
MFPS 2010

A Unified Display Proof Theory

for Bunched Logic

James Brotherston1

Dept. of Computing
Imperial College
London, UK

Abstract

We formulate a unified display calculus proof theory for the four principal varieties of bunched logic
by combining display calculi for their component logics. Our calculi satisfy cut-elimination, and
are sound and complete with respect to their standard presentations. We show that the standard
sequent calculus for BI can be seen as a reformulation of its display calculus, and argue that
analogous sequent calculi for the other varieties of bunched logic seem very unlikely to exist.

Keywords: bunched logic, display calculus, proof theory, cut-elimination, substructural logic

1 Introduction

Bunched logics, originating in O’Hearn and Pym’s BI [18], are a relatively
recent addition to the menagerie of substructural logics and are increasingly
attracting interest amongst computer science researchers as well as logicians.
Of their better-established cousins, bunched logics most resemble relevant log-
ics [21] in that they feature both multiplicative (or intensional) and addi-
tive (or extensional) logical connectives, with the difference between the two
types characterised as a matter of which structural principles are admitted
by each. However, while in relevant logics certain of the additive connectives
are barred in order to exclude various philosophically controversial theorems
from the logic, in bunched logics one simply takes a complete set of additive

1 Research supported by an EPSRC Postdoctoral Fellowship. Thanks to Rajeev Goré,
Greg Restall and the East London Massive (as was) for illuminating discussions and advice,
and to the anonymous referees for suggestions on improving the paper.

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Brotherston

connectives in addition to a set of multiplicatives. Thus bunched logics can be
seen as the result of freely combining a standard (additive) propositional logic
with a (multiplicative) linear logic. This simple-minded treatment of the ad-
ditives gives rise to a Tarskian resource interpretation of formulas in bunched
logics, which are read as true or false relative to resources: roughly speaking,
the additives have their standard propositional meanings while the multiplica-
tives denote resource composition properties [20]. In computer science, such
resource readings of bunched logic have very successfully been exploited to
obtain logics for program analysis. Most notably, separation logic [24], which
is based upon an interpretation of resources as portions of heap memory,
has spawned a host of program analysis applications that discover and rea-
son about the structure of heap memory during program execution (recent
examples include [7,8,10]). Bunched logic has also been variously employed
in addressing other computing problems such as polymorphic abstraction [9],
tree update [6] and typed reference update and disposal [2].

In this paper, we examine bunched logic from the general proof-theoretic
perspective. While there has been considerable interest in the semantics of
bunched logics, justified in no small part by the computational significance of
the resulting models [11,12,14,20], their proof theory by contrast has received
comparatively little attention. As observed by Pym [19], it is natural to con-
sider four principal varieties of bunched logic, characterised by the presence
or otherwise of classical negation in the additive and multiplicative fragments
or, equivalently, by the underlying additive and multiplicative algebras (see
Figure 1). However, to date there has been no proof-theoretical analysis cor-
responding to this general characterisation. On the one hand, O’Hearn and
Pym’s original bunched logic BI is known to possess both a complete natural
deduction proof system satisfying normalisation, and a complete sequent cal-
culus satisfying cut-elimination [19]. On the other hand, analogues of these
syntactic proof systems for well-known variants of BI such as Boolean BI (BBI)
have been conspicuously absent from the literature 2 . Instead, proof systems
for BBI are usually obtained in a crude manner by adding a sufficiently pow-
erful axiom or inference rule to the corresponding proof system for BI. Such
additions typically break normalisation and cut-elimination properties, which
is less than ideal from the theoretical point of view but also from a practical
perspective, since separation logic and many of the aforementioned related
program analysis tools are based on BBI. However, extending the BI sequent
calculus to BBI without breaking cut-elimination is highly problematic.

An alternative route to a disciplined proof theory for general bunched logics
is suggested by Belnap’s display logic [1], which was historically employed as

2 A tableau proof system for a variant of BBI based on functional rather than the usual
relational monoidal semantics is given in [16], but it does not correspond directly to a
cut-free sequent calculus, owing to its reliance on semantic constraint labels.

2

Brotherston

BI
(Heyting, Lambek)

decidable [11]

BBI
(Boolean, Lambek)
undecidable [4,17]

CBI
(Boolean, de Morgan)

undecidable [4]

dMBI
(Heyting, de Morgan)

¬∼

∼¬

Fig. 1. The bunched logic family. The (additive, multiplicative) subtitles indicate the underlying
additive and multiplicative algebras. The arrows denote the addition of either additive (¬) or
multiplicative (∼) classical negation.

a device for giving consecution calculi à la Gentzen for relevant and modal
logics. The distinguishing feature of display calculi is the display property :
any consecution can always be rearranged so that a given part appears alone
on the appropriate side of the proof turnstile. To ensure this property we
need both a richer form of consecution than that of typical Gentzen-style
sequents, and a set of auxiliary “display” rules for rearranging them in the
required fashion. Compensation for this extra complexity comes in the form
of an elegant, symmetric presentation of the calculus, analogous to that of
Gentzen’s sequent calculi. Furthermore, cut-elimination is guaranteed for any
display calculus whose rules obey a set of easily verifiable syntactic conditions.

In earlier work with Calcagno, we showed that the “classical” bunched
logic CBI could be naturally presented as a display calculus [3]. In this pa-
per, we obtain a unified display calculus proof theory for all four principal
bunched logics in Figure 1. First, we formulate display calculi for the elemen-
tary logics which characterise the additive and multiplicative components of
the various logics. Since Belnap’s original display apparatus does not adapt
to the intuitionistic components (because it relies on the presence of classical
negation), we instead exploit the residual relationship between conjunction
and implication to obtain a display property, à la Goré [13] and Restall [23].
Then, we obtain display calculi for the bunched logics by combining the dis-
play calculi for the corresponding elementary components. This composition
of the elementary calculi preserves several of their desirable structural prop-
erties, chiefly cut-elimination and soundness / completeness with respect to
standard presentations of the corresponding logics. Additionally, we establish
a translation between cut-free proofs in our display calculus for BI and those
in its standard sequent calculus, showing that the latter system can be seen as
a refined version of the former. The fact that our display calculi for the other

3

Brotherston

bunched logics seemingly cannot be similarly optimised into sequent presen-
tations — due to their essential use of unary structural connectives as well
as the usual binary ones — goes some way to explaining why well-behaved
sequent calculi for these logics have been so elusive.

The remainder of this paper is organised as follows. In Section 2 we define
the four main bunched logics in Figure 1 in terms of their elementary compo-
nent logics. Section 3 introduces the apparatus of display logic. In Section 4
we give display calculi for the bunched logics via display calculi for their el-
ementary component logics. In Section 5 we compare the resulting display
calculus for BI with its bunched sequent calculus. Section 6 concludes.

2 From elementary logics to bunched logics

In this section, we define the four principal bunched logics (cf. Figure 1) as
free combinations of well-known elementary logics.

We assume a fixed infinite set V of propositional variables. Formulas are
constructed from propositional variables using the logical connectives given in
Figure 2: any P ∈ V is a formula, and so is the result of applying a logical
connective to the appropriate number of formulas. We restrict the syntax of
formulas in a particular logic by stipulating which formula connectives are
permitted to occur. We write F,G,H , etc., to range over formulas.

Additive symbol: ⊤ ⊥ ¬ ∧ ∨ →

Multiplicative symbol: ⊤∗ ⊥∗ ∼ ∗ ∗∨ —∗

Arity: 0 0 1 2 2 2

Fig. 2. Logical connectives.

We regard a logic L as being specified by: (a) the set of logical connectives
which may occur in formulas of the logic; and (b) a basic proof system for
entailments of the form F ⊢ G, where F and G are formulas. We write
F ⊣⊢ G to abbreviate two axioms F ⊢ G and G ⊢ F . We specify four well-
known elementary logics, which form the principal components of the bunched
logics in Figure 1, as follows:

• Intuitionistic logic, IL, has as logical connectives ⊤, ⊥, ∧, ∨ and →. Clas-
sical logic, CL, adds the negation ¬. We present IL and CL in Figure 3.

• Lambek multiplicative logic, LM (a.k.a. multiplicative intuitionistic linear
logic), has as logical connectives the multiplicative ⊤∗, ∗ and —∗. De Mor-
gan multiplicative logic, dMM (a.k.a. multiplicative classical linear logic),
extends these by ⊥∗, ∼ and ∗∨. We present LM and dMM in Figure 4.

We write E = {IL,CL,LM, dMM} for this set of elementary logics. By
the free combination L1 + L2 of two logics L1,L2 ∈ E , we mean the logic
whose logical connectives and presentation are the unions of, respectively, the

4

Brotherston

F ⊢ F F ⊢ ⊤ ⊥ ⊢ F Gi ⊢ G1 ∨G2 (i ∈ {1, 2}) G1 ∧G2 ⊢ Gi (i ∈ {1, 2})

F ⊢ H G ⊢ H

F ∨G ⊢ H

F ⊢ G F ⊢ H

F ⊢ G ∧H

F ⊢ G → H

F ∧G ⊢ H

F ∧G ⊢ H

F ⊢ G → H

F ⊢ G G ⊢ H

F ⊢ H
. .

¬F ⊣⊢ F → ⊥ ¬¬F ⊢ F

Fig. 3. IL and CL. The axioms below the dotted line are present in CL only.

F ⊢ F F ∗ (G ∗H) ⊣⊢ (F ∗G) ∗H F ∗G ⊢ G ∗ F F ∗ ⊤∗ ⊣⊢ F

F1 ⊢ G1 F2 ⊢ G2

F1 ∗ F2 ⊢ G1 ∗G2

F ∗G ⊢ H

F ⊢ G —∗ H

F ⊢ G —∗ H

F ∗G ⊢ H

F ⊢ G G ⊢ H

F ⊢ H
. .

⊥∗ ⊣⊢ ∼⊤∗ F ∗∨ G ⊣⊢ ∼(∼F ∗ ∼G) ∼F ⊣⊢ F —∗ ⊥∗ ∼∼F ⊢ F

Fig. 4. LM and dMM. The axioms below the line are present in dMM only.

logical connectives and the presentations of L1 and L2. The bunched logics
B = {BI,BBI, dMBI,CBI} can then be defined very straightforwardly in terms
of their elementary components:

• BI, a.k.a. the logic of bunched implications (cf. [18,20]), is given by IL+LM;

• BBI, a.k.a. Boolean BI (cf. [12]), is given by CL + LM;

• dMBI, standing for “de Morgan BI”, is given by IL + dMM;

• CBI, a.k.a. Classical BI (cf. [3]), is given by CL + dMM.

Our definition of the logics E ∪ B above will be taken as the baseline with
respect to which our display calculi for these logics are later proven correct.
This has the benefit of freeing our analysis from unnecessary semantic con-
siderations. We note that our definitions of B can be seen to be in agreement
with those found elsewhere in the literature, as well as the characterisation
in Figure 1. For example, our presentations of BI and BBI agree with their
counterparts in [20] and [12] respectively. (To our knowledge, dMBI has not
appeared in the literature before, while CBI was presented in [3] via a display
calculus, which we will reconstruct as part of our unified proof theory for B.)

3 Display calculus fundamentals

In this section we present the basic notions that we require in order to specify
a display calculus in the spirit of Belnap [1].

Structures are constructed from formulas using the structural connectives
given by Figure 5: any formula is a structure, and so is the result of applying
a structural connective to the appropriate number of structures. We write
W,X, Y, Z, etc., to range over structures. If X and Y are structures then
X ⊢ Y is called a consecution. There is a classification of the structure occur-
rences in a consecution into antecedent and consequent parts, which generalises

5

Brotherston

Additive Multiplicative Arity Antecedent meaning Consequent meaning

∅ ∅ 0 truth falsity

♯ ♭ 1 negation negation

; , 2 conjunction disjunction

⇒ ⊸ 2 undefined implication

Fig. 5. Structural connectives.

the simple left-right division of sequent calculus.

Definition 3.1 (Antecedent / consequent part) Substructure occurrences
in a structure X are classified as either positive or negative in X, as follows:

• X is positive in X;

• if Z is negative (positive) in Y then Z is positive (negative) in ♯Y and ♭Y ;

• if Z is positive (negative) in X1 or X2 then Z is positive (negative) in
X1 ; X2 and X1 , X2;

• if Z is negative (positive) in X1 or positive (negative) in X2, then Z is
positive (negative) in X1 ⇒ X2 and X1 ⊸ X2.

Z is said to be an antecedent (consequent) part of a consecution X ⊢ Y

if it is positive (negative) in X or negative (positive) in Y .

Consecutions are interpreted as entailments between formulas as follows.

Definition 3.2 (Consecution validity) For any structure X we define the
formulas ΨX and ΥY by mutual structural induction as follows:

ΨF = F ΥF = F

Ψ∅ = ⊤ Ψ∅ = ⊤∗ Υ∅ = ⊥ Υ∅ = ⊥∗

Ψ♯X = ¬ΥX Ψ♭X = ∼ΥX Υ♯X = ¬ΨX Υ♭X = ∼ΨX

ΨX;Y = ΨX ∧ΨY ΨX,Y = ΨX ∗ΨY ΥX;Y = ΥX ∨ΥY ΥX,Y = ΥX
∗∨ ΥY

ΨX⇒Y = undefined ΨX⊸Y = undefined ΥX⇒Y = ΨX → ΥY ΥX⊸Y = ΨX —∗ ΥY

X ⊢ Y is said to be valid in a logic L iff ΨX ⊢ ΥY is provable in L.

We remark that, in any given display calculus, we restrict the form of
consecutions by stipulating which of the structural connectives may appear as
the main (i.e. outermost) connective of an antecedent or consequent part. In
doing so, we ensure that the restrictions on the structural connectives match
the available formula connectives, so that validity of consecutions is always
well defined. In particular, neither ⇒ nor ⊸ will ever be permitted to appear
as the main connective of an antecedent part of a consecution.

The defining feature of any true display calculus is the availability of an
equivalence relation on consecutions, called a display-equivalence, that facil-
itates their rearrangement into an equivalent consecution in which a given
antecedent (consequent) part appears as the entire antecedent (consequent).

Definition 3.3 (Display-equivalence) Let ≡D be the least equivalence gen-
erated by a set of rules of the form C <>D C ′, where C, C ′ are consecutions.

6

Brotherston

We say that ≡D is a display-equivalence if, for any antecedent (consequent)
part Z of X ⊢ Y , one can construct a structure W such that X ⊢ Y ≡D Z ⊢ W

(X ⊢ Y ≡D W ⊢ Z). The process of rearrangingX ⊢ Y into Z ⊢ W or W ⊢ Z
via display-equivalence is called displaying Z.

A display calculus DLL for a logic L is then specified by the following:

Antecedent / consequent structural connectives: The structural con-
nectives that are permitted to appear as the main connective of an an-
tecedent / consequent part of a consecution, respectively.

Display postulates: A set of rules of the form C <>D C ′ such that the least
equivalence ≡D generated by the rules is a display-equivalence.

Logical rules: Proof rules for the formula connectives, typically divided into
pairs of left- and right-introduction rules for each logical connective in the
manner familiar from sequent calculus (though, like in sequent systems,
some connectives may have only one introduction rule). Note that, since
we can appeal to the display-equivalence ≡D, these rules may be written so
that the formula introduced by a rule is displayed (alone) in its conclusion.

Structural rules: Proof rules for the structural connectives. We write a
rule with a double-line between premise and conclusion to indicate that it
is symmetric, i.e., that the premise and conclusion may be exchanged.

In addition to the logical and structural proof rules given by their specifi-
cation, all of our display calculi share a common set of identity rules :

(Id)
P ⊢ P

X ⊢ F F ⊢ Y
(Cut)

X ⊢ Y

X ′ ⊢ Y ′

X ⊢ Y ≡D X ′ ⊢ Y ′ (≡D)
X ⊢ Y

where P ranges over propositional variables. We remark that a display calculus
so specified is not guaranteed to obey any particular proof-theoretic proper-
ties over and above the availability of display-equivalence; as is well-known,
display calculi may fail to enjoy cut-elimination, interpolation, or decidabil-
ity. However, cut-elimination is guaranteed for display calculi with sufficiently
well-behaved logical and structural rules [1].

4 Display calculi for bunched logics

In this section we give display calculi for the elementary logics E (see Section 2)
and combine them to obtain display calculi for the bunched logics B. We give
display calculus specifications for the elementary logics IL, CL, LM and dMM
in Figures 6, 7, 8 and 9 respectively.

Some remarks on our formulation of these elementary display calculi are
in order. Firstly, the display postulates for the classical logics CL and dMM
essentially follow Belnap [1]. These postulates do not adapt to the intuition-

7

Brotherston

Antecedent structure connectives: ∅ ;

Consequent structure connectives: ⇒

Display postulates: X ; Y ⊢ Z <>D X ⊢ Y ⇒ Z <>D Y ; X ⊢ Z

Logical rules:

(⊥L)
⊥ ⊢ X

∅ ⊢ X
(⊤L)

⊤ ⊢ X

F ; G ⊢ X
(∧L)

F ∧G ⊢ X

F ⊢ X G ⊢ X
(∨L)

F ∨G ⊢ X

X ⊢ F G ⊢ Y
(→L)

F → G ⊢ X ⇒ Y

(⊤R)
X ⊢ ⊤

X ⊢ F X ⊢ G
(∧R)

X ⊢ F ∧G

X ⊢ Fi i ∈ {1, 2}

(∨R)X ⊢ F1 ∨ F2

X ; F ⊢ G
(→R)

X ⊢ F → G

Structural rules:

∅ ; X ⊢ Y
======= (∅L)
X ⊢ Y

W ; (X ; Y) ⊢ Z
============= (AAL)
(W ; X) ; Y ⊢ Z

X ⊢ Z
(WkL)

X ; Y ⊢ Z

X ; X ⊢ Y
(CtrL)

X ⊢ Y

Fig. 6. Specification of DLIL.

Antecedent structure connectives: ∅ ♯ ;

Consequent structure connectives: ∅ ♯ ;

Display postulates: X ; Y ⊢ Z <>D X ⊢ ♯Y ; Z <>D Y ; X ⊢ Z

X ⊢ Y ; Z <>D X ; ♯Y ⊢ Z <>D X ⊢ Z ; Y

X ⊢ Y <>D ♯Y ⊢ ♯X <>D ♯♯X ⊢ Y

Logical rules: Structural rules:

X ⊢ ∅
(⊥R)

X ⊢ ⊥

♯F ⊢ X
(¬L)

¬F ⊢ X

X ⊢ ♯F
(¬R)

X ⊢ ¬F

X ⊢ F G ⊢ Y
(→L)

F → G ⊢ ♯X ; Y

X ⊢ F ; G
(∨R)

X ⊢ F ∨G

X ⊢ Y ; ∅
======= (∅R)
X ⊢ Y

Fig. 7. Specification of DLCL. The logical and structural rules extend those of DLIL (Figure 6),
except for (∨R) and (→L) which replace their DLIL counterparts.

istic IL and LM because they lack suitable involutive negations necessary to
interpret ♯ and ♭. Instead, we employ the meta-level implications ⇒ and ⊸,
and exploit their residual connections with the conjunctions to obtain suitable
display postulates (an idea also employed by Goré [13] and Restall [23]).

Secondly, because the structural connectives ∅ and ‘;’ may occur only in
antecedent positions in DLIL consecutions, we must use structure-free formu-
lations of the rules (∨L) and (⊥L) (for convenience, we do the same for (∧R)
and (⊤R), and use the same rules for DLCL). Also, we could have written
a single version of (→L) common to both DLIL and DLCL with conclusion
X ; F → G ⊢ Y , and similarly for (—∗L) in DLLM and DLdMM. We use sep-
arate versions in order to maintain the pleasant property that the formula
introduced by a logical rule is always displayed in its conclusion.

Finally, we note that the right-hand analogues of the structural rules
(AAL), (CtrL) and (WkL) are derivable in DLCL. Likewise, the right-hand

8

Brotherston

Antecedent structure connectives: ∅ ,

Consequent structure connectives: ⊸

Display postulates: X, Y ⊢ Z <>D X ⊢ Y ⊸ Z <>D Y,X ⊢ Z

Logical rules: Structural rules:

∅ ⊢ X
(⊤∗L)

⊤∗ ⊢ X

F , G ⊢ X
(∗L)

F ∗G ⊢ X

X ⊢ F G ⊢ Y
(—∗L)

F —∗ G ⊢ X ⊸ Y

(⊤∗R)
∅ ⊢ ⊤∗

X ⊢ F Y ⊢ G
(∗R)

X , Y ⊢ F ∗G

X , F ⊢ G
(—∗R)

X ⊢ F —∗ G

∅ , X ⊢ Y
======== (∅L)
X ⊢ Y

W , (X , Y) ⊢ Z
============= (MAL)
(W , X) , Y ⊢ Z

Fig. 8. Specification of DLLM.

Antecedent structure connectives: ∅ ♭ ,

Consequent structure connectives: ∅ ♭ ,

Display postulates: X , Y ⊢ Z <>D X ⊢ ♭Y , Z <>D Y , X ⊢ Z

X ⊢ Y , Z <>D X , ♭Y ⊢ Z <>D X ⊢ Z , Y

X ⊢ Y <>D ♭Y ⊢ ♭X <>D ♭♭X ⊢ Y

Logical rules: Structural rules:

(⊥∗L)
⊥∗ ⊢ ∅

♭F ⊢ X
(∼L)

∼F ⊢ X

F ⊢ X G ⊢ Y
(∗∨L)

F ∗∨ G ⊢ X , Y

X ⊢ F G ⊢ Y
(—∗L)

F —∗ G ⊢ ♭X , Y

X ⊢ ∅

(⊥∗R)
X ⊢ ⊥∗

X ⊢ ♭F
(∼R)

X ⊢ ∼F

X ⊢ F , G
(∗∨R)

X ⊢ F ∗∨ G

X ⊢ Y , ∅
======== (∅R)
X ⊢ Y

Fig. 9. Specification of DLdMM. The logical and structural rules extend those of DLLM above,
except for (—∗L) which replaces its DLLM counterpart.

analogue of (MAL) is derivable in DLdMM.

Now we obtain display calculi for B by defining, for L1,L2 ∈ E :

DLL1+L2
=def DLL1

+DLL2

where DLL1
+DLL2

is the display calculus whose antecedent and consequent
structure connectives, display postulates, and logical and structural rules are
in each case those of DLL1

plus those of DLL2
. We observe that DLCBI as pre-

sented here is equivalent to its earlier formulation in [3], while DLBI, DLBBI

and DLdMBI are new. However, DLdMBI can be seen to be very nearly equiva-
lent to Restall’s display calculus for the well-known relevant logic RW (a.k.a.
C) obtained from R by removing the multiplicative contraction rule [23]. The
two calculi differ only because RW lacks the additive intuitionistic → and ⊥
of dMBI (which can however be added conservatively).

We now demonstrate that each of our specifications does indeed give rise
to a true display calculus, in the sense that the display property holds.

Proposition 4.1 (Display) For all L ∈ E ∪ B, the least equivalence ≡D

induced by the display postulates of DLL is a display-equivalence for DLL.

9

Brotherston

Proof. (Sketch) The required display property (Defn. 3.3) follows from the
fact that, for any consecution X ⊢ Y , the display postulates of DLL facili-
tate the display of each of the immediate substructures of X and Y (as the
antecedent or consequent as appropriate); it follows by induction that arbi-
trary substructures of X ⊢ Y can be displayed. This fact may be verified
essentially by eye for each L ∈ E , noting that the structure of consecutions
and display postulates in DLIL and DLCL is isomorphic to that of DLLM and
DLdMM respectively. It follows immediately that the immediate substructures
of X ⊢ Y can be displayed for each L ∈ B, using the display postulates from
the appropriate component calculus. 2

Proposition 4.2 (Soundness) For all L ∈ E ∪ B, if a consecution of DLL

is provable in DLL then it is valid.

Proof. (Sketch) It suffices to prove that each rule of DLL is locally sound
in that, if all of its premises are valid, then so is its conclusion. In practice
this means deriving the rule in L under the translation from consecutions
to formula entailments given by Defn. 3.2. This may straightforwardly, if
somewhat tediously, be carried out for each of the elementary logics L ∈ E .
For L ∈ B, the local soundness property is then immediate since it is obvious
that, if any DLLi

rule is Li-derivable under translation for i ∈ {1, 2}, then the
rules of DLL1

+DLL2
are derivable under translation in L1 + L2. 2

Lemma 4.3 (Identity) For all L ∈ E ∪ B, and for any formula F of L, the
consecution F ⊢ F is provable in DLL.

Proof. (Sketch) By structural induction on F , distinguishing a case for every
possible logical connective of L. In the case F = P ∈ V we are immediately
done by (Id). The connective cases follow straightforwardly by applying the
left- and right-introduction rules for the connective together with the induction
hypothesis (for the additives the structural rules are also required). 2

Lemma 4.4 For all L ∈ E ∪ B, and for any consecution X ⊢ Y of DLL, the
consecutions X ⊢ ΨX and ΥY ⊢ Y are DLL-provable, where Ψ− and Υ− are
the functions given in Definition 3.2.

Proof. (Sketch) By induction on the number of structural connectives in
X ⊢ Y , distinguishing a case for every possible structural connective of X
and Y in DLL. In the base case X and Y are formulas of L, and we are
done by Lemma 4.3. We show a typical connective case, Y = (X ′ ⇒ Y ′), in
which case DLL contains DLIL and we have ΥY = ΨX′ → ΥY ′. As X ′ ⇒ Y ′

is a consequent part of X ⊢ Y by the case assumption, X ′ is an antecedent
part and Y ′ a consequent part, so X ′ ⊢ Y ′ is a consecution of DLL and thus
by induction hypothesis X ′ ⊢ ΨX′ and ΥY ′ ⊢ Y ′ are both DLL-provable.
Thus by applying the DLIL rule (→L) we obtain the required DLL proof of
ΨX′ → ΥY ′ ⊢ X ′ ⇒ Y ′. 2

10

Brotherston

Theorem 4.5 (Completeness) For all L ∈ E ∪ B, if a consecution of DLL

is valid then it is provable in DLL.

Proof. (Sketch) Suppose that X ⊢ Y is DLL-valid, i.e. that ΨX ⊢ ΥY is
L-provable. To show that X ⊢ Y is DLL-provable, it suffices by Lemma 4.4
and (Cut) to show that ΨX ⊢ ΥY is DLL-provable. In practice this simply
entails showing that each proof rule of L is DLL-derivable, which is a routine
exercise for each L ∈ E . The result then follows immediately for all L ∈ B
because it is clear that, if DLL1

and DLL2
can derive every rule of L1 and L2

respectively, then DLL1
+DLL2

can derive every rule of L1 + L2. 2

We call a display calculus proof cut-free if it contains no instances of (Cut).

Theorem 4.6 (Cut-elimination) For all L ∈ E ∪B, any DLL proof of X ⊢
Y can be transformed into a cut-free proof of X ⊢ Y .

Proof. (Sketch) Given the display property (Proposition 4.1), it suffices to
verify for each L ∈ E ∪ B that the proof rules of DLL meet Belnap’s well-
known conditions C1–C8 guaranteeing cut-elimination [1]. Moreover, since
conditions C1–C7 are properties of individual rules rather than sets of rules,
these may be verified for all L ∈ E ∪B in one pass, simply by examining each
rule appearing in Figures 6–9. Condition C8 (elimination of principal cuts)
depends essentially on the form of the logical rule pairs (•L) and (•R) for each
logical connective • (though the structural rules are also sometimes required
to eliminate principal cuts in DLIL and DLCL). C8 may be easily verified for
each L ∈ E , and then follows immediately for each L ∈ B since every principal
cut in DLL is a principal cut in one of its elementary component calculi. 2

We remark that cut-free proofs in our display calculi enjoy a traditional
subformula property, as can be seen by inspection of the proof rules. However,
the analogous “substructure” property does not hold: the premise of a rule
instance may contain structures which are not substructures of any structure in
the conclusion 3 . Thus, like in linear logic, cut-elimination does not necessarily
entail decidability or interpolation. Indeed, in collaboration with Kanovich
we have recently shown both BBI and CBI, among other formalisms, to be
undecidable [4] 4 . Cut-elimination in display calculi remains meaningful for
the reason that it eliminates the infinite branching points provided by the cut
rule; as is clear by inspection of the proof rules, for any consecution there
are only finitely many ways of applying a proof rule backwards 5 . Thus an
exhaustive proof search is finitely branching, albeit possibly non-terminating.
Moreover, for certain display calculi it is possible to ensure that such a proof

3 Of course exactly the same is true, e.g., of any sequent calculus with a contraction rule.
4 An alternative proof of the undecidability of BBI was produced independently [17].
5 Provided that one is careful to prevent arbitrary “stacking” of ♯ and ♭, cf. [15,23].

11

Brotherston

search is indeed terminating [23] — although it is sadly impossible to generally
determine which ones [15].

5 Relationship to bunched sequent calculi

Of all the bunched logics B, only BI is known to possess a sequent calculus
with cut-elimination, given by Pym [19]. Thus it is natural to compare this
calculus, LBI, with our display calculus DLBI. The sequents of LBI are of the
form Γ ⊢ F where F is a BI-formula and Γ is a bunch, given by:

Γ ::= F | ∅ | ∅ | Γ ; Γ | Γ , Γ

where F ranges over BI-formulas. A coherent equivalence ≡ is defined on
bunches as the least congruence closed under associativity and commutativity
of the semicolon and comma, and under the equations (∅ ; F) ≡ F ≡ (∅ , F).
The right-introduction rules for the logical connectives have standard intu-
itionistic formulations. The left-introduction rules, and the structural rules,
are written so as to apply to formulas occurring at arbitrary positions within a
bunch, using the notation Γ(∆) for a bunch Γ with a distinguished sub-bunch
occurrence ∆. For example, the rules for —∗ in LBI are:

∆ ⊢ F1 Γ(F2) ⊢ F
(—∗L)

Γ(∆ , F1 —∗ F2) ⊢ F

Γ , F ⊢ G
(—∗R)

Γ ⊢ F —∗ G

We demonstrate a correspondence between cut-free proofs in LBI and in DLBI.

Lemma 5.1 There is an injective, constructive map from LBI proofs to DLBI

proofs. Moreover, this map preserves cut-freeness of proofs.

Proof. (Sketch) First note that every LBI sequent is a DLBI consecution, as
bunches are exactly the structures that can occur as antecedent parts of the
latter. We show that each of the proof rules of LBI is derivable in DLBI. The
left-introduction rules can be seen in DLBI as a macro for first displaying the
active part of the conclusion, then applying the corresponding left-introduction
rule of DLBI and finally reversing the original display process to restore the
bunch context. E.g., we derive the (—∗L) rule of LBI as follows:

∆ ⊢ F1

Γ(F2) ⊢ F
(≡D)

F2 ⊢ X
(—∗L)

∆ , F1 —∗ F2 ⊢ X
(≡D)

Γ(∆ , F1 —∗ F2) ⊢ F

whereX is a placeholder for the consequent structure that results from display-
ing Z in Γ(Z) ⊢ F . The other left-rules are similar. The right-introduction

12

Brotherston

rules of LBI have direct equivalents in DLBI, and applications of the rule
for coherent equivalence ≡ are translated into DLBI as combinations of the
display-equivalence rule (≡D), the associativity rules (AAL) and (MAL) and
the unit rules (∅L) and (∅L). 2

Lemma 5.2 There is a constructive map from DLBI proofs to LBI proofs.
Moreover, this map preserves cut-freeness of proofs.

Proof. (Sketch) For any DLBI consecution X ⊢ Y define its display-normal
form pX ⊢ Y q to be the consecution obtained by applying the transformations
(X ⊢ Y ⇒ Z) 7→ (X ; Y ⊢ Z) and (X ⊢ Y ⊸ Z) 7→ (X , Y ⊢ Z) until no fur-
ther transformations are possible. Note that for any DLBI consecution X ⊢ Y
we have that X is a bunch and pX ⊢ Y q is a unique LBI sequent of the form
Γ(X) ⊢ F . We show that each proof rule of DLBI is derivable in LBI under
the translation p−q. For example, in the case of the DLBI rule (—∗L) we have:

pX ⊢ Fq pG ⊢ Y q

pF —∗ G ⊢ X ⊸ Y q

=
X ⊢ F Γ(G) ⊢ H

Γ(X , F —∗ G) ⊢ H

and we are immediately done since the translated rule instance is simply the
(—∗L) rule of LBI. The other rules are similar. Note that for the display
rule (≡D) we simply treat each display postulate individually: applications of
display postulates either collapse under p−q or boil down to the commutativity
of the comma or semicolon, which is handled by the bunch equivalence ≡. 2

Proposition 5.3 Any cut-elimination procedure for DLBI may be construc-
tively transformed into a cut-elimination procedure for LBI, and vice versa.

Proof. Immediate from Lemmas 5.1 and 5.2. 2

While Lemma 5.1 demonstrates that a cut-free LBI proof is essentially a
cut-free DLBI proof with some display steps omitted, Lemma 5.2 indicates
the converse: any cut-free DLBI proof can be viewed as a cut-free LBI proof
by first bringing each consecution into a “display-normal form”. We suggest
that this normal form probably does not exist for the display calculi for the
other bunched logics in any meaningful sense (and so Lemma 5.2 does not
adapt), because of the seemingly essential presence of the structural negations
♯ and/or ♭ in these calculi. For example, if we consider the DLBBI consecution
F , ♯G ⊢ H , then it is clear that there is no display-rearrangement of this
consecution which could be called “bunched-like” in the sense that ♯ does not
occur in it. Thus any cut-free sequent calculus for BBI without such a unary
negative structuring must represent cut-free DLBBI proofs in a rather non-
trivial way, and it appears quite plausible that attempts to formulate such a
calculus are fundamentally doomed — an observation borne out by our own
experience and that of others [19]. Similar remarks apply to dMBI and CBI.

13

Brotherston

(Of course, this does not rule out other, less syntax-directed approaches such
as labelled deduction based on tableaux [11,16] or hybrid logics [22].)

6 Conclusion

Our main contribution in this paper is a unified proof theory for the principal
varieties of bunched logic, based on display calculus (incidentally substantiat-
ing O’Hearn and Pym’s suggestion that this apparatus might apply to BI [18]).
In particular, we provide the first cut-free proof system for BBI, which under-
lies separation and spatial logics employed in program analysis. Evidence for
the canonicity of our unified proof theory is provided by cut-elimination for
each of our calculi, as well as soundness and completeness with respect to the
basic presentations of the corresponding logics.

The fact that each bunched logic can individually be presented as a display
calculus is relatively unsurprising in the light of the earlier display calculus
for CBI presented in [3], and the intuitionistic display technology, based on
residual pairs of connectives, to be found in [13,23]. As well as realising these
calculi explicitly, we make two additional contributions in this paper. First, we
obtain our proof theory in a unified and economical way, by first formulating
and then combining calculi for the elementary additive and multiplicative
components of the bunched logics. Our treatment takes advantage of the
compositionality of key structural properties of display calculi: given that the
properties hold for two “elementary” display calculi, it is straightforward to
establish that the same properties hold of the display calculus obtained by
combining them. Second, having formulated our display calculi, we are in a
position to immediately establish a translation between cut-free proofs in our
display calculus for BI and those in its standard bunched sequent calculus.
By doing so, we observe not only that this sequent calculus can be seen as
an optimised display calculus, but also that the display calculi for the other
bunched logics cannot be pared down to a sequent calculus in the same way.
Both observations provide strong evidence that our formulation of the proof
theory of bunched logics in terms of display calculi is indeed canonical.

Though complete cut-free proof systems for bunched logic are of clear the-
oretical interest, from the practical perspective it remains to be seen whether
our proof theory will find application in automated theorem-proving tools.
The need for such tools is quite real, e.g., in the setting of separation logic,
which is based on BBI, but since both separation logic and BBI are fundamen-
tally undecidable [4], compromises are clearly necessary 6 . We suggest that
our work might be applied in two main directions. First, the display property
intuitively corresponds to “pointing” or “focusing” in a proof attempt, where

6 In fact, separation logic is significantly more complicated than pure BBI, as it must also
account for specific properties of the heap-like models on which it is based.

14

Brotherston

one selects part of a subgoal to work on. Thus our display calculi might well
find application in semi-automated proof assistants, where the proof search is
partially or wholly guided by humans. Second, it might be possible to obtain
useful fully-automated but incomplete proof search tools by imposing con-
straints on the use of structural rules. A further possibility might be to look
at obtaining deep inference calculi, which abandon the distinction between
logical connectives and structural ones [5], for bunched logics by attempting
to extract formula-rewriting rules from their cut-free display calculi. Our ap-
proach may also open new avenues for display-based proof theories for other
logics with relevance for computer science.

References

[1] Nuel D. Belnap, Jr. Display logic. Journal of Philosophical Logic, 11:375–417, 1982.
[2] Josh Berdine and Peter O’Hearn. Strong update, disposal and encapsulation in bunched typing.

In Proceedings of MFPS, ENTCS. Elsevier, 2006.
[3] James Brotherston and Cristiano Calcagno. Classical BI (A logic for reasoning about dualising

resource). In Proceedings of POPL-36, pages 328–339, 2009.
[4] James Brotherston and Max Kanovich. Undecidability of propositional separation logic and

its neighbours. To appear in Proceedings of LICS-25, 2010.
[5] Kai Brünnler. Deep inference and its normal form of derivations. In Proceedings of CiE,

volume 3988 of LNCS, pages 65–74, 2006.
[6] Cristiano Calcagno, Philippa Gardner, and Uri Zarfaty. Context logic as modal logic:

Completeness and parametric inexpressivity. In Proceedings of POPL-34, 2007.
[7] Bor-Yuh Evan Chang and Xavier Rival. Relational inductive shape analysis. In Proceedings

of POPL-35, 2008.
[8] Wei-Ngan Chin, Cristina David, Huu Hai Nguyen, and Shengchao Qin. Enhancing modular

OO verification with separation logic. In Proceedings of POPL-35, 2008.
[9] Matthew Collinson, David Pym, and Edmund Robinson. Bunched polymorphism.

Mathematical Structures in Computer Science, 18(6):1091–1132, 2008.
[10] Dino Distefano and Matthew Parkinson. jStar: Towards practical verification for Java. In

Proceedings of OOPSLA, pages 213–226. ACM, 2008.
[11] D. Galmiche, D. Mery, and D. Pym. The semantics of BI and resource tableaux. Mathematical

Structures in Computer Science, 15:1033–1088, 2005.
[12] Didier Galmiche and Dominique Larchey-Wendling. Expressivity properties of Boolean BI

through relational models. In Proceedings of FSTTCS, 2006.
[13] Rajeev Goré. Gaggles, Gentzen and Galois: How to display your favourite substructural logic.

Logic Journal of the IGPL, 6(5):669–694, 1998.
[14] Samin Ishtiaq and Peter W. O’Hearn. BI as an assertion language for mutable data structures.

In Proceedings of POPL-28, 2001.
[15] Marcus Kracht. Power and weakness of the modal display calculus. In Heinrich Wansing,

editor, Proof Theory of Modal Logic, pages 93–121. Kluwer Academic Publishers, 1996.
[16] Dominique Larchey-Wendling and Didier Galmiche. Exploring the relation between

intuitionistic BI and Boolean BI: An unexpected embedding. Mathematical Structures in
Computer Science, 19:1–66, 2009.

[17] Dominique Larchey-Wendling and Didier Galmiche. The undecidability of Boolean BI through
phase semantics. To appear in Proceedings of LICS-25, 2010.

[18] P.W. O’Hearn and D. J. Pym. The logic of bunched implications. Bulletin of Symbolic Logic,
5(2):215–244, June 1999.

[19] David Pym. The Semantics and Proof Theory of the Logic of Bunched Implications. Applied
Logic Series. Kluwer, 2002.

[20] David Pym, Peter O’Hearn, and Hongseok Yang. Possible worlds and resources: The semantics
of BI. Theoretical Computer Science, 315(1):257–305, 2004.

[21] Stephen Read. Relevant Logic: A Philosophical Examination. Basil Blackwell, 1987.
[22] Jason Reed. A Hybrid Logical Framework. PhD thesis, Carnegie Mellon University, 2009.
[23] Greg Restall. Displaying and deciding substructural logics 1: Logics with contraposition.

Journal of Philosophical Logic, 27:179–216, 1998.
[24] John C. Reynolds. Separation logic: A logic for shared mutable data structures. In Proceedings

of 17th LICS, 2002.

15

	Introduction
	From elementary logics to bunched logics
	Display calculus fundamentals
	Display calculi for bunched logics
	Relationship to bunched sequent calculi
	Conclusion
	References

