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Abstract. In this paper, we show how the clausal temporal resolution technique
developed for temporal logic provides an effective method for searching for in-
variants, and so is suitable for mechanising a wide class of temporal problems.
We demonstrate that this scheme of searching for invariants can be also applied
to a class of multi-predicate induction problems represented by mutually recur-
sive definitions. Completeness of the approach, examples of the application of the
scheme, and overview of the implementation are described.

1 Introduction

The identification of invariants within complex, often inductive, system descriptions, is
a vital component within the area of program verification. However, identifying such
invariants is often complex. We are here concerned with finding invariants in a class of
multi-predicate recursive definitions by translation of the problem to first-order tem-
poral logic followed by application of a clausal temporal resolution method. It has
been known for some time that first-order temporal logic over the Natural numbers
(FOLTL, in short) is incomplete [Sza86]; that is, there exists no finitistic inference sys-
tem which is sound and complete for this logic or, equivalently, the set of valid formulae
of the logic is not recursively enumerable. The complete Gentzen-like proof systems for
FOLTL contain thew-type infinitary rulé of inference [Kaw87]:

r—AyY, =AY ... I-=4AQ"W,
r—A g

(— o)
However, in some cases (in particular, in the propositional case [Pae88]), instead of the
w-type rule & [ ],) the following finitary rule can be used:

r— Al I — Ol; | —
r—A g

(=0

This rule corresponds to the induction axiom within temporal logic: (Y > OW) =
[ Jy. The formuld is called aninvariantformula and has a close relation with invariant
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3 Intuitively, * O here stands for “in the next moment of time” and]’ stands for “always in
the future”; seg?2 for the definitions.



formulae in the logic of programs. Even in the propositional case, the search for such
invariants can be very expensive. It is quite a usual situation (e.g. in Hoare logic for
the partial correctness @fhile-programs) that the invariant has to be stronger than the
desired conclusion suggests.

To illustrate the difficulties in searching for invariants let us consider an example.
The sequen®(c), [ J¥x(P(x) > OP(f(x)) — [ J3yP(y) can be proved using as an in-
variant the formuld = [J(3xP(x) > O3IxP(f(x))) AIxP(x). At the same time the most
plausible conjecture is that there is no invariant for the sed@vx(P(x) D P(f(x)),
CIvx(P(f(x)) > OP(x)) — [J3yP(y). In both these cases our arguments are heuristic
since both sequents lie outside of any known complete fragment of FOLTL.

Recently, the interestinmmonodicfragment of first-order temporal logic has been
investigated [HWZ00]. This has a quite transparent (and intuitive) syntactic definition
and a finite Hilbert-like inference system [WZ01]. In [DF01] a clausal temporal resolu-
tion procedure has been developed covering a special subclass of the monodic fragment,
namely the subclass gfround eventualitynonodic problems. In this paper we apply
this clausal resolution method in order to give a sound and complete scheme for search-
ing for invariants for sequents of the fol&P— [ ]y whereSPis a monodidemporal
specificatiorandy is a ground first-order formula.

There is some similarity between linear temporal logic over the Natural numbers
and Peano arithmetic. The induction axiom of Peano arithmeg A Vn(¢(n) D
$(s(n)) = Vn(n) corresponds to the induction axiom within temporal logic, and there
is a complete and consistent Gentzen-like proof system for Peano arithmentic where the
induction axiom is replaced by an-type inference rule-¢ V) similar to (— [ ).
Because of that we will refer to the temporal probl&R— [ ]y mentioned above
as a(ground) induction problenftaking into account that the formulpunder[] is
ground).

An important aspect of this paper is that we particularly consider a class of induction
problems over the Natural numbers witcursivepredicate definitions. Such recursion
is difficult for many systems to work with effectively, often leading to quite complex
and non-trivial induction schemes (see, for example, [BS00] where the use of mutu-
ally recursive definitions has been investigated and seVveratistic multi-predicate
induction schemes have been developed in order to make implementations of such defi-
nitions useful). If such a problem with mutually recursive definitions is translated into a
monodic ground induction problem then we can automate its proof, using our invariant
scheme. This aspect is demonstrated in examples later in the paper.

Structure of the papeiVe split our presentation into two main parts: the first essentially
concerns propositional (discrete, linear) temporal logic; the second targets a fragment
of monodic first-order temporal logic [HWZ00, DF01]. While the propositional part is
clearly included within the first-order part, we have chosen to introduce this separately
in order to give the reader a simpler introduction to the techniques involved. Thus,
in §3, we consider this propositional temporal fragment, providing formal justification
and a simple example. Then, §4, we consider first-order monodic ground induction
problems, providing both completeness arguments and examples, &d,dntline

the current state of the implementation. Finally§@ we provide concluding remarks.



Some technical proofs igd are ommited due to lack of space and can be found in the
full version of this paper, which is available as a technical report [BDFLO02].

2 Preliminaries

We consider a first-order temporal logic over the Natural numbé() via a first-
order temporal languageL . The languagd L is constructed in a standard way (see
e.g. [Fis97, HWZ00]) from a classical (non-temporal) first-order langliaged a set
of future-time temporal operator$* (sometimg ‘ [ ' (alwayg, and ‘O’ (in the next
momenk Here,L does not contain equality or functional symbols, and formulde of
without free variables are called ground formulae. The symtat#notes derivability in
first-order classical logic.

Formulae inT L are interpreted ifirst-order temporal structuresf the form9i =
(D, 1), whereD is a non-empty set, thdomainof 91, andl is a function associating
with every moment of timeén € N an interpretation of predicate and constant symbols
of L overD. First-order (nontemporal) structures corresponding to each point oftime
will be denoted by, = (D, I,,) wherel,, = | (n). Intuitively, the interpretations of L -
formulae are sequenceswbrldssuch a€)ig, My,..., M, .... Anassignmenin D is a
functiona from the seL, of individual variables ot to D. We require that (individual)
variables and constants &L arerigid; thus, neither assignments nor interpretations
of constants depend on worlds.

Thetruth-relation9t, =* ¢ (or simplyn =2 ¢, if 90t is understood) in the structure
o, for the assignment, is defined inductively in the usual way under the following
semantics of temporal operators:

nE*O¢ iff n+1=¢;
nE*O¢ iff there exists am> n such thatm =2 ¢;
nEt o iff mE*¢ forall m>n.

A formula ¢ is said to besatisfiablef there is a first-order structuf8t and an assign-
menta such thabltp =* ¢. If M =* ¢ for every structur@t and for all assignments,
then¢ is said to bevalid. Note that formulae here are interpreted in the initial world
Mo; that is an alternative but equivalent definition to the one used in [HWZ00].

We will begin by considering an invariant scheme over formulae corresponding to
propositional temporal logic. In that case any temporal structure is represented only
by the interpretation functioh.

3 Propositional invariant scheme

We are here interested in a proof search method (an invariant scheme) for problems
which are represented in the fo®®P= [ ], wherey is a propositional formula (with-

out temporal operators) ar&Pis a temporal specification defined below. In what fol-
lows we will not distinguish between a finite set of formukaand the conjunctiop, X

of formulae within it.



Definition 1 (propositional temporal specification).A propositionatemporal speci-
ficationSP is a triple< U,S, T > where

— U is the set ofuniversal formulagthat is propositional formulae which are valid
in every state & N (ensured in temporal logic by thé 7).

— S is the set ofinitial formulag that is propositional formulae which are true only
in the initial state0 € N.

— T is the set ofstep formulagsometimes terme@mporal or step rulgsthat is a
set of the formulae of the form=p Or which are true in every state@a N. Here p
is a proposition symbol (atom), r is propositional formula, asds a substitute for
implication. Without loss of generality we suppose that there are not two different
temporal step rules with the same left-hand sides.

— The formula[JU AS A [T is called the formula image of SP. When we refer to
validity, satisfiability, logical consequences and such like, of a temporal specifica-
tion, we refer to its formula image.

The intuitive meaning of a temporal specificat®R=< U,S,T > is that a temporal
interpretationl satisfiesSPif | = [JU AS A [IT . Two temporal specification§R
andSR, are said to be equivalentlf|= SR if, and only if, | = SR for any temporal
interpretation .

We will prove SPl= [y using an invariant rule slightly different from that given

earlier:
SP— YAl I — Ol | — Oy
SP— [y ( 1)
Our scheme for searching for an invariant formukarts by transferrin§Pinto a so-
called reduced temporal specification. After that an analogue of the temporal resolution

rule [DF0OO, DFKO02] is applied. At both stages we work with generalisations of step
rules, namely withmerged step rules based ®n[FDP01] of the form

n n
Api=OAT
i=1 i=1
where(p; = Or;) € T forall 1<i <n, andn> 0. If n= 0 the degenerate merged

ruletrue = Otrue is produced. Clearly, every merged step rule basell aa logical
consequence df .

— )

Definition 2 (y-favourable set of merged rules).A set of merged step rulds =
{A1= OBy, ...,An= OBn} is calledy-favourable with respect td for some propo-
sitional formulay, if the following conditions are satisfied:

m
LUABjFyforall1<j<m; 2.UABjF VAforall 1< j<m.
i=1

Itis easy to see that if a sBt= {Al = OB41,...,Am= OBn}isy- favourable with re-
specttdJ then[JG A [JU = ( \/ A D O JW). The formula[JG A [(JU A V A can
be taken as a mvanant formula for solving the problBRE= [ ]y under the condmon
thatSAU - (YA _\/1A@).

1=



Theorem 1 (correctness of the invariant schemel.et SP=< U,S,T > be a tem-
poral specificationy be a propositional formula, and there existspafavourable set
of merged ruless = {A; = OBq,...,Am = OBn} based onl such thatS AU +

(LIJA.ianAi). Then SR= [y.

Proof Let us take as an invariahtin (1) the formula[_JG A [JU A V A;. Now we

must prove that every sequent in the premise of this inference becomes valid after such
a substitution:

- F SP— YAl in accordance with the condition of the theorem thatU (g A
V Aj) and taking into account thdt = G;

— E1— Ol becausé 1GA[JUA V A implies (JGA[JUAO \? Bi, and[JG A

OUAO V Bi implies (JGAJUAO V A in accordance witlj-favourability

i=1

of G, andDG/\ COUAO V A impliesO(JG A JU A V A);
i=1 i=1
- E 1 — Ou because[ 1G A [JU A \?A; implies [1G A [JU A V OB; , and
i=1 i=1
CIGATIUA G OB; implies Oy in accordance withp-favourabilityof G. 0O
i=1

What remains is to construgtfavourable sets of merged rules.

Definition 3 (reduced temporal specification)A temporal specification SP< U, S,
T > is said to be reduced if, for any merged rule=AOB based orT , the following
condition is satisfied: iftU AB+ L then U AAK L.

The intuition behind this reduction is explained further in Lemma 5 and Corollary 1.
Every temporal specificatioBPis transformed into an equivalent reduced temporal
specificationSP, using the following lemma:

Lemma 1. Let SP=< U,S,T > be a temporal specification, anth = OB} be a
merged rule based offi such thatU ABF L. Then the specification SB < U U
{=A},S,T > is equivalentto SP.

The first-order version of this lemma, Lemma 6, is provegiin
Itis clear that, due to the finiteness of the set of merged rules, every temporal specifica-
tion becomes reduced after a finite number of the steps defined in the previous lemma.

Theorem 2 (completeness of the invariant schemelet SP=< U,S, T > be are-
duced temporal specification anld be a propositional formula. If J is a (tempo-
ral) logical consequence of SP, i.e P, then there exists a set of merged rules
{A1 = OBa,...,An= OBp} based onl such that this set ig)-favourable w.r.tU

andS AU Hp/\(v A).
=1



In §4 the completeness of a first-order version of the invariant scheme will be proved,
such that Theorem 2 will be a partial case of it.

Example 1.Consider predicatesvenandodd defined over the Natural numbers, where
the type of Natural numbers is constructed in the usual way by the constant 0 and the
free constructos (successorjever{0) A odd(s(0)),ever{n) D ever{s(s(n))),odd(n) O
odd(s(s(n))). Suppose we wish to prove the following propektg(ever{n) v odd(n)).

To represent this problem in our propositional temporal logic format let us introduce
two propositional symbolp andq intuitively meaning thap' ("' ~ ever{n) andg' (" ~
odd(n) in an intended temporal interpretatibnwith auxiliary propositional symbols
p1 andqg:;. Thus interpretation is then defined by a temporal specific8®with the
following components:

U=0, S={sl.prmq}, T :{tl-q;‘ O, t2.q1 = Oq}.

t3.p= Opy, t4.pr= Op

New symbolsp; andg; have been introduced to rename formulag and Oq, corre-
spondingly. Such renaming is required to obtain a standard representation of the tem-
poral specification. The property to be checked is expressed by the formipa/ g).

The specificatiorsPis reduced and we can apply Theorem 1 immediately taking as a
(pV q)-favourable (w.r.t0) set of merged rules the pdigA p1 = O(q1 A p), pAGL=
O(p1AQ)}. The premises of Theorem 1 are satisfied because ofqi) - (pV Q)
and(pAgu) F ((gAp1) vV (PAGL)). ThereforeSPl= [I(pVq) and the formuld =
((@APpy)V(pAaL)) A LI(((aApL) D OarAp)) A(PAGLD O(p1AQ))) is an invari-

ant.

In the previous example we did not apply any reduction rule. The next example shows
that reducing a specification may be necessary.

Example 2.Let this induction problem be defined by a temporal specificédBwith
the following components:

U=0, S={slp}, T={tlg=O0p t2.p=0Oq, t3.1=0O-p}.

Suppose we are interested whetB&= [ |(pV —r). The specificatiorSPis not re-
duced because the right-hand sides of (t1) and (t3) contradict each other, and we can-
not find any(pV —r)-favourable (w.r.t0) set of merged rules satisfying the condi-
tions of Theorem 1. So, according to Lemma 1, we derive a new universal formula
—gV —r and add it toU. This new specificatio®P =< {ul.-qVv —r},S, T > is al-
ready reduced, and we can apply Theorem 1, taking as a set of merge(rules)-
favourable w.r.t{—qV —r}, the pair of the original step rulggy= Op, p= Oq}.

This pair becomeg¢p Vv —r)-favourable after extending by (-qV —r) because, in
particular, (A (—qV —r)) F (pV —-r). The premises of Theorem 1 are satisfied for
the reason thab - (pVvr) A (pVQq). ThereforeSP = [J(pV —r) and the formula
l=(pVvaALI((pDOg)A(gD Op))A LI(—qV-r) is an invariant.

Notice that the induction problems in both considered examples cannot be resolved
by straightforward application of usual (one-step) induction. The first example can be
tackled by two-step induction, but in general the task of finding an appropriate induction
scheme is a work of art [Bun01].



4 First-order invariant scheme

We now consider a more complex invariant scheme corresponding to a fragment of
first-order temporal logic. A first-order temporal specification is a triple),S,T >
whereS andU are theuniversal partand theinitial part, respectively, given by finite

sets of (nontemporal) first-order formulae, ands thetemporal partgiven by a finite

set oftemporal step formulaAll formulae are written irl. extended by a set of (unary)
predicate and propositional symbols. A temporal step formula has one of the following

forms:
P(x) = OR(X) (predicate step formu)a

p= Or (propositional step formula

whereP andp are unary (i.e. one-place) predicate symbol and propositional symbol, re-
spectivelyR(x) andr are boolean expressions composed from one-place predicates and
propositional symbols, respectively. Following [HWZ00] we restrict ourselves only to
monodictemporal specifications, that is where only one free variable is admitted under
every temporal operator. Otherwise, the induction problem becomes not only undecid-
able but not even partially decidable. (Simulating Minsky mashines by formulae of two-
variable monadic monodic first-order temporal logic with equality given in [DFLO02]
can be transformed into simulating them by non-monodic ground induction problems.)
Without loss of generality we suppose that there are no two distinct temporal step rules
with the same left-hand sides.

To define first-order merged step rules we introduce the notions of colour schemes
and constant distributions [DF01]. LBt=< U,S,T > be a temporal specification. Let
C be the set of constants occurringAnLet T P = {R(x) == OR(x),| 1< i <K} and
TP={p;= Orj|1<j <k} bethesets of all predicate step rules and all propositional
step rules ofl , respectively. We suppose th&t> 0 andk > 0; if K=0(k=0)it
means that the s@t” (T P) is empty.

Let {Pi,...,P,Pcs1...,Pu}, O< K <M, and{p,..., Pk, Pkt1---,Pm}, 0< k<
m, be sets of all (monadic) predicate symbols and propositional symbols, respectively,
occurring inT . Let A be the set of all mappings frofd,...,M} to {0,1}, and®
be the set of all mappings frof,...,m} to {0,1}. An elementd € A (B € ©) is
represented by the sequendél),...,8M)] € {0,1}M ([8(1),...,8(m)] € {0,1}™).
Let us call elements ok and®© predicate and propositionablours respectively. Let
I be a subset o\, and® be an element o®, andp be a map fronC to I . A triple
(I',8,p) is called acolour schemgandp is called aconstant distribution

Note 1. The notion of the colour scheme came from the well known method within the
decidability proof for the monadic class in classical first-order logic (see, for example,
[BGGI7]). In our casd is the quotient domain (a subset of all possible equivalence
classes of predicate value§)js a propositional valuation, amglis a standard inter-
pretation of constants in the domdin We construct quotient structures based only

on the predicates and propositions which occur in the temporal part of the specifica-
tion, because only these symbols are really responsible for the satisfiability of temporal
constraints. Besides, we have to consider so-called constant distributions as, unlike in
the classical case, we cannot eliminate constants replacing them by existentially bound
variables — the monodicity property would be lost.



For every colour scheme = (I', 8, p) let us construct the formuldeg, Ac, B¢ in the
following way. In the beginning for evenye I and for@ introduce the conjunctions:

Rx= A RXA A -RXx, F= A pA A -p,
y(i)=1&i<M y(i)=0&i<M 8(i)=1&i<m 8(i)=0&i<m

y(i)=1&i<K 8(i)=1&i<k
Now Fc, Ac, Bc are of the following forms

Fc = A\ XR(X) AFgA A Foe(c) Avx\/ Ry(x),
yel ceC yer

Ac = yé\r IXA(X) ANAG A N\ Ape)(C) AVX V. Ay(X),

ceC yel

Bc = /\ 3xBy(X) ABg A \ Bpc)(€) AVx'\/ By(X).
yel ceC yel
We can consider the formulac as a ‘categorical’ formula specification of a quotient
structure given by a colour scheme. In turn, the formAgarepresents the part of this
specification which is ‘responsible’ just for ‘transferring’ temporal requirements from
the current world (quotient structure) to its immediate successors.

Definition 4 (merged step rule).Let SP be a first-order temporal specificatidhjs
a colour scheme for SP. Then the clay$elV)(Ac = OB¢) whereAc andB¢ are
defined as above is calledraerged step ruléor SP.

Note that if both set$i | i <K,ye ', y(i) =1} and{i |i <k,8(i) = 1} are empty the rule

(Ac = OBc) degenerates t@rue = Otrue). If a conjunctionAy(x), y € I, is empty,

that is its truth value igrue, then the formularx \/ Ay(x) (Vx \/ By(x)) disappears
yel yel

fromAc (Bc). In the propositional case the ruldc = OBc¢ ) reduces tdAg = OBg)
which corresponds to the definition of a propositional merged rule given earlier.

We now reproduce results relevant to the particular form of temporal specifications
used in [DFO1]. Similar to [FDPO1] we represent possible interpretations of a temporal
specification< U,S, T > via thebehaviour grapHor this specification.

Definition 5 (behaviour graph). Given a specification SP<U,S, T > we construct
a finite directed graph G as follows. Every node of G is a colour scHerfioe T such
that the setJ U F¢ is satisfiable.
For each nodé€€ = (I, 8,p), we construct an edge in G to a no@é= (I',8',p’),
if U AFc ABg is satisfiable. They are the only edges originating ffom
A nodeC is designated as an initial node of GSfA U A F¢ is satisfiable.
Thebehaviour grapli of SP is the full subgraph of G given by the set of all nodes
reachable from the initial nodes.



It is easy to see that there is the following relation between behaviour graphs of two
temporal specifications when one of them is obtained by extending the universal part of
another one.

Lemma 2. Let SR =< U1,S,T > and SB=< U,,S,T > be twoT L specifications
such thatJ; C U,. Then the behaviour graphatf SR is a subgraph of the behaviour
graph H, of SR.

Proof The graphH; is the full subgraph of; given by the set of nodes whose in-
terpretations satisf{J, and which are reachable from the initial nodesHaf whose
interpretations also satisty. a

Definition 6 (suitable pairs).Let (C,C’) whereC = (I',8,p), C' = (I",&,p’) be an
(ordered) pair of colour schemes fdr. An ordered pair of predicate colours,y)
wherey e ', ¥ € " is calledsuitableif the formulaU A Fy(x) A By(x) is satisfiable.
Similarly, the ordered pair of propositional colou(§,8') is suitable ifU A Fy A Bg
is satisfiable. The ordered pair of constant distributidpsp’) is called suitable if, for
every ce C, the pair(p(c),p’(c)) is suitable.

Let us note that the satisfiability & (x) A By(x) implies Fy(x) - By(x) because the
conjunctionF, (x) contains a valuation atof all predicates occurring in the expression

By(X)-

Lemma 3. Let H be the behaviour graph of a specificatialJ,S,T > with an edge
from a nodeC = (I",8,p) to a nodeC’ = (I, 6',p’). Then

— for everyy €T there existy/ € I such that the paify,y) is suitable;
— for everyy €T’ there existy € " such that the paify,Y) is suitable;
— the pair of propositional colour§d, 8') is suitable;
— the pair of constant distribution@, p’) is suitable.

Proof From the definition of a behaviour graph it follows tha\ F¢/ A Be is satisfi-
able. Now to prove the first item it is enough to note that satisfiability of the expression
U AFc/ ABc implies satisfiability ofU A (Vx /' Fy(x)) A3xBy(x). This, in turn, im-

yer’

plies satisfiability of its logical consequentéA \/ 3x(Fy(x) A By(x)). So, one of
yer’

the members of this disjunction must be satisfiable. The second item follows from the
satisfiability ofU A (vx \/ By(x)) A 3xFy (x). Other items are similar. a
yel

Let H be the behaviour graph of a specificatiarlJ,S,T > andln = Co,...,Cp,...
be a path irH whereC; = (';,6;,pi). Let Go = SU{F¢,} andG, = F¢c, ABg,_, for
n > 1. According to the definition of a behaviour graph theldet {Gn} is satisfiable
for everyn > 0. According to classical model theory, since the languadggecountable
and does not contain equality the following lemma holds.

Lemma 4. Letk be a cardinalk > Og. For every n> 0, if a setU U{G,} is satisfiable,
then there exists ah-model9n, = (D, 1,)) of U U{Gy,} such that for every € ', the
set Dy = {ac D | My = Ky(a)} is of cardinalityk.

9



Definition 7 (run). By arunin N we mean a function frori¥ to |J I'; such that for
ieN
every ne N, r(n) € ' and the pair(r(n),r(n+ 1)) is suitable.

It follows from the definition oH that for everyc € C the functiorr¢ defined byr¢(n) =
pn(c) isaruninfl.

Theorem 3. Let< U,S, T > be a satisfiable temporal specification. Then there exists
an infinite pathf = Co,...,Cp,... through the behaviour graph H for U,S, T >
whereCy is an initial node of H.

Theorem 4. Let = Cy,...,Cy,... be an infinite path through the behaviour graph H
for a temporal specification SB< U,S, T >, Cq is an initial node of H. Then there
exists a modelt = (D, ) of SP.

Proofs of theorems 3 and 4 can be found in the full paper [BDFL02].

So, all models of a specificatidBP=< U,S,T > are represented by infinite paths
through the behaviour graph f&P. Moreover, it is clear that the following relation
between an infinite patil = Co, ..., Cy, ... through the behaviour grapt for SPand

the set of model$)t = (D, 1) defined by Theorem 4 holds: for every propositional
symbolp and for everyn € N there exists a modélt = (D, |) such thath, = p if,

and only if, the setJ U {Fc,, p} is satisfiable. The same is true if we take, instead of a
propositional symbop, any ground formula.

Now we are interested in an invariant scheme for problems of the &t [y,
whereSP=< U,S,T > is a monodic first-order temporal specification, apds a
ground formula. The first step, as in the propositional case, is to tranSéimo an
equivalent reduced specification.

We note that the definitions af-favourable sets of merged rulasdreduced tem-
poral specificationgarry over from the earlier propositional definitions.

Our interest in reduced specifications is caused by the following lemma.

Lemma5. Let SP=< U,ST > be a reduced temporal specification and the be-
haviour graph H for SP be nonempty. Then all paths in H are infinite.

Proof Suppose there is a path throughwhich is finite, that is there is a nodeon
this path which has no successors. In this case thd sefBc } is unsatisfiable. Indeed,
supposdJ U {B¢ } is satisfiable, andD’,l") is a model ofU U {B¢ }. Then following
the proof of Theorem 4 we can define a colour sch€frmich tha{D’, ") = F¢/. Since
Bc A Fg is satisfiable there is an edge from the n6d® the nodeC’ in the contradic-
tion with the choice of as having no successors. by {B¢ } is unsatisfiable. Since
the specification is reduced the 4étJ {Ac } also has to be unsatisfiable. However it
contradicts the existence 6f a

This lemma, together with Theorem 4, immediately implies the following.

Corollary 1. A reduced temporal specification SR U,S, T > is satisfiable if, and
only if, the selJ US is satisfiable.

10



Proof The behaviour graphl for SPis not empty because the set of its initial nodes
is not empty. a

Every temporal specificatio8RH is transformed into an equivalent reduced temporal
specificatiorSR using the following lemma (the first-order version of Lemma 1):

Lemma 6. Let SR =< U,S,T > be a temporal specification, andl = OB be a
merged rule based oh such thatU AB F L. Then the specification 3B < U U
{-A},S,T >isequivalentto SP

Proof It is obvious that every model @R is a model ofSH. To prove the inverse
inclusion suppose an interpretatid{ = (D, 1), is a model ofSR. Then for every
n € N it holds thatht, = -A, otherwise it would bél,;1 = B in contradiction with

the condition thatJ A B is unsatisfiable. St is a model ofSB. a

This lemma justifies the following inference rule over temporal specifications.

Definition 8 (reduction rule). Let SP=< U,S, T > be a temporal specification, and
mT be the set of merged rules basedlonThen the reduction inference rule has the
following form
<U,5,T > (red)
<UU{-A}S,T >

if there is a merged rul¢éA = OB) e mT such that the setJ U{B} is unsatisfiable.

The saturation ofU by the reduction rule terminates both in the first-order and in the
propositional cases because the set of merged rules is always finite. Quite another matter
is checking the condition whethdd U {B} is unsatisfiable. In general this problem can
be undecidable. In order to avoid such a situation we have to suppose that the universal
part U of our specification belongs to an arbitrary decidable fragment of first-order
logic (one-variable monadic formulaeA andB cannot affect the decidability). The
same supposition relates to checking whether a set of merged ryléavsurable.

The following two lemmas substantiate the invariant scheme which is required.
Proofs of both lemmas are given in [BDFL02].

Lemma?7. Let SP=< U,S,T > be a reduced temporal specification agdbe a
ground formula. If[ ]y is a (temporal) logical consequence of SP, that isESIP 1y,
thenSUU .

Lemma 8. Let SP=< U,S,T > be a reduced temporal specification agdbe a
ground formula. If[(]y is a (temporal) logical consequence of SP, that isESIP 1y,
then there exists a set of merged rules= {A; = OB4y,...,An= OBn} based ol

m
such thatG is Y-favourable w.rtU andSuUU F \/ A;.
j=1

Theorem 5 (correctness and completeness of the invariant schemkegt SP=< U,

S,T > be areduced temporal specification apide a ground formula. ThenJy is a

(temporal) logical consequence of SP, that is)sSPJy, if, and only if,SUU F @ and

there exists a set of merged rul@s= {A1 = OBy, ...,Am= OB} based ol such
m

thatG is y-favourable w.r.tU andSuUU - \/ A.
j=1
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Proof Completeness is ensured by Lemmas 7 and 8. Correctness is carried from the
earlier propositional Theorem 1. a

Note 2. The notion of a merged step rule given in Definition 4 and used through all
this section seems to be quite involved. However we can note that every such rule is
composed from a set afmplifiedmerged rules of the form

CIVX((R,(X) V... VB, (X)) = O WX(R;(X) V... VR, (X))
LIEX((Pj, () A .. AP (X)) = O IX(Rj,(X) A ... AR} (X))

for 1<ii<...ii <K, 1< j;<...j) <K plus the rules of the form_|(Pi(c) =
ORu(c)) for every constantc occurring in the giverSP, 1 <i < K. Now we can
replace merged rules of Definition 4 (let us call these rulesaam®nicalmerged step

rules) by simplified merged step rules. The only difference related to using simplified
merged step rules in inferences concerns the reduction rule (Definition 8), namely in-
stead of a merged step rule we have to take a set of simplified merged step rules. Then
we can consider applying canonical merged step rules as a special strategy of using
simplified merged step rules.

Example 3.We here give a simple example of multi-predicate mutually recursive defi-
nitions, which can be described as follows. Consider the delivery of particular foodstuffs
at different moments in time. Here, the predicatebverwoodb,t), deliveregggb,t)
anddeliver_flour(b,t) represent the delivery by* of wood, eggs or flour, at timet”.

Now, we can specify the problem as follows. First, the initial condition:

1. 3x. deliverwoodX, 0)
Now for the dynamic properties of delivery:

2. Vx. Vy. deliveregggx,y) = deliverflour(x,s(y)) Vv deliverwoodXx,s(y))
3. ¥x. Vy. deliverwoodx,y) = delivereggsx,s(y))
4. Vx. vy. deliverflour(x,y) = delivereggsx,s(y))

Note 3. The intuitive meanings of these are thaxidelivers eggs ther delivers flour
or wood in the next moment, andxfdelivers wood or flour ther delivers eggs in the
next moment.

Finally, we wish to be able to prove

(deliveregggx,n) A deliverflour(x,s(n))) Vv
vn. 3x. | (deliveregggx,n) A deliverwoodXx,s(n))) v
delivereggsx,s(n))
from all of the above.

To achieve this, we first translate the formulae to temporal logic, giving a specification
< U,S, T > where the initial parb consists of the single formula

s1. 3x. deliverwoodXx)

12



the universal partJ is empty, and the temporal paft is the following

tl. deliveregggx) = O(deliverflour(x) v deliverwoodXx))
t2. deliverwoodx) = Odeliveregggx)
t3. deliverflour(x) = Odeliveregggx)

In renaming the above conclusion to a standard from, we introduce three new predicate
symbols, so that the conclusion becomes

] 3x. ((delivereggsx) A —B(x)) V (deliveregggx) A —C(x)) VvV -A(X))
or after equivalent transformations it becomel where
= Ix (deliveregggx) A (—B(x) vV =C(x)) V Ix-A(X).
We also add three new rules to the temporal part defining the new predicate symbols

t4. B(x) = O-deliverflour(x)
t5. C(x) = O-—deliverwoodXx)
t6. A(x) = O-deliveregggx)

Now, we consecutively apply the reduction inference rule to merged rules

: (deliverflour(x) v deliverwoodx))
m1. Sx(delivereggex) AB(X) AC(x)) = O3x ( A (—deliverflour(x) A —deliverwoodx)) )
m2. 3Ix(deliverwoodx) A A(x)) = O3Ix(deliveregggx) A ~deliveregggx))
m3. 3Ix(deliverflour(x) A A(x)) = O3Ix(deliveregggx) A ~deliveregggx))

deriving the following universal rules, respectively,

ul. vx. deliveregggx) > (—=B(x) v —C(x))
u2. vx. deliverwoodx) > —A(X)
u3. ¥x. deliverflour(x) > —-A(X)

The following set of merged rules ig-favourable with respect t&J extended by
ul,u2,u3:

m4. 3Ix deliveregggx) = O3Ix (deliverflour(x) Vv deliverwoodx))
m5. 3x deliverwoodx) = (O3x deliveregggx)
m6. 3Ix deliverflour(x) = O3x delivereggsx)

Establishinds UU - @ A 3x (deliveregggx) Vv deliverwoodx) v deliverflour(x)) is
quite straightforward. So, all the conditions of Theorem 5 are satisfied.

5 Implementation.

The method described in this paper has been implemented as a part of a prototype
prover for temporal specifications in ti€lam envinronment [RSG98]\Clam s a

proof planning [Bun88] system, implemented in Teyjd&rolog, a higher-order typed

logic programming language. A proof plan is a representation of a proof at some level
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of abstraction (usually above the level of basic inference rules, but not necessarily so).
In A\Clama proof plan is generated from a goal by the application of planning operators
called proof methodsAtomic methods are suitable for the implementation of basic
proof rules, or automated proof procedures, while compound methods are used to build
more complex proof strategies (or heuristics) from atomic methods.

Our system works with arithmetical translations of temporal formulae. For first-
order (non-temporal) proving required within the prover an atomic meihmaf tableau
re-implementing the simple, but convenient LeanTap tableaux prover [BPBRB}olog,
is used. The kernel of the system is an atomic methatbalinduction implementing
an invariant scheme more general than one discussed above and applicable not only to
monodic specifications. Given a set of formulaeitualinductionfirst separates it into
sets of step rules and universal and start parts. Then, to ensure the completeness for the
case of monodic specifications, three sub-methods are applied.

1. A sub-method for saturation of the universal part (reduction) given a (not neces-
sarily reduced) specification, applies the reduction rule (see Definition 8) until the
specification becomes reduced and the universal part saturated. A simple optimiza-
tion, based on the fact that any superset of an inconsistent set of formulae is itself
inconsistent, is also used.

2. Given a reduced specificatid®R, a further sub-method generates all merged rules
based orSP (using the representation given in Note 2) and collects only those,
whose right-hand side together with the universal par§Bimplies the desired
conclusion.

3. Given a setM, of merged rules, generated by the previous method, the sub-method
for the loop search iterates over subsetsidnd generates subgoals, i.e. first-order
formulae to prove, for checking the side conditiosisfavourability and initial con-
dition).

Initial experiments have indicated the viability of our approach. The system is capable
of proving all the examples mentioned in this paper, together with some (more complex)
non-monodic examples.

6 Conclusion

We have shown that the clausal resolution technique developed for temporal logic pro-
vides us with a method for searching for invariant formulae, and is particularly suit-
able for proving ground “always” conclusions of monodic temporal specifications. We
have demonstrated that this method can also be applied to the mechanization of multi-
predicate induction problems over the Natural numbers with mutually recursive defini-
tions by translating them into temporal logic.

We have established the correctness of such an approach and have given several,
necessarily simplified, examples. Part of our future work concerns the extension of this
technique to temporal logics over more complex inductively generated structures of
time, in particular lists and trees, and the development of corresponding (complete)
invariant schemes. Other aspects of future work concern extending the scope of the
temporal resolution method and developing more complex invariant schemes within
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the first-order temporal logic, in particular for monodic non-ground induction problems
and for the numerous induction problems (ground, but non-monodic) considered by
Pliuskevicius [Pli00, DFLPO02]. As to the implementation, further work is needed to
develop optimizations for the proof search procedure in the monodic case together with
strategies/heuristics applicable to non-monodic specifications.
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