iff r |= F for any environment for M and for all
r ∈ R. Truth of a BBI-formula in a BBI-model is similar.

Lemma 2.7 (CBI equivalences). For any CBI-model M , the fol-
lowing semantic equivalences F = G hold in the sense that F is
true in M iff G is true in M :

∼> = ⊥ F ∗∨ G = ∼(∼F ∗ ∼G)
∼>∗ = ⊥∗ F —∗ G = ∼F ∗∨ G
∼∼F = F F —∗ G = ∼G —∗ ∼F
¬∼F = ∼¬F F —∗ ⊥∗ = ∼F

F ∗ ∼F = ⊥∗ F ∗∨ ⊥∗ = F

In the following, we call a formula F a theorem of CBI if it is
true in every CBI-model, and similarly for BBI. Our next result
establishes that CBI is a stronger logic than BBI in the sense that
it has more theorems.

Proposition 2.8 (Non-conservative extensionality). CBI is a non-
conservative extension of BBI. That is, all theorems of BBI are
theorems of CBI, but the converse does not hold (even when re-
stricted to BBI-formulas).

Proof. (Sketch) To see that CBI is an extension of BBI, we just
observe that any CBI-model is in particular a BBI-model, since
the latter are just relational commutative monoids.

Now let P be a propositional variable and let I and J be
abbreviations for BBI-formulas defined as follows:

I =def ¬>∗ —∗ ⊥
J =def > ∗ (>∗ ∧ ¬(P —∗ ¬I))

Using the definition of satisfaction above, the formula I can
be satisfied only by “nonextensible” elements of a model, i.e. those
elements r such that r◦r′ = ∅ for all r′ 6= e. Similarly, the formula
J expresses the existence of some element r such that r |= P
and r is nonextensible. In CBI-models, only ∞ can possibly be
nonextensible since r ◦−r 6= ∅ for all r by Proposition 2.2, and∞
is the unique element r satisfying −r = e. Thus, in CBI-models,
if r |= I and r |= J then r = ∞ and ∞ |= P , so I ∧ J → P
is a theorem of CBI. However, it is not a theorem of BBI, since
one can easily construct a partial or relational commutative monoid
with two distinct nonextensible elements.

3. Examples of CBI-models
We now turn to some concrete examples of CBI-models. In all of
our examples, the monoid operation ◦ is a partial function rather
than a relation.

Example 3.1 (Personal finance). This example builds on the
“vending machine” model for BI given by Pym, O’Hearn and
Yang [27], which itself was inspired by Girard’s well-known “Marl-
boro and Camel” illustration of linear logic [18].

Let 〈Z,+, 0,−〉 be the Abelian group of integers under addition
with identity 0, where − is the usual unary minus. This group
is a CBI-model by Proposition 2.4. The elements of this model
can be understood as financial resources, i.e money (which we
shall measure in pounds sterling, £), with positive and negative
integers representing respectively credit and debt. We read the
CBI-satisfaction relation £m |= F informally as “£m is enough
to make F true”, and show how to read some example CBI-
formulas according to this interpretation.

Let C and W be atomic formulas denoting respectively the
ability to buy cigarettes costing £5 and whisky costing £204, so that
we have £m |= C ⇔ m ≥ 5 and £m |= W ⇔ m ≥ 20. Then,
as is also the case in BBI, the formula C ∧W denotes the ability
to buy cigarettes and the ability to buy whisky (but not necessarily
to buy both together):

£m |= C ∧W ⇔ £m |= C and £m |= W
⇔ m ≥ 20

In contrast, the formula C ∗ W denotes the ability to buy both
cigarettes and whisky together:

£m |= C ∗W ⇔ ∃m1,m2 ∈ Z. £m = £m1 + £m2 and
£m1 |= C and £m2 |= W

⇔ m ≥ 25

Again, as in BBI, the multiplicative implication C —∗ W denotes
the fact that if one acquires enough money to buy cigarettes then
the resulting balance of funds is sufficient to buy whisky:

£m |= C —∗W ⇔ ∀m′ ∈ Z. £m′ |= C implies
£m+ £m′ |= W

⇔ m ≥ 15

What about the “new” multiplicative connectives of CBI? We
have £m |= ⊥∗ ⇔ m 6= 0, so that ⊥∗ simply denotes the fact that
one has either some credit or some debt. Now consider the formula
∼C. We have:

£m |= ∼C ⇔ −£m 6|= C ⇔ −m < 5 ⇔ m > −5

So ∼C denotes the fact that one’s debt, if any, is strictly less
than the price of a pack of cigarettes. As for the multiplicative
disjunction, C ∗∨W , we have:

£m |= C ∗∨W ⇔ ∀m1,m2. −£m = £m1 + £m2

implies −£m1 |= C or −£m2 |= W
⇔ m ≥ 24

4 Prices roughly correct at time of going to press.

It is not immediately obvious how to read this formula informally.
However, observing that C ∗∨ W is semantically equivalent to
∼C —∗ W and to ∼W —∗ C, the meaning becomes perfectly
clear: if one spends less than the price of a pack of cigarettes, then
one will still have enough money to buy whisky, and vice versa.

In our remaining examples, we just show how to construct a
CBI-model, and leave the interpretation of CBI-formulas inside
these models as an exercise for interested readers.

Example 3.2 (Regular languages). Let Σ be an alphabet and let
L(Σ) denote the set of regular languages over Σ. Let ε be the
empty language and let + denote disjoint union of languages (so
that L1 + L2 is undefined if L1 ∩ L2 6= ∅). It is readily seen that
〈L(Σ),+, ε〉 is a partial commutative monoid. We observe that for
any regular language L, its complement L = Σ \ L is the unique
regular language such that L+L = Σ. Thus 〈L(Σ),+, ε, · ,Σ〉 is
a CBI-model. Note that the same model construction works if one
takes as the domain the set of all languages over Σ, rather than just
the regular languages.

Example 3.3 (Bit arithmetic). Let n ∈ N and observe that an
n-bit binary number can be represented as an element of the set
{0, 1}n. Let XOR and NOT be the usual logical operations on
binary numbers. Then the following is a CBI-model:

〈{0, 1}n,XOR, {0}n,NOT, {1}n〉
In this model, the resources e and∞ are the n-bit representations
of 0 and 2n − 1 respectively.

Example 3.4 (Action communication). LetA be any set of objects
(to be understood as CCS-style “actions”) and define the set A =
{a | a ∈ A} to be disjoint from A. Then the following tuple is a
CBI-model:

〈A ∪A ∪ {0, τ}, · | · , 0, · , τ〉
where 0, τ 6∈ A∪A, the operation · is extended toA∪A∪{0, τ} by
0 =def τ and a =def a and · | · is a commutative binary operation
defined as follows:

a | 0 =def a
a | a =def τ
a | b =def undefined for b 6∈ {0, a}

Note that 〈A∪A∪{0, τ}, ·|· , 0〉 is a partial commutative monoid.
The operation · | · models a very simplistic version of communica-
tion between actions: communication with the empty action 0 has
no effect, communication between a pair of dual actions a and a
(which may be read, e.g., as “send a” and “receive a”) results in
the “successful communication” action τ , and all other communi-
cations are disallowed.

The following example shows that, when the monoidal structure
of a CBI-model is fixed, the choice of∞ is not unique in general.

Example 3.5 (Integer modulo arithmetic). Consider the monoid
〈Zn,+n, 0〉, where Zn is the set of integers modulo n, and +n is
addition modulo n. We can form a CBI-model from this monoid
by choosing, for any m ∈ Zn,∞ =def m and −k =def m −n k
(where −n is subtraction modulo n).

Example 3.6 (Syntactic models). Given an arbitrary monoid
〈R, ◦, e〉, we give a syntactic construction to generate a CBI-model
〈R′, ◦′, e′,−′,∞′〉. Consider the set T of terms given by the gram-
mar:

t ∈ T ::= r ∈ R | ∞ | t · t | −t
and let ≈ be the least congruence such that: r1 · r2 ≈ r when
r1 ◦ r2 = r; t1 · t2 ≈ t2 · t1; t1 · (t2 · t3) ≈ (t1 · t2) · t3;
− − t ≈ t; t · (−t) ≈ ∞, and t1 ≈ −t2 whenever t1 ◦ t2 ≈ ∞.
Write T/≈ for the quotient of T by the relation ≈, and [t] for

the equivalence class of t. The required CBI-model is obtained by
defining R′ =def T/≈, ◦′([t1], [t2]) =def [t1 ◦ t2], e′ =def [e],
−′(t) =def [−t], and∞′ =def [∞].

Example 3.7 (Generalised heaps). A natural question is whether
BBI models used in separation logic are also CBI-models. Con-
sider the partial commutative monoid 〈H, ◦, e〉, where H =def
Z>0 ⇀ Z is the set of partial functions from positive integers
to integers, ◦ is disjoint union of the graph of functions, and e
is the function with empty domain. Unfortunately, no choice of
∞ gives rise to a CBI-model. However, it is possible to em-
bed the heap monoid into a more general structure 〈H ′, ◦′, e′〉,
where H ′ =def P(Z>0 × Z) is the set of relations instead of
partial functions, ◦ is disjoint union, and e is the empty relation.
A CBI-model is then obtained by setting ∞ =def Z>0 × Z, and
−r =def (Z>0 × Z) \ r.

Example 3.8 (Heaps with fractional permissions). As a final ex-
ample, we consider a heap monoid with fractional permissions [4]
〈Hp, ◦p, ep〉, where Hp =def Z>0 ⇀ Z × (0, 1] consists of func-
tions which in addition return a permission in the real interval
(0, 1], and ◦ is defined on functions with overlapping domains us-
ing a partial composition function⊕ : (Z×(0, 1])×(Z×(0, 1]) ⇀
(Z× (0, 1]) such that⊕((v1, p1), (v2, p2)) is defined if and only if
v1 = v2 and p1 + p2 ≤ 1, and returns (v1, p1 + p2). The unit ep

is again the function with empty domain. In analogy with our ap-
proach to ordinary heaps in the previous example, we define a more
general structure 〈H ′p, ◦′p, e′p〉, where H ′p =def Z>0 × Z → [0, 1]
is the set of total functions, and ◦′p is defined point-wise using
+ : [0, 1]× [0, 1] ⇀ [0, 1], which is ordinary addition restricted to
be defined only when the result is≤ 1. The function e′p maps every-
thing to 0. A CBI-model is then obtained by setting∞ as mapping
everything to 1, and −r =def {(l, v, 1 − p) | (l, v, p) ∈ r}. Ob-
serve that, in this case, the general model is in a way simpler, and
that the − operation returns the complement of the permissions.

4. DLCBI: a display calculus proof system for CBI
In this section, we present DLCBI, a display calculus proof system
for CBI based on Belnap’s display logic [1]. DLCBI can be seen as
a particular instantiation of display logic to CBI, in much the same
style as Goré’s display systems for other substructural logics [20].
Our display calculus satisfies cut-elimination, and is sound and
complete with respect to our CBI-models.

The proof judgements of DLCBI, called consecutions, are built
from structures which generalise the bunches used in existing proof
systems for (B)BI (cf. [26]).

Definition 4.1 (Structure / consecution). A DLCBI-structure X is
constructed according to the following grammar:

X ::= F | ∅ |]X | X;X | ∅ | [X | X,X

where F ranges over CBI-formulas. IfX and Y are structures then
X ` Y is said to be a consecution.

The following definition gives the semantic interpretation of our
consecutions, and extends the notion of validity for CBI formulas
given in Section 2.

Definition 4.2 (Validity in DLCBI). For any structure X we mutu-
ally define two formulas ΨX and ΥX by induction on the structure

Structural connectives

Additive family: ∅] ;
Multiplicative family: ∅ [,
Arity: 0 1 2

Formula connectives

Additive family: > ⊥ ¬ ∧ ∨ →
Multiplicative family: >∗ ⊥∗ ∼ ∗ ∗∨ —∗
Arity: 0 0 1 2 2 2

Figure 1. The connective families of DLCBI.

of X as follows:

ΨF = F ΥF = F
Ψ∅ = > Υ∅ = ⊥

Ψ]X = ¬ΥX Υ]X = ¬ΨX

ΨX1;X2 = ΨX1 ∧ΨX2 ΥX1;X2 = ΥX1 ∨ΥX2

Ψ∅ = >∗ Υ∅ = ⊥∗
Ψ[X = ∼ΥX Υ[X = ∼ΨX

ΨX1,X2 = ΨX1 ∗ΨX2 ΥX1,X2 = ΥX1
∗∨ ΥX2

A consecution X ` Y is said to be true in a CBI-model
M = 〈R, ◦, e,−,∞〉 if for any environment ρ for M and for all
r ∈ R, we have r |= ΨX implies r |= ΥY . X ` Y is said to be
valid if it is true in all CBI-models.

We can divide the structural and logical connectives of DLCBI

into an additive family and a multiplicative family, as illustrated in
Figure 1. In Belnap’s display logic, an arbitrary number of families
of connectives may be involved; the structural connectives are fixed
for each family while the logical connectives may be chosen from
a given set. Then, for each family, display logic posits certain
bidirectional proof rules called display postulates, involving only
the structural connectives of the family. The purpose of the display
postulates is to allow consecutions to be shuffled so as to “display”
any structure occurrence therein as the entire left- or right-hand side
of a consecution (according to the original position of the structure
in the consecution). The logical introduction rules for formulas
are similarly prescribed for each connective family, with only the
structural rules governing the family chosen freely.

We give the display postulates for DLCBI in Figure 2. These are
Belnap’s original postulates instantiated to our connective families,
though other formulations are possible (see e.g. [19]). Note that we
write a rule with a double line to indicate that it is invertible, i.e.,
that the roles of premise and conclusion may be reversed. A figure
with three consecutions separated by two double lines is used to ab-
breviate two invertible rules in the obvious way. Two consecutions
are said to be display-equivalent if there is a derivation of one from
the other using only the display postulates.

Definition 4.3 (Antecedent part / consequent part). A structure W
is said to be a part of another structure Z if W is a substructure of
Z (in the obvious sense). W is said to be a positive part of Z if W
occurs inside an even number of occurrences of] and [in Z, and a
negative part of Z otherwise.

A structure W is said to be an antecedent part of a consecution
X ` Y if it is a positive part of X or a negative part of Y . W is
said to be a consequent part of X ` Y if it is a negative part of X
or a positive part of Y .

The following theorem describes the fundamental property of
display logic: the ability to “display” structures occurring in a
consecution by rearranging it using the display postulates.

Additive family:

X;Y ` Z
======== (AD1)
X `]Y ;Z

X ` Y ;Z
======== (AD2a)
X;]Y ` Z
======== (AD2b)
X ` Z;Y

X ` Y
====== (AD3a)
]Y `]X
====== (AD3b)
]]X ` Y

Multiplicative family:

X,Y ` Z
======== (MD1)
X ` [Y, Z

X ` Y,Z
======== (MD2a)
X, [Y ` Z
======== (MD2b)
X ` Z, Y

X ` Y
====== (MD3a)
[Y ` [X
====== (MD3b)
[[X ` Y

Figure 2. The display postulates for DLCBI.

Theorem 4.4 (Display theorem (Belnap [1])). For any antecedent
part W of a consecution X ` Y there exists a structure Z such
that W ` Z is display-equivalent to X ` Y . Similarly, for any
consequent part W of X ` Y there exists a structure Z such that
Z `W is display-equivalent to X ` Y .

We note that the display theorem holds even when connectives
from different families occur in the same consecution.

Example 4.5. The antecedent part Y of the consecution [(X,]Y) `
Z; [W can be displayed as follows:

[(X,]Y) ` Z; [W
(MD3a)

[(Z; [W) ` [[(X,]Y)
(MD3a,b)

[[[(Z; [W) ` [[(X,]Y)
(MD3a)

[(X,]Y) ` [[(Z; [W)
(MD3a)

[(Z; [W) ` X,]Y
(MD2b)

[(Z; [W), [X `]Y
(AD3a)

]]Y `]([(Z; [W), [X)
(AD3a,b)

Y `]([(Z; [W), [X)

The logical rules for DLCBI, given in Figure 3, follow the
familiar division between left and right introduction rules (plus the
identity axiom and a cut rule). Again, these are the instantiations
of the standard display logic rules to the connective families we
consider for CBI. The structural rules of DLCBI are given in
Figure 4. These implement associativity, commutativity and unitary
laws for ‘;’ and ‘,’ on both sides of consecutions, plus weakening
and contraction for the additive combination ‘;’.

The identity axiom of DLCBI is postulated only for proposi-
tional variables5, but can be recovered for arbitrary formulas.

Proposition 4.6. F ` F is DLCBI-provable for all formulas F .

Proof. By structural induction on F .

Theorem 4.7 (Cut-elimination). If a consecution X ` Y is prov-
able in DLCBI then it is also provable without the use of (Cut).

Proof. By inspection, our proof rules satisfy the 8 conditions shown
by Belnap in [1] to be sufficient for cut-elimination to hold. See [5]
for details of the conditions and their verification.

The following corollary of Theorem 4.7 uses the notion of a
subformula of a CBI-formula, defined in the usual way.

5 This simplifies the proof of cut-elimination for DLCBI.

Identity rules:

(Id)
P ` P

X ` F F ` Y
(Cut)

X ` Y

Additive family:

∅ ` X
(>L)

> ` X
(>R)

∅ ` >

(⊥L)
⊥ ` ∅

X ` ∅
(⊥R)

X ` ⊥

]F ` X
(¬L)

¬F ` X

X `]F
(¬R)

X ` ¬F

F ;G ` X
(∧L)

F ∧G ` X

X ` F Y ` G
(∧R)

X;Y ` F ∧G

F ` X G ` Y
(∨L)

F ∨G ` X;Y

X ` F ;G
(∨R)

X ` F ∨G

X ` F G ` Y
(→L)

F → G `]X;Y

X;F ` G
(→R)

X ` F → G

Multiplicative family:

∅ ` X
(>∗L)

>∗ ` X
(>∗R)

∅ ` >∗

(⊥∗L)
⊥∗ ` ∅

X ` ∅
(⊥∗R)

X ` ⊥∗

[F ` X
(∼L)

∼F ` X

X ` [F
(∼R)

X ` ∼F

F,G ` X
(∗L)

F ∗G ` X

X ` F Y ` G
(∗R)

X,Y ` F ∗G

F ` X G ` Y
(∗∨L)

F ∗∨ G ` X,Y

X ` F,G
(∗∨R)

X ` F ∗∨ G

X ` F G ` Y
(—∗L)

F —∗ G ` [X, Y

X,F ` G
(—∗R)

X ` F —∗ G

Figure 3. Logical rules for DLCBI. Note that X,Y range over
structures, F,G range over CBI-formulas and P ranges over V .

Additive family:

W ; (X;Y) ` Z
=========== (AAL)
(W ;X);Y ` Z

W ` (X;Y);Z
=========== (AAR)
W ` X; (Y ;Z)

X;Y ` Z
(ACL)

Y ;X ` Z

X ` Y ;Z
(ACR)

X ` Z;Y

∅;X ` Y
======= (AIL)
X ` Y

X ` Y ; ∅
======= (AIR)
X ` Y

X ` Z
(WkL)

X;Y ` Z

X ` Z
(WkR)

X ` Y ;Z

X;X ` Z
(CtrL)

X ` Z

X ` Z;Z
(CtrR)

X ` Z

Multiplicative family:

W, (X,Y) ` Z
=========== (MAL)
(W,X), Y ` Z

W ` (X,Y), Z
=========== (MAR)
W ` X, (Y,Z)

X,Y ` Z
(MCL)

Y,X ` Z

X ` Y,Z
(MCR)

X ` Z, Y

∅, X ` Y
======= (MIL)
X ` Y

X ` Y,∅
======= (MIR)
X ` Y

Figure 4. Structural rules for DLCBI.

Corollary 4.8 (Subformula property). If X ` Y is DLCBI-
provable then there is a DLCBI proof of X ` Y in which every
formula occurrence is a subformula of a formula occurring in
X ` Y .

Proof. If X ` Y is provable then it has a cut-free proof by
Theorem 4.7. By inspection of the DLCBI rules, no rule instance
in this proof can have in its premises any formula that is not a
subformula of a formula occurring in its conclusion. Thus a cut-
free proof of X ` Y cannot contain any formulas which are not
subformulas of formulas in X ` Y .

Corollary 4.9 (Consistency). The consecution ∅ ` ∅ is not prov-
able in DLCBI.

Proof. If ∅ ` ∅ were DLCBI-provable then, by the subformula
property (Corollary 4.8) there is a proof of ∅ ` ∅ containing
no formula occurrences anywhere. But every axiom of DLCBI

contains a formula occurrence.

Our main technical results concerning DLCBI are the following.

Theorem 4.10 (Soundness of DLCBI). If there is a DLCBI proof
of X ` Y then X ` Y is valid.

Theorem 4.11 (Completeness of DLCBI). If X ` Y is valid then
there is a DLCBI proof of X ` Y .

We give the proofs of Theorems 4.10 and 4.11 in Section 5.
We remark that, although cut-free proofs in DLCBI enjoy the

subformula property, cut-free proof search in our system is still

(Proposition 4.6)
···

F ` F
(D≡)

]F `]F
(¬R)

]F ` ¬F
(D≡)

[¬F ` []F
(∼L)

∼¬F ` []F
(WkL)

∼¬F ;∼F ` []F
(D≡)

[F ` [][(∼¬F ;∼F)
(∼L)

∼F ` [][(∼¬F ;∼F)
(WkL)

∼¬F ;∼F ` [][(∼¬F ;∼F)
(D≡)

][(∼¬F ;∼F) ` [(∼¬F ;∼F)
(WkL)

[∅;][(∼¬F ;∼F) ` [(∼¬F ;∼F)
(D≡)

[∅ ` [(∼¬F ;∼F); [(∼¬F ;∼F)
(CtrR)

[∅ ` [(∼¬F ;∼F)
(D≡)

∼¬F `]∼F ; ∅
(AIR)

∼¬F `]∼F
(¬R)

∼¬F ` ¬∼F

Figure 5. A cut-free DLCBI proof of ∼¬F ` ¬∼F . The rule
symbol (D≡) denotes the use of a display-equivalence.

rather non-deterministic due to the presence of the display postu-
lates and structural rules. In Figure 5 we give a sample cut-free
proof of the consecution ∼¬F ` ¬∼F , which illustrates this phe-
nomenon. The applications of the display-equivalences are required
in order to apply the logical rules, as one would expect, but the
proof also makes seemingly essential use of contraction, weaken-
ing and a unitary law. It is not obvious to us whether the use of
such structural rules can be eliminated by suitable reformulations
of the logical rules. (We note that the need to manipulate the struc-
ture of bunches poses a similar problem for proof search in sequent
calculus systems for BI [14].)

5. Soundness and completeness proofs for DLCBI

In this section we give the proofs of soundness and completeness of
our display calculus DLCBI with respect to validity in CBI-models.
First, we define in Section 5.1 an extension LBI+ of a sequent
calculus proof system for BBI. In this extension, the element ∞
and the involution ‘−’ in CBI-models are represented directly. We
demonstrate soundness and completeness of LBI+ with respect
to CBI-models. Our proof of completeness uses techniques from
modal logic, similar to those employed in [8], and is presented
in Section 5.2. Then, in Section 5.3, we prove admissibility of
the DLCBI rules in LBI+ under a suitable translation, and vice
versa. Soundness and completeness of DLCBI then follows from
the soundness and completeness of LBI+.

5.1 LBI+: a sequent calculus for CBI

In this section we define a simple extension BI+ of BBI, and a
corresponding sequent calculus system, LBI+, which is sound and
complete with respect to CBI-models.

Formulas of BI+ are given by the following grammar:

F ::= P | > | ⊥ | F ∧ F | F ∨ F | F → F |
>∗ | F ∗ F | F —∗ F | ./

where P ranges over the propositional variables V . These are ex-
actly the formulas of BI plus the new atomic formula ./. We also
use the following abbreviations6:

¬F =def F → ⊥
−F =def ¬(F —∗ ¬./)

Given a CBI-model M = 〈R, ◦, e,−,∞〉 and an environment
ρ for M , satisfaction of a BI+-formula F by a resource state
r ∈ R is then given by the relation r |= F for CBI-formulas
(cf. Definition 2.6) plus the following clause for the formula ./:

r |= ./ ⇔ r =∞
Lemma 5.1.1. Let M = 〈R, ◦, e,−,∞〉 be a CBI-model and let
ρ be an environment forM . For any r ∈ R and formula F we have
r |= −F iff −r |= F .

Proof. We have by the definitions of −F and of satisfaction:

r |= −F ⇔ r |= ¬(F —∗ ¬./)
⇔ r 6|= F —∗ ¬./
⇔ ∃r′, r′′. r′′ ∈ r ◦ r′ and r′ |= F but r′′ 6|= ¬./
⇔ ∃r′, r′′. r′′ ∈ r ◦ r′ and r′ |= F and r′′ =∞
⇔ ∃r′.∞ ∈ r ◦ r′ and r′ |= F
⇔ −r |= F

Note that the final equivalence above is justified by the fact that−r
is the unique element of R satisfying∞ ∈ r ◦ −r, which follows
from Proposition 2.2.

As is standard in BI, we write sequents of the form Γ ` F ,
where F is a BI+-formula and Γ is a bunch, given by the following
grammar:

Γ ::= F | Γ; Γ | Γ,Γ
where F ranges over BI+-formulas. Thus bunches are trees whose
leaves are formulas and whose internal nodes are either ‘;’ or ‘,’.

We write Γ(∆) for a bunch of which ∆ is a distinguished sub-
bunch (i.e. subtree), and in such cases write Γ(∆′) for the bunch
obtained by replacing ∆ by the bunch ∆′ in Γ(∆). In analogy to
the use of sets in ordinary sequent calculus, and as is again standard
for BI, we consider bunches up to coherent equivalence:

Definition 5.1.2 (Coherent equivalence). ≡ is the least relation on
bunches satisfying commutative monoid equations for ‘;’ and >,
and for ‘,’ and >∗, plus the rule of congruence: if ∆ ≡ ∆′ then
Γ(∆) ≡ Γ(∆′).

We remark that a BI+ sequent is a special case of a DLCBI

consecution, modulo possible occurrences of the formula ./, so that
the notion of validity for DLCBI consecutions (cf. Definition 4.2)
transfers straightforwardly to BI+ sequents. That is, a sequent
Γ ` F is valid iff for any CBI-model M = 〈R, ◦, e,−,∞〉,
any environment ρ for M and all r ∈ R, we have r |= ΨΓ

implies r |= F , where Ψ− is the function given in Definition 4.2
that replaces occurrences of ‘;’ and ‘,’ in a bunch by ∧ and ∗
respectively. This definition of validity coincides with the standard
one for BBI, when restricted to BBI-formulas.

We give the rules of a sequent calculus proof system LBI+ for
BI+ in Figure 6. Its rules extend the rules of the usual sequent
calculus for BI (cf. [26, 16]) with the double negation axiom
needed for BBI, and two further axioms that directly reflect the
fact that − behaves as an involution in our models.

6 Since we will treat→ and the other additives classically in BI+, we could
also take ¬ as primitive, but choose not to for technical convenience.

Structural rules:

(Id)
F ` F

Γ(∆) ` F
(Weak)

Γ(∆; ∆′) ` F

Γ(∆; ∆) ` F
(Contr)

Γ(∆) ` F

Γ′ ` F
Γ ≡ Γ′ (Equiv)

Γ ` F

∆ ` G Γ(G) ` F
(Cut)

Γ(∆) ` F

Propositional rules:

(⊥L)
Γ(⊥) ` F

(>R)
Γ ` >

Γ(F1;F2) ` F
(∧L)

Γ(F1 ∧ F2) ` F

Γ ` F1 Γ ` F2

(∧R)
Γ ` F1 ∧ F2

Γ(F1) ` F Γ(F2) ` F
(∨L)

Γ(F1 ∨ F2) ` F

Γ ` Fi

i ∈ {1, 2} (∨Ri)
Γ ` F1 ∨ F2

∆ ` F1 Γ(∆;F2) ` F
(→L)

Γ(∆;F1 → F2) ` F

Γ;F1 ` F2

(→R)
Γ ` F1 → F2

Γ(F1, F2) ` F
(∗L)

Γ(F1 ∗ F2) ` F

Γ ` F1 ∆ ` F2

(∗R)
Γ,∆ ` F1 ∗ F2

∆ ` F1 Γ(F2) ` F
(—∗L)

Γ(∆, F1 —∗ F2) ` F

Γ, F1 ` F2

(—∗R)
Γ ` F1 —∗ F2

BI+ axioms:

(DNE)
¬¬F ` F

(DIE)
−−F ` F

(DII)
F ` −−F

Figure 6. The proof rules of LBI+.

Proposition 5.1.3. LBI+ is sound with respect to CBI-models.

Proof. As usual, soundness follows from the fact that the proof
rules of LBI+ preserve truth in CBI-models and every axiom
(i.e. 0-premise rule) is valid. We note first that the rules of LBI+

preserve truth in BBI-models and thus in CBI-models in particular.
Thus it only remains to show that the BI+ axioms are true in any
CBI-model. Soundness of the axiom (DNE) follows from the fact
that additive implication is interpreted classically in BI+. For the
axioms (DIE) and (DII), note that r |= −−F iff −−r |= F by
Lemma 5.1.1. Soundness of these axioms then follows from the
fact that −−r = r in CBI-models.

5.2 Completeness of LBI+

We now show completeness of LBI+ with respect to CBI-models
by appealing to a general theorem of modal logic due to Sahlqvist.
The result is an adaptation of the analogous completeness result for
BBI in [8].

We first define MBI+ pre-models, which interpret the LBI+

connectives as modalities.

Definition 5.2.1. An MBI+ pre-model is a tuple 〈R, ◦,−•, e,−,∞〉,
where ◦ : R × R → P(R), −• : R × R → P(R), e ∈ R,

− : R→ P(R), and∞ ⊆ R. We extend ◦ and− toP(R)×P(R)
and P(R) respectively in the same manner as in Definition 2.1.

The satisfaction relation for BI+-formulas in MBI+ pre-models
is defined exactly as the satisfaction relation given above for BI+-
formulas in CBI-models, except that the clause for formulas of the
form F —∗ G is replaced by the following one:

r |= F1 —∗ F2 ⇔ ∀r′, r′′. r ∈ r′ −• r′′ and M, r′ |= F1

implies M, r′′ 6|= F2

Then, given any setAX of axioms, we defineAX-models to be the
MBI+ pre-models in which every axiom in AX holds.

Definition 5.2.2 (Modal Logic Formulas). Modal logic formulas
F are defined by the grammar:

F ::= ⊥ | P | F ∧ F | ¬F | 4(F1, . . . , Fn)

where 4 ranges over the modalities {e,−, ◦,−•,∞} (with the
obvious arities) and P ranges over V . We identify BI+-formulas
and modal logic formulas by implicitly applying the usual trans-
lation for additives, plus the abbreviations ./ = ∞, >∗ = e,
F1 ∗ F2 = F1 ◦ F2 and F1 —∗ F2 = ¬(F1 −• ¬F2).

Definition 5.2.3 (Very Simple Sahlqvist Formulas). A very simple
Sahlqvist antecedent A is a formula given by the grammar:

A ::= > | ⊥ | P | A ∧A | 4(A1, . . . , An)

where4 ranges over the modalities {e,−, ◦,−•,∞} and P ranges
over V . A very simple Sahlqvist formula is a formula of the form
A ⇒ F+, where A is a very simple Sahlqvist antecedent and F+

is a modal logic formula which is positive in that no propositional
variable P in F+ may occur inside the scope of an odd number of
occurrences of ¬.

Theorem 5.2.4 (Sahlqvist [3]). For every axiom setAX consisting
of very simple Sahlqvist formulas, the modal logic proof theory
generated by AX is complete with respect to the class of AX-
models.

Definition 5.2.5 (BI+-Axioms). The axiom set AXBI+ consists
of the following very simple Sahlqvist formulas:

1. e ◦ F ⇒ F
2. F ⇒ e ◦ F
3. F ◦G⇒ G ◦ F
4. (F ◦G) ◦H ⇒ F ◦ (G ◦H)
5. F ◦ (G ◦H)⇒ (F ◦G) ◦H
6. G ∧ (H ◦ F)⇒ (H ∧ (F −•G)) ◦ >
7. H ∧ (F −•G)⇒ >−• (G ∧ (H ◦ F))
8. −− F ⇒ F
9. F ⇒ −− F

10. −F ⇒ F −•∞
11. F −•∞ ⇒ −F

We write LAXBI+ for the modal logic proof theory generated
by the AXBI+ axioms.

Corollary 5.2.6. LAXBI+ is complete with respect to the class of
AXBI+ models.

Lemma 5.2.7. Let 〈R, ◦, e,−,∞〉 be a tuple with the same types
as in Definition 2.1, and extend− and ◦ toP(R) andP(R)×P(R)
respectively as in that definition. Then 〈R, ◦, e,−,∞〉 is a CBI-
model iff the following hold for all X,Y, Z ∈ P(R):

1. X◦Y = Y ◦X andX◦(Y ◦Z) = (X◦Y)◦Z and {e}◦X = X
2. −X = X −•∞
3. −−X = X

where X −• Y =def {z ∈ R | ∃x ∈ X, y ∈ Y. y ∈ x ◦ z}.

Proof. (⇒) The required properties follow straightforwardly from
the corresponding conditions on CBI-models and the extension of
− and ◦ to sets of elements.
(⇐) The conditions required for 〈R, ◦, e,−,∞〉 to be a CBI-
model follow from taking X,Y, Z to be singleton sets in the given
conditions and noting that −{x} = −x and {x} ◦ {y} = x ◦ y for
any x, y ∈ R.

The following two propositions extend analogous results in [8].
Note that ΨΓ denotes the BI+-formula constructed from a bunch Γ
by Definition 4.2.

Proposition 5.2.8. Γ ` F is derivable in LBI+ iff ΨΓ ⇒ F is
derivable in LAXBI+ .

Proposition 5.2.9. Γ ` F is valid with respect to classical BI-
models iff ΨΓ ⇒ F is valid with respect to AXBI+ -models.

The specific properties of− and∞ given by theAXBI+ axioms
are consequences of Lemma 5.2.7.

Theorem 5.2.10 (Completeness of LBI+). LBI+ is complete with
respect to validity in CBI-models.

Proof. If Γ ` F is valid with respect to CBI-models then, by
Proposition 5.2.9 ΨΓ ⇒ F is valid with respect to AXBI+ -
models and thus provable in LAXBI+ by Corollary 5.2.6. By
Proposition 5.2.8, Γ ` F is then provable in LBI+ as required.

5.3 Admissibility embeddings between DLCBI and LBI+

Definition 5.3.1 (Embedding of DLCBI in LBI+). We define a
function p−q from DLCBI-formulas to BI+-formulas by recursion
on the structure of DLCBI-formulas, as follows:

pFq = F where F ∈ {P,>,⊥,>∗}
pF1 ?F2q = pF1q ? pF2q where ? ∈ {∧,∨,→, ∗,—∗}

p¬Fq = ¬pFq
p⊥∗q = ¬./

p∼Fq = ¬−pFq
pF1

∗∨ F2q = ¬−(¬−pF1q ∗ ¬−pF2q)

where P in the first clause ranges over V . We extend p−q to a
function from DLCBI consecutions to BI+ sequents by:

pX ` Y q = pΨXq ` pΥY q

where Ψ− and Υ− are the functions given in Definition 4.2. We
call the function p−q the embedding of DLCBI in LBI+.

Lemma 5.3.2. A consecutionX ` Y is valid iff pX ` Y q is valid.

Proof. (Sketch) We first show by structural induction on CBI-
formulas F that r |= F iff r |= pFq. The main interesting case
is F = F1

∗∨ F2, in which case we need to use Lemma 5.1.1 in
order to establish the required equivalence. This result can then be
straightforwardly lifted to consecutions X ` Y .

We write F a` G to mean that both F ` G and G ` F
are derivable (in DLCBI or LBI+), and call F a` G a derivable
equivalence (of DLCBI and LBI+ respectively).

Lemma 5.3.3. The following are derivable equivalences of LBI+:

1. ¬−¬−F a` F
2. ¬−(F ∗ ¬−G) a` F —∗ G
3. F —∗ G a` ¬−G —∗ ¬−F
4. F a` ¬−(¬−F ∗ ¬−¬./)

The following lemma says that we can rewrite formulas in
BI+ sequents according to derivable equivalences without affecting
LBI+-derivability.

Lemma 5.3.4. Write F (G) for a formula F of which G is a dis-
tinguished subformula occurrence, and when F (G) is understood
write F (G′) for the formula obtained by replacing G by G′ in F .
(This is analogous to the notation for bunches.)

Now suppose that A a` B is a derivable equivalence of LBI+

(whereA,B are BI+-formulas). Then the following two proof rules
are derivable in LBI+:

Γ(F (A)) ` C
(a`L)

Γ(F (B)) ` C

Γ ` F (A)
(a`R)

Γ ` F (B)

Proof. By considering the following two instances of (Cut):

F (B) ` F (A) Γ(F (A)) ` C
(Cut)

Γ(F (B)) ` C

Γ ` F (A) F (A) ` F (B)
(Cut)

Γ ` F (B)

it suffices to prove that F (A) ` F (B) is derivable in LBI+,
whence it follows by symmetry that F (B) ` F (A) is also deriv-
able. If F (A) = A then this is immediate by assumption. Other-
wise A is a (distinguished) strict subformula occurrence in F and
we proceed by an easy structural induction on F .

Proposition 5.3.5. The proof rules of DLCBI are admissible in
LBI+ under the embedding p−q. That is, for any instance of a
DLCBI rule, say:

{Xi ` Yi | 1 ≤ i ≤ j}
j ∈ {0, 1, 2}

X ` Y
if pXi ` Yiq is derivable for all 1 ≤ i ≤ j then so is pX ` Y q.

Proof. (Sketch) We distinguish a case for each proof rule of
DLCBI. Most of the cases are straightforward. The main inter-
esting cases are the logical rules (∗∨L) and (—∗L), the structural
rule (MIR) and the display postulates for the multiplicative family.
These can be derived in LBI+ under the embedding p−q with the
aid of the rewrite rules given by Lemma 5.3.4 in conjunction with
the derivable equivalences of Lemma 5.3.3. E.g., in the case of
(—∗L) we proceed as follows, using the rule symbol (=) to denote
rewriting a sequent according to the definitions of Ψ−, Υ− and/or
p−q (cf. Definitions 4.2 and 5.3.1).:

...
pX ` Fq

(=)
pΨXq ` pΥF q

(=)
pΨXq ` pFq

...
pG ` Y q

(=)
pΨGq ` pΥY q

(=)
pGq ` pΥY q

(—∗L)
pFq —∗ pGq, pΨXq ` pΥY q

(—∗R)
pFq —∗ pGq ` pΨXq —∗ pΥY q

(a`R)
pFq —∗ pGq ` ¬−(pΨXq ∗ ¬−pΥY q)

(a`R)
pFq —∗ pGq ` ¬−(¬−¬−pΨXq ∗ ¬−pΥY q)

(=)
pFq —∗ pGq ` p∼ΨX

∗∨ ΥY q
(=)

pΨF—∗Gq ` pΥ[X,Y q
(=)

pF —∗ G ` [X, Y q

We can now prove the soundness of DLCBI as follows.

Proof of Theorem 4.10. If X ` Y is provable in DLCBI then
pX ` Y q is provable in LBI+ by Proposition 5.3.5, and thus
is valid by the soundness of LBI+ (Proposition 5.1.3), whence
X ` Y is valid by Lemma 5.3.2.

Definition 5.3.6 (Embedding of LBI+ in DLCBI). We define a
function x−y from BI+ sequents to DLCBI consecutions by: xΓ ` Fy
is the consecution obtained by replacing every occurrence of the
formula ./ in Γ ` F by the formula ¬⊥∗.

We remark that x−y can be defined recursively over BI+ formu-
las and extended to LBI+ sequents in a manner similar to that in
Definition 5.3.1.

Lemma 5.3.7. The following are all derivable equivalences of
DLCBI:

1. ¬¬F a` F
2. ¬F a` F → ⊥
3. ∼F a` F —∗ ⊥∗
4. ¬∼F a` ∼¬F
5. F1

∗∨ F2 a` ∼(∼F1 ∗ ∼F2)

Proposition 5.3.8. The proof rules of LBI+ are admissible in
DLCBI under the embedding x−y. That is, for any instance of an
LBI+ rule, say:

{Γi ` Fi | 1 ≤ i ≤ j}
j ∈ {0, 1, 2}

Γ ` F
if xΓi ` Fiy is derivable for all 1 ≤ i ≤ j then so is xΓ ` Fy.

Proof. (Sketch) We distinguish a case for each proof rule of LBI+.
The main interesting cases are the rules that operate inside bunches.
We observe that xΓy is a structure for any bunch Γ and that, in par-
ticular, x∆y is always an antecedent part of xΓy(x∆y). By the display
theorem (Theorem 4.4) we can display the sub-bunch on which the
rule operates as the entire antecedent of a display-equivalent con-
secution. We can then apply the corresponding rule of DLCBI to
this antecedent and then simply invert the display postulate steps
used to display the antecedent to restore the original context. For
example, in the case of (→L) we proceed as follows, writing (D≡)
to denote the use of a display equivalence:

x∆y ` xF1y

xΓy(x∆y; xF2y) ` xFy
(D≡)

x∆y; xF2y ` X
(ACL)

xF2y; x∆y ` X
(D≡)

xF2y `]x∆y;X
(→L)

xF1y→ xF2y `]x∆y;]x∆y;X
(D≡)

x∆y; x∆y `](xF1y→ xF2y);X
(CtrL)

x∆y `](xF1y→ xF2y);X
(D≡)

x∆y; xF1y→ xF2y ` X
(D≡)

xΓy(x∆y; xF1y→ xF2y) ` xFy
where X is a placeholder for the structure that results as the conse-
quent from displaying Y in the consecution xΓy(Y) ` xFy.

Lemma 5.3.9. If xpX ` Y qy is DLCBI-provable then so isX ` Y .

Proof. (Sketch) The proof proceeds in three stages. First, we show
by induction on CBI-formulas F that F a` xpFqy is DLCBI-
provable, making use of the derivable equivalences given by
Lemma 5.3.7 in the non-trivial cases. Second, we show by in-
duction on DLCBI-structures X that X ` ΨX and ΥX ` X are

DLCBI-provable. Finally, we can construct a proof ofX ` Y using
the given proof of xpX ` Y qy = xpΨXqy ` xpΥY qy using the first
two stages together with (Cut):

(assumption)
···

xpΨXqy ` xpΥY qy

(Stage 1)
···

xpΥY qy ` ΥY

(Stage 2)
···

ΥY ` Y
(Cut)

xpΥY qy ` Y
(Cut)

xpΨXqy ` Y···
(contd. below)

(Stage 2)
···

X ` ΨX

(Stage 1)
···

ΨX ` xpΨXqy
(Cut)

X ` xpΨXqy

(contd. above)
···

xpΨXqy ` Y
(Cut)

X ` Y
which completes the proof.

We can now prove completeness for DLCBI as follows.

Proof of Theorem 4.11. If X ` Y is valid then so is pX ` Y q by
Lemma 5.3.2, which is then LBI+-provable by Theorem 5.2.10. By
Proposition 5.3.8, xpX ` Y qy is then provable in DLCBI, whence
X ` Y is also DLCBI-provable by Lemma 5.3.9.

6. Related and future work
We consider related work, and directions for future work, from
several perspectives.

Classical versions of BI: CBI as presented here is essentially
a new logic, obtained as a nonconservative extension of BBI.
However, a version of classical BI was previously proposed by
Pym, who gave two-sided sequent calculus proof rules for the logic
and discussed some of the obstacles to its further development —
principally, the formulation of a suitable forcing semantics and cut-
eliminating proof systems [26]. Pym also made the observation that
a relevantist approach to multiplicative negation, which essentially
is also our approach, is compatible with the other multiplicative
connectives. However, the multiplicative falsity⊥∗ is absent in this
treatment. Our models, with their crucial inclusion of the element
∞ and its relationship to the involution ‘−’, provide precisely the
structure necessary to interpret all the connectives (as evidenced by
our soundness and completeness results).

Display calculi: Our display calculus DLCBI is an instance of
Belnap’s general display logic [1] and is in the same vein as dis-
play calculi by Goré for other substructural logics and relational
algebras [19, 20]. In particular, cut-elimination for DLCBI is a con-
sequence of Belnap’s general cut-elimination theorem for display
logic. Our main technical contribution is the soundness and com-
pleteness of DLCBI with respect to validity in our CBI-models.
Moreover, the proofs of these theorems, which rely upon admissi-
bility embeddings, make an explicit connection between proof in
DLCBI and the intuitionistic style of proof in LBI+, which is just
the usual BI sequent calculus extended by three axioms. It should
be noted, however, that even though cut-elimination in DLCBI en-
tails a subformula property, proof search in this setting is neverthe-
less made daunting by the presence of the display postulates and
structural rules, which can obviously lead to divergence if applied
blindly. It thus remains of clear interest to formulate well-behaved
sequent calculus or natural deduction proof systems for CBI, or

to refine our display calculus further so as to eliminate structural
inferences.

Classical linear logic: Readers may wonder about the relation-
ship between CBI and classical linear logic (CLL), which also fea-
tures a full set of propositional multiplicative connectives, and is a
nonconservative extension of intuitionistic linear logic (ILL) [30].
The differences between the two are quite striking when comparing
our money model of CBI (Example 3.1) with Girard’s correspond-
ing Marlboro / Camel example [18]. In particular, formulas in our
model, including those involving multiplicative negation, are read
as declarative statements about resources (i.e. money), whereas lin-
ear logic formulas in Girard’s model are typically read as procedu-
ral statements about actions. Compared to CLL, CBI has the ad-
vantage of a simple, declarative notion of truth relative to resource,
but this advantage appears to come at the expense of CLL’s con-
structive interpretation of proofs.

Of course, the typical reading of BI departs from that of ILL in a
similar way, and indeed it seems that the main differences between
CBI and CLL are inherited from the differences between BI and
ILL (see [24] for discussions of the latter). These differences are
not merely conceptual, but are also manifested at the technical
level of logical consequence. For example, P −◦ Q ` P →
Q is a theorem of linear logic for any propositions P and Q,
via the encoding of additive implication P → Q as !P −◦ Q,
but P —∗ Q ` P → Q is not a theorem of (any version of)
BI. Similarly, distributivity of additive conjunction over additive
disjunction holds in all versions of BI, but fails in linear logics.
Finally, of course, there is only one negation in CLL, whereas there
are two in CBI.

Interestingly, however, there is an intersection between our
CBI-models and the CLL-models obtained from the phase seman-
tics of classical linear logic [18]. A CBI-model 〈R, ◦, e,−,∞〉 in
which the monoid operation ◦ is a total function, rather than a rela-
tion, is a special instance of a phase space, used to provide a phase
model of CLL. This can be seen by taking the linear logic “perp”
⊥ to be the set R \ {∞}, whence the linear negation X⊥ on sets
X ⊆ R becomes−X . In the linear logic terminology, every subset
X of R is then a “fact” in the sense that (X⊥)⊥ = −−X = X . It
seems somewhat curious that there is a subclass of models where
CBI and CLL agree, since known interesting phase models of
linear logic are relatively few whereas there appear to be many in-
teresting CBI-models (cf. Section 3). However, one can argue that
this subclass is faithful to the spirit of neither logic. On the one
hand, the restriction to a total monoid operation in CBI-models
rules out many natural examples where resource combination is
partial. On the other hand, it seems certain that the induced sub-
class of CLL phase models will be at odds with the coherence
semantics of CLL proofs.

Application to program analysis: The main application of BBI
so far has been the use of separation logic in program analysis.
There are now several program analysis tools [9, 10, 13, 21, 23]
which use logical and semantic properties of the heap model of
BBI at their core. These tools often define a suitable fragment of
separation logic with convenient algebraic properties, and use it
in custom lightweight theorem provers and abstract domains. We
suggest that our work on CBI could be taken up in two main direc-
tions. The first direction is theorem proving. Our display calculus
DLCBI might form a basis for the design of new theorem provers,
which could easily employ the powerful (and historically difficult
to use) implication —∗ since, in CBI, it can be reexpressed using
more primitive connectives. Moreover, the notion of negative re-
source might be employed in extended theorem proving questions,
such as the frame inference problem F ` G∗X where the frameX
is computed essentially by subtracting G from F . A similar prob-

lem is the bi-abduction question, which forms the basis of the com-
positional shape analysis in [7] and has the form F ∗X ` G ∗ Y ,
interpreted as an obligation to find formulae to instantiate X and
Y such that the implication holds. This question arises at program
procedure call sites, where F is the procedure’s precondition, G is
the current precondition at the call point,X is the resource missing,
and Y is the leftover resource. We speculate that such inferences
could be explained in terms of an ordinary proof theory, providing
that multiplicative negation is supported, as in CBI.

The second direction is the investigation of richer fragments and
properties. The richer algebraic properties of CBI models might
suggest new separation logic fragments, or new ways of manipulat-
ing the existing fragments. For example, in order to express invari-
ants of traversal algorithms one needs to generalize a data structure
predicate, such as list(x) for a 0-terminated linked list, to lseg(x, y)
for list segments from x to y. The latter can be obtained from list(x)
by subtracting list(y). It is conceivable that the notion of subtraction
could be employed to convert automatically predicates describing
whole data structures into predicates which describe partial data
structures. Finally, new fragments could be obtained by studying
appropriate generalizations of conjunctive and disjunctive normal
forms to include both additive and multiplicative connectives.

CBI is presently very new, and our suggestions regarding its
applications are necessarily somewhat speculative. However, the
“dualising resource” semantics of CBI developed in this paper has
already given rise to several example models which, though rela-
tively simple in their present form, are suggestive of the applica-
bility of CBI to more complex domains. For example, the money
model presented in Section 3 extends easily to a CBI-model of
portfolios of assets, which might potentially form the basis of a
Hoare logic for financial transactions in the same way that the heap
model of BBI underpins separation logic. Furthermore, our proof-
theoretic results provide some hope that proof search in the logic
can be tamed, thus opening the way for theorem proving tools based
upon CBI. We hope that this paper represents a first step in these
directions.

Acknowledgements
We extend special thanks to Peter O’Hearn and David Pym for
many interesting and enlightening discussions which informed the
present paper. We also thank Byron Cook, Ross Duncan, Philippa
Gardner, Alex Simpson, and the members of the East London
Massive for useful discussions and feedback.

References
[1] Nuel D. Belnap, Jr. Display logic. Journal of Philosophical Logic,

11:375–417, 1982.

[2] Josh Berdine and Peter O’Hearn. Strong update, disposal and
encapsulation in bunched typing. In Proceedings of MFPS, ENTCS.
Elsevier, 2006.

[3] Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic.
Cambridge University Press, 2001.

[4] R. Bornat, C. Calcagno, P. O’Hearn, and M. Parkinson. Permission
accounting in separation logic. In 32nd POPL, pp59–70, 2005.

[5] James Brotherston and Cristiano Calcagno. Algebraic models
and complete proof calculi for classical BI. Technical Report
2008/7, Imperial College London, 2008. Available from http:
//www.doc.ic.ac.uk/~jbrother.

[6] James Brotherston and Cristiano Calcagno. Classical logic of bunched
implications. In the informal proceedings of CL&C 2008, an ICALP
satellite workshop; available from http://www.doc.ic.ac.uk/

~jbrother, 2008.

[7] Cristiano Calcagno, Dino Distefano, Peter O’Hearn and Hongseok
Yang. Compositional Shape Analysis by means of BI-Abduction. In
Proceedings of POPL-36, 2009.

[8] C. Calcagno, P. Gardner, and U. Zarfaty. Context logic as modal
logic: Completeness and parametric inexpressivity. In Proceedings of
POPL-34, 2007.

[9] Cristiano Calcagno, Matthew Parkinson, and Viktor Vafeiadis.
Modular safety checking for fine-grained concurrency. In SAS, 2007.

[10] Bor-Yuh Evan Chang and Xavier Rival. Relational inductive shape
analysis. In Proceedings of POPL-35, 2008.

[11] Wei-Ngan Chin, Cristina David, Huu Hai Nguyen, and Shengchao
Qin. Enhancing modular OO verification with separation logic. In
Proceedings of POPL-35, 2008.

[12] Matthew Collinson, David Pym, and Edmund Robinson. Bunched
polymorphism. Mathematical Structures in Computer Science, 2009.
To appear.

[13] D. Distefano and M. Parkinson. jStar: Towards Practical Verification
for Java. In OOPSLA, 2008.

[14] Kevin Donnelly, Tyler Gibson, Neel Krishnaswami, Stephen Magill,
and Sungwoo Park. The inverse method for the logic of bunched
implications. In Proceedings of LPAR 2004, volume 3452 of LNAI,
pages 466–480. Springer-Verlag, 2005.

[15] Michael Dunn. Star and perp: Two treatments of negation.
Philosophical Perspectives, 7:331–357, 1993.

[16] D. Galmiche, D. Mery, and D. Pym. The semantics of BI and resource
tableaux. Mathematical Structures in Computer Science, 15:1033–
1088, 2005.

[17] Didier Galmiche and Dominique Larchey-Wendling. Expressivity
properties of Boolean BI through relational models. In Proceedings
of FSTTCS, 2006.

[18] Jean-Yves Girard. Linear logic: Its syntax and semantics. In J.-Y.
Girard, Y. Lafont, and L. Regnier, editors, Advances in Linear Logic,
pages 1–42. Cambridge University Press, 1995.

[19] Rajeev Goré. Cut-free display calculi for relation algebras. In
Proceedings of CSL’96, volume 1258 of LNCS, pages 198–210,
1997.

[20] Rajeev Goré. Substructural logics on display. Logic Journal of the
IGPL, 6(3):451–504, 1998.

[21] H.Yang, O.Lee, J.Berdine, C.Calcagno, B.Cook, D.Distefano, and
P.O’Hearn. Scalable shape analysis for systems code. In CAV, 2008.

[22] Samin Ishtiaq and Peter W. O’Hearn. BI as an assertion language for
mutable data structures. In Proceedings of POPL’01, January 2001.

[23] H.H. Nguyen and W.-N. Chin. Enhancing program verification with
lemmas. In Proceedings of CAV, 2008.

[24] P.W. O’Hearn and D. J. Pym. The logic of bunched implications.
Bulletin of Symbolic Logic, 5(2):215–244, June 1999.

[25] Matthew Parkinson and Gavin Bierman. Separation logic, abstraction
and inheritance. In Proceedings of POPL-35, 2008.

[26] David Pym. The Semantics and Proof Theory of the Logic of Bunched
Implications. Applied Logic Series. Kluwer, 2002. Errata and
remarks (Pym 2004) maintained at http://www.cs.bath.ac.uk/
~pym/reductive-logic-errata.html.

[27] David Pym, Peter O’Hearn, and Hongseok Yang. Possible worlds
and resources: The semantics of BI. Theoretical Computer Science,
315(1):257–305, 2004.

[28] S. Read. Relevant Logic: A Philosophical Examination. Basil
Blackwell, 1987.

[29] John C. Reynolds. Separation logic: A logic for shared mutable data
structures. In Proceedings of 17th LICS, 2002.

[30] Harold Schellinx. Some syntactical observations on linear logic.
Journal of Logic and Computation, 1(4):537–559, 1991.

