
Searching for Invariants using Temporal Resolution?

James Brotherston1, Anatoli Degtyarev2, Michael Fisher2, and Alexei Lisitsa2

1 Division of Informatics, University of Edinburgh, Edinburgh EH1 1HN, U.K.
jjb@dai.ed.ac.uk

2 Department of Computer Science, University of Liverpool, Liverpool L69 7ZF, U.K.
{A.Degtyarev,M.Fisher,A.Lisitsa }@csc.liv.ac.uk

Abstract. In this paper, we show how the clausal temporal resolution technique
developed for temporal logic provides an effective method for searching for in-
variants, and so is suitable for mechanising a wide class of temporal problems.
We demonstrate that this scheme of searching for invariants can be also applied
to a class of multi-predicate induction problems represented by mutually recur-
sive definitions. Completeness of the approach, examples of the application of the
scheme, and overview of the implementation are described.

1 Introduction

The identification of invariants within complex, often inductive, system descriptions, is
a vital component within the area of program verification. However, identifying such
invariants is often complex. We are here concerned with finding invariants in a class of
multi-predicate recursive definitions by translation of the problem to first-order tem-
poral logic followed by application of a clausal temporal resolution method. It has
been known for some time that first-order temporal logic over the Natural numbers
(FOLTL, in short) is incomplete [Sza86]; that is, there exists no finitistic inference sys-
tem which is sound and complete for this logic or, equivalently, the set of valid formulae
of the logic is not recursively enumerable. The complete Gentzen-like proof systems for
FOLTL contain theω-type infinitary rule3 of inference [Kaw87]:

Γ → ∆,ψ; Γ → ∆, gψ; . . . Γ → ∆, gnψ; . . .

Γ → ∆, ψ
(→ ω)

However, in some cases (in particular, in the propositional case [Pae88]), instead of the
ω-type rule (→ ω) the following finitary rule can be used:

Γ → ∆, I ; I → gI ; I → ψ
Γ → ∆, ψ

(→)

This rule corresponds to the induction axiom within temporal logic:ψ∧ (ψ⊃ gψ)⇒
ψ. The formulaI is called aninvariantformula and has a close relation with invariant

? Work supported by EPSRC grants GR/M46624, GR/M46631 and GR/R45367.
3 Intuitively, ‘ f’ here stands for “in the next moment of time” and ‘’ stands for “always in

the future”; see§2 for the definitions.

formulae in the logic of programs. Even in the propositional case, the search for such
invariants can be very expensive. It is quite a usual situation (e.g. in Hoare logic for
the partial correctness ofwhile-programs) that the invariant has to be stronger than the
desired conclusion suggests.

To illustrate the difficulties in searching for invariants let us consider an example.
The sequentP(c), ∀x(P(x) ⊃ gP(f (x)) → ∃yP(y) can be proved using as an in-
variant the formulaI = (∃xP(x)⊃ g∃xP(f (x)))∧∃xP(x). At the same time the most
plausible conjecture is that there is no invariant for the sequentP(c),∀x(P(x)⊃P(f (x)),

∀x(P(f (x)) ⊃ gP(x)) → ∃yP(y). In both these cases our arguments are heuristic
since both sequents lie outside of any known complete fragment of FOLTL.

Recently, the interestingmonodicfragment of first-order temporal logic has been
investigated [HWZ00]. This has a quite transparent (and intuitive) syntactic definition
and a finite Hilbert-like inference system [WZ01]. In [DF01] a clausal temporal resolu-
tion procedure has been developed covering a special subclass of the monodic fragment,
namely the subclass ofground eventualitymonodic problems. In this paper we apply
this clausal resolution method in order to give a sound and complete scheme for search-
ing for invariants for sequents of the formSP→ ψ whereSPis a monodictemporal
specificationandψ is a ground first-order formula.

There is some similarity between linear temporal logic over the Natural numbers
and Peano arithmetic. The induction axiom of Peano arithmenticϕ(0)∧ ∀n(ϕ(n) ⊃
ϕ(s(n)) ⇒∀nϕ(n) corresponds to the induction axiom within temporal logic, and there
is a complete and consistent Gentzen-like proof system for Peano arithmentic where the
induction axiom is replaced by anω-type inference rule (→ ∀ω) similar to (→ ω).
Because of that we will refer to the temporal problemSP→ ψ mentioned above
as a(ground) induction problem(taking into account that the formulaψ under is
ground).

An important aspect of this paper is that we particularly consider a class of induction
problems over the Natural numbers withrecursivepredicate definitions. Such recursion
is difficult for many systems to work with effectively, often leading to quite complex
and non-trivial induction schemes (see, for example, [BS00] where the use of mutu-
ally recursive definitions has been investigated and severalheuristic multi-predicate
induction schemes have been developed in order to make implementations of such defi-
nitions useful). If such a problem with mutually recursive definitions is translated into a
monodic ground induction problem then we can automate its proof, using our invariant
scheme. This aspect is demonstrated in examples later in the paper.

Structure of the paper.We split our presentation into two main parts: the first essentially
concerns propositional (discrete, linear) temporal logic; the second targets a fragment
of monodic first-order temporal logic [HWZ00, DF01]. While the propositional part is
clearly included within the first-order part, we have chosen to introduce this separately
in order to give the reader a simpler introduction to the techniques involved. Thus,
in §3, we consider this propositional temporal fragment, providing formal justification
and a simple example. Then, in§4, we consider first-order monodic ground induction
problems, providing both completeness arguments and examples, and, in§5, outline
the current state of the implementation. Finally, in§6, we provide concluding remarks.

2

Some technical proofs in§4 are ommited due to lack of space and can be found in the
full version of this paper, which is available as a technical report [BDFL02].

2 Preliminaries

We consider a first-order temporal logic over the Natural numbersTL(N) via a first-
order temporal languageT L . The languageT L is constructed in a standard way (see
e.g. [Fis97, HWZ00]) from a classical (non-temporal) first-order languageL and a set
of future-time temporal operators ‘♦’ (sometime), ‘ ’ (always), and ‘ g’ (in the next
moment). Here,L does not contain equality or functional symbols, and formulae ofL
without free variables are called ground formulae. The symbol` denotes derivability in
first-order classical logic.

Formulae inT L are interpreted infirst-order temporal structuresof the formM =
〈D,I 〉 , whereD is a non-empty set, thedomainof M, andI is a function associating
with every moment of timen∈ N an interpretation of predicate and constant symbols
of L overD. First-order (nontemporal) structures corresponding to each point of timen
will be denoted byMn = 〈D, In〉 whereIn = I (n). Intuitively, the interpretations ofT L-
formulae are sequences ofworldssuch asM0,M1, . . . ,Mn An assignmentin D is a
functiona from the setLv of individual variables ofL to D. We require that (individual)
variables and constants ofT L arerigid ; thus, neither assignments nor interpretations
of constants depend on worlds.

Thetruth-relationMn |=a ϕ (or simplyn |=a ϕ, if M is understood) in the structure
M, for the assignmenta, is defined inductively in the usual way under the following
semantics of temporal operators:

n |=a gϕ iff n+1 |=a ϕ;
n |=a ♦ϕ iff there exists am≥ n such thatm |=a ϕ;
n |=a ϕ iff m |=a ϕ for all m≥ n.

A formulaϕ is said to besatisfiableif there is a first-order structureM and an assign-
menta such thatM0 |=a ϕ. If M0 |=a ϕ for every structureM and for all assignments,
thenϕ is said to bevalid. Note that formulae here are interpreted in the initial world
M0; that is an alternative but equivalent definition to the one used in [HWZ00].

We will begin by considering an invariant scheme over formulae corresponding to
propositional temporal logic. In that case any temporal structure is represented only
by the interpretation functionI .

3 Propositional invariant scheme

We are here interested in a proof search method (an invariant scheme) for problems
which are represented in the formSP|= ψ, whereψ is a propositional formula (with-
out temporal operators) andSPis a temporal specification defined below. In what fol-
lows we will not distinguish between a finite set of formulaeX and the conjunction

∧
X

of formulae within it.

3

Definition 1 (propositional temporal specification).A propositionaltemporal speci-
ficationSP is a triple< U,S ,T > where

– U is the set ofuniversal formulae, that is propositional formulae which are valid
in every state n∈ N (ensured in temporal logic by the ‘ ’).

– S is the set ofinitial formulae, that is propositional formulae which are true only
in the initial state0∈ N.

– T is the set ofstep formulae(sometimes termedtemporal or step rules), that is a
set of the formulae of the form p⇒ gr which are true in every state n∈ N. Here p
is a proposition symbol (atom), r is propositional formula, and⇒ is a substitute for
implication. Without loss of generality we suppose that there are not two different
temporal step rules with the same left-hand sides.

– The formula U ∧S ∧ T is called the formula image of SP. When we refer to
validity, satisfiability, logical consequences and such like, of a temporal specifica-
tion, we refer to its formula image.

The intuitive meaning of a temporal specificationSP=< U,S ,T > is that a temporal
interpretationI satisfiesSPif I |= U ∧S ∧ T . Two temporal specifications,SP1

andSP2, are said to be equivalent ifI |= SP1 if, and only if, I |= SP2 for any temporal
interpretationI .

We will proveSP|= ψ using an invariant rule slightly different from that given
earlier:

SP→ ψ∧ I I → gI I → gψ
SP→ ψ

(→)
(1)

Our scheme for searching for an invariant formulaI starts by transferringSPinto a so-
called reduced temporal specification. After that an analogue of the temporal resolution
rule [DF00, DFK02] is applied. At both stages we work with generalisations of step
rules, namely withmerged step rules based onT [FDP01] of the form

n∧
i=1

pi ⇒ g
n∧

i=1

ri

where(pi ⇒ gri) ∈ T for all 1 ≤ i ≤ n, andn ≥ 0. If n = 0 the degenerate merged
rule true ⇒ gtrue is produced. Clearly, every merged step rule based onT is a logical
consequence ofT .

Definition 2 (ψ-favourable set of merged rules).A set of merged step rulesG =
{A1 ⇒ gB1, . . . ,Am⇒ gBm} is calledψ-favourable with respect toU for some propo-
sitional formulaψ, if the following conditions are satisfied:

1. U ∧Bj ` ψ for all 1≤ j ≤ m; 2.U ∧Bj `
m∨

i=1
Ai for all 1≤ j ≤ m.

It is easy to see that if a setG = {A1 ⇒ gB1, . . . ,Am⇒ gBm} is ψ-favourable with re-

spect toU then G ∧ U |= (
m∨

i=1
Ai ⊃ g ψ). The formula G ∧ U∧

m∨
i=1

Ai can

be taken as a invariant formula for solving the problemSP|= ψ under the condition

thatS ∧U ` (ψ∧
m∨

i=1
Ai).

4

Theorem 1 (correctness of the invariant scheme).Let SP=< U,S ,T > be a tem-
poral specification,ψ be a propositional formula, and there exists aψ-favourable set
of merged rulesG = {A1 ⇒ gB1, . . . ,Am ⇒ gBm} based onT such thatS ∧U `
(ψ∧

m∨
i=1

Ai). Then SP|= ψ.

Proof Let us take as an invariantI in (1) the formula G ∧ U ∧
m∨

i=1
Ai . Now we

must prove that every sequent in the premise of this inference becomes valid after such
a substitution:

– |= SP→ ψ∧ I in accordance with the condition of the theorem thatS ∧U ` (ψ∧
m∨

i=1
Ai) and taking into account thatT |= G ;

– |= I → gI because G ∧ U∧
m∨

i=1
Ai implies G ∧ U∧ g

m∨
i=1

Bi , and G ∧

U ∧ g
m∨

i=1
Bi implies G ∧ U∧ g

m∨
i=1

Ai in accordance withψ-favourability

of G , and G ∧ U ∧ g
m∨

i=1
Ai implies g(G ∧ U ∧

m∨
i=1

Ai);

– |= I → gψ because G ∧ U ∧
m∨

i=1
Ai implies G ∧ U ∧

m∨
i=1

gBi , and

G ∧ U ∧
m∨

i=1

gBi implies gψ in accordance withψ-favourabilityof G . 2

What remains is to constructψ-favourable sets of merged rules.

Definition 3 (reduced temporal specification).A temporal specification SP =< U,S ,
T > is said to be reduced if, for any merged rule A⇒ gB based onT , the following
condition is satisfied: ifU ∧B` ⊥ then U ∧A` ⊥.

The intuition behind this reduction is explained further in Lemma 5 and Corollary 1.
Every temporal specificationSP is transformed into an equivalent reduced temporal
specification,SP′, using the following lemma:

Lemma 1. Let SP=< U,S ,T > be a temporal specification, and{A ⇒ gB} be a
merged rule based onT such thatU ∧B ` ⊥. Then the specification SP′ = < U ∪
{¬A},S ,T > is equivalent to SP.

The first-order version of this lemma, Lemma 6, is proved in§4.
It is clear that, due to the finiteness of the set of merged rules, every temporal specifica-
tion becomes reduced after a finite number of the steps defined in the previous lemma.

Theorem 2 (completeness of the invariant scheme).Let SP=< U,S ,T > be a re-
duced temporal specification andψ be a propositional formula. If ψ is a (tempo-
ral) logical consequence of SP, i.e SP|= ψ, then there exists a set of merged rules
{A1 ⇒ gB1, . . . ,Am ⇒ gBm} based onT such that this set isψ-favourable w.r.t.U

andS ∧U ` ψ∧ (
m∨

j=1
Ai).

5

In §4 the completeness of a first-order version of the invariant scheme will be proved,
such that Theorem 2 will be a partial case of it.

Example 1.Consider predicatesevenandodddefined over the Natural numbers, where
the type of Natural numbers is constructed in the usual way by the constant 0 and the
free constructors (successor):even(0)∧odd(s(0)),even(n)⊃ even(s(s(n))),odd(n) ⊃
odd(s(s(n))). Suppose we wish to prove the following property:∀n(even(n)∨odd(n)).

To represent this problem in our propositional temporal logic format let us introduce
two propositional symbolsp andq intuitively meaning thatpI (n) ≈ even(n) andqI (n) ≈
odd(n) in an intended temporal interpretationI , with auxiliary propositional symbols
p1 andq1. Thus interpretation is then defined by a temporal specificationSPwith the
following components:

U = /0, S =
{

s1. p∧q1
}

, T =
{

t1. q⇒ gq1, t2. q1 ⇒ gq
t3. p⇒ gp1, t4. p1 ⇒ gp

}
.

New symbolsp1 andq1 have been introduced to rename formulaegp and gq, corre-
spondingly. Such renaming is required to obtain a standard representation of the tem-
poral specification. The property to be checked is expressed by the formula(p∨q).
The specificationSPis reduced and we can apply Theorem 1 immediately taking as a
(p∨q)-favourable (w.r.t./0) set of merged rules the pair{q∧ p1 ⇒ g(q1∧ p), p∧q1 ⇒
g(p1 ∧ q)}. The premises of Theorem 1 are satisfied because of(p∧ q1) ` (p∨ q)

and (p∧ q1) ` ((q∧ p1)∨ (p∧ q1)). ThereforeSP|= (p∨q) and the formulaI =
((q∧ p1)∨(p∧q1))∧ (((q∧ p1)⊃ g(q1∧ p))∧(p∧q1 ⊃ g(p1∧q))) is an invari-
ant.

In the previous example we did not apply any reduction rule. The next example shows
that reducing a specification may be necessary.

Example 2.Let this induction problem be defined by a temporal specificationSPwith
the following components:

U = /0, S =
{

s1. p
}

, T =
{

t1. q⇒ gp, t2. p⇒ gq, t3. r ⇒ g¬p
}

.

Suppose we are interested whetherSP|= (p∨¬r). The specificationSP is not re-
duced because the right-hand sides of (t1) and (t3) contradict each other, and we can-
not find any(p∨ ¬r)-favourable (w.r.t./0) set of merged rules satisfying the condi-
tions of Theorem 1. So, according to Lemma 1, we derive a new universal formula
¬q∨¬r and add it toU. This new specificationSP′ =< {u1.¬q∨¬r},S ,T > is al-
ready reduced, and we can apply Theorem 1, taking as a set of merged rules(p∨¬r)-
favourable w.r.t.{¬q∨¬r}, the pair of the original step rules{q ⇒ gp, p ⇒ gq}.
This pair becomes(p∨¬r)-favourable after extendingU by (¬q∨¬r) because, in
particular,(q∧ (¬q∨ ¬r)) ` (p∨¬r). The premises of Theorem 1 are satisfied for
the reason thatS ` (p∨ r)∧ (p∨ q). ThereforeSP′ |= (p∨ ¬r) and the formula
I = (p∨q)∧ ((p⊃ gq)∧ (q⊃ gp))∧ (¬q∨¬r) is an invariant.

Notice that the induction problems in both considered examples cannot be resolved
by straightforward application of usual (one-step) induction. The first example can be
tackled by two-step induction, but in general the task of finding an appropriate induction
scheme is a work of art [Bun01].

6

4 First-order invariant scheme

We now consider a more complex invariant scheme corresponding to a fragment of
first-order temporal logic. A first-order temporal specification is a triple< U,S ,T >
whereS andU are theuniversal partand theinitial part, respectively, given by finite
sets of (nontemporal) first-order formulae, andT is thetemporal partgiven by a finite
set oftemporal step formulae. All formulae are written inL extended by a set of (unary)
predicate and propositional symbols. A temporal step formula has one of the following
forms:

P(x) ⇒ gR(x) (predicate step formula),
p⇒ gr (propositional step formula),

whereP andp are unary (i.e. one-place) predicate symbol and propositional symbol, re-
spectively,R(x) andr are boolean expressions composed from one-place predicates and
propositional symbols, respectively. Following [HWZ00] we restrict ourselves only to
monodictemporal specifications, that is where only one free variable is admitted under
every temporal operator. Otherwise, the induction problem becomes not only undecid-
able but not even partially decidable. (Simulating Minsky mashines by formulae of two-
variable monadic monodic first-order temporal logic with equality given in [DFL02]
can be transformed into simulating them by non-monodic ground induction problems.)
Without loss of generality we suppose that there are no two distinct temporal step rules
with the same left-hand sides.

To define first-order merged step rules we introduce the notions of colour schemes
and constant distributions [DF01]. LetP =< U,S ,T > be a temporal specification. Let
C be the set of constants occurring inP . Let T P = {Pi(x) ⇒ gRi(x), | 1≤ i ≤ K} and
T p = {pj ⇒ gr j | 1≤ j ≤ k} be the sets of all predicate step rules and all propositional
step rules ofT , respectively. We suppose thatK ≥ 0 andk ≥ 0; if K = 0 (k = 0) it
means that the setT P (T p) is empty.

Let {P1, . . . ,PK ,PK+1 . . . ,PM}, 0≤ K ≤ M, and{p1, . . . , pk, pk+1 . . . , pm}, 0≤ k ≤
m, be sets of all (monadic) predicate symbols and propositional symbols, respectively,
occurring inT . Let ∆ be the set of all mappings from{1, . . . ,M} to {0,1}, andΘ
be the set of all mappings from{1, . . . ,m} to {0,1}. An elementδ ∈ ∆ (θ ∈ Θ) is
represented by the sequence[δ(1), . . . ,δ(M)] ∈ {0,1}M ([θ(1), . . . ,θ(m)] ∈ {0,1}m).
Let us call elements of∆ andΘ predicate and propositionalcolours, respectively. Let
Γ be a subset of∆, andθ be an element ofΘ, andρ be a map fromC to Γ . A triple
(Γ,θ,ρ) is called acolour scheme, andρ is called aconstant distribution.

Note 1. The notion of the colour scheme came from the well known method within the
decidability proof for the monadic class in classical first-order logic (see, for example,
[BGG97]). In our caseΓ is the quotient domain (a subset of all possible equivalence
classes of predicate values),θ is a propositional valuation, andρ is a standard inter-
pretation of constants in the domainΓ. We construct quotient structures based only
on the predicates and propositions which occur in the temporal part of the specifica-
tion, because only these symbols are really responsible for the satisfiability of temporal
constraints. Besides, we have to consider so-called constant distributions as, unlike in
the classical case, we cannot eliminate constants replacing them by existentially bound
variables – the monodicity property would be lost.

7

For every colour schemeC = 〈Γ,θ,ρ〉 let us construct the formulaeFC , AC , BC in the
following way. In the beginning for everyγ ∈ Γ and forθ introduce the conjunctions:

Fγ(x) =
∧

γ(i)=1&i≤M
Pi(x)∧ ∧

γ(i)=0&i≤M
¬Pi(x), Fθ =

∧
θ(i)=1&i≤m

pi ∧ ∧
θ(i)=0&i≤m

¬pi ,

Aγ(x) =
∧

γ(i)=1&i≤K
Pi(x), Aθ =

∧
θ(i)=1&i≤k

pi ,

Bγ(x) =
∧

γ(i)=1&i≤K
Ri(x), Bθ =

∧
θ(i)=1&i≤k

ri .

Now FC , AC , BC are of the following forms

FC =
∧
γ∈Γ

∃xFγ(x)∧Fθ ∧
∧
c∈C

Fρ(c)(c)∧∀x
∨
γ∈Γ

Fγ(x),

AC =
∧

γ∈Γ
∃xAγ(x)∧Aθ ∧ ∧

c∈C
Aρ(c)(c)∧∀x

∨
γ∈Γ

Aγ(x),

BC =
∧
γ∈Γ

∃xBγ(x)∧Bθ ∧
∧
c∈C

Bρ(c)(c)∧∀x
∨
γ∈Γ

Bγ(x).

We can consider the formulaF C as a ‘categorical’ formula specification of a quotient
structure given by a colour scheme. In turn, the formulaAC represents the part of this
specification which is ‘responsible’ just for ‘transferring’ temporal requirements from
the current world (quotient structure) to its immediate successors.

Definition 4 (merged step rule).Let SP be a first-order temporal specification,C is
a colour scheme for SP. Then the clause(∀)(AC ⇒ gBC) whereAC and BC are
defined as above is called amerged step rulefor SP.

Note that if both sets{i | i ≤K,γ∈Γ,γ(i) = 1} and{i | i ≤ k,θ(i) = 1} are empty the rule
(AC ⇒ gBC) degenerates to(true ⇒ gtrue). If a conjunctionAγ(x), γ ∈ Γ, is empty,
that is its truth value istrue, then the formula∀x

∨
γ∈Γ

Aγ(x) (∀x
∨

γ∈Γ
Bγ(x)) disappears

from AC (BC). In the propositional case the rule(AC ⇒ gBC) reduces to(Aθ ⇒ gBθ)
which corresponds to the definition of a propositional merged rule given earlier.

We now reproduce results relevant to the particular form of temporal specifications
used in [DF01]. Similar to [FDP01] we represent possible interpretations of a temporal
specification< U,S ,T > via thebehaviour graphfor this specification.

Definition 5 (behaviour graph).Given a specification SP=< U,S ,T > we construct
a finite directed graph G as follows. Every node of G is a colour schemeC for T such
that the setU ∪FC is satisfiable.

For each nodeC = (Γ,θ,ρ), we construct an edge in G to a nodeC ′ = (Γ′,θ′,ρ′),
if U ∧FC ′ ∧BC is satisfiable. They are the only edges originating fromC .

A nodeC is designated as an initial node of G ifS ∧U ∧FC is satisfiable.
Thebehaviour graphH of SP is the full subgraph of G given by the set of all nodes

reachable from the initial nodes.

8

It is easy to see that there is the following relation between behaviour graphs of two
temporal specifications when one of them is obtained by extending the universal part of
another one.

Lemma 2. Let SP1 =< U1,S ,T > and SP2 =< U2,S ,T > be twoT L specifications
such thatU1 ⊆ U2. Then the behaviour graph H2 of SP2 is a subgraph of the behaviour
graph H1 of SP1.

Proof The graphH2 is the full subgraph ofH1 given by the set of nodes whose in-
terpretations satisfyU2 and which are reachable from the initial nodes ofH1 whose
interpretations also satisfyU2. 2

Definition 6 (suitable pairs). Let (C ,C ′) whereC = (Γ,θ,ρ), C ′ = (Γ′,θ′,ρ′) be an
(ordered) pair of colour schemes forT . An ordered pair of predicate colours(γ,γ′)
whereγ ∈ Γ, γ′ ∈ Γ′ is calledsuitableif the formulaU ∧Fγ′(x)∧Bγ(x) is satisfiable.
Similarly, the ordered pair of propositional colours(θ,θ′) is suitable ifU ∧Fθ′ ∧Bθ
is satisfiable. The ordered pair of constant distributions(ρ,ρ′) is called suitable if, for
every c∈C, the pair(ρ(c),ρ′(c)) is suitable.

Let us note that the satisfiability ofFγ′(x)∧Bγ(x) implies Fγ′(x) ` Bγ(x) because the
conjunctionFγ′(x) contains a valuation atx of all predicates occurring in the expression
Bγ(x).

Lemma 3. Let H be the behaviour graph of a specification< U,S ,T > with an edge
from a nodeC = (Γ,θ,ρ) to a nodeC ′ = (Γ′,θ′,ρ′). Then

– for everyγ ∈ Γ there existsγ′ ∈ Γ′ such that the pair(γ,γ′) is suitable;
– for everyγ′ ∈ Γ′ there existsγ ∈ Γ such that the pair(γ,γ′) is suitable;
– the pair of propositional colours(θ,θ′) is suitable;
– the pair of constant distributions(ρ,ρ′) is suitable.

Proof From the definition of a behaviour graph it follows thatU ∧FC ′ ∧BC is satisfi-
able. Now to prove the first item it is enough to note that satisfiability of the expression
U ∧FC ′ ∧BC implies satisfiability ofU ∧ (∀x

∨
γ′∈Γ′

Fγ′(x))∧∃xBγ(x). This, in turn, im-

plies satisfiability of its logical consequenceU ∧ ∨
γ′∈Γ′

∃x(Fγ′(x)∧Bγ(x)). So, one of

the members of this disjunction must be satisfiable. The second item follows from the
satisfiability ofU ∧ (∀x

∨
γ∈Γ

Bγ(x))∧∃xFγ′(x). Other items are similar. 2

Let H be the behaviour graph of a specification< U,S ,T > andΠ = C0, . . . ,Cn, . . .
be a path inH whereCi = (Γi ,θi ,ρi). Let G0 = S ∪{FCo} andGn = FCn ∧BCn−1 for
n≥ 1. According to the definition of a behaviour graph the setU ∪{Gn} is satisfiable
for everyn≥ 0. According to classical model theory, since the languageL is countable
and does not contain equality the following lemma holds.

Lemma 4. Letκ be a cardinal,κ≥ℵ0. For every n≥ 0, if a setU∪{Gn} is satisfiable,
then there exists anL-modelMn = 〈D, In〉 of U ∪{Gn} such that for everyγ ∈ Γn the
set D(n,γ) = {a∈ D | Mn |= Fγ(a)} is of cardinalityκ.

9

Definition 7 (run). By a run in Π we mean a function fromN to
⋃

i∈N

Γi such that for

every n∈ N, r(n) ∈ Γn and the pair(r(n), r(n+1)) is suitable.

It follows from the definition ofH that for everyc∈C the functionrc defined byrc(n)=
ρn(c) is a run inΠ.

Theorem 3. Let< U,S ,T > be a satisfiable temporal specification. Then there exists
an infinite pathΠ = C0, . . . ,Cn, . . . through the behaviour graph H for< U,S ,T >
whereC0 is an initial node of H.

Theorem 4. Let Π = C0, . . . ,Cn, . . . be an infinite path through the behaviour graph H
for a temporal specification SP=< U,S ,T >, C0 is an initial node of H. Then there
exists a modelM = 〈D,I 〉 of SP.

Proofs of theorems 3 and 4 can be found in the full paper [BDFL02].
So, all models of a specificationSP=< U,S ,T > are represented by infinite paths
through the behaviour graph forSP. Moreover, it is clear that the following relation
between an infinite pathΠ = C0, . . . ,Cn, . . . through the behaviour graphH for SPand
the set of modelsM = 〈D,I 〉 defined by Theorem 4 holds: for every propositional
symbolp and for everyn ∈ N there exists a modelM = 〈D,I 〉 such thatMn |= p if,
and only if, the setU ∪{FCn, p} is satisfiable. The same is true if we take, instead of a
propositional symbolp, any ground formula.

Now we are interested in an invariant scheme for problems of the formSP|= ψ,
whereSP=< U,S ,T > is a monodic first-order temporal specification, andψ is a
ground formula. The first step, as in the propositional case, is to transformSP into an
equivalent reduced specification.

We note that the definitions ofψ-favourable sets of merged rulesandreduced tem-
poral specificationscarry over from the earlier propositional definitions.

Our interest in reduced specifications is caused by the following lemma.

Lemma 5. Let SP=< U,S ,T > be a reduced temporal specification and the be-
haviour graph H for SP be nonempty. Then all paths in H are infinite.

Proof Suppose there is a path throughH which is finite, that is there is a nodeC on
this path which has no successors. In this case the setU∪{BC} is unsatisfiable. Indeed,
supposeU ∪{BC} is satisfiable, and〈D′, I ′〉 is a model ofU ∪{BC}. Then following
the proof of Theorem 4 we can define a colour schemeC ′ such that〈D′, I ′〉 |= FC ′ . Since
BC ∧FC ′ is satisfiable there is an edge from the nodeC to the nodeC ′ in the contradic-
tion with the choice ofC as having no successors. So,U ∪{BC} is unsatisfiable. Since
the specification is reduced the setU ∪{AC} also has to be unsatisfiable. However it
contradicts the existence ofC . 2

This lemma, together with Theorem 4, immediately implies the following.

Corollary 1. A reduced temporal specification SP=< U,S ,T > is satisfiable if, and
only if, the setU ∪S is satisfiable.

10

Proof The behaviour graphH for SPis not empty because the set of its initial nodes
is not empty. 2

Every temporal specificationSP1 is transformed into an equivalent reduced temporal
specificationSP2 using the following lemma (the first-order version of Lemma 1):

Lemma 6. Let SP1 =< U,S ,T > be a temporal specification, andA ⇒ gB be a
merged rule based onT such thatU ∧B ` ⊥. Then the specification SP2 = < U ∪
{¬A},S ,T > is equivalent to SP1.

Proof It is obvious that every model ofSP2 is a model ofSP1. To prove the inverse
inclusion suppose an interpretation,M = 〈D,I 〉 , is a model ofSP1. Then for every
n∈ N it holds thatMn |= ¬A , otherwise it would beMn+1 |= B in contradiction with
the condition thatU ∧B is unsatisfiable. So,M is a model ofSP2. 2

This lemma justifies the following inference rule over temporal specifications.

Definition 8 (reduction rule). Let SP=< U,S ,T > be a temporal specification, and
mT be the set of merged rules based onT . Then the reduction inference rule has the
following form

< U,S ,T >

< U ∪{¬A},S ,T >
(red)

if there is a merged rule(A ⇒ gB) ∈ mT such that the setU ∪{B} is unsatisfiable.

The saturation ofU by the reduction rule terminates both in the first-order and in the
propositional cases because the set of merged rules is always finite. Quite another matter
is checking the condition whetherU∪{B} is unsatisfiable. In general this problem can
be undecidable. In order to avoid such a situation we have to suppose that the universal
part U of our specification belongs to an arbitrary decidable fragment of first-order
logic (one-variable monadic formulae¬A andB cannot affect the decidability). The
same supposition relates to checking whether a set of merged rules isψ-favourable.

The following two lemmas substantiate the invariant scheme which is required.
Proofs of both lemmas are given in [BDFL02].

Lemma 7. Let SP=< U,S ,T > be a reduced temporal specification andψ be a
ground formula. If ψ is a (temporal) logical consequence of SP, that is SP|= ψ,
thenS ∪U ` ψ.

Lemma 8. Let SP=< U,S ,T > be a reduced temporal specification andψ be a
ground formula. If ψ is a (temporal) logical consequence of SP, that is SP|= ψ,
then there exists a set of merged rulesG = {A1 ⇒ gB1, . . . ,Am ⇒ gBm} based onT

such thatG is ψ-favourable w.r.t.U andS ∪U `
m∨

j=1
Ai .

Theorem 5 (correctness and completeness of the invariant scheme).Let SP=< U,
S ,T > be a reduced temporal specification andψ be a ground formula. Then ψ is a
(temporal) logical consequence of SP, that is SP|= ψ, if, and only if,S ∪U ` ψ and
there exists a set of merged rulesG = {A1 ⇒ gB1, . . . ,Am⇒ gBm} based onT such

thatG is ψ-favourable w.r.t.U andS ∪U `
m∨

j=1
Ai.

11

Proof Completeness is ensured by Lemmas 7 and 8. Correctness is carried from the
earlier propositional Theorem 1. 2

Note 2. The notion of a merged step rule given in Definition 4 and used through all
this section seems to be quite involved. However we can note that every such rule is
composed from a set ofsimplifiedmerged rules of the form

∀x((Pi1(x)∨ . . .∨Pil (x)) ⇒ g∀x(Ri1(x)∨ . . .∨Ril (x)))
∃x((Pj1(x)∧ . . .∧Pjm(x)) ⇒ g∃x(Rj1(x)∧ . . .∧Rjm(x)))

for 1 ≤ i1 < .. . il ≤ K, 1 ≤ j1 < .. . jl ≤ K plus the rules of the form (P1(c) ⇒
gR1(c)) for every constant c occurring in the givenSP, 1≤ i ≤ K. Now we can

replace merged rules of Definition 4 (let us call these rules ascanonicalmerged step
rules) by simplified merged step rules. The only difference related to using simplified
merged step rules in inferences concerns the reduction rule (Definition 8), namely in-
stead of a merged step rule we have to take a set of simplified merged step rules. Then
we can consider applying canonical merged step rules as a special strategy of using
simplified merged step rules.

Example 3.We here give a simple example of multi-predicate mutually recursive defi-
nitions, which can be described as follows. Consider the delivery of particular foodstuffs
at different moments in time. Here, the predicatesdeliver wood(b, t), deliver eggs(b, t)
anddeliver f lour(b, t) represent the delivery by ‘b’ of wood, eggs or flour, at time ‘t ’.
Now, we can specify the problem as follows. First, the initial condition:

1. ∃x. deliver wood(x,0)

Now for the dynamic properties of delivery:

2. ∀x. ∀y. deliver eggs(x,y) ⇒ deliver flour(x,s(y)) ∨ deliver wood(x,s(y))
3. ∀x. ∀y. deliver wood(x,y) ⇒ deliver eggs(x,s(y))
4. ∀x. ∀y. deliver flour(x,y) ⇒ deliver eggs(x,s(y))

Note 3. The intuitive meanings of these are that ifx delivers eggs thenx delivers flour
or wood in the next moment, and ifx delivers wood or flour thenx delivers eggs in the
next moment.

Finally, we wish to be able to prove

∀n. ∃x.


 (deliver eggs(x,n) ∧ deliver flour(x,s(n))) ∨

(deliver eggs(x,n) ∧ deliver wood(x,s(n))) ∨
deliver eggs(x,s(n))




from all of the above.

To achieve this, we first translate the formulae to temporal logic, giving a specification
< U,S ,T > where the initial partS consists of the single formula

s1. ∃x. deliver wood(x)

12

the universal partU is empty, and the temporal partT is the following

t1. deliver eggs(x) ⇒ g(deliver flour(x) ∨ deliver wood(x))
t2. deliver wood(x) ⇒ gdeliver eggs(x)
t3. deliver flour(x) ⇒ gdeliver eggs(x)

In renaming the above conclusion to a standard from, we introduce three new predicate
symbols, so that the conclusion becomes

∃x.
(
(deliver eggs(x) ∧ ¬B(x))∨ (deliver eggs(x) ∧ ¬C(x))∨¬A(x)

)
or after equivalent transformations it becomesψ where

ψ = ∃x (deliver eggs(x) ∧ (¬B(x)∨¬C(x))∨∃x¬A(x).

We also add three new rules to the temporal part defining the new predicate symbols

t4. B(x) ⇒ g¬deliver flour(x)
t5. C(x) ⇒ g¬deliver wood(x)
t6. A(x) ⇒ g¬deliver eggs(x)

Now, we consecutively apply the reduction inference rule to merged rules

m1. ∃x(deliver eggs(x)∧B(x)∧C(x))⇒ g∃x

(
(deliver flour(x)∨deliver wood(x))

∧ (¬deliver flour(x)∧¬deliver wood(x))

)

m2. ∃x(deliver wood(x)∧A(x)) ⇒ g∃x(deliver eggs(x)∧¬deliver eggs(x))
m3. ∃x(deliver flour(x)∧A(x)) ⇒ g∃x(deliver eggs(x)∧¬deliver eggs(x))

deriving the following universal rules, respectively,

u1. ∀x. deliver eggs(x) ⊃ (¬B(x)∨¬C(x))
u2. ∀x. deliver wood(x) ⊃ ¬A(x)
u3. ∀x. deliver flour(x) ⊃ ¬A(x)

The following set of merged rules isψ-favourable with respect toU extended by
u1,u2,u3:

m4. ∃x delivereggs(x) ⇒ g∃x (deliver flour(x) ∨ deliver wood(x))
m5. ∃x deliverwood(x) ⇒ g∃x delivereggs(x)
m6. ∃x deliverflour(x) ⇒ g∃x delivereggs(x)

EstablishingS ∪U ` ψ∧∃x (deliver eggs(x) ∨ deliver wood(x)∨ deliver flour(x)) is
quite straightforward. So, all the conditions of Theorem 5 are satisfied.

5 Implementation.

The method described in this paper has been implemented as a part of a prototype
prover for temporal specifications in theλClam envinronment [RSG98].λClam is a
proof planning [Bun88] system, implemented in TeyjusλProlog, a higher-order typed
logic programming language. A proof plan is a representation of a proof at some level

13

of abstraction (usually above the level of basic inference rules, but not necessarily so).
In λClama proof plan is generated from a goal by the application of planning operators
called proof methods. Atomic methods are suitable for the implementation of basic
proof rules, or automated proof procedures, while compound methods are used to build
more complex proof strategies (or heuristics) from atomic methods.

Our system works with arithmetical translations of temporal formulae. For first-
order (non-temporal) proving required within the prover an atomic methodproof tableau
re-implementing the simple, but convenient LeanTap tableaux prover [BP95] inλProlog,
is used. The kernel of the system is an atomic methodmutual induction, implementing
an invariant scheme more general than one discussed above and applicable not only to
monodic specifications. Given a set of formulae,mutual inductionfirst separates it into
sets of step rules and universal and start parts. Then, to ensure the completeness for the
case of monodic specifications, three sub-methods are applied.

1. A sub-method for saturation of the universal part (reduction) given a (not neces-
sarily reduced) specification, applies the reduction rule (see Definition 8) until the
specification becomes reduced and the universal part saturated. A simple optimiza-
tion, based on the fact that any superset of an inconsistent set of formulae is itself
inconsistent, is also used.

2. Given a reduced specification,SP, a further sub-method generates all merged rules
based onSP (using the representation given in Note 2) and collects only those,
whose right-hand side together with the universal part ofSP implies the desired
conclusion.

3. Given a set,M, of merged rules, generated by the previous method, the sub-method
for the loop search iterates over subsets ofM and generates subgoals, i.e. first-order
formulae to prove, for checking the side conditions (ψ-favourability and initial con-
dition).

Initial experiments have indicated the viability of our approach. The system is capable
of proving all the examples mentioned in this paper, together with some (more complex)
non-monodic examples.

6 Conclusion

We have shown that the clausal resolution technique developed for temporal logic pro-
vides us with a method for searching for invariant formulae, and is particularly suit-
able for proving ground “always” conclusions of monodic temporal specifications. We
have demonstrated that this method can also be applied to the mechanization of multi-
predicate induction problems over the Natural numbers with mutually recursive defini-
tions by translating them into temporal logic.

We have established the correctness of such an approach and have given several,
necessarily simplified, examples. Part of our future work concerns the extension of this
technique to temporal logics over more complex inductively generated structures of
time, in particular lists and trees, and the development of corresponding (complete)
invariant schemes. Other aspects of future work concern extending the scope of the
temporal resolution method and developing more complex invariant schemes within

14

the first-order temporal logic, in particular for monodic non-ground induction problems
and for the numerous induction problems (ground, but non-monodic) considered by
Pliuskevicius [Pli00, DFLP02]. As to the implementation, further work is needed to
develop optimizations for the proof search procedure in the monodic case together with
strategies/heuristics applicable to non-monodic specifications.

References

[BGG97] E. Börger, E. Grädel, and Yu. Gurevich.The Classical Decision Problem. Springer,
1997.

[BP95] B. Beckert and J. Posegga.leanTAP: Lean, Tableau-based Deduction.Journal of
Automated Reasoning, Vol. 15, No. 3, pages 339-358, 1995.

[BS00] R. J. Boulton and K. Slind. Automatic derivation and application of induction schemes
for mutually recursive functions. InProc. of CL 2000, volume 1861 ofLNAI, 2000.

[Bun88] A. Bundy. The use of explicit plans to guide inductive proofs. InProc. of 9th Inter-
national Conference on Automated DeductionSpringer-Verlag, 1988.

[Bun01] A. Bundy. The Automation Of Proof By Mathematical Induction. In A. Robinson and
A. Voronkov, editors,Handbook of Automated Reasoning, volume 1, pages 845–912.
Elsevier Science and MIT Press, 2001.

[BDFL02] J. Brotherston, A. Degtyarev, M. Fisher and A. Lisitsa. Searching for Invariants using
Temporal Resolution. Technical Report ULCS-02-023, University of Liverpool, De-
partment of Computer Science, 2002, http://www.csc.liv.ac.uk/research/techreports/

[DF00] A. Degtyarev and M. Fisher. Propositional temporal resolution revised. InProc. of
7th UK Workshop on Automated Reasoning (ARW’00). London, U.K., June 2000.

[DF01] A. Degtyarev and M. Fisher. Towards first-order temporal resolution. InProccedings
of KI-2001, volume 2174 ofLNAI, 2001.

[DFL02] A. Degtyarev, M. Fisher and A. Lisitsa. Equality and monodic first-order temporal
logic . Studia Logica, Vol.72, No.2, 2002.

[DFK02] A. Degtyarev, M. Fisher and B. Konev. Simplified clausal resolution procedure for
propositional linear-time temporal logic. To appear inProc. of TABLEAUX’02, 2002.

[DFLP02] A. Degtyarev, M. Fisher, A.Lisitsa and R. Pliuskevicius. Simple decision procedures
for non-monodic decidable fragments of FOLTL. In preparation, 2002.

[FDP01] M. Fisher, C. Dixon, and M. Peim. Clausal temporal resolution.ACM Transactions
on Computation Logic, 2(1), January 2001.

[Fis97] M. Fisher. A normal form for temporal logics and its applications in theorem-proving
and execution.Journal of Logic and Computation, 7(4), 1997.

[HWZ00] I. Hodkinson, F. Wolter, and M. Zakharyaschev. Fragments of first-order temporal
logics. Annals of Pure and Applied logic, 106:85–134, 2000.

[Kaw87] H. Kawai. Sequential Calculus for a First Order Infinitary Temporal Logic.Zeitschrift
für Mathematische Logic and Grundlagen der Mathematik, 33:423-432, 1987.

[Pae88] B. Paech. Gentzen Systems for Propositional Temporal Logics.Proccedings of
CSL’88, volume 385 ofLNCS, p.240–253. Springer Verlag, 1988.

[Pli00] R. Pliuskevicius. A decidable deductive procedure for a restricted FTL. InProc. of
7th UK Workshop on Automated Reasoning (ARW’00). London, U.K., June 2000.

[RSG98] J. Richardson, A. Smaill, and I. Green. System description: proof planning in higher-
order logic with lambdaclam. InProc. of CADE’15, volume 1421 of LNAI, 1998.

[Sza86] A. Szalas. Concerning the semantic consequence relation in first-order temporal logic.
Theoretical Computer Science, 47:329–334, 1986.

[WZ01] F. Wolter and M. Zakharyaschev. Axiomatizing the monodic fragment of first-order
temporal logic. To appear inAnnals of Pure and Applied logic., 2001.

15

