
Complete Sequent Calculi for Induction and Infinite Descent

James Brotherston∗

Dept. of Computing
Imperial College, London, UK

Alex Simpson†

LFCS, School of Informatics,
University of Edinburgh, Scotland, UK

Abstract

This paper compares two different styles of reasoning
with inductively defined predicates, each style being encap-
sulated by a corresponding sequent calculus proof system.

The first system supports traditional proof by induction,
with induction rules formulated as sequent rules for intro-
ducing inductively defined predicates on the left of sequents.
We show this system to be cut-free complete with respect to
a natural class of Henkin models; the eliminability of cut
follows as a corollary.

The second system uses infinite (non-well-founded)
proofs to represent arguments by infinite descent. In this
system, the left rules for inductively defined predicates are
simple case-split rules, and an infinitary, global condition
on proof trees is required to ensure soundness. We show
this system to be cut-free complete with respect to standard
models, and again infer the eliminability of cut.

The second infinitary system is unsuitable for formal rea-
soning. However, it has a natural restriction to proofs given
by regular trees, i.e. to those proofs representable by finite
graphs. This restricted “cyclic” system subsumes the first
system for proof by induction. We conjecture that the two
systems are in fact equivalent, i.e., that proof by induction
is equivalent to regular proof by infinite descent.

1 Introduction

Many concepts in mathematics and computer science are
most naturally formulated using inductive definitions. Thus
proof support for inductive definitions is an essential com-
ponent of proof assistants and theorem provers. Often, li-
braries are provided containing collections of useful induc-
tion principles associated with a given set of inductive def-
initions, see e.g. [16, 9, 18]. In other cases, mechanisms
permitting “cyclic” proof arguments are used, with intricate
conditions imposed to ensure soundness, see e.g. [23, 17, 8].

∗Research undertaken while a PhD student at LFCS, School of Infor-
matics, University of Edinburgh, supported by an EPSRC PhD studentship.

†Research supported by an EPSRC Advanced Research Fellowship.

In this paper we study and compare proof-theoretic founda-
tions for these two quite different styles of reasoning.

In the case of classical first-order logic, Gentzen’s se-
quent calculus LK provides an elegant proof system that
is well-suited to the goal-directed approach to proof con-
struction employed in many proof assistants. Each logical
constant is specified by two types of basic rule, introduc-
ing the constant on the left and on the right of sequents
respectively. Gentzen’s well-known cut-elimination theo-
rem implies that direct proofs, using these rules alone, are
sufficient to derive any valid sequent. In addition to its theo-
retical elegance, this has implications for proof search, with
the locally applicable proof rules thereby constrained by the
logical constants appearing in the current goal.

In a previous paper by the first author [2], Gentzen’s
LK was extended to obtain two proof systems for classical
first-order logic with inductively defined predicates: (i) a
system containing explicit proof rules embodying the stan-
dard induction principles; and (ii) a system without induc-
tion rules, but instead allowing circular arguments subject to
soundness constraints. The main contributions of [2] were
the formulation of the second “cyclic” proof system, and
the demonstration that the second system subsumes the first
(i.e., cyclic proof was shown to be at least as powerful as
proof by explicit induction). The equivalence of the two
systems was posed as a conjecture.

As the main contribution of the present paper, we es-
tablish completeness and cut-eliminability results for these
two approaches to inductive reasoning. Aside from their in-
trinsic technical interest, our results demonstrate the calculi
from [2] as being canonical ones embodying the two styles
of reasoning. We hope that our results will help to stimulate
wider interest in such systems.

In Section 3, we recall the system for induction from [2],
here called LKID, in which the right-hand rules for induc-
tively defined predicates simply reflect the closure condi-
tions on the predicate, and the left-hand rules embody the
natural induction principle for the predicate in question.
A closely related precursor is Martin-Löf’s natural deduc-
tion system for intuitionistic logic with (iterated) inductive
definitions [13], in which induction rules are included as

elimination rules for inductively defined predicates. As is
well known, elimination rules in natural deduction serve the
same purpose as left-introduction rules in sequent calculus.
Nonetheless, it is only recently that sequent calculus coun-
terparts of Martin-Löf’s system have been explicitly con-
sidered, by McDowell, Miller and Tiu [14, 21]. Ours is a
simple classical analogue of these intuitionistic systems.

Our main new result about LKID is a completeness
result, for cut-free proofs, relative to a natural class of
“Henkin models” for inductive predicates (Theorem 3.6).
The eliminability of cut in LKID follows as an immedi-
ate corollary. These results serve to endorse the natural-
ity of LKID: completeness shows that no proof princi-
ples are missing, and cut-eliminability vindicates the for-
mulation of the proof rules. The latter result may come
as a surprise to some, since there is a fairly popular mis-
conception — possibly arising from the well-known need
for generalisation in inductive proof (see e.g. [4]) — that
cut-elimination is impossible in the presence of inductive
definitions. However, readers familiar with [13, 14, 21]
will not be surprised, since these papers contain analo-
gous normalization/cut-elimination theorems for related in-
tuitionistic systems. Their proofs, however, are based on
Tait’s “computability” method, and do not readily adapt to
our classical setting. Compared with such proofs, our se-
mantic approach suffers from the weakness of not establish-
ing that any particular cut-elimination strategy terminates,
but, in compensation, it establishes a completeness result of
independent interest.

Sections 4–6 concern the second approach to inductive
proof based on circular reasoning. Following [23], it is nat-
ural to view this approach as a formalisation of proof by “in-
finite descent” à la Fermat. For natural numbers, infinite de-
scent exploits the fact that, since there are no infinite strictly
decreasing sequences of numbers, any case in a proof that
furnishes such a sequence can be ignored as contradictory.
This technique can be extended to general inductively de-
fined predicates: any case of a proof which yields an infi-
nite sequence of “unfoldings” of some inductively defined
predicate can likewise be dismissed. In [2], this principle
is implemented by replacing the induction rules of LKID
with simple “case split” rules (which unfold inductively de-
fined predicates on the left of sequents), and by allowing
proofs to be cyclic graphs rather than finite trees. In gen-
eral, such proof graphs are not sound. However, the global
trace condition of [2] requires that, for a graph to qualify
as a proof, every infinite path through the graph must enjoy
the property that some inductively-defined predicate is un-
folded infinitely often along the path. This condition guar-
antees soundness since, intuitively, it ensures that all such
infinite paths can be disregarded from the proof for infinite
descent reasons, leaving only finite ones behind.

The main results in [2] concerning the cyclic proof sys-

tem are: (i) it is sound (the proof is somewhat more techni-
cal then the informal argument above), and (ii) it subsumes
proof by induction. Since one might well dream up many
other proof systems enjoying these two properies, such re-
sults do not, by themselves, provide much evidence that the
cyclic proof system is in any sense canonical.

In this paper, we take a different perspective. Rather than
considering the cyclic system as basic, we instead present,
in Section 4, an infinitary proof system LKIDω, based on
the same proof rules as the cyclic system, but in which
proofs are possibly infinite (non-well-founded) trees of rule
instances. As with the cyclic system, the global trace condi-
tion of [2] (which transfers verbatim to infinite trees) is im-
posed on trees to guarantee soundness (the soundness proof
of [2] generalises immediately). The benefit of considering
the infinitary system is borne out by the second main result
of the paper: the system LKIDω is complete relative to the
usual “standard” models of inductively defined predicates
(Theorem 4.9). Again, this completeness result holds for
cut-free proofs, and so the eliminability of cut for LKIDω

follows. The proof of completeness is outlined in Section 5.
Having argued for the canonicity of the infinitary sys-

tem LKIDω, the cyclic system of [2] can be appreciated as
arising in a very natural way: it is simply the restriction
of LKIDω to regular proof trees, i.e. to trees representable
by finite (cyclic) graphs. Over such finite representations,
the soundness condition is decidable (although complete-
ness is necessarily lost), and hence the restricted proof sys-
tem is suitable for formal reasoning (a property that clearly
does not extend to LKIDω). In fact, the soundness con-
dition appears to subsume various heuristic conditions for
cyclic proofs adopted in the theorem proving literature (see
e.g. [23, 17, 8]).

In Section 6, we briefly consider the induced cyclic proof
system, here called CLKIDω, in order to reprise the con-
jecture from [2] that LKID and CLKIDω are equivalent.
The significance of this conjecture seems to be enhanced by
the results of the present paper. Indeed, if one accepts that
LKID and CLKIDω canonically embody the two styles of
reasoning, then the conjecture can be understood informally
as asserting that proof by induction is equivalent to regular
proof by infinite descent. We end the paper by stating this
conjecture formally and commenting on the apparent diffi-
culties its proof poses.

Due to space constraints, only outline proofs of our main
results are included in this paper. Full proofs can be found
in the first author’s recent PhD thesis [3].

2. Syntax and semantics of first-order logic
with inductive definitions (FOLID)

In this section we give the syntax and semantics of clas-
sical first-order logic with inductively defined predicates,

FOLID. Of the many possible definitional frameworks, we
choose to work with ordinary (mutual) inductive definitions,
specified by simple “productions” in the style of Martin-
Löf [13]. This choice keeps the logic relatively simple,
while including many important examples.

The languages we consider are the standard (countable)
first-order languages, except that we designate finitely many
of the predicate symbols of the language as inductive. A
predicate symbol not designated as inductive is called ordi-
nary. For the remainder of this paper we consider a fixed
language Σ with inductive predicate symbols P1, . . . , Pn.
Terms of Σ are defined as usual; we write t(x1, . . . , xn) for
a term all of whose variables are contained in {x1, . . . , xn}.

The interpretation of the elements of Σ is as usual given
by a first-order structure M with domain D; we write XM

to denote the interpretation of the Σ-symbol X in M . Like-
wise, variables are interpreted as elements of D by an envi-
ronment ρ; we extend ρ to all terms of Σ in the standard way
and write ρ[x �→ d] for an environment defined exactly as ρ
except that ρ[x �→ d](x) = d. The formulas of FOLID are
the usual formulas of first-order logic with equality.1 We
then write M |=ρ F for the standard semantic satisfaction
relation for formulas of FOLID.

Our proof systems will be interpreted relative to only
those structures in which inductive predicates have their in-
tended meanings, as specified by definition sets for the pred-
icates, adapted from [13].

Definition 2.1 (Inductive definition set). An inductive def-
inition set Φ for Σ is a finite set of productions, which are
rules of the form:

Q1(u1(x)) . . . Qh(uh(x)) Pj1(t1(x)) . . . Pjm(tm(x))
(Def)

Pi(t(x))

where j1, . . . , jm, i ∈ {1, . . . , n}, and Q1, . . . , Qh are or-
dinary predicate symbols, and the bold vector notation ab-
breviates sequences of terms.

Example 2.2. We define the predicates N ,E and O via the
productions:

N0

Nx

Nsx E0

Ex

Osx

Ox

Esx

In structures in which all “numerals” sk0 for k ≥ 0 are
interpreted as distinct elements, the predicates N , E and O
correspond to the properties of being a natural, even and
odd number respectively.

From this point onwards we consider an arbitrary fixed
inductive definition set Φ for Σ and, when we need to con-
sider an arbitrary production in Φ, will always use the ex-
plicit format of (Def) above.

1The inclusion of equality in the language is a minor departure from [2].

The standard interpretation of the inductive predicates
(cf. [1]) is obtained as usual by considering prefixed points
of a monotone operator constructed from the definition set
Φ. For standard models, this least fixed point can be con-
structed in iterative approximant stages.

Definition 2.3 (Definition set operator). Let M with do-
main D be a first-order structure for Σ, and for each
i ∈ {1, . . . , n}, let ki be the arity of the inductive pred-
icate symbol Pi. Then partition Φ into disjoint subsets
Φ1, . . . , Φn ⊆ Φ by:

Φi = {u

v
∈ Φ |Pi appears in v}

Let each rule set Φi be indexed by r with 1 ≤ r ≤ |Φi|, and
for each rule Φi,r, say of the form (Def) specified above,
define ϕi,r : (P(Dk1)× . . .×P(Dkn)) → P(Dki), where
P(·) is powerset, by:

ϕi,r(X1, . . . ,Xn)={ tM(x) |QM
1 uM

1 (x), . . . ,QM
h uM

h (x),
tM1 (x) ∈ Xj1 , . . . , t

M
m (x) ∈ Xjm}

Then define the function ϕi for each i ∈ {1, . . . , n} by
ϕi(X1, . . . , Xn) =

⋃
r ϕi,r(X1, . . . , Xn), whence the def-

inition set operator for Φ is the operator ϕΦ, with domain
and codomain P(Dk1) × . . . × P(Dkn), defined by:

ϕΦ(X1, . . . , Xn)=(ϕ1(X1, . . . ,Xn), . . . ,ϕn(X1, . . . ,Xn))

In the definition below, we write πn
i for the ith projection

function πn
i (X1, . . . , Xn) = Xi, and we extend union to

the corresponding pointwise operations on n-tuples of sets.

Definition 2.4 (Approximants). Let M with domain D be
a first-order structure for Σ, and let ϕΦ be the definition
set operator for Φ. Define an ordinal-indexed set (ϕα

Φ ⊆
P(Dk1)×. . .×P(Dkn))α≥0 by ϕα

Φ =
⋃

β<α ϕΦ(ϕβ
Φ) (note

that this implies ϕ0
Φ = (∅, . . . , ∅)). Then the set πn

i (ϕα
Φ) is

called the αth approximant of Pi, written as Pα
i .

Definition 2.5 (Standard model). A first-order structure
M is said to be a standard model for (Σ, Φ) if for all
i ∈ {1, . . . , n}, PM

i =
⋃

α Pα
i .2

Definition 2.5 fixes a standard interpretation of the in-
ductive predicates. However, we shall also be interested in
non-standard Henkin models of FOLID in which the least
fixed point of the operator for the inductive predicates is
constructed with respect to a chosen class of sets of tuples
over the domain of interpretation. This approach is based
on an idea originally employed by Henkin who obtained
completeness theorems for higher-order calculi by consid-
ering validity with respect to his more general notion of
model [10]. Our application in Section 3 is similar.

2For the form of production considered, we have
⋃

α P α
i = P ω

i , i.e.
the closure ordinal is at most ω. However, we shall never exploit this.

Definition 2.6 (Henkin class). Let M with domain D be a
structure for Σ. A Henkin class for M is a family of sets
H = {Hk | k ∈ N}, where for each k ∈ N, Hk ⊆ P(Dk)
and:

(H1) {(d, d) | d ∈ D} ∈ H2;

(H2) if Q is an ordinary/inductive predicate symbol of arity
k then {(d1, . . . , dk) | QM (d1, . . . , dk)} ∈ Hk;

(H3) if R ∈ Hk+1 and d ∈ D then {(d1, . . . , dk) |
(d1, . . . , dk, d) ∈ R} ∈ Hk;

(H4) if R ∈ Hk and t1(x1, . . . , xm), . . . , tk(x1, . . . , xm)
are terms then {(d1, . . . , dm) | (tM1 (d1, . . . , dm), . . . ,
tMk (d1, . . . , dm)) ∈ R} ∈ Hm;

(H5) if R ∈ Hk then R = Dk \ R ∈ Hk;

(H6) if R1, R2 ∈ Hk then R1 ∩ R2 ∈ Hk;

(H7) if R ∈ Hk+1 then {(d1, . . . , dk) |
∃d.(d1, . . . , dk, d) ∈ R} ∈ Hk.

Lemma 2.7. If H = {Hk | k ∈ N} is a Henkin class
for a structure M , ρ is an environment for M , F is a for-
mula of FOLID and x1, . . . , xk are distinct variables, then
{(d1, . . . , dk) | M |=ρ[x1 �→d1,...,xk �→dk] F} ∈ Hk.

Definition 2.8 (H-point / prefixed point). Let M be a struc-
ture for Σ and let H be a Henkin class for M . Also let
ki be the arity of the inductive predicate symbol Pi for
each i ∈ {1, . . . , n}. Then (X1, . . . , Xn) is said to be
an H-point if Xi ∈ Hki for each i ∈ {1, . . . , n}. and is
said to be a prefixed point of the monotone operator ϕΦ if
ϕΦ(X1, . . . , Xn) ⊆ (X1, . . . , Xn).

Lemma 2.9. Let H be a Henkin class for a Σ-structure
M . Then if (X1, . . . , Xn) is an H-point then so is
ϕΦ(X1, . . . , Xn).

Definition 2.10 (Henkin model). Let M be a first-order
structure for Σ and H be a Henkin class for M . (M,H)
is said to be a Henkin model for (Σ, Φ) if there exists a
least prefixed H-point µH.ϕΦ of ϕΦ, and for each i ∈
{1, . . . , n}, PM

i = πn
i .µH.ϕΦ.

It is a standard result for inductive definitions that the
least prefixed point of ϕΦ in P(Dk1) × . . . × P(Dkn) is
given by the union of the approximants of ϕΦ,

⋃
α ϕα

Φ. Thus
a standard model is a Henkin model (with Hk = P(Dk)).

3. LKID: a proof system for induction

We use sequents of the form Γ
 ∆, where Γ, ∆ are finite
sets of formulas, and use the notation Γ[θ] to mean that the
substitution θ of terms for free variables is applied to all
formulas in Γ. We use the standard sequent calculus rules

as given in many sources (see e.g. [7, 5]), together with the
following rules for explicit substitution and equality, cf. [6].

Γ
 ∆
(Subst)

Γ[θ]
 ∆[θ]
(=R)

Γ
 t = t, ∆

Γ[u/x, t/y]
 ∆[u/x, t/y]
(=L)

Γ[t/x, u/y], t = u
 ∆[t/x, u/y]

To these rules we add rules for introducing inductive
predicates on the left and right of sequents.

First, for each production Φi,r ∈ Φ, say (Def), there is a
sequent calculus right introduction rule for Pi:

Γ
 Q1u1(u), ∆ . . . Γ
 Qhuh(u), ∆
Γ
 Pj1t1(u), ∆ . . . Γ
 Pjmtm(u), ∆

(PiRr)
Γ
 Pit(u), ∆

Definition 3.1 (Mutual dependency). Define the binary re-
lation Prem on the inductive predicate symbols of Σ as the
least relation satisfying: whenever Pi occurs in the conclu-
sion of some production in Φ, and Pj occurs amongst the
premises of that production, then Prem(Pi, Pj) holds. Also
define Prem∗ to be the reflexive-transitive closure of Prem.
Then two predicate symbols Pi and Pj are mutually depen-
dent if both Prem∗(Pi, Pj) and Prem∗(Pj , Pi) hold.

Now to obtain an instance of the left-introduction rule
for any inductive predicate Pj , we first associate with ev-
ery inductive predicate Pi a tuple zi of ki distinct variables
(called induction variables), where ki is the arity of Pi. Fur-
thermore, we associate to every predicate Pi that is mutually
dependent with Pj an arbitrary formula (called an induc-
tion hypothesis) Fi. Next, define the formula Gi for each
i ∈ {1, . . . , n} by:

Gi =
{

Fi if Pi and Pj are mutually dependent
Pizi otherwise

We write Git, where t is any tuple of ki terms, to mean
Gi[t/zi]. Then an instance of the induction rule for Pj has
the following schema:

minor premises Γ, Fju
 ∆
(Ind Pj)

Γ, Pju
 ∆

where the premise Γ, Fju
 ∆ is called the major premise,
and for each production of Φ having in its conclusion a
predicate Pi that is mutually dependent with Pj , say (Def),
there is a corresponding minor premise:

Γ,Q1u1(x), . . . , Qhuh(x),
Gj1t1(x), . . . , Gjmtm(x)
 Fit(x), ∆

where x �∈ FV (Γ∪∆∪{Pju}) for all x ∈ x (FV (·) being
the usual free variable function on sets of formulas).

The induction rule for a predicate Pj can be seen to em-
body the natural principle of rule induction over the produc-
tions defining Pj .

Example 3.2. The induction rule for the “natural number”
predicate N defined in Example 2.2 is:

Γ
 F0, ∆ Γ, Fx
 Fsx, ∆ Γ, F t
 ∆
(Ind N)

Γ, Nt
 ∆

where F is the induction hypothesis associated with the
predicate N . This is one way of writing the usual induc-
tion scheme for N in sequent calculus style.

Example 3.3. The induction rule (Ind E) for the “even
number” predicate E defined in Example 2.2 is:

Γ
 F0, ∆ Γ, Fx
 Hsx, ∆ Γ, Hx
 Fsx, ∆ Γ, F t
 ∆

Γ, Et
 ∆

where F and H are the formulas associated with the (mutu-
ally dependent) predicates E and O respectively.

Definition 3.4 (Henkin validity). Let (M,H) be a Henkin
model for (Σ, Φ). A sequent Γ
 ∆ is said to be true in
(M,H) if for all environments ρ, whenever M |=ρ J for all
J ∈ Γ then M |=ρ K for some K ∈ ∆. A sequent is said
to be Henkin valid if it is true in all Henkin models.

Proposition 3.5 (Henkin soundness of LKID). If there is
an LKID proof of Γ
 ∆ then Γ
 ∆ is Henkin valid.

Proof. A full proof appears in section 3.2 of [3].

We say that a sequent Γ
 ∆ is cut-free provable iff there
is an LKID proof of Γ
 ∆ that does not contain any in-
stances of the cut or substitution rules. Our main new result
about LKID is the following.

Theorem 3.6 (Cut-free Henkin completeness of LKID). If
Γ
 ∆ is Henkin valid, then it is cut-free provable in LKID.

The proof is an extension of the direct style of completeness
proof for Gentzen’s LK as given in e.g. [5]. Briefly, suppos-
ing that Γ
 ∆ is not cut-free provable in LKID, one uses a
uniform proof-search procedure to construct a sequence of
underivable sequents Γi
 ∆i, which can together be used
to build a syntactic countermodel to the original sequent.
The required modifications in our case concern the rules
for equality and inductively defined predicates, and also the
need to construct a Henkin class over the model. A fully
detailed proof appears in section 3.3 of [3].

Corollary 3.7 (Eliminability of cut for LKID). If Γ
 ∆ is
provable in LKID then it is cut-free provable.

Proof. If Γ
 ∆ is provable in LKID, it is Henkin valid by
soundness (Proposition 3.5), and hence cut-free provable in
LKID by Theorem 3.6.

Although cut is eliminable, LKID does not enjoy the
subformula property because of the induction rules. This is
an unavoidable phenomenon, and corresponds to the well-
known need for generalising induction hypotheses in induc-
tive arguments. Nevertheless, cut-eliminability for LKID
remains a useful property for constraining proof search;
see [14] for related discussion in the intuitionistic case.
Also, one can show that the eliminability of cut in LKID
implies the consistency of Peano Arithmetic, so there can
be no straightforward combinatorial proof of the result. A
proof of this fact, together with a discussion of the con-
nections between Corollary 3.7 and Takeuti’s Conjecture
(cut-elimination for second-order sequent calculus), ap-
pears in [3], section 3.4.

4. LKIDω: a proof system for infinite descent

We now turn to our infinitary system LKIDω formalizing
a version of proof by infinite descent. The proof rules of the
system are the rules of LKID described in Section 3, except
that for each inductive predicate Pi of Σ, the induction rule
(Ind Pi) of LKID is replaced by the case-split rule:

case distinctions
(Case Pi)

Γ, Piu
 ∆

where for each production having predicate Pi in its con-
clusion, say (Def), there is a corresponding case distinction:

Γ,u = t(x),Q1u1(x), . . . , Qhuh(x),
Pj1t1(x), . . . , Pjmtm(x)
 ∆

where x �∈ FV (Γ∪∆∪{Piu}) for all x ∈ x. The formulas
Pj1t1(x), . . . , Pjmtm(x) occurring in a case distinction are
said to be case-descendants of the active formula Piu.

Example 4.1. The rule for N from Example 2.2 is:

Γ, t = 0
 ∆ Γ, t = sx, Nx
 ∆
(Case N)

Γ, Nt
 ∆

Example 4.2. The rule for E from Example 2.2 is:

Γ, t = 0
 ∆ Γ, t = sx, Ox
 ∆
(Case E)

Γ, Et
 ∆

Our proof system will involve infinite proofs. By a
derivation tree, we mean a possibly infinite tree of sequents
in which each parent sequent is obtained as the conclusion
of an inference rule with its children as premises. We distin-
guish between “leaves” and “buds” in the tree. By a leaf we

mean an axiom, i.e. the conclusion of a 0-premise inference
rule. By a bud we mean any sequent occurrence in the tree
that is not the conclusion of a proof rule.

Definition 4.3 (LKIDω pre-proof). An LKIDω pre-proof of
a sequent Γ
 ∆ is a (possibly infinite) derivation tree D,
constructed according to the proof rules of LKIDω, such
that Γ
 ∆ appears at the root of D and D has no buds.

Definition 4.4 (Trace). Let D be an LKIDω pre-proof and
let (Γi
 ∆i) be a path in D. A trace following (Γi
 ∆i)
is a sequence (τi) such that, for all i:

• τi = Pjiti ∈ Γi, where ji ∈ {1, . . . , n};
• if Γi
 ∆i is the conclusion of (Subst) then τi =

τi+1[θ], where θ is the substitution associated with the
rule instance;

• if Γi
 ∆i is the conclusion of (=L) with active for-
mula t = u then there is a formula F and variables x, y
such that τi = F [t/x, u/y] and τi+1 = F [u/x, t/y];

• if Γi
 ∆i is the conclusion of a case-split rule then
either τi+1 = τi, or τi is the active formula of the rule
instance and τi+1 is a case-descendant of τi. In the
latter case, i is said to be a progress point of the trace;

• if Γi
 ∆i is the conclusion of any other rule then
τi+1 = τi.

An infinitely progressing trace is a trace having infinitely
many progress points.

Definition 4.5 (LKIDω proof). An LKIDω pre-proof D is
an LKIDω proof if it satisfies the global trace condition: for
every infinite path in D, there is an infinitely progressing
trace following some tail of the path.

Example 4.6. Let N, E and O be the predicates given in
Example 2.2. Figure 1 gives the initial part of an LKIDω

proof of the sequent Nx0
 Ex0, Ox0. The sequence
(Nx0, Nx1, Nx1, Nx1, Nx1) is a trace following the dis-
played portion of the path in this pre-proof from the root
sequent along the right-hand branch. This trace progresses
because the second element Nx1 of the trace is a case-
descendant of its first element Nx0. One can easily see that
by continuing the expansion of this derivation, we obtain an
infinite tree with exactly one infinite branch. Furthermore,
there is clearly a trace along this branch with infinitely many
progress points: (Nx0, Nx1, . . . , Nx1, Nx2, . . .), so the
pre-proof thus obtained is indeed an LKIDω proof.

The system LKIDω is a direct extension of the cyclic
proof system of [2] to infinite proof trees, and the soundness
argument for LKIDω is virtually identical to the soundness
proof for the cyclic system. We briefly outline the argu-
ment, since it is helpful in understanding the global trace
condition. The following lemma is a consequence of the
local soundness of the proof rules.

(ER1)
 E0, O0
(=L)

x0 =0
Ex0, Ox0

(etc.)
...

(Case N)
Nx1
 Ex1, Ox1

(OR1)
Nx1
 Ox1, Osx1

(ER2)
Nx1
Esx1, Osx1

(=L)
x0 =sx1, Nx1
Ex0, Ox0

(Case N)
Nx0
Ex0, Ox0

Figure 1. Portion of an LKIDω proof

Lemma 4.7. Let D be an LKIDω pre-proof of Γ0
 ∆0, and
let M be a standard model such that Γ0
 ∆0 is false in M
under the environment ρ0 (say). Then there is an infinite
path (Γi
 ∆i)i≥0 in D and an infinite sequence (ρi)i≥0 of
environments such that:

1. for all i, Γi
 ∆i is false in Mi under ρi;

2. if there is a trace (τi = Pjiti)i≥n following
some tail (Γi
 ∆i)i≥n of (Γi
 ∆i)i≥0, then the
sequence (αi)i≥n of ordinals defined by αi =
least α s.t. ρi(ti) ∈ Pα

ji
, is non-increasing. Further-

more, if j is a progress point of (τi) then αj+1 < αj .

Proposition 4.8 (Soundness). If there is an LKIDω proof of
Γ
 ∆ then Γ
 ∆ is valid relative to standard models.

Proof. (Sketch) Let D be an LKIDω proof of Γ
 ∆. If
Γ
 ∆ is not valid, i.e. false in some standard model M un-
der some environment ρ0, then we can apply Lemma 4.7 to
construct infinite sequences (Γi
 ∆i)i≥0 and (ρi)i≥0 sat-
isfying properties 1. and 2. of the lemma. As (Γi
 ∆i)i≥0

is a path in D, there is an infinitely progressing trace fol-
lowing some tail of the path by Definition 4.5, so by the
second property of the lemma we can construct an infinite
descending chain of ordinals, which is a contradiction.

Note that the essential use of approximants in Lemma 4.7
means that our soundness argument only works for stan-
dard models. In fact, our main result about LKIDω is that
it is complete with respect to standard models. Indeed, we
sharpen this result slightly. We say that a derivation tree is
recursive if it is decidable whether a finite sequence of num-
bers corresponds to a path up the tree from the root (each
number indicating the choice of rule premise determining
the path) and there is a recursive function mapping finite
paths in the tree to the sequents labelling their end nodes.

Theorem 4.9 (Cut-free completeness of LKIDω). If Γ
 ∆
is valid with respect to standard models of (Σ, Φ), then it
has a recursive cut-free proof in LKIDω.

An outline proof is given in Section 5.
Although the completeness theorem shows that every

valid sequent has a proof given by a recursive derivation
tree, the set of valid sequents relative to standard models is
non-arithmetic (one can encode true arithmetic). Thus there
is no way of effectively enumerating any complete subclass
of recursive proofs. Hence LKIDω is (unsurprisingly) not
suitable for formal reasoning.

The closest analogue of Theorem 4.9 we are aware of in
the literature appears in [15]. There, certain refutations are
defined, which can be seen as providing an analogous proof
system to LKIDω for Kozen’s propositional µ-calculus [11].
Indeed, refutations are formulated using a trace-based proof
condition very similar to Defn. 4.5. (Other similar condi-
tions appear in [12, 19].) One of the main results of [15] is
a completeness theorem for refutations. Nevertheless, the
situations are quite different in many respects. The propo-
sition µ-calculus is decidable, whereas validity (w.r.t. stan-
dard models) in our first-order logic is non-arithmetic. Also,
the proof of completeness in [15] is by reduction to Borel
determinacy, whereas ours, presented in Section 5, is direct.

Corollary 4.10 (Cut-eliminability for LKIDω). If Γ
 ∆ is
provable in LKIDω then it is cut-free provable.

Note that, unlike in LKID, cut-free proofs in LKIDω are
quite constrained: every formula appearing in a cut-free
LKIDω proof is either a subformula of a formula appear-
ing in the root sequent, or related to such a formula by a
finite number of definitional unfoldings. While not entail-
ing a true subformula property, cut-eliminability for LKIDω

nonetheless remains close to the spirit of Girard’s “purity of
methods” ideal [7].

5. Outline proof of Theorem 4.9

In this section, we outline our proof (the full details of
which appear in section 4.3 of [3]) of cut-free completeness
for LKIDω with respect to standard models. As in Theo-
rem 3.6, our proof extends the direct style of completeness
argument for first-order logic as in e.g. [5], but, for LKIDω,
but various additional complications arise from the need to
consider infinite proofs and the global trace condition im-
posed upon them.

Given an arbitrary sequent Γ
 ∆, we construct a recur-
sive, possibly infinite LKIDω derivation tree corresponding
to an exhaustive search for a cut-free proof of Γ
 ∆. If
this tree is not an LKIDω proof, then either it contains a bud
node or there exists an infinite branch on the tree that causes
the global trace condition to fail. We use the bud node or in-
finite branch as appropriate to construct a standard model in
which Γ
 ∆ is false. In the latter case, the fact that there
is no infinitely progressing trace along the infinite branch is

used at two points. First, it is needed to show that no se-
quent on the branch is cut-free provable. Second, it is used
to show that the countermodel invalidates the induced limit
sequent.

Definition 5.1 (Schedule). An LKIDω-schedule element for
Σ is defined as follows:

• any formula of the form ¬F , F1 ∧ F2, F1 ∨ F2, or
F1 → F2 is a LKIDω-schedule element;

• for any term t of Σ, variable x, and formula F, the pairs
〈∀xF, t〉 and 〈∃xF, t〉 are LKIDω-schedule elements;

• if Pi is an inductive predicate symbol of arity ki, t is a
sequence of ki terms of Σ, and r is a number such that
Φi,r ∈ Φ, then the pair 〈Pit, r〉 is an LKIDω-schedule
element;

• for any terms t and u, variables x and y, and finite sets
of formulas Γ and ∆, the tuple 〈t = u, x, y, Γ, ∆〉 is
an LKIDω-schedule element.

An LKIDω-schedule for Σ is then a recursive enumeration
(Ei)i≥0 of schedule elements of Σ such that every schedule
element of Σ appears infinitely often in the enumeration.

Henceforth, we assume a fixed LKIDω-schedule (Ei)i≥0

and sequent Γ
 ∆.

Definition 5.2 (Search tree). We define an infinite sequence
of (Ti)i≥0 of derivation trees such that T0 is the single-node
tree Γ
 ∆ and Ti is a subtree of Ti+1 for all i ≥ 0. We
inductively assume we have constructed Tj and show how
to construct Tj+1.

In general Tj+1 will be obtained by replacing certain bud
nodes of Tj with derivation trees, whence it is clear that
Tj+1 is also a derivation tree as required. Firstly, we re-
place any bud of Tj that is an instance of the conclusion of
an axiom rule with the derivation consisting of a single in-
stance of that axiom. Let F be the formula component of
Ej , the jth element in the schedule for Σ. We replace any
bud of Tj that contains F with the derivation obtained by
applying the sequent rule (−L) or (−R) as appropriate with
active formula F , performing any required instantations us-
ing the extra information in Ej as appropriate.

For example, if F is of the form Ej = 〈Piu, r〉, then
Tj+1 is obtained by first replacing every bud Γ′
 ∆′ in Tj

that satisfies Piu ∈ Γ′ with the derivation:

case distinctions
(Case Pi)

Γ′
 ∆′

and then, assuming Φi,r is of the form (Def), and only if we
have u = t(u′) for some u′, replacing every bud Γ′
 ∆′ of
the resulting tree that satisfies Piu ∈ ∆′ with the derivation:

Γ′
 Q1u1(u′), ∆′ . . . Γ′
 Qhuh(u′), ∆′

Γ′
 Pj1t1(u′), ∆′ . . . Γ′
 Pjmtm(u′), ∆′
(PiRr)

Γ′
 ∆′

Note that the above construction is performed in such
way that ensures that each sequent in the tree is a subsequent
of all its premises.

The search tree for Γ
 ∆ is then defined to be Tω, the
infinite tree obtained by considering the limit as i → ∞ of
the sequence of (finite) derivation trees (Ti)i≥0. By con-
struction, the search tree is recursive and cut-free.

Henceforth in the proof, we assume that the search tree
Tω is not an LKIDω proof. If Tω is not even a pre-proof,
then it contains some bud, for which we write Γω
 ∆ω .
Otherwise, Tω is a pre-proof but not a proof. In this case,
the global trace condition fails, so there exists an infinite
path π = (Γi
 ∆i)i≥0 in Tω such that there is no infinitely
progressing trace following any tail of π. We call this π the
untraceable branch of Tω. Define Γω =

⋃
i≥0 Γi and ∆ω =⋃

i≥0 ∆i. (Note that we have Γi ⊆ Γi+1 and ∆i ⊆ ∆i+1

by construction of Tω.) In either case, we call Γω
 ∆ω the
limit sequent. Strictly speaking Γω
 ∆ω is not a sequent
since the sets Γω, ∆ω may be infinite. We say that such
an infinite “sequent” is cut-free provable to mean that some
finite subsequent has a cut-free proof.

Lemma 5.3. The sequent Γω
 ∆ω is not cut-free provable.

Proof. (Sketch) The case that Γω
 ∆ω is a bud node is
easy (if it were cut-free provable some schedule element
would apply to it contradicting it being a bud node). So we
assume that Tω is a pre-proof but not a proof and let π =
(Γi
 ∆i)i≥0 be the untraceable branch. It suffices to show
that no Γi
 ∆i has a cut-free proof. So, for contradiction,
we assume that T is a cut-free proof of Γi
 ∆i.

Let Γ′
 ∆′ be any node in T , let (R) be the rule applied
in T with active formula F (say) and conclusion Γ′
 ∆′,
and suppose Γ′ ⊆ Γj and ∆′ ⊆ ∆j for some j ≥ i. As F
appears infinitely often on the schedule according to which
Tω is constructed, it follows that there is a k ≥ j such that
F is the active formula of an instance of (R) in Tω with
conclusion Γk
 ∆k. Since the untraceable branch is in-
finite, it follows that (R) is not an axiom. Therefore, for
some premise Γ′′
 ∆′′ of the considered instance of rule
(R) in T , we have Γ′′ ⊆ Γk+1 and ∆′′ ⊆ ∆k+1. This
situation is illustrated in Figure 2. Since Γi ⊆ Γi+1 and
∆i ⊆ ∆i+1 for all i ≥ 0, it follows that if (τ, τ ′) is a (pro-
gressing) trace following the edge (Γ′
 ∆′, Γ′′
 ∆′′) in
T , then (τ, . . . , τ, τ ′) is a (progressing) trace following the
subpath (Γj
 ∆j , . . . , Γk
 ∆k, Γk+1
 ∆k+1) of π.

Now since the root of T is Γi
 ∆i and trivially
Γi ⊆ Γi and ∆i ⊆ ∆i, we can repeat the argument in
the preceding paragraph infinitely often to obtain a path
π′ = (Γ′

j
 ∆′
j)j≥0 in T and a sequence k0 < k1 <

k2 < . . . of natural numbers, where k0 = i, such
that, for all n ≥ 0, if (τ, τ ′) is a (progressing) trace
following the edge (Γ′

n
 ∆′
n, Γ′

n+1
 ∆′
n+1) in T , then

Γ′ ⊆ Γj
 ∆j ⊇ ∆′
...

T
...

. . . Γ′′
 ∆′′ . . .
(R)

Γ′
 ∆′
...

π
...

Γ′′ ⊆ Γk+1
 ∆k+1 ⊇ ∆′′
(R)

Γj ⊆ Γk
 ∆k ⊇ ∆j

Figure 2. Part of the proof of Lemma 5.3.

(τ, . . . , τ, τ ′) is a (progressing) trace following the subpath
(Γkn
 ∆kn , . . . , Γkn+1
 ∆kn+1) of π in Tω.

Since T is a proof, there is an infinitely progressing trace
following some tail of the constructed path π′ in T . By
piecing together the induced trace segments in Tω defined
above, it follows that there then is an infinitely progressing
trace following some tail of the untraceable path π in Tω.
But this contradicts the defining property of π. So there
cannot exist a cut-free LKIDω proof of Γi
 ∆i.

Definition 5.4. Define the relation ∼ to be the smallest con-
gruence relation on terms of Σ that satisfies: t1 ∼ t2 when-
ever (t1 = t2) ∈ Γω. We write [t] for the equivalence class
of t with respect to ∼, i.e. [t] = {u | t ∼ u}. If t =
(t1, . . . , tk) then we shall write [t] to mean ([t1], . . . , [tk]).

Lemma 5.5. If t ∼ u then, for any formula F , it holds that
Γω
 F [t/x] is cut-free provable if and only if Γω
 F [u/x]
is cut-free provable.

Proof. By induction on the conditions defining t ∼ u.

Definition 5.6 (Counter-interpretation). Define a standard
model Mω for Σ by:

• the domain of Mω is the set of equivalence classes of
Σ-terms w.r.t. ∼;

• for any function symbol f in Σ of arity k ≥ 0,
fMω([t1], . . . , [tk]) = [f(t1, . . . , tk)];

• for any ordinary predicate symbol Q in Σ of ar-
ity k, QMω ([t1], . . . , [tk]) ⇔ ∃u1, . . . , uk. t1 ∼
u1, . . . , tk ∼ uk and Q(u1, . . . , uk) ∈ Γω.

(This fixes an interpretation for P1, . . . , Pn since Mω is a
standard model.) Also, we define an environment ρω for
Mω by ρω(x) = [x] for all variables x. Then (Mω, ρω) is
called the counter-interpretation for Γω
 ∆ω.

Lemma 5.7. For any inductive predicate Pi, if Mω |=ρω

Pit then Γω
 Pit is cut-free provable.

Proof. (Sketch) It can easily be established that ρω(t) =
[t], whence we immediately have Mω |=ρω Pit ⇔ [t] ∈⋃

α Pα
i . Now define an n-tuple of sets (X1, . . . , Xn) by:

Xi = {[t] | Γω
 Pit cut-free provable} for each i ∈
{1, . . . , n}. By Lemma 5.5 we also have that Γω
 Pit is
cut-free provable iff [t] ∈ Xi. It thus suffices to prove that
(X1, . . . , Xn) is a prefixed point of ϕΦ; as the interpreta-
tion of the inductive predicates is the least prefixed point of
ϕΦ, this establishes Pα

i ⊆ Xi and we are done.
To see that (X1, . . . , Xn) is indeed a prefixed point of

ϕΦ, it suffices to show that ϕi,r(X1, . . . , Xn) ⊆ Xi for an
arbitrary production Φi,r ∈ Φ. This follows from the fact
that cut-free provability from Γω is closed under the right-
introduction rule (PiRr).

Lemma 5.8. If F ∈ Γω then Mω |=ρω F , and if F ∈ ∆ω

then Mω �|=ρω F .

Proof. (Sketch) The proof proceeds by structural induction
on F . Except for the case in which F = Pit for Pi an
inductive predicate, the argument is exactly as for first-order
logic with equality, crucially applying Lemmas 5.3 and 5.5
to infer that atomic formulas in ∆ω are false.

For the case F = Pit, the second part of the lemma
follows from Lemma 5.7. For the first part, suppose for
contradiction that Piu ∈ Γω but Mω �|=ρω Piu. By the
construction of Tω, it follows that there is a point along the
untraceable branch π at which the rule (Case Pj) is applied
with active formula Piu, and so one of the case distinction
premises of this rule instance, say:

Γ,u = t(x),Q1u1(x), . . . , Qhuh(x),
Pj1t1(x), . . . , Pjmtm(x)
 ∆

is a subsequent of Γω
 ∆ω . It is easy to show that the for-
mulas u = t(x), Q1u1(x), . . . , Qhuh(x) are thus true in
Mω under ρω. Since Piu is false in Mω under ρω, it follows
by the definition of the operator ϕΦ and the closure of PMω

i

under ϕΦ that some case-descendant of Piu, say Pjk
tk(x),

must also be false in Mω under ρω. Furthermore, there is a
progressing trace (Piu, . . . , Piu, Pjk

tk(x)) following a fi-
nite segment of the untraceable branch π (starting with the
point where Piu first appears on the left of some sequent on
the branch and finishing with the case distinction in which
Pjk

tk(x) appears). But, since Pjk
tk(x) is again false in

Mω under ρω, we can apply the same argument to it as was
previously applied to Piu to obtain a false case-descendant
of Pjk

tk(x) and a progressing trace segment on π continu-
ing from the first, and so on; and we conclude that there is
an infinitely progressing trace following a tail of π, which
gives the required contradiction.

We can now complete the proof of Theorem 4.9. Sup-
pose that Γ
 ∆ is valid, i.e. true in every standard model
of (Σ, Φ), but that the search tree Tω for Γ
 ∆ is not an

LKIDω proof. Let Γω
 ∆ω be the limit sequent for Γ
 ∆
with counter-interpretation (Mω, ρω) (cf. Definition 5.6).
By Lemma 5.8, the sequent Γω
 ∆ω is false in the stan-
dard model Mω under the environment ρω. Because Γ
 ∆
is a subsequent of every sequent appearing in Tω by con-
struction, it is a subsequent of Γω
 ∆ω, so Γ
 ∆ is false
in Mω, i.e. Γ
 ∆ is invalid, which is a contradiction. Thus
the recursive, cut-free search tree Tω is a LKIDω proof of
the sequent Γ
 ∆.

6. CLKIDω: a cyclic subsystem of LKIDω

In this section we revisit the “cyclic proof system” first
presented in [2]. The reader is referred to [2, 3] for proofs.

In the context of the present paper, the cyclic system,
here called CLKIDω, arises naturally by restricting LKIDω

to proofs given by regular trees, i.e. those that have only
finitely many distinct subtrees. For example, although the
LKIDω proof of Figure 1 is not regular (since it contains in-
finitely many distinct variables x0, x1, x2, . . .), it is easily
transformed into a regular proof by using the substitution
rule to insert a new sequent Nx0
Ex0, Ox0 above the top-
most sequent depicted. Concretely, regular LKIDω proofs
can be represented as finite graphs.

Definition 6.1 (Companion). Let B be a bud of a derivation
tree D. An internal node C in D is said to be a companion
for B if they have the same sequent labelling.

Definition 6.2 (Cyclic pre-proof). A CLKIDω pre-proof of
Γ
 ∆ is a pair (D,R), where D is a finite derivation tree
constructed according to the rules of LKIDω given in Sec-
tion 4 and whose root is Γ
 ∆, and R is a function assign-
ing a companion to every bud node in D.

The graph of P is the graph obtained from D by identi-
fying each bud node B in D with its companion R(B).

A CLKIDω pre-proof is then a proof if its graph satisfies
the global trace condition of Definition 4.5. It follows im-
mediately that any CLKIDω proof can easily be considered
as an LKIDω proof, so that CLKIDω is indeed a subsystem
of LKIDω. Since the global trace condition is an ω-regular
property, we have (as in [15, 19, 12]):

Proposition 6.3. It is decidable whether a CLKIDω pre-
proof is a CLKIDω proof.

The following result from [2] gives a translation from
LKID to CLKIDω:

Theorem 6.4 ([2]). Every LKID proof of Γ
 ∆ can be
transformed into a CLKIDω proof of Γ
 ∆.

Interestingly, this translation makes essential use of both the
cut and substitution rules in CLKIDω. Indeed, it seems that
neither rule is eliminable from the system CLKIDω . (The

importance of substitution is already illustrated in the dis-
cussion of Figure 1 above.) Nevertheless, CLKIDω arises
naturally as the restriction of a complete infinitary proof
system to proofs with finite representation. The main open
question relating to it is whether the converse to Theo-
rem 6.4 holds. We strongly believe this to be the case, and
hence present it as a conjecture.

Conjecture 6.5 ([2]). If there is a CLKIDω proof of Γ
 ∆
then there is an LKID proof of Γ
 ∆.

This conjecture does not seem straightforward. For ex-
ample, the methods applied in [20], which show, in a differ-
ent setting, the equivalence of a weaker global proof con-
dition with a local transfinite induction principle, do not
adapt. The difficulties are reminiscent of those in proving
the completeness of Kozen’s axiomatization of the modal µ-
calculus [11]. On the one hand, there is an analogy between
regular µ-calculus refutations [15] and proofs in CLKIDω.
On the other hand, there is an analogy between proofs in
Kozen’s system, and proofs in LKID. Walukiewicz’ so-
lution to the µ-calculus completeness problem [22] estab-
lished the equivalence of the two, but it is far from clear
whether similar methods are applicable in our setting.

7. Future work

One direction for further research is to investigate
whether more liberal subsystems of LKIDω than CLKIDω

are also suitable for formal proof. For example, one might
restrict to proofs generated by pushdown automata or by
recursion schemata, over which the global trace condition
is still decidable. We wonder if such proofs lead to an in-
crease in power over regular proofs. Further, we wonder
if, for some suitably chosen such class of proofs, the cut
rule is eliminable. In another direction, one might also con-
sider more restrictive systems obtained by tightening the
global trace condition to improve its computational com-
plexity (cf. [12, 19, 3]).

We comment that it should be relatively straightforward
to extend our proof systems LKID, LKIDω and CLKIDω

(together with the completeness results for the first two) to
more general (co)inductive definition schemas, for example
to iterated inductive definitions [13], or to the first-order µ-
calculus, cf. [20].

It remains to be seen whether our investigations will be
of any use to the formal reasoning community. In this re-
gard, we believe our main contribution is in providing a firm
foundation for cyclic reasoning, generalizing the heuristic
conditions applied in practice. Plausibly, cyclic reasoning
is likely to prove especially useful for demonstrating prop-
erties of mutually defined relations, for which the associated
induction principles are often extremely complex.

References

[1] P. Aczel. An introduction to inductive definitions. In Hand-
book of Math. Logic, pages 739–782. North-Holland, 1977.

[2] J. Brotherston. Cyclic proofs for first-order logic with in-
ductive definitions. In Proceedings of TABLEAUX 2005,
Springer LNAI 3702, pages 78–92, 2005.

[3] J. Brotherston. Sequent Calculus Proof Systems for Induc-
tive Definitions. PhD thesis, Univ. Edinburgh, Nov. 2006.
Available from: http://www.doc.ic.ac.uk/∼jbrother/

[4] A. Bundy. The automation of proof by mathematical in-
duction. In Handbook of Automated Reasoning, volume I,
chapter 13, pages 845–911. Elsevier, 2001.

[5] S. R. Buss. Handbook of Proof Theory. Elsevier, 1998.
[6] A. Degtyarev and A. Voronkov. Equality reasoning in

sequent-based calculi. In Handbook of Automated Reason-
ing, volume I, chapter 10, pages 611–706. Elsevier, 2001.

[7] J.-Y. Girard. Proof Theory and Logical Complexity, vol-
ume 1. Bibliopolis, 1987.

[8] G. Hamilton. Poı́tin: Distilling theorems from conjectures.
In Proc. of the 12th Symposium on the Integration of Sym-
bolic Computation and Mechanized Reasoning, 2005.

[9] J. Harrison. Inductive definitions: automation and applica-
tion. In Proc TPHOLs, Springer LNCS 971, pages 200–213,
1995.

[10] L. Henkin. Completeness in the theory of types. Journal of
Symbolic Logic, 15:81–91, 1950.

[11] D. Kozen. Results on the propositional mu-calculus. Theo-
retical Computer Science, 27:333–354, 1983.

[12] C. S. Lee, N. D. Jones, and A. M. Ben-Amram. The size-
change principle for program termination. ACM SIGPLAN
Notices, 36(3):81–92, 2001.

[13] P. Martin-Löf. Haupstatz for the intuitionistic theory of iter-
ated inductive definitions. In Proc. 2nd Scandinavian Logic
Symposium, pages 179–216. North-Holland, 1971.

[14] R. McDowell and D. Miller. Cut-elimination for a logic with
definitions and induction. Theoretical Computer Science,
232:91–119, 2000.

[15] D. Niwiński and I. Walukiewicz. Games for the µ-calculus.
Theoretical Computer Science, 163:99–116, 1997.

[16] C. Paulin-Mohring. Inductive definitions in the system Coq:
Rules and properties. In Proceedings of TLCA’93, Springer
LNCS 664, pages 328–345, 1993.

[17] C. Schürmann. Automating the Meta-Theory of Deductive
Systems. PhD thesis, Carnegie-Mellon University, 2000.

[18] K. Slind. Derivation and use of induction schemes in higher-
order logic. In Proc. TPHOLs, Springer LNCS 1275, 1997.

[19] C. Sprenger and M. Dam. A note on global induction mech-
anisms in a µ-calculus with explicit approximations. Theo-
retical Informatics and Applications, July 2003.

[20] C. Sprenger and M. Dam. On the structure of inductive rea-
soning: circular and tree-shaped proofs in the µ-calculus.
Proc. FOSSACS, Springer LNCS 2620, pp.425–440, 2003.

[21] A. Tiu. A Logical Framework For Reasoning About Logical
Specifications. PhD thesis, Penn. State University, 2004.

[22] I. Walukiewicz. Completeness of Kozen’s axiomatisation of
the propositional µ-calculus. Information and Computation,
157:142–182, 2000.

[23] C.-P. Wirth. Descente infinie + Deduction. Logic Journal of
the IGPL, 12(1):1–96, 2004.

