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In this article, we investigate the logical structure of memory models of theoretical and practical interest.
Our main interest is in “the logic behind a fixed memory model”, rather than in “a model of any kind behind
a given logical system”. As an effective language for reasoning about such memory models, we use the
formalism of separation logic. Our main result is that for any concrete choice of heap-like memory model,
validity in that model is undecidable even for purely propositional formulas in this language.

The main novelty of our approach to the problem is that we focus on validity in specific, concrete memory
models, as opposed to validity in general classes of models.

Besides its intrinsic technical interest, this result also provides new insights into the nature of their decid-
able fragments. In particular, we show that, in order to obtain such decidable fragments, either the formula
language must be severely restricted or the valuations of propositional variables must be constrained.

In addition, we show that a number of propositional systems that approximate separation logic are unde-
cidable as well. In particular, this resolves the open problems of decidability for Boolean BI and Classical BI.

Moreover, we provide one of the simplest undecidable propositional systems currently known in the
literature, called “Minimal Boolean BI”, by combining the purely positive implication-conjunction fragment
of Boolean logic with the laws of multiplicative ∗-conjunction, its unit and its adjoint implication, originally
provided by intuitionistic multiplicative linear logic. Each of these two components is individually decidable:
the implication-conjunction fragment of Boolean logic is co-NP-complete, and intuitionistic multiplicative
linear logic is NP-complete.

All of our undecidability results are obtained by means of a direct encoding of Minsky machines.

Categories and Subject Descriptors: F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying
and Reasoning about Programs—Logics of programs; assertions; F.4.1 [Mathematical Logic and Formal
Languages]: Mathematical Logic—Model theory; proof theory

General Terms: Theory, Verification

Additional Key Words and Phrases: Separation logic, undecidability, memory models, bunched logic

ACM Reference Format:
James Brotherston and Max Kanovich. 2014. Undecidability of propositional separation logic and its neigh-
bours. J. ACM 61, 2, Article 14 (April 2014), 43 pages.
DOI: http://dx.doi.org/10.1145/2542667

1. INTRODUCTION

In this article, we investigate the logical structure of natural memory models of theo-
retical and practical interest, our main focus being “the logic behind a fixed memory
model” rather than “a model of any kind behind a given logical system”. We use sep-
aration logic to provide a formula language for such memory models, justified by the
fact that, among other things, within this language we can explicitly express basic
operations over memories, such as the conflict-free union of disjoint pieces of mem-
ory. Furthermore, in the last decade separation logic has become well-established as
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a practically effective formalism for specifying the properties of such memory mod-
els and reasoning about programs that manipulate memory, in the form of pointers,
heaps, stacks, etc. [Reynolds 2002; Ishtiaq and O’Hearn 2001; Calcagno et al. 2007].
Automated shape analysis tools based upon separation logic are capable of verifying
properties of large industrial programs [Yang et al. 2008; Calcagno et al. 2011], and
have been adapted to a variety of paradigms such as object-oriented programming
[Parkinson and Bierman 2008; Distefano and Parkinson 2008; Gardner et al. 2012]
and concurrent programming [Dodds et al. 2009; Gotsman et al. 2009].

Separation logic is usually based on a memory-oriented mathematical model of heap
partitioning. In addition to the standard “additive” Boolean connectives, which are
read in the usual way, separation logic features certain “multiplicative” connectives
which are interpreted as operations in this model. The most important of these is
the so-called separating conjunction ∗, which generally denotes a partial operator for
composing heaps whose domains are disjoint: A1 ∗ A2 denotes the set of heaps which
can be split into two disjoint heaps satisfying, respectively, A1 and A2. The separating
conjunction ∗ comes along with its unit I, which denotes the empty heap, and its adjoint
implication A1 —∗ A2, denoting those heaps whose extension with any heap satisfying
A1, satisfies A2. Depending on the application, first-order quantifiers and inductively
defined predicates may also be included in the logic.

One of our main contributions in this article is that, irrespective of the choice
of underlying memory model, separation logic is undecidable, even at the purely
propositional level.

The novelty of our approach to the problem is that we focus on concrete memory
models of practical interest, and prove that, whichever concrete heap-like memory
model we choose, the validity of propositional separation logic formulas in that model
is undecidable. The models we consider—which include the most common memory
models used in practice—are listed in Section 2.

As an immediate corollary of this strict result about validity in fixed models, we also
obtain undecidability of validity in various classes of such models, and undecidability
of provability in several closely related propositional systems.

1.1. Validity in Fixed Models vs. Validity in Classes of Models

Validity in a fixed model of practical interest is a much more subtle problem than
validity in general classes of models.

As usual, to demonstrate that a validity problem in a classes of models is undecid-
able, we aim to exhibit a reduction from the halting problem for a suitable class of
machines. In our case, these are nondeterministic, 2-counter Minsky machines. Thus,
given a formal system, we can construct a provable formula FM,C in its language which
is intended to represent the termination of the Minsky machine M from the configu-
ration C. By soundness of the system, provability of FM,C implies its validity in some
class of models.

In order to prove the faithfulness of our encoding, we have to show the converse
direction that if FM,C is valid in this class of models then M terminates from C. Now,
traditionally, to show that a formula F has the desired property Q given that F is valid
in a class of models, one constructs some “canonical” model M in this class such that
validity of F in this specially designed model M implies Q.

However, when we consider the problem of validity in a concrete model M0 specified
in advance, we have no such freedom. Instead, we have to show Q given only that F is
valid in this fixed concrete model M0. The difficulty of this task is that there is no ad
hoc connection between the given model M0 (of practical interest) and the artificially
designed “canonical” model M one would normally seek to create.
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Since existing decidable fragments of separation logic are based on concrete models,
an additional advantage of our approach is that our undecidability results for these
models illuminate the restrictions on these fragments. In particular, it transpires that
undecidability is closely connected to the tradeoff between finite and infinite valuations
of the atomic propositions (cf. Section 10).

Seen as a proof system, separation logic invokes a first-order extension of the propo-
sitional bunched logic Boolean BI [Ishtiaq and O’Hearn 2001]. Bunched logics, originat-
ing in the “logic of bunched implications” BI [O’Hearn and Pym 1999], can be conceived
of as substructural logics that combine a standard propositional logic with various
“multiplicative” connectives originally provided by linear logic (cf. Pym [2002] and
Brotherston [2012]). Their practical significance for computer science stems from
their Kripke-style truth interpretation in which the “worlds” of the Kripke models are
understood as resources [Ishtiaq and O’Hearn 2001; Pym et al. 2004; Brotherston and
Calcagno 2010].

In proving our main undecidability results, we also establish the undecidability of
provability in several propositional systems based on bunched logic. In particular,
these include the bunched logics Boolean BI [Ishtiaq and O’Hearn 2001] and Classi-
cal BI [Brotherston and Calcagno 2010].

1.2. Summary of the Structure of the Article

The remainder of this article is structured as follows:
First, in Section 2, we list a series of natural memory models of theoretical and/or

practical interest in various subfields of computer science and mathematics. Then, in
Section 3, we give the formula language and semantics of propositional separation logic,
which is suitable for expressing properties of these memory models, and, in Section 4,
we present a number of propositional logical systems that arise naturally in developing
towards an axiomatisation of separation logic and memory models.

An overview of our undecidability results and the proof methodology used to establish
them is then given in Section 5. The proofs themselves occupy Sections 6–9, which are
mainly technical.

In Section 6, we give a minimal version of Boolean BI, called Minimal BBI, in which
negation and falsum are disallowed; this system looks “as simple as possible”, but is
nonetheless proved to be undecidable.

In Section 7, we encode two-counter Minsky machines as sequents of Minimal BBI
so that whenever the machine M terminates from configuration C, the corresponding
sequent FM,C is provable in Minimal BBI. The proof of this fact is given in Section 8. By
soundness, the sequent FM,C is then valid in any memory model chosen from Section 2.

Then, in Section 9, we show that whenever FM,C is valid in one of these concrete
models listed in Section 2, the machine M must terminate from configuration C. The
proof of this fact is divided into two stages. First, we consider an intermediate partial
RAM-domain model (cf. Section 2.5), a degenerate heap model in which the information
content of the memory cells is removed, leaving only their “address space”. Then, we
establish the necessary connection between validity in the RAM-domain model and
validity in any of the actual heap-like memory models.

It follows from the main results outlined previously that “any property between
provability in Minimal BBI and validity in a heap-like model is undecidable” (see
Figure 1, Section 5).

In Section 10, we examine the limitations on decidable fragments of memory mod-
els imposed by our undecidability results. Of course, one option for obtaining such
decidable fragments is to constrain the formula language so that sequents of the
form FM,C cannot be expressed, which can be done, for example, by excluding the
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multiplicative implication —∗, as happens in Berdine et al. [2004] and in most of the veri-
fication tools employing separation logic (cf. Yang et al. [2008], Distefano and Parkinson
[2008], and Calcagno et al. [2011]).

Oddly enough, however, it also happens that validity under all finite valuations for
atomic propositions in a heap-like model does not imply general validity in that model.
Consequently, at least in some models, decidable fragments of memory models can be
obtained by restricting valuations to be finite (cf. Calcagno et al. [2001]).

In Section 11, we consider “dualising” separation models and related propositional
systems based on Classical BI [Brotherston and Calcagno 2010]. Models of Classical BI
differ from the models in Section 2 in that every element is required to have a unique
dual; thus, for example, every Abelian group is a model of Classical BI (in which the
dual of element is its group inverse), as are bit arrays (where the dual of an array
is given by inverting each of its bits). Classical BI is a nonconservative extension of
Boolean BI, and thus validity in its models behaves quite differently. Nevertheless, we
show that our encoding of Minsky machines also yields undecidability of systems based
on Classical BI, and undecidability of validity in associated classes of models.

1.3. Related Work

The present article is an extended and revised version of a conference paper which
appeared at LICS 2010 [Brotherston and Kanovich 2010].

Here, we report on the main developments in the literature related to our unde-
cidability results, both before and since their original publication in Brotherston and
Kanovich [2010].

—The decidability of the bunched logic Boolean BI (BBI, for short) was widely consid-
ered an open problem for quite a long time (see, e.g., Galmiche and Larchey-Wendling
[2006]). As mentioned previously, undecidability of Boolean BI is a consequence of
our general undecidability results for fixed heap-like memory models. However, im-
mediately prior to publication of Brotherston and Kanovich [2010], we discovered
that undecidability of BBI can in fact be deduced from the undecidability of equa-
tional theories over commutative residual monoids claimed in Kurucz et al. [1995].
More precisely, Kurucz et al. [1995] contains the claim that the equational theory
of “CRM” (standing for “Commutative Residuated Monoids”), a certain class of alge-
bras defined in Jipsen’s Ph.D. dissertation [Jipsen 1992], is undecidable. Following
the reference to Jipsen [1992], one can see that the equational theory of CRM cor-
responds exactly to the usual notion of provability in BBI. The (rather complicated)
proof that CRM is indeed undecidable appears, we believe, only in Kurucz’s Ph.D.
dissertation [Kurucz 1997].

—Another alternative proof of the undecidability of BBI was given independently
by Larchey-Wendling and Galmiche [2010], which appeared at the same time
as Brotherston and Kanovich [2010]. Their proof works via an embedding of BBI
into a certain fragment of intuitionistic linear logic, where validity according to
the standard phase semantics of linear logic is interpreted using a trivial closure
operator. Then, they show that their considered fragment of linear logic is both
undecidable and complete with respect to this trivial phase semantics. Undecidabil-
ity of their fragment is based upon a specifically chosen total commutative monoid
(N × N,+, (0, 0)) and obtained via an encoding of two-counter Minsky machines (their
encoding differs from ours).

—More recently, in Larchey-Wendling and Galmiche [2013], it is additionally shown
how to adapt the undecidability proof technique of Larchey-Wendling and Galmiche
[2010] to the RAM-domain model (cf. Section 2.5) via bisimulation with the model
(N × N,+, (0, 0)).
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In summary, our results, both here and in Brotherston and Kanovich [2010], over-
lap with Kurucz et al. [1995] and Larchey-Wendling and Galmiche [2010] only with
respect to the individual result of undecidability of BBI (which is obtained by rather
different techniques in all cases). The recent journal publication [Larchey-Wendling
and Galmiche 2013] overlaps a little further in that it establishes undecidability also
for validity in the RAM-domain model (which can be seen as a degenerate heap model in
which cell contents, permissions, stacks, etc. are disallowed). The recent journal pub-
lication [Larchey-Wendling and Galmiche 2013] also provides an alternative way to
establish undecidability for validity in the RAM-domain model (which can be seen as a
degenerate heap model in which cell contents, permissions, stacks, etc. are disallowed).

There are at least three main areas in which our work is distinguished from the
aforementioned work.

(a) First, we establish the undecidability of validity for any choice of fixed memory
model drawn from a spectrum of such models found in the literature, as listed in
Section 2.

(b) Second, this proof of undecidability follows from a direct encoding of Minsky ma-
chines as “sequents” of the language of separation logic. Though the primary rôle
of such an encoding is purely technical, our encoding also enjoys a pedagogically
instructive modular structure. Each machine instruction is encoded with a formula
that clearly explains the instruction’s action. The ability to reuse instructions any
number of times is provided by a nontrivial proof principle which we identify as re-
stricted ∗-contraction. From the point of view of our memory models, this principle
semantically relies upon the fact that the empty heap can be “split” into two empty
heaps.

(c) Third, we shed light on the nature of decidable fragments of separation logic;
specifically, we show that to obtain decidability either the formula language or the
valuations of propositional variables must be constrained.

We remark that separation logic was conceived as a formalism to aid program ver-
ification, where typically a fixed memory model is considered. For this reason, we see
the undecidability questions about validity in such models as being of primary impor-
tance. There is no ad hoc relationship between such problems and undecidability of
validity in simpler models, or indeed undecidability of provability in BBI or related
systems, which are typically incomplete.1 Of course, it is also gratifying to be able to
resolve these latter questions as a matter of historical and/or aesthetic interest. For
those interested in such matters, our method does yield undecidability of BBI based on
validity in arguably its simplest possible natural model: the total commutative monoid
(L+,∪,∅), where L+ is the set of finite multisets over a finite set L. See Section 9.5 for
details.

2. MEMORY MODELS OF THEORETICAL AND PRACTICAL INTEREST

In this section, we list a series of models employing a memory-like concept that are
encountered in various areas of computer science and mathematics.

2.1. Heap Models

A heap model [Ahmed et al. 2003; Ishtiaq and O’Hearn 2001; Reynolds 2002] is given
by

(H, ◦, {e}),

1However, Brotherston and Villard [2014] have recently showed how to construct certain extensions of BBI
based on hybrid logic that are complete for various classes of memory models.
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where H is the set of heaps - that is, finite partial functions from an infinite set of
locations L into a set of record values RV . The domain of a heap h is the finite set of
locations on which h is defined.

The operation ◦ is the union of heaps when their domains are disjoint, and undefined
otherwise:

h1 ◦ h2 =
{

h1 ∪ h2 if h1, h2 have disjoint domains
undefined otherwise.

The unit e of ◦ is the empty heap - that is, the function with the empty domain.
(We represent the unit with the singleton {e} for consistency with later models em-

ploying a set of units rather than a single unit.)

2.2. Stack-and-Heap Models

Stack-and-heap models, as used to model Java memory [Parkinson et al. 2006], are
given by

(S × H, ◦, E),

where H is a set of heaps as defined in the previous subsection, and S is a set of stacks,
which are finite partial functions from variables Var to stack values Val.

The combination operation ◦ for stack-heap pairs is defined as follows:

〈s1, h1〉 ◦ 〈s2, h2〉 =
{〈s1, h1 ◦ h2〉 if s1 = s2 and h1 ◦ h2 is defined (by Section 2.1)

undefined otherwise.

Here, the set of units E consists of all pairs 〈s, e〉 where s ∈ S and e is the empty heap.

2.3. Heap-with-Permission Models

In heap or stack-and-heap models, enforcing the nonoverlapping of domains allows
us to avoid possible “read-write” memory conflicts when combining heaps. The heap-
with-permission models [Bornat et al. 2005] relax this strict condition; they allow
overlapping heaps to be combined, providing that their values agree and “permission”
for combination is permitted at all overlapping locations. Permissions are encapsulated
by an underlying permission algebra

(P, •,1),

which is a set P equipped with a partial, commutative, cancellative, and associative
operation •, and a distinguished element 1 (the “write permission”) such that 1 • π is
undefined for all π ∈ P.

Given such a permission algebra, a heap-with-permission model is then given by

(H, ◦, {e}),
where H is the set of heaps-with-permissions, which are finite partial functions from
an infinite set of locations L to a set of pairs from RV × P.

We say that two such heaps h1 and h2 are compatible at � if h1(�) = 〈v, π1〉,
h2(�) = 〈v, π2〉 and π1 • π2 is defined. If h1 and h2 are compatible at all � from the
intersection of their domains, then h1 ◦ h2 is defined as follows:

(h1 ◦ h2)(�) =

⎧⎪⎨
⎪⎩

〈v, π1 • π2〉 if h1(�) = 〈v, π1〉 and h2(�) = 〈v, π2〉
h1(�) if h1(�) defined and h2(�) undefined
h2(�) if h1(�) undefined and h2(�) defined
undefined otherwise.

If h1 and h2 are not compatible at some common �, then h1 ◦h2 is undefined. As in these
heap models, the unit e is the heap with the empty domain.
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2.4. Stack-and-Heap-with-Permission Models

Combining the stack-and-heap models of Section 2.2 with the heap-with-permission
models of Section 2.3, we obtain the general class of stack-and-heap-with-permission
models (cf. Parkinson et al. [2006]), given by

(S × H, ◦, E),

where S is a set of stacks as defined in Section 2.2, and H is a set of heaps-with-
permissions (with underlying permission algebra) as defined in Section 2.3.

The combination of stack and heap-with-permission pairs is then given by the com-
bination operations in Sections 2.2 and 2.3 in the obvious way:

〈s1, h1〉 ◦ 〈s2, h2〉 =
{〈s1, h1 ◦ h2〉 if s1 = s2 and h1 ◦ h2 is defined (by Section 2.3)

undefined otherwise.

Again, the set of units E consists of all pairs 〈s, e〉 where s ∈ S and e is the empty heap.

2.5. The RAM-Domain Model

In order to simplify our undecidability constructions, we consider a degenerate version
of the heap model in which we remove the information contents of cells, retaining only
their “address space”. This model, that is “as simple as possible but no simpler”, is the
RAM-domain model of Aho et al. [1974], given by

(D, ◦, {e0}),
where D is the class of finite subsets of N, to be understood as finite sets of memory
locations. The operation ◦ denotes a partial operation for combining disjoint sets of
locations:

d1 ◦ d2 =
{

d1 ∪ d2, if d1 ∩ d2 = ∅
undefined, otherwise.

Here, e0 is defined to be the neutral element or unit of ◦, that is, the empty set.

Remark 2.1. Any of these models can be seen as a special case of a stack-and-heap-
with-permission model from Section 2.4, obtained by an appropriate choice of locations
L, values RV , stacks S and permission algebra (P, •,1).

2.6. Multiset/Integer Partition Models

Models related to integer partitions [Andrews 1976] are given by

(H, ◦, {e0}),
where H is a set of finite integer multisets, with ◦ being the total operation of multiset
union, and the unit e0 being the empty multiset.

2.7. Petri-Net Models

Models of Petri-net markings [Peterson 1981; Murata 1989] are given by

(H, ◦, {e0}),
where for some K ⊆ N and some set L of locations, the set H is the set of markings,
defined as finite partial functions from L into K.

By taking K = N, we model states in traditional Petri nets, with ◦ being the total
operation of multiset union, that is, (h1 ◦ h2)(�) = h1(�) + h2(�).

By taking K = {0, 1, . . . , k}, we model states in Petri nets with capacity k, where
◦ is multiset union as previously mentioned, but with (h1 ◦ h2)(�) undefined when
h1(�) + h2(�) > k.
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The unit e0 is the empty marking, that is, the marking with empty domain.
These models can be also thought of as a certain kind of memory model, where every

location � has an associated size or “number of blocks” h(�).

3. PROPOSITIONAL SEPARATION LOGIC: A FORMALISM FOR REASONING
ABOUT MEMORY MODELS

Here we present the language of propositional separation logic and its interpretation
in the usual class of “separation models” from Calcagno et al. [2007], which abstract
from the concrete memory models employed in the literature (cf. Section 2).

Definition 3.1. A separation model is a cancellative partial commutative monoid

(H, ◦, E),

where ◦ is a partial binary operation on H which is associative and commutative.
The equality of expressions α = β means that either α and β are both undefined, or
α and β are defined and equal. Cancellativity of ◦ means that if h ◦ h′ is defined and
h ◦ h′ = h ◦ h′′, then h′ = h′′.

We extend ◦ to a multiplication · on subsets of H by

X · Y =def {h ◦ h′ | h ∈ X, h′ ∈ Y, and h ◦ h′ is defined }. (1)

The set of units E is then a subset of H such that, for all h ∈ H,

E · {h} = {h}. (2)

All the models from Section 2 are separation models. We allow a set of units E rather
than a single unit e in Definition 3.1 in order to cover the whole spectrum of heap-like
models (e.g., the stack-and-heap models in Section 2.2).

PROPOSITION 3.2. For any h ∈ H, there is a unique element e ∈ E such that h ◦ e = h.

PROOF. The existence of a suitable e is guaranteed by h ◦ E = {h}. For uniqueness,
assume h ◦ e = h ◦ e′ = h. Then, by cancellativity, we get e = e′.

PROPOSITION 3.3. The set of units E in a separation model (H, ◦, E) forms a “unit
matrix”. That is, for any ei, e j ∈ E, we have:

ei ◦ e j =
{

ei, if ei = e j,
undefined, otherwise.

In particular, if ◦ is total, then E is forced to be a singleton {e}.
PROOF. Let ei, e j ∈ E. Using (2) and commutativity of ◦, we have {ei} · E = {ei} whence

ei ◦ e j is either ei or undefined. But, by the same token, E · {e j} = {e j} whence ei ◦ e j
is either e j or undefined. Thus, if ei �= e j , then ei ◦ e j must be undefined. To see that
ei ◦ ei = ei, observe that we must have ei ◦ e = ei for some e ∈ E because ei ∈ {ei} · E.

Definition 3.4. A separation model (H, ◦, E) is said to have indivisible units if
h1 ◦ h2 ∈ E implies h1 ∈ E and h2 ∈ E for all h1, h2 ∈ H.

(In fact, in this case h1 = h2 because of the observation in Proposition 3.3 that h1 ◦ h2
must be undefined when h1 �= h2.)

Remark 3.5. The memory models employed in the literature (see Section 2) all have
indivisible units in the sense of Definition 3.4. This natural property can be summarised
by the following slogan on “conservation of matter”:

“The empty memory cannot be split into non-empty pieces”.
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However, in contrast to the memory models, we can easily construct a separation
model whose units are divisible; for example, the model (Z,+, {0}), where + is addition
on the integers Z, is one such.

Definition 3.6. Formulas are built from an infinite set of atomic propositions p and
constants , ⊥, and I, by a unary operator ¬ and binary connectives ∧, ∨, →, ∗, and —∗.
(We call ∗ the multiplicative conjunction, with —∗ its associated adjoint implication and
I its unit.)

For the sake of readability, we often write a formula of the form A → B as the
“sequent” A � B.

By convention, negation ¬ has the greatest precedence, followed by ∧, ∨, and ∗, with
the implications → and —∗ having lowest precedence.

Definition 3.7. A valuation for a separation model (H, ◦, E) is a function ρ that
assigns to each atomic proposition p a set ρ(p) ⊆ H. Given any h ∈ H and formula A,
we define the forcing relation h |=ρ A by induction on A:

h |=ρ p ⇔ h ∈ ρ(p)
h |=ρ  ⇔ always
h |=ρ ⊥ ⇔ never

h |=ρ ¬A ⇔ h �|=ρ A
h |=ρ A1 ∧ A2 ⇔ h |=ρ A1 and h |=ρ A2

h |=ρ A1 ∨ A2 ⇔ h |=ρ A1 or h |=ρ A2

h |=ρ A1 → A2 ⇔ if h |=ρ A1 then h |=ρ A2

h |=ρ I ⇔ h ∈ E
h |=ρ A1 ∗ A2 ⇔ ∃h1, h2. h = h1 ◦ h2 and h1 |=ρ A1 and h2 |=ρ A2

h |=ρ A1 —∗ A2 ⇔ ∀h′. if h ◦ h′ defined and h′ |=ρ A1 then h ◦ h′ |=ρ A2.

The intended meaning of any formula A under ρ is given by

�A�ρ =def {h | h |=ρ A}.
LEMMA 3.8. Given a separation model (H, ◦, E) and a valuation ρ for the model, we

have the following identities:

�p�ρ = ρ(p) (3)

�⊥�ρ = ∅ (4)

�I�ρ = E (5)

�A∧ B�ρ = �A�ρ ∩ �B�ρ (6)

�A∗ B�ρ = �A�ρ · �B�ρ (7)

�A → B�ρ = largest Z ⊆ H. �A�ρ ∩ Z ⊆ �B�ρ (8)

�A —∗ B�ρ = largest Z ⊆ H. �A�ρ · Z ⊆ �B�ρ. (9)

PROOF. We just show the identities (7) and (9). In the case of (7), we have:

�A∗ B�ρ = {h | ∃h1, h2. h = h1 ◦ h2 and h1 |=ρ A and h2 |=ρ B}
= {h1 ◦ h2 | h1 |=ρ A and h2 |=ρ B and h1 ◦ h2 defined}
= {h1 ◦ h2 | h1 ∈ �A�ρ and h2 ∈ �B�ρ and h1 ◦ h2 defined}
= �A�ρ · �B�ρ.
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To show (9), we first show that �A —∗ B�ρ satisfies the required inclusion, that is

�A�ρ · �A —∗ B�ρ ⊆ �B�ρ.

To see this, let h ∈ �A�ρ · �A —∗ B�ρ . Then there are h1, h2 ∈ H with h = h1 ◦ h2 and
h1 |=ρ A and h2 |=ρ A —∗ B. In particular, this means that for any h′ such that h′ ◦ h2 is
defined and h′ |=ρ A, we have h′ ◦ h2 |=ρ B. Since h1 ◦h2 is defined, we have h1 ◦ h2 |=ρ B,
that is, h |=ρ B as required.

To see that �A —∗ B�ρ is the largest set satisfying the required inclusion, we let Z ⊆ H
satisfy �A�ρ · Z ⊆ �B�ρ , and show that Z ⊆ �A —∗ B�ρ . This means showing that if h ∈ Z,
then h |=ρ A —∗ B. Let h′ ∈ H be such that h◦h′ is defined and h′ |=ρ A, that is, h′ ∈ �A�ρ .
Since �A�ρ · Z ⊆ �B�ρ , we have h ◦ h′ ∈ �B�ρ , that is, h ◦ h′ |=ρ B as required.

Definition 3.9. A formula A is valid in a separation model (H, ◦, E) if for any valu-
ation ρ, we have �A�ρ = H.

In particular, a sequent A � B is valid in (H, ◦, E) if �A�ρ ⊆ �B�ρ for any valuation ρ.

In the next theorem, we establish the exact correlation between seemingly dif-
ferent concepts: the indivisibility of units in the memory models, and the restricted
∗-weakening in formal systems, given by axioms of the form

I ∧ (A∗ B) � A.

THEOREM 3.10.

(a) For any formulas A and B, the restricted ∗-weakening principle
I ∧ (A∗ B) � A

is valid in all separation models (H, ◦, E) with indivisible units.
(b) In addition, the above correlation is exact. Namely, the basic instance of the restricted

∗-weakening principle (here p and q are atomic propositions),
I ∧ (p ∗ q) � p,

is valid in a separation model (H, ◦, E) if and only if (H, ◦, E) has indivisible units.

PROOF.

(a) Let (H, ◦, E) be a separation model with indivisible units, let h ∈ H and suppose that
h |=ρ I ∧ (A∗ B). Thus, h ∈ E and there exist h1, h2 ∈ H with h = h1 ◦ h2 and h1 |=ρ A
and h2 |=ρ B. As (H, ◦, E) has indivisible units, we have h1 ∈ E and h2 ∈ E, whence
by Proposition 3.3, we have h1 = h2 = h. Thus, h |=ρ A and, as h was arbitrarily
chosen, I ∧ (A∗ B) � A is valid in this model as required.

(b) Let (H′, ◦′, E) be a separation model whose set of units E is divisible, that is, such
that h′ ◦′ h′′ = e ∈ E for some h′ �∈ E.

Let ρ be a valuation with ρ(p) = {h′} and ρ(q) = {h′′}. Then, we easily have
that e |=ρ I ∧ (p ∗ q) but e �|=ρ p, so I ∧ (p ∗ q) � p is not valid in this model as
required.

The following proposition shows that separation models with total and nontotal
compositions ◦ behave quite differently with respect to validity.

PROPOSITION 3.11. A sequent of the form

I ∧ (p ∗ q —∗ ⊥) � (p —∗ ⊥) ∨ (q —∗ ⊥) (10)

is valid in a separation model (H, ◦, E) if and only if the operation ◦ is total.

PROOF. In fact, the sequent (10) represents the following “natural” law:

�p�ρ · �q�ρ = ∅ implies (�p�ρ = ∅ or �q�ρ = ∅).
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(⇐) Let (H, ◦, E) be a separation model with ◦ total, and suppose h |=ρ I ∧ (p ∗ q —∗ ⊥).
Then, h ∈ E and h |=ρ p ∗ q —∗ ⊥. Using Lemma 3.8, we have �p ∗ q�ρ ⊆ �⊥�ρ = ∅, and
thus �p�ρ · �q�ρ = �p ∗ q�ρ = ∅.

Since ◦ is total, �p�ρ · �q�ρ = ∅ implies that either �p�ρ = ∅ or �q�ρ = ∅. Consequently,
either h |=ρ p —∗ ⊥ or h |=ρ q —∗ ⊥, i.e. h |=ρ (p —∗ ⊥) ∨ (q —∗ ⊥) as required.

(⇒) Let (H, ◦, E) be a separation model in which ◦ is nontotal, that is for some h′ and h′′,
their product h′ ◦ h′′ is undefined. Let ρ be a valuation with ρ(p) = {h′} and ρ(q) = {h′′}.
Then, �p�ρ · �q�ρ = ∅ by construction. Thus, using Lemma 3.8, we have

E · �p ∗ q�ρ = �p ∗ q�ρ

= �p�ρ · �q�ρ

= ∅
= �⊥�ρ.

Thus, in particular, E · �p ∗ q�ρ ⊆ �⊥�ρ and, by Lemma 3.8, we have E ⊆ �p ∗ q —∗ ⊥�ρ ,
which means that �I ∧ (p ∗ q —∗ ⊥)�ρ �= ∅. On the other hand, by construction, both
�p —∗ ⊥�ρ = ∅ and �q —∗ ⊥�ρ = ∅, that is, �(p —∗ ⊥) ∨ (q —∗ ⊥)�ρ = ∅. We conclude that
our sequent is not valid in this model as required.

4. FORMAL SYSTEMS FOR SEPARATION LOGIC

In this section, we explore various notions of provability in the language of proposi-
tional separation logic, and examine their connection to validity in various classes of
models. First, in Section 4.1, we introduce the core axiomatisation of the multiplicative
connectives ∗, —∗ and I. Then, in Section 4.2, we examine a chain of logical systems ex-
tending this axiomatisation, including the well-known bunched logics BI and Boolean
BI.

4.1. Axiomatisation of the Multiplicatives

The mathematical behaviour of separation models (H, ◦, E) (see Definition 3.1), and the
interpretation of the multiplicative connectives ∗, —∗ and I (Definition 3.7) naturally
gives rise to a number of axioms and rules for these connectives, as follows.

(a) First, the combination operation ◦ is associative and commutative by definition,
which means that the multiplicative conjunction ∗ should also be associative and
commutative:

A∗ B � B∗ A and A∗ (B∗ C) � (A∗ B) ∗ C.

(b) Next, the set E is a unit for ◦, that is, E ◦ {h} = {h}, which means that I (represent-
ing E) should also be a unit for ∗:

A∗ I � A and A � A∗ I.

(c) The “magic wand” connective —∗ is defined as the implication adjoint to the con-
junction ∗, which leads to the following residuation principles for ∗ and —∗:

A∗ (A —∗ B) � B and
A∗ B � C

A � B —∗ C
.

(d) Finally, we have the following monotonicity or “frame” principle for building entail-
ments between ∗-conjunctions:

A � B

A∗ C � B∗ C
.
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In fact, this collection of axioms and inference rules for the multiplicatives is originally
provided by intuitionistic multiplicative linear logic, IMLL [Girard and Lafont 1987;
Benton et al. 1993].

4.2. Bunched Logic Proof Systems for Separation Logic

Core proof systems for propositional separation logic are provided by bunched logic, a
class of substructural logics pioneered by O’Hearn and Pym. Specifically, the proposi-
tional proof theory of separation logic is usually considered to be given by the bunched
logic Boolean BI, although other choices are also possible. Every separation model can
be seen as a model of Boolean BI [Ishtiaq and O’Hearn 2001; Galmiche and Larchey-
Wendling 2006].

Definition 4.1. We consider the following chain of logical systems

BI ⊆ BBI ⊆ BBI+eW ⊆ BBI+W,

each defined as follows:

—BI, a.k.a. the logic of bunched implications (cf., O’Hearn and Pym [1999], Pym
[2002], and Galmiche et al. [2005]) is given by:

(A) all instances of intuitionistically valid formulas and inference rules, and

(B) the axioms and inference rules for ∗, —∗ and I given in Section 4.1.

—Boolean BI, a.k.a. BBI (cf., Ishtiaq and O’Hearn [2001] and Galmiche and Larchey-
Wendling [2006]) is obtained from BI by expanding (A) above to include all instances
of classically valid propositional formulas and inference rules.

—As we shall see (Lemma 6.4), the restricted ∗-contraction

I ∧ A � A∗ A

holds in BBI, whereas the analogous restricted ∗-weakening

I ∧ (A∗ B) � A

does not. However, the restricted ∗-weakening exactly expresses the indivisibility
of units in a separation model (see Theorem 3.10). Thus, we introduce the system
BBI+eW by enriching BBI with all new axioms of the form I ∧ (A∗ B) � A.

—Having considered restricted ∗-weakening, it is also natural to consider BBI+W,
obtained by enriching BBI with the unrestricted ∗-weakening - that is, axioms of the
form

A∗ B � A

(or, equivalently, B � I).

PROPOSITION 4.2 (SOUNDNESS OF BBI). If A is provable in BBI, then A is valid in all
separation models.

PROOF. We just need to show that validity in any separation model is preserved by
the axioms and rules of classical propositional logic and by the axioms and rules given
in Section 4.1, which is an easy exercise.

In many cases, the connection between provability in the systems in Definition 4.1
and validity in the classes of corresponding separation models is not exact. For ex-
ample, BBI is not complete even for validity in the class of all partial commutative
monoids [Larchey-Wendling and Galmiche 2010]. No complete natural axiomatisation
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is currently known for validity with respect to the class of all separation models (or an
interesting subclass thereof).

COROLLARY 4.3 (SOUNDNESS OF BBI+eW). If Ais provable in BBI+eW, then Ais valid
in all separation models with indivisible units.

PROOF. Immediate from Proposition 4.2 and Theorem 3.10.

COROLLARY 4.4. Interpreting ⊂ as strict inclusion between the sets of sequents prov-
able in each system, we have:

BI ⊂ BBI ⊂ BBI+eW ⊂ BBI+W.

PROOF. First, note that the non-strict inclusions BI ⊆ BBI ⊆ BBI+eW ⊆ BBI+W
hold easily by the construction of the systems in Definition 4.1. Thus, we just need
to show BBI+W �⊆ BBI+eW �⊆ BBI �⊆ BI.

First, BBI �⊆ BI holds because BI is conservative over intuitionistic logic [Pym 2002]
and thus, for example, the classical tautology (p → ⊥) → ⊥ � p is invalid in BI, whereas
it is valid in BBI.

BBI+eW �⊆ BBI holds because, by Theorem 3.10, the instance I ∧ (p ∗ q) � p of
BBI+eW’s restricted ∗-weakening axiom is not valid in all separation models, and
hence not provable in BBI by Proposition 4.2.

Finally, BBI+W �⊆ BBI+eW holds because the instance p � I of BBI+W’s unre-
stricted ∗-weakening axiom is not valid in all separation models with indivisible units,
and hence not provable in BBI+eW by Corollary 4.3. To see this, let (H, ◦, E) be a
separation model with indivisible units, and let ρ(p) = {h} for some h �∈ E. Then, easily,
h |=ρ p but h �|=ρ I.

One of the important features of separation logic is that the ∗-contraction, A � A∗ A,
is not generally valid, and hence not provable in BBI by Proposition 4.2. Surprisingly,
however, BBI does enjoy the restricted ∗-contraction (see Lemma 6.4 in Section 6)

I ∧ A � A∗ A,

which holds only at the level of the multiplicative unit I.

Remark 4.5. We note that the following basic instance of restricted ∗-contraction

I ∧ p � p ∗ p

is not valid in ordinary intuitionistic BI. This can most easily be seen from the ele-
mentary Kripke semantics of BI in Galmiche et al. [2005], whereby models are ordered
partial commutative monoids (M, ◦, e,�), and we have the following clauses for satis-
faction of formulas by m ∈ M and valuation ρ:

m |=ρ I ⇔ e � m
m |=ρ A∧ B ⇔ m |=ρ A and m |=ρ B.
m |=ρ A∗ B ⇔ ∃n, n′ ∈ M. n ◦ n′ ≤ m and n |=ρ A and n |=ρ B.

Now consider the 2-element BI-model

({e, b}, ◦, e,�),

where ◦ is given by e ◦ e = b ◦ b = e and e ◦ b = b ◦ e = b, and � is given by e � b. Let ρ be
a valuation with ρ(p) = {b}. Then, easily, b |=ρ I ∧ p but b �|=ρ p ∗ p, that is, I ∧ p � p ∗ p
is not valid in this model.2

2The key difference compared to validity in separation models is that, in the satisfaction relation for BBI in
Definition 3.7, b |=ρ I ∧ p forces e = b, while in the satisfaction relation for BI, it only forces e � b.
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In the case of BBI+eW, its restricted ∗-weakening with the restricted ∗-contraction
of Lemma 6.4 induces a collapse of ∧ and ∗ at the level of the unit I, as follows.

COROLLARY 4.6. The following equivalences hold in BBI+eW:

I ∧ (A∗ B) ≡ I ∧ A∧ B ≡ (I ∧ A) ∗ (I ∧ B),

where the equivalence F ≡ G means that both F � G and G � F are provable.

PROOF. First, I ∧ (A∗ B) � I ∧ A∧ B is derivable using the restricted ∗-weakening.
Second, using the restricted ∗-contraction and the usual contraction for ∧ we can derive:

I ∧ A∧ B � (I ∧ A∧ B) ∗ (I ∧ A∧ B),

whence I ∧ A∧ B � (I ∧ A) ∗ (I ∧ B) follows from weakening for ∧. Finally, we can derive
(I ∧ A) ∗ (I ∧ B) � I ∧ (A∗ B) using the equivalence I ∗ C ≡ C and weakening for ∧. The
required equivalences then follow by transitivity of �.

PROPOSITION 4.7. BBI+W collapses into ordinary classical logic.

PROOF. Trivially, I ∧ A � A is provable in BBI+W. Using the equivalence I ∗ A ≡ A
and contraction for ∧, we also have A � (I ∗ A) ∧ A provable. Using the unrestricted
∗-weakening of BBI+W, we obtain A � I ∧ A, and thus I ∧ A ≡ A holds in BBI+W.
Using this equivalence together with Corollary 4.6, we have:

A∗ B ≡ I ∧ (A∗ B) ≡ I ∧ A∧ B ≡ A∧ B,

which also guarantees that A —∗ B ≡ A → B. Finally, using the equivalence I ∧ A ≡ A,
we have I ≡ I∧ ≡ . Thus, all the multiplicative connectives of BBI+W collapse into
their classical additive equivalents.

Remark 4.8. Both ends of the chain of logics BI ⊂ BBI ⊂ BBI+eW ⊂ BBI+W
given by Corollary 4.4 are in fact decidable. BI was shown decidable in Galmiche et al.
[2005], and BBI+W is decidable because, by Proposition 4.7, it collapses into ordinary
classical logic. Thus, technically speaking, it is relatively surprising that—as we shall
see in the next section—the intermediate systems BBI and BBI+eW are both in fact
undecidable.

5. UNDECIDABILITY OF PROPOSITIONAL FORMULAS FOR THE MEMORY MODELS

In this section, we give a high-level outline of our undecidability results and their proof,
the details of which occupy most of the remainder of the article.

Figure 1 shows the overall development of our proof. As is typical, we show that a
property Q is undecidable by showing that a problem already known to be undecidable
reduces to the problem of deciding Q. In our case, the undecidable problem to be
encoded is the termination of a two-counter, non-deterministic Minsky machine M
from an arbitrary configuration C, shown as the top-centre node in Figure 1.

The proof strategy then goes as follows.
We encode M and C as a formula FM,C (defined in Section 7) such that termination

of M from C implies that FM,C is provable in BBI (Theorem 8.3). In fact, we can obtain
this result even for a minimal version of BBI whose Boolean connectives are restricted
to ∧ and →: in particular, negation ¬ and falsum ⊥ are disallowed. We present this
“Minimal BBI” in Section 6.

By construction of the proof systems in Definition 4.1, provability of FM,C in Min-
imal BBI implies its provability in BBI and BBI+eW. By our soundness results
(Proposition 4.2 and Corollary 4.3) this implies validity of FM,C in the class of all
separation models, and in the class of all separation models with indivisible units, re-
spectively. Specifically, FM,C must be valid in any particular model chosen from those
in Section 2.
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Fig. 1. Diagrammatic proof of undecidability. The arrows are implications, and FM,C is a sequent built from
machine M and configuration C. The problems at each node are all undecidable.

Finally, we can complete the circle of implications—and thus the reduction from the
halting problem for Minsky machines—by establishing that validity of FM,C in any
particular such model implies that the machine M terminates from configuration C.
This is established by Theorem 9.11.

As a consequence, every property of formulas between provability in Minimal BBI
and validity in one of the models from Section 2 is undecidable.

The right-hand side of Figure 1 essentially repeats this proof structure, but for Clas-
sical BI (CBI) and its models, which obey stronger properties than BBI and its separa-
tion models. Classical BI, its models and the corresponding undecidability results are
presented in Section 11.

COROLLARY 5.1. The following properties of formulas are undecidable, even when
restricted to the language ( ∧,→, I, ∗, —∗ ) of Minimal BBI:

(a) provability in Minimal BBI;
(b) provability in BBI;
(c) provability in BBI+eW;
(d) validity in the class of all separation models;
(e) validity in the class of all separation models with indivisible units;
( f ) validity in the class of all total separation models;
(g) validity in the class of all total separation models with indivisible units;
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Fig. 2. A minimal set of axioms and rules for Minimal Boolean BI. The axioms and rules labelled (αi)
axiomatize the behaviour of I, ∗ and —∗, while the axioms and rules labelled (βi) axiomatize ∧ and →.

(h) validity in one of the concrete models in Section 2, for arbitrarily chosen locations L,
values RV , stacks S, and permission algebra (P, •,1) (note L must be infinite).

PROOF. The termination problem for Minsky machines, which is undecidable [Minsky
1967], reduces to each of the problems above by the diagram in Figure 1.

COROLLARY 5.2. Neither Minimal BBI nor BBI nor BBI+eW has the finite model
property.

PROOF. A recursive enumeration of proofs and finite countermodels for any of the
logics above would yield a decision procedure for provability, which is impossible.

6. MINIMAL BOOLEAN BI - A VERY SIMPLE UNDECIDABLE PROPOSITIONAL SYSTEM

One might be tempted to think that the undecidability of BBI, in particular, is mainly
an artifact of Boolean negation, which is its most visible point of difference to standard
(intuitionistic) BI. In fact, this is not the case. In this section we introduce a minimal
positive fragment of BBI, called Minimal BBI, in which the formula connectives are
restricted to the minimal set of ∧, →, I, ∗ and —∗. Minimal BBI is given by the axioms
and rules in Figure 2, which extend the axioms and rules for ∗, —∗ and I in Section 4
(here labelled (αi)) with minimal rules and axioms for → and ∧ (labelled (βi)).

Remark 6.1. As foreshadowed in the previous section, Minimal BBI, even though
it looks extremely simple, is still undecidable, notwithstanding the fact that both its
components are decidable: the implication-conjunction fragment of Boolean logic is co-
NP-complete, and intuitionistic multiplicative linear logic is NP-complete [Kanovich
1992].

Oddly enough, removing Peirce’s law from Figure 2 results in (a restricted version of)
standard intuitionistic BI, which is decidable. This is quite counterintuitive, since by
removing Peirce’s law we replace the simple Boolean logic component in Figure 2 (given
by the β axioms and the MP rule) with the implication-conjunction fragment of intu-
itionistic logic, the complexity of which is higher (being PSPACE-complete [Statman
1979]).
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Note that in Figure 2 we must include the axioms and rules for ∧, since ∧ itself is not
definable exclusively in terms of →. Also, neither ¬ nor ⊥ is expressible by ∧ and →
alone. As a consequence, it is necessary to establish that various expected principles of
classical logic, present in full BBI by construction, still hold in Minimal BBI.

Definition 6.2. As for disjunction, here, and henceforth, we will conceive of (A∨ B)
as an abbreviation for ((B → A) → A).

PROPOSITION 6.3. The following inference rules are derivable in Minimal BBI.

A � A
(Id)

A � B B � C

A � C
(Tr)

A � B A � C

A � B∧ C
(∧)

A � (B → C)
A∧ B � C (→) A � (B —∗ C)

A∗ B � C (—∗) B � C
I � (B —∗ C) (I)

A � B

B → C � A → C
(MT)

A � C B � C

A∨ B � C
(∨)

A � C (A → B) � C

C
(EM)

Moreover, the rules (→), (—∗) and (I) are all reversible, that is, their premise and con-
clusion are interchangeable.

PROOF. We show how to derive each proof rule directly by the standard technique. In
the following, recall that the sequent A � B is merely another notation for the formula
A → B.

(Id). By instantiating the axioms (β1) and (β2) we obtain, respectively,

A � ((A → A) → A)

(A → ((A → A) → A)) � ((A → (A → A)) → (A → A)).

Thus, by (MP), we obtain (A → (A → A)) � (A → A). Thus, since A � (A → A) is
an instance of (β1), we obtain A � A by (MP).

(Tr). We have B � C provable by assumption and (B → C) � (A → (B → C)) an in-
stance of (β1). Thus, by (MP), we obtain A → (B → C). Now by instantiating the
axiom (β2) we obtain:

(A → (B → C)) � ((A → B) → (A → C)),

whence by (MP) we obtain (A → B) � (A → C). Then, since A � B is provable by
assumption we obtain A � C by (MP) again as required.

(∧). We have A � B by assumption and B � (C → B∧ C) an instance of (β4). Thus,
by (Tr), we obtain A � (C → B∧ C). Now, by instantiating (β2) we have:

(A → (C → B∧ C)) � ((A → C) → (A → B∧ C)).

Hence, by (MP), we obtain (A → C) � (A → B∧ C). Since we have A � C, by
assumption, we obtain A � B∧ C by (MP) as required.

(→). For the top-to-bottom direction, note that we have A∧ B � A an instance
of (β5) and A � (B → C) provable by assumption. Thus, by (Tr), we obtain
A∧ B � (B → C). Now, by instantiating (β2), we have:

(A∧ B → (B → C)) � ((A∧ B → B) → (A∧ B → C)).
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Hence, by (MP), we obtain (A∧ B → B) � (A∧ B → C). Since A∧ B � B is an
instance of (β6), we can apply (MP) again to obtain A∧ B � C as required.

For the bottom-to-top direction, we have A∧ B � C by assumption. Thus, using
(β1) and (Tr), we obtain B � (A∧ B → C). By instantiating (β2), we have

B → ((A∧ B) → C) � ((B → A∧ B) → (B → C)).

Hence, by (MP), we obtain (B → A∧ B) � (B → C). Applying (β1) and (Tr) again,
this gives us A � ((B → A∧ B) → (B → C)). Now we have as a further instanti-
ation of (β2)

A → ((B → A∧ B) → (B → C)) � ((A → (B → A∧ B)) → (A → (B → C))).

Hence, by (MP), we obtain

(A → (B → A∧ B)) � (A → (B → C)).

As A � B → A∧ B is an instance of (β4), we obtain A � B → C by (MP) as
required.

(—∗). The bottom-to-top direction is immediate by (α7). For the top-to-bottom direc-
tion, since A � (B —∗ C) is provable by assumption, we have A∗ B � (B —∗ C) ∗ B
by the rule (α6). Since (B —∗ C) ∗ B � B∗ (B —∗ C) is an instance of (α1), we then
obtain A∗ B � B∗ (B —∗ C) by (Tr). Then, since B∗ (B —∗ C) � C is an instance
of (α3), we can apply (Tr) again to obtain A∗ B � C as required.

(I). For the top-to-bottom direction, we have B∗ I � B an instance of (α4) and
I ∗ B � B∗ I an instance of (α1) whence I ∗ B � B is provable by (Tr). Since
B � C is provable by assumption, we obtain I ∗ B � C by (Tr), whence
I � (B —∗ C) is provable using the rule (—∗). The reverse direction is similar.

(MT). (This rule is named for being “modus tollens-like”.) First, (B → C) � (B → C) is
derivable using (Id). Thus, by the rule (→), together with (Tr) and commutativ-
ity of ∧ (easily derivable from the rule (∧)), we obtain B � ((B → C) → C). Since
we have A � B by assumption, we obtain A � ((B → C) → C) by (Tr). Thus, by
applying the deduction theorem again, together with commutativity of ∧ and
(Tr), we have (B → C) � (A → C) as required.

(∨). Since we have B � C by assumption, we can obtain by applying the rule (MT)
twice

((B → A) → A) � ((C → A) → A).

By applying the rule (→), we then obtain (B → A) → A) ∧ (C → A) � A. Since
A � C is provable by assumption, we obtain (B → A) → A) ∧ (C → A) � C by
applying (Tr). By applying (→) again, we have

((B → A) → A) � ((C → A) → C).

Now we have ((C → A) → C) � C an instance of Peirce’s law (β3). Thus, we
obtain ((B → A) → A) � C by (Tr), which is abbreviated by A∨ B � C.

(EM). (This rule is named for being “excluded middle-like”.) We have by assumption
A � C and (A → B) � C, so we obtain A∨ (A → B) � C by applying the rule (∨).
By definition, A∨ (A → B) is equal to ((A → B) → A) � A, which is an instance
of Peirce’s law (α3). Thus, we obtain C by (MP).
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We remark that the rules (∧) and (∨) given by Proposition 6.3 immediately imply the
associativity and commutativity of ∧ and ∨, whereas associativity and commutativity
of ∗ is directly expressed by axioms (α1) and (α2) of Minimal BBI. From now on, when
we work in Minimal BBI, we implicitly treat ∧, ∨, and ∗ as being commutative and
associative.

As mentioned in Section 4, the restricted ∗-contraction given by I ∧ A � A∗ A holds
in BBI, and in fact it holds even in Minimal BBI, which is of utmost importance for
our undecidability results. This principle is obviously semantically valid, since for any
e ∈ E, we have e = e ◦ e and thus if e |=ρ A then e |=ρ A∗ A.

However, it is far from obvious that it is provable in BBI, and still less so in Min-
imal BBI. The broad idea of the BBI proof is as follows. First, from I ∧ A we can
deduce ((I ∧ A) ∗ I) and thus (I ∧ A) ∗ (I ∧ (A∨ ¬A)) using the usual law of excluded
middle in classical logic. Since ∨ distributes over both ∧ and ∗, the latter sequent
yields ((I ∧ A) ∗ (I ∧ A)) ∨ ((I ∧ A) ∗ (I ∧ ¬A)) but (I ∧ A) ∗ (I ∧ ¬A) implies A∧ ¬A, which
is inconsistent.

In Minimal BBI, the situation is complicated further by the absence of ¬ in the
language, forcing us to use Peirce’s law, in the shape of the rule (EM). The following
lemma spells out the full details.

LEMMA 6.4. The restricted ∗-contraction, given by a sequent of the form

I ∧ A � A∗ A (11)

is provable in Minimal BBI.

PROOF. We make free use of the derived rules of Minimal BBI given by
Proposition 6.3. According to the reversible version of the rule (I), the sequent (11)
follows from

I � (I ∧ A) —∗ (A∗ A),

which is notation for the formula

I → ((I ∧ A) —∗ (A∗ A)). (12)

Using the “excluded middle” rule (EM) in Proposition 6.3, we can derive the for-
mula (12) from the following two sequents:

A � I → ((I ∧ A) —∗ (A∗ A)) (13)

and

A → (A∗ A) � I → ((I ∧ A) —∗ (A∗ A)). (14)

We proceed by demonstrating how to derive each of (13) and (14).

—We derive the sequent (13) as follows. First, using the fact that I ∧ A � A (axiom (β6))
and the rule (α6) for ∗ we have:

(I ∧ A) ∗ (I ∧ A) � A∗ (I ∧ A).

By a similar sequence of reasoning, but additionally using commutativity of ∗ (α1),
we have A∗ (I ∧ A) � A∗ A, whereby we have by (Tr)

(I ∧ A) ∗ (I ∧ A) � A∗ A.

Using the derived rule (—∗), we obtain:

I ∧ A � ((I ∧ A) —∗ (A∗ A))

and, by means of the derived rule (→), we conclude with the desired sequent (13).

Journal of the ACM, Vol. 61, No. 2, Article 14, Publication date: April 2014.



14:20 J. Brotherston and M. Kanovich

—We derive the sequent (14) in the following way. First, using ∧-weakening (β5), (β6)
and the axiom (α4) for I, we can derive each of the following:

(I ∧ (A → (A∗ A))) ∗ (I ∧ A) � I ∗ (I ∧ A)

and

I ∗ (I ∧ A) � A,

whence by transitivity (Tr) we obtain:

(I ∧ (A → (A∗ A))) ∗ (I ∧ A) � A. (15)

Next, using the same principles, we can derive

(I ∧ (A → (A∗ A))) ∗ (I ∧ A) � (I ∧ (A → (A∗ A))) ∗ I,

and

(I ∧ (A → (A∗ A))) ∗ I � (A → (A∗ A)),

resulting by transitivity (Tr) in

(I ∧ (A → (A∗ A))) ∗ (I ∧ A) � (A → (A∗ A)). (16)

Using the axiom (β2) from Figure 2 and the derived rules (∧), (→) and (Tr), it is
straightforward to derive from (15) and (16):

(I ∧ (A → (A∗ A))) ∗ (I ∧ A) � A∗ A.

Hence, by applying the derived rules (—∗), we obtain

I ∧ (A → (A∗ A)) � ((I ∧ A) —∗ (A∗ A))

and, by means of the derived rules (→), we conclude with the desired sequent (14).

The proof principles of Proposition 6.3 and Lemma 6.4 are the main ones that are
needed for correctness of our encoding of Minsky machines in the next section.

7. ENCODING MINSKY MACHINE COMPUTATIONS IN MINIMAL BBI

In this section, we give our encoding of terminating computations of (nondeterministic)
two-counter Minsky machines as provable sequents of Minimal BBI. That is to say,
given a Minsky machine M and initial configuration C our aim is to give a sequent
FM,C such that M terminates from C just in case FM,C is provable in Minimal BBI (as
per the strategy in Section 5). First, we explain how FM,C is constructed from M and
C, and then in Section 7.1 we develop some intuition for our choice of encoding.

Definition 7.1. A nondeterministic, two-counter Minsky machine M [Minsky 1967]
with non-negative counters c1, c2 is given by a finite set of labelled instructions of the
form:

“increment ck by 1” Li: ck++; goto Lj ;

“decrement ck by 1” Li: ck−−; goto Lj ;

“zero-test on ck” Li: if ck=0 goto Lj ;

“goto” Li: goto Lj ;

(17)

where k ∈ {1, 2}, i ≥ 1 and j ≥ 0.
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Fig. 3. One-step semantics of two-counter Minsky machines.

Nondeterminism of M means that each “state label” Li may have multiple associated
instructions. The labels L0 and L1 are reserved for the final and initial states of M,
respectively. In particular, L0 may not label any instructions.

To cope more easily with zero-test instructions, we also add the special labels L−1
and L−2 which come equipped with the following four instructions (and which may not
label any other instructions).

L−1: c2−−; goto L−1; L−1: goto L0;

L−2: c1−−; goto L−2; L−2: goto L0;
(18)

A configuration of M is given by 〈L, n1, n2〉, where the label L is the current state of
M, and n1 and n2 are the current values of counters c1 and c2, respectively.

We write �M for the one-step relation between configurations of M; the one-step se-
mantics of Minsky machines is given by Figure 3. We let �∗

M be the reflexive-transitive
closure of �M, so that 〈L, n1, n2〉 �∗

M 〈L′, n′
1, n′

2〉 if M can go from 〈L, n1, n2〉 to 〈L′, n′
1, n′

2〉
in a finite number of steps. If 〈L, n1, n2〉 �∗

M 〈L0, 0, 0〉, we say that M terminates from
〈L, n1, n2〉, written 〈L, n1, n2〉⇓M.

The specific role of the special labels L−1 and L−2 is explained by the following lemma.

LEMMA 7.2. 〈L−k, n1, n2〉⇓M if and only if nk = 0, where k ∈ {1, 2}.

PROOF. Formally, the proof proceeds by induction on n2 if k = 1, and vice versa; we
just provide a sketch here since the details are straightforward. For the “if” direction,
we simply apply the relevant instructions from the group (18). For the “only if” direc-
tion, we simply notice that, by construction, no other instructions except those in the
group (18) are applicable to any configuration of the form 〈L−k, n1, n2〉.

Definition 7.3. In our encoding, we use the following abbreviation. We fix an atomic
proposition b, and henceforth define a “relative negation” by: A =def (A —∗ b).

Our relative negation, defined as multiplicative implication into a constant, can be
seen as a natural multiplicative analogue of standard intuitionistic negation, which
is defined by ¬A = A → ⊥. We derive some useful properties of relative negation in
Lemma 8.1.
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Definition 7.4 (Machine Encoding). For any instruction γ from Definition 7.1, we
define the formula κ(γ) as follows:

κ(Li: ck++; goto Lj ;) =def ( (lj ∗ pk) —∗ li)

κ(Li: ck−−; goto Lj ;) =def ( lj —∗ (li ∗ pk))

κ(Li: if ck=0 goto Lj ;) =def ( (lj ∨ l−k) —∗ li)

κ(Li: goto Lj ;) =def ( lj —∗ li),

where p1, p2, l−2, l−1, l0, l1, l2, . . . are distinct atomic propositions (p1 and p2 are used
to represent the counters c1 and c2, respectively).

Recall that, by Definition 6.2, the formula ( (lj ∨ l−k) —∗ li) abbreviates the formula
( ((l−k → lj) → lj) —∗ li).

Then, for a Minsky machine M given by instructions {γ1, γ2, . . . , γt}, we define its
encoding formula κ(M) by

κ(M) =def I ∧
t∧

i=1

κ(γi).

Definition 7.5 (Encoding of Terminating Configurations). We will encode nonnega-
tive integers n, the contents of a Minsky machine counter, as a formula of the form

pn =def p ∗ p ∗ · · · ∗ p︸ ︷︷ ︸
n times

,

with p0 =def I.
Accordingly, we encode a machine configuration of the form

C = 〈Li, n1, n2〉
as a ∗-conjunction of the propositional variable li with n1 copies of p1 and n2 copies
of p2:

li ∗ pn1
1 ∗ pn2

2 .

The fact that 〈L0, 0, 0〉 is a terminating configuration is encoded by the following
formula:

I ∧ l0.
Putting everything together, termination of M from 〈Li, n1, n2〉 will be encoded by the

following sequent FM,C :

FM,C =def κ(M) ∗ li ∗ pn1
1 ∗ pn2

2 ∗ (I ∧ l0) � b,

where κ(M) is the machine encoding given by Definition 7.4 and b is the fixed proposi-
tion letter used in our “relative negation” (Definition 7.3).

7.1. Intuition for Our Encoding

In accordance with our proof strategy in Section 5, our encoding is intended to achieve
two complementary goals.

(1) On one hand, we have to show provability (in Minimal BBI) of FM,C whenever
M terminates from C. We construct the proof of FM,C by induction on the length m
of the terminating computation, using as subproofs the proofs given by induction
for terminating computations of shorter length. We give the full details of this
construction in Section 8.
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(2) On the other hand, for a fixed memory model from Section 2, we have to find a
valuation ρ such that M terminates from C of the form 〈Li, n1, n2〉 whenever FM,C
is valid under this valuation ρ, that is, whenever

�κ(M) ∗ li ∗ pn1
1 ∗ pn2

2 ∗ (I ∧ l0)�ρ ⊆ ρ(b).
To obtain the required termination of M from C from this inclusion, it stands to
reason to define ρ(b) so as to represent all terminating configurations, and then to
show that

e ∈ �κ(M)�ρ and e ∈ �I ∧ l0�ρ,

where e is a unit of the memory model, resulting in the inclusion:
�li ∗ pn1

1 ∗ pn2
2 �ρ ⊆ ρ(b).

Provided that each element of �li ∗ pn1
1 ∗ pn2

2 �ρ uniquely determines the configuration
〈Li, n1, n2〉 (cf. Lemma 9.2), we can then deduce that 〈Li, n1, n2〉⇓M.

However, an additional twist to the problem is that we need a rather complicated
valuation ρ in the memory models of Section 2, because of the way the partial
composition is defined in these models. We look at this point in more detail in
Sections 9.2 and 10.

We note that a direct adaptation of the encoding of Minsky machines developed for
full linear logic in Kanovich [1995] does not work properly for separation logic due to the
differences between linear logic and separation logic (discussed further in Section 12).

Roughly speaking, in the encoding of Kanovich [1995], each step in the derivation
of the “encoding sequent” corresponds to a single forward step from C to C ′ within the
computation of machine M (which is not necessarily terminating).

In contrast, in our encoding, each step in the derivation corresponds to a “backward
move” from the class of all terminating computations starting from C ′ to the class of
longer terminating computations starting from C.

We illustrate this point in more detail.
Given a memory model, suppose that a valuation ρ is chosen such that each element

of �li ∗ pn1
1 ∗ pn2

2 �ρ uniquely determines the configuration 〈Li, n1, n2〉 (cf. Lemma 9.2).
As discussed previously, to guarantee the faithfulness of our encoding, we need to

check that for such a valuation ρ, the encoding guarantees that e ∈ �κ(M)�ρ , that is, for
each of the machine instruction γ we can provide e ∈ �κ(γ )�ρ .

For any instruction γ , the formula κ(γ ) is of the form ( A —∗ B) where A is of
the form lj , (lj ∨ l−k) or (lj ∗ pk), and B is of the form li or (li ∗ pk). Thus, recalling
that A =def (A —∗ b), and B =def (B —∗ b), the statement e ∈ �κ(γ )�ρ is equivalent to the
inclusion

�A —∗ b�ρ ⊆ �B —∗ b�ρ .

Since, by Lemma 3.8, the statement d ∈ �A —∗ b�ρ means that �A�ρ · {d} ⊆ ρ(b), this
inclusion can be rewritten as the rule that for all d,

�A�ρ · {d} ⊆ ρ(b)

�B�ρ · {d} ⊆ ρ(b)
.

(19)

For instance, in the case of the increment instruction

Li: c1++; goto Lj ;, (20)

we must show that the following rule is correct for any d:

�lj ∗ p1�ρ · {d} ⊆ ρ(b)

�li�ρ · {d} ⊆ ρ(b)
.
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Our choice of valuation (cf. Lemma 9.2) ensures that if �lj ∗ p1�ρ · {d} ⊆ ρ(b), then
d must belong to a set of the form �pn1

1 ∗ pn2
2 �ρ , so that this rule becomes

�lj ∗ pn1+1
1 ∗ pn2

2 �ρ ⊆ ρ(b)

�li ∗ pn1
1 ∗ pn2

2 �ρ ⊆ ρ(b)

or, paraphrasing,

“M terminates from the configuration 〈Lj, n1 + 1, n2〉”
“M terminates from the configuration 〈Li, n1, n2〉”

,

which is a correct statement according to the increment instruction (20) at hand. Other
instructions are treated similarly.

8. FROM COMPUTATIONS TO MINIMAL BBI PROOFS

Here, we show in detail that the sequent FM,C , defined in the previous section, is
provable in Minimal BBI whenever M terminates on C. The converse direction will be
established in Section 9.

First, the following lemma derives useful properties of A which illustrate its be-
haviour as a multiplicative analogue of intuitionistic negation, and will be essential to
the proof of our main result.

LEMMA 8.1. The following sequents and proof rules are derivable in Minimal BBI.

(a) A � A

(b) A � A

(c) A∗ ( B —∗ A) � B

(d) A∗ B � C
A∗ B � C

(e) A∗ B � D A∗ C � D
A∗ (B∨ C) � D

PROOF. We derive each sequent or proof rule directly in Minimal BBI, making use of
the derived rules given by Proposition 6.3.

(a) According to the Minimal BBI axiom (α3), we have A∗ (A —∗ b) � b provable. Thus,
by applying the derived rule (—∗), we obtain A � ((A —∗ b) —∗ b), that is, A � A, as
required.

(b) According to the Minimal BBI axiom (α3), we have A∗ ( A —∗ b) � b prov-
able. Also, A � A is provable by part (a). Thus, by the derived rule (Tr), we
obtain A∗ ( A —∗ b) � b. By applying (—∗) again, we obtain ( A —∗ b) � A —∗ b, i.e.

A � A, as required.
(c) We have B∗ ( B —∗ A) � A an instance of the Minimal BBI axiom (α3), which

can then be rewritten as B∗ ( B —∗ A) � A —∗ b. By applying (—∗), we obtain
A∗ ( B —∗ A) � B —∗ b, that is, A∗ ( B —∗ A) � B, as required.

(d) We have A∗ B � C by assumption and C � C by part (a), whence by (Tr) we
obtain A∗ B � C. By applying (—∗), we obtain A∗ C � B. Since B � B is
derivable by part (a), we obtain A∗ C � B by (Tr). By applying (—∗) again, this
can be transformed to the required A∗ B � C.

(e) By applying (—∗) to the premises A∗ B � D and A∗ C � D, we have B � (A —∗ D) and
C � (A —∗ D). Thus, by applying the derived rule (∨), we obtain B∨ C � (A —∗ D).
Applying (—∗), we get A∗ (B∨ C) � D. Finally, we apply the derived rule given by
part (d) to obtain A∗ (B∨ C) � D as required.
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In the process of computation, each instruction of a Minsky machine can be reused
an unlimited number of times. In order for us to simulate Minsky computations within
Minimal BBI proofs, it is essential that the formulas κ(γ) representing reusable in-
structions can be duplicated as needed, which follows from the restricted ∗-contraction
given by Lemma 6.4.

LEMMA 8.2. For each instruction γ of a machine M, the sequent

κ(M) � κ(M) ∗ κ(γ)

is derivable in Minimal BBI.

PROOF. Writing M = {γ1, γ2, . . . , γt}, we have κ(M) = (I ∧ ∧t
i=1κ(γi)) and γ = γ j for

some 1 ≤ j ≤ t. First, using the derived rules (Id) and (∧) and the axiom (β5) for ∧, we
can derive

κ(M) � I ∧ κ(M).
Next, we have as an instance of restricted ∗-contraction (Lemma 6.4)

I ∧ κ(M) � κ(M) ∗ κ(M).

We have κ(M) � κ(γ j) derivable in Minimal BBI by using weakening for ∧ (given by the
axioms (β5) and (β6)) and the derived transitivity rule (Tr) of Proposition 6.3. Thus, by
applying the rule (α6), we obtain

κ(M) ∗ κ(M) � κ(M) ∗ κ(γ j).

Thus, using the transitivity rule (Tr), we obtain κ(M) � κ(M) ∗ κ(γ j) as required.

THEOREM 8.3. Let M be a Minsky machine, and for a configuration C of the form
〈Li, n1, n2〉, suppose that M terminates from C. Then, the following sequent FM,C is
derivable in Minimal BBI:

κ(M) ∗ li ∗ pn1
1 ∗ pn2

2 ∗ (I ∧ l0) � b. (21)
PROOF. We make free use of the derived rules of Minimal BBI given by

Proposition 6.3. First, we show that it suffices to derive the sequent:

κ(M) ∗ li ∗ pn1
1 ∗ pn2

2 � l0. (22)

To see this, suppose we have A � l0, whence by applying the derived rule (—∗), we
obtain l0 � (A —∗ b). Since I ∧ l0 � l0 is an instance of the axiom (β6), we obtain
I ∧ l0 � (A —∗ b) by applying the derived rule (Tr). By applying (—∗) again, we obtain
A∗ (I ∧ l0) � b as required.

We show that (22) is derivable in Minimal BBI by induction on the length m of the
computation of 〈Li, n1, n2〉 �∗

M 〈L0, 0, 0〉. In the base case m = 0, we have n1 = n2 = 0,
and must derive:

κ(M) ∗ l0 ∗ I ∗ I � l0.

This is easily derivable using the equivalence I ∗ A ≡ A, weakening for ∧ and part (a)
of Lemma 8.1.

Next, we assume that the result holds for all computations of length m− 1, and show
that it holds for any computation of length m. We then proceed by case distinction on
the instruction γ which yields the first step of the computation. We show the cases for
a goto instruction, and for increment, decrement and zero-test instructions with the
counter variable k = 1; the cases for k = 2 are similar.

Case γ = (Li: goto Lj ; ). By the case assumption, we have 〈Li, n1, n2〉 �M 〈Lj, n1, n2〉,
and we are required to show that the following sequent is derivable:

κ(M) ∗ li ∗ pn1
1 ∗ pn2

2 � l0.

Journal of the ACM, Vol. 61, No. 2, Article 14, Publication date: April 2014.



14:26 J. Brotherston and M. Kanovich

By the induction hypothesis, we can derive

κ(M) ∗ lj ∗ pn1
1 ∗ pn2

2 � l0.

By applying part (d) of Lemma 8.1, we obtain

κ(M) ∗ lj ∗ pn1
1 ∗ pn2

2 � l0.

Since l0 � l0 is derivable by part (b) of Lemma 8.1, we obtain by (Tr)

κ(M) ∗ lj ∗ pn1
1 ∗ pn2

2 � l0.

Now since ( lj —∗ li) ∗ li � lj is provable by part (c) of Lemma 8.1, we obtain by (Tr)
and the derived rule (—∗)

κ(M) ∗ ( lj —∗ li) ∗ li ∗ pn1
1 ∗ pn2

2 � l0.

Since γ ∈ M and κ(γ) = ( lj —∗ li), we have κ(M) � κ(M) ∗ ( lj —∗ li) provable by
Lemma 8.2. Thus, we derive by (Tr) and (—∗):

κ(M) ∗ li ∗ pn1
1 ∗ pn2

2 � l0,

which completes the case.

Case γ = (Li: c1++; goto Lj ;). By the case assumption, we have 〈Li, n1, n2〉 �M
〈Lj, n1 + 1, n2〉, and we are required to show that the following sequent is derivable:

κ(M) ∗ li ∗ pn1
1 ∗ pn2

2 � l0.

By the induction hypothesis, we can derive

κ(M) ∗ lj ∗ pn1+1
1 ∗ pn2

2 � l0.

By applying part (d) of Lemma 8.1, we obtain

κ(M) ∗ (lj ∗ p1) ∗ pn1
1 ∗ pn2

2 � l0.

Since l0 � l0 is derivable by part (b) of Lemma 8.1, we obtain by (Tr)

κ(M) ∗ (lj ∗ p1) ∗ pn1
1 ∗ pn2

2 � l0.

Now since ( (lj ∗ p1) —∗ li) ∗ li � (lj ∗ p1) is provable by part (c) of Lemma 8.1, we
obtain by (Tr) and (—∗)

κ(M) ∗ ( (lj ∗ p1) —∗ li) ∗ li ∗ pn1
1 ∗ pn2

2 � l0.

As γ ∈ M and κ(γ) = ( (lj ∗ p1) —∗ li), we have κ(M) � κ(M) ∗ ( (lj ∗ p1) —∗ li) provable
by Lemma 8.2. Thus, we derive by (Tr) and (—∗)

κ(M) ∗ li ∗ pn1
1 ∗ pn2

2 � l0,

which completes the case.

Case γ = (Li: c1−−; goto Lj ;). By the case assumption, we have 〈Li, n1 + 1, n2〉 �M
〈Lj, n1, n2〉, and we are required to show that the following sequent is derivable:

κ(M) ∗ li ∗ pn1+1
1 ∗ pn2

2 � l0.

By the induction hypothesis, we can derive

κ(M) ∗ lj ∗ pn1
1 ∗ pn2

2 � l0.

Using parts (b), (c), and (d) of Lemma 8.1 together with (Tr) and (—∗) in a similar way
to previous cases, we obtain

κ(M) ∗ ( lj —∗ (li ∗ p1)) ∗ li ∗ pn1+1
1 ∗ pn2

2 � l0.
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Since γ ∈ M and κ(γ) = ( lj —∗ (li ∗ p1)), we have κ(M) � κ(M) ∗ ( lj —∗ (li ∗ p1))
provable by Lemma 8.2. Thus, we derive by (Tr) and (—∗), as required:

κ(M) ∗ li ∗ pn1+1
1 ∗ pn2

2 � l0.

Case γ = (Li: if c1 =0 goto Lj ;). By the case assumption, we have 〈Li, 0, n2〉 �M
〈Lj, 0, n2〉, and must derive the following sequent:

κ(M) ∗ li ∗ I ∗ pn2
2 � l0.

First, by the induction hypothesis, we can derive

κ(M) ∗ lj ∗ I ∗ pn2
2 � l0. (23)

Next, note that by Lemma 7.2, we have 〈L−1, 0, n2〉⇓M. Since the computation of
〈L−1, 0, n2〉 �∗

M 〈L0, 0, 0〉 involves only decrement and goto instructions (see group (18)
in Definition 7.1) by construction, the cases already considered above are sufficient
to establish the present theorem for the configuration 〈L−1, 0, n2〉. Thus, we can also
derive

κ(M) ∗ l−1 ∗ I ∗ pn2
2 � l0. (24)

Thus, by applying part (e) of Lemma 8.1, we obtain from (23) and (24)

κ(M) ∗ (lj ∨ l−1) ∗ I ∗ pn2
2 � l0.

Since l0 � l0 is derivable by part (b) of Lemma 8.1, we obtain by (Tr)

κ(M) ∗ (lj ∨ l−1) ∗ I ∗ pn2
2 � l0.

Then, as ( (lj ∨ l−1) —∗ li) ∗ li � (lj ∨ l−1) is provable by part (c) of Lemma 8.1, we
obtain by (Tr) and (—∗)

κ(M) ∗ ( (lj ∨ l−1) —∗ li) ∗ I ∗ li ∗ pn2
2 � l0.

Since γ ∈ M and κ(γ) = ( (lj ∨ l−1) —∗ li), we have κ(M) � κ(M) ∗ ( (lj ∨ l−1) —∗ li)
provable by Lemma 8.2. Thus, we derive by (Tr) and (—∗)

κ(M) ∗ li ∗ I ∗ pn2
2 � l0,

which completes the case, and the proof.

9. FROM VALIDITY TO TERMINATING COMPUTATIONS

In this section, our goal is to show that for each of the concrete models given in Sec-
tion 2, we have 〈Li, n1, n2〉⇓M whenever the following sequent FM,〈Li ,n1,n2〉 is valid in this
particular model

κ(M) ∗ li ∗ pn1
1 ∗ pn2

2 ∗ (I ∧ l0) � b
For the sake of perspicuity, we establish this property first for the simplest such

model, the RAM-domain model from Section 2.5.
Then, we show how to extend our approach to any of the memory models from

Section 2.
In particular, we extend our approach to the most general stack-and-heap models

from Section 2.4, of which all the models in Sections 2.1–2.5 can be seen as special
instances (see Remark 2.1).

Notice that, to provide undecidability, the set of locations L must be infinite (cf.
Sections 9.2 and 10).

The RAM-domain model case also suffices to cover the Petri net models from
Section 2.7.

As for the finite multiset models of Section 2.6, the (un)desired undecidability prop-
erty can be established even in the case of the multisets over a fixed finite set L (see
Section 9.5).
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9.1. Valuation for the RAM-Domain Model

Definition 9.1. Given a machine M, we introduce the following valuation ρ0 for the
RAM-domain model (D, ◦, {e0}) of Section 2.5:

ρ0(p1) = {{6}, {10}, {14}, {18} . . . , } = {{2(2m+ 1)} | m ≥ 1}
ρ0(p2) = {{12}, {20}, {28}, {36} . . . } = {{4(2m+ 1)} | m ≥ 1}
ρ0(li) = {{2i+5 · 3}, {2i+5 · 5}, {2i+5 · 7}, . . . } = {{2i+5 · (2m+ 1)} | m ≥ 1},

where i ≥ −2, and

ρ0(b) =
⋃

〈Li ,n1,n2〉⇓M

�li ∗ pn1
1 ∗ pn2

2 �ρ0 ,

where b is the distinguished propositional variable introduced in Definition 7.3. (The
reason behind our choice for ρ0(b) is given in Section 7.1.)

LEMMA 9.2. For any d ∈ D, n ∈ N and k ∈ {1, 2}, Definition 9.1 guarantees that
d ∈ �pn

k�ρ0 if and only if d consists of exactly n distinct numbers of the form 2k · (2m+ 1)
(where m ≥ 1).

Thus, �li ∗ pn1
1 ∗ pn2

2 �ρ0 is not empty, and each of the elements of �li ∗ pn1
1 ∗ pn2

2 �ρ0 uniquely
determines the configuration 〈Li, n1, n2〉.

PROOF. The first part is by induction on n. In the case n = 0, we have �p0
k�ρ0 = �I�ρ0 =

{e0}, where e0 is ∅. Thus, d ∈ �p0
k�ρ0 iff d = ∅ iff d consists of zero numbers of the form

2k · (2m+ 1).
In the case n > 0, we have, using Lemma 3.8:

�pn
k�ρ0 = �pk ∗ pn−1

k �ρ0

= �pk�ρ0 · �pn−1
k �ρ0

= {d′ ◦ d′′ | d′ ∈ ρ0(pk), d′′ ∈ �pn−1
k �ρ0}.

Thus, d ∈ �pn
k�ρ0 iff it is the union of disjoint sets d′ and d′′ with d′ ∈ ρ0(pk) and

d′′ ∈ �pn−1
k �ρ0 . By induction hypothesis, d′′ ∈ �pn−1

k �ρ0 iff d′′ consists of exactly n − 1
distinct numbers of the form 2k · (2m+ 1), and by construction it holds that d′ ∈ ρ0(pk)
iff d′ = {2k · (2m′ + 1)} for some m′. Since d′ and d′′ must be disjoint, we have d ∈ �pn

k�ρ0

iff d consists of exactly n numbers of the form 2k · (2m+ 1), as required.
For the second part of the lemma, we have, using Lemma 3.8:

�li ∗ pn1
1 ∗ pn2

2 �ρ0 = �li�ρ0 · �pn1
1 �ρ0 · �pn2

2 �ρ0

= {d1 ◦ d2 ◦ d3 | d1 ∈ ρ0(li), d2 ∈ �pn1
1 �ρ0 , d3 ∈ �pn2

2 �ρ0}.
Thus, d ∈ �li ∗ pn1

1 ∗ pn2
2 �ρ0 iff it is the union of disjoint sets d1, d2 and d3 with d1 ∈ ρ0(li),

d2 ∈ �pn1
1 �ρ0 and d3 ∈ �pn2

2 �ρ0 . By the first part of the lemma, d2 and d3 consist of n1
distinct numbers of form 2(2m + 1) and n2 distinct numbers of the form 4(2m + 1),
respectively, whereas by construction d1 = {2i+5 · (2m′ + 1)} for some m′ ≥ 1 and i ≥ −2.

To see that the decomposition of d into d1 ◦ d2 ◦ d3 exists and is unique, we must
show that d1, d2, d3 are nonoverlapping. To see this, suppose that 2i · (2m + 1) = 2 j ·
(2m′ + 1) where i �= j, and assume without loss of generality that j > i. Then, by
simple manipulation, we have 2m = 2 j−i+1m′ + 2 j−i − 1, but then 2m is even while
2 j−i+1m′+2 j−i −1 is odd, contradiction. Thus, �li ∗ pn1

1 ∗ pn2
2 �ρ0 is not empty, and each of its

elements uniquely determines Li, n1 and n2, and hence the configuration 〈Li, n1, n2〉.
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9.2. Do We Need Infinite Valuations?

Our choice of ρ0(p1) and ρ0(p2) to have infinitely many disjoint elements is dictated
by peculiarities of composition ◦ in the heap model. Moreover, for any finite choice of
ρ0(pk), we can show that for all sufficiently large n,

�pn
k�ρ0 = ∅,

which obstructs us in uniquely representing the contents n of the Minsky machine
counter ck by the formula pn

k. We discuss the impact upon decidability of a restriction
to finite valuations in Section 10.

9.3. Formal Details

Now we prove the basic lemma.

LEMMA 9.3. e0 |=ρ0 κ(M) for any machine M.

PROOF. Writing M = {γ1, . . . , γt}, we have by Definition 3.7:

e0 |=ρ0 κ(M) ⇔ e0 |=ρ0 I ∧ ∧t
i=1 κ(γi)

⇔ e0 ∈ {e0} and ∀i ∈ {1, . . . , t}. e0 |=ρ0 κ(γi)

Thus, it suffices to show that e0 |=ρ0 κ(γ) for any instruction γ. Recalling that
A =def (A —∗ b), we shall make use of the fact that, for any d ∈ D and any formula

A,

d |=ρ0 A ⇔ ∀d′. (d, d′ disjoint and d′ |=ρ0 A) implies d ◦ d′ ∈ ρ0(b). (25)

We present the cases for a goto instruction, and for increment, decrement and zero-test
instructions with counter variable k = 1; the cases where k = 2 are similar.

Case γ = (Li: goto Lj ;). We have κ(γ) = ( lj —∗ li), so must show e0 |=ρ0 lj —∗ li.
Using the fact that e0 ◦ d = d, this amounts to showing, for any d ∈ D,

d |=ρ0 lj implies d |=ρ0 li.

To show this implication, suppose d |=ρ0 lj . Since d ∈ D is a finite set whereas ρ0(lj)
contains infinitely many disjoint sets by construction, there must be some (in fact,
infinitely many) dj ∈ ρ0(lj) such that d and d′ are disjoint. Thus, using equivalence (25)
and Lemma 3.8, we have:

d ◦ dj ∈ ρ0(b)

= ⋃
〈Li ,n1,n2〉⇓M

�li ∗ pn1
1 ∗ pn2

2 �ρ0

= ⋃
〈Li ,n1,n2〉⇓M

ρ0(li) · �pn1
1 ∗ pn2

2 �ρ0 .

By construction of ρ0 and using the fact that dj ∈ ρ0(lj), we must have d ∈ �pn1
1 ∗ pn2

2 �ρ0 for
some n1, n2. Moreover, by Lemma 9.2, d◦dj uniquely determines 〈Lj, n1, n2〉, so we must
have 〈Lj, n1, n2〉⇓M. Since 〈Li, n1, n2〉 �M 〈Lj, n1, n2〉 by applying the goto instruction
γ, we then have 〈Li, n1, n2〉⇓M.

Now to see that d |=ρ0 li, let d′ ∈ D be disjoint from d with d′ ∈ ρ0(li). By (25), it
suffices to show that d◦d′ ∈ ρ0(b). Since d ∈ �pn1

1 ∗ pn2
2 �ρ0 , we have d◦d′ ∈ �li ∗ pn1

1 ∗ pn2
2 �ρ0

where 〈Li, n1, n2〉⇓M, and thus d ◦ d′ ∈ ρ0(b) as required.

Case γ = (Li: c1++; goto Lj ;). We have κ(γ) = ( (lj ∗ p1) —∗ li). As in the previous
case, to show e0 |=ρ0 κ(γ), we must show that, for any d ∈ D,

d |=ρ0 (lj ∗ p1) implies d |=ρ0 li.
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Suppose d |=ρ0 (lj ∗ p1). Since ρ0(lj) and ρ0(p1) each contain infinitely many disjoint
sets, we can find dj ∈ ρ0(lj) and d1 ∈ ρ0(p1) such that d, dj , and d1 are disjoint. Thus,
dj ◦ d1 |=ρ0 lj ∗ p1. Using the equivalence (25) and Lemma 3.8, we have:

d ◦ dj ◦ d1 ∈ ρ0(b)

= ⋃
〈Li ,n1,n2〉⇓M

ρ0(li) · �pn1
1 ∗ pn2

2 �ρ0 .

By construction of ρ0 and using the fact that dj ∈ ρ0(lj), we must have d ∈ �pn1
1 ∗ pn2

2 �ρ0

for some n1, n2. Moreover, by Lemma 9.2, and using the fact that d1 ∈ ρ0(p1), the
set d ◦ dj ◦ d1 uniquely determines 〈Lj, n1 + 1, n2〉, whence 〈Lj, n1 + 1, n2〉⇓M. Since
〈Li, n1, n2〉 �M 〈Lj, n1 + 1, n2〉 via the increment instruction γ, we have 〈Li, n1, n2〉⇓M.

Now, to see that d |=ρ0 li, let d′ ∈ D be disjoint from d with d′ ∈ ρ0(li). By (25), it
suffices to show that d◦d′ ∈ ρ0(b). Since d ∈ �pn1

1 ∗ pn2
2 �ρ0 , we have d◦d′ ∈ �li ∗ pn1

1 ∗ pn2
2 �ρ0

where 〈Li, n1, n2〉⇓M, and thus d ◦ d′ ∈ ρ0(b) as required.

Case γ = (Li: c1−−; goto Lj ;). We have κ(γ) = ( lj —∗ (li ∗ p1)). To show e0 |=ρ0 κ(γ),
we must show that, for any d ∈ D,

d |=ρ0 lj implies d |=ρ0 (li ∗ p1).

Now suppose d |=ρ0 lj . As in the previous cases, we can find dj ∈ ρ0(lj) such that dj
and d are disjoint. Thus, using equivalence (25), we have:

d ◦ dj ∈ ρ0(b)

= ⋃
〈Li ,n1,n2〉⇓M

ρ0(li) · �pn1
1 ∗ pn2

2 �ρ0 .

By the same argument as in previous cases, this implies that there exist n1 and n2 such
that d ∈ �pn1

1 ∗ pn2
2 �ρ0 , and 〈Lj, n1, n2〉⇓M. Since 〈Li, n1 + 1, n2〉 �M 〈Lj, n1, n2〉 via the

decrement instruction γ, we have 〈Li, n1 + 1, n2〉⇓M.
Now let d′ ∈ D be disjoint from d with d′ |=ρ0 li ∗ p1. By (25), it suffices to show

that d ◦ d′ ∈ ρ0(b). First, we have d′ = di ◦ d1 where di ∈ ρ0(li) and d1 ∈ ρ0(p1). Since
d ∈ �pn1

1 ∗ pn2
2 �ρ0 , we have d ◦ di ◦ d1 ∈ �li ∗ pn1+1

1 ∗ pn2
2 �ρ0 where 〈Li, n1 + 1, n2〉⇓M. Thus,

d ◦ di ◦ d1 = d ◦ d′ ∈ ρ0(b) as required.

Case γ = (Li: if c1 =0 goto Lj ;). In this case, we have κ(γ) = ( (lj ∨ l−1) —∗ li). To show
e0 |=ρ0 κ(γ), we must show that, for any d ∈ D,

d |=ρ0 (lj ∨ l−1) implies d |=ρ0 li.

Now suppose that d |=ρ0 (lj ∨ l−1). As in previous cases, we can find dj ∈ ρ0(lj) and
d−1 ∈ ρ0(l−1) such that d, dj , and d−1 are all disjoint. Note that both dj |=ρ0 lj ∨ l−1 and
d−1 |=ρ0 lj ∨ l−1. Thus, using equivalence (25), we have:

d ◦ dj, d ◦ d−1 ∈ ρ0(b)

= ⋃
〈Li ,n1,n2〉⇓M

ρ0(li) · �pn1
1 ∗ pn2

2 �ρ0 .

By the same argument as in previous cases, there are n1 and n2 such that
d ∈ �pn1

1 ∗ pn2
2 �ρ0 , and we have both 〈Lj, n1, n2〉⇓M and 〈L−1, n1, n2〉⇓M. However, by

Lemma 7.2, 〈L−1, n1, n2〉⇓M implies n1 = 0. Thus, 〈Li, n1, n2〉 �M 〈Lj, n1, n2〉⇓M by ap-
plying the zero-test instruction γ, whence 〈Li, n1, n2〉⇓M. The argument that d |=ρ0 li
is then exactly as in the goto and increment instruction cases. This completes the case,
and the proof.

LEMMA 9.4. For any machine M we have e0 |=ρ0 I ∧ l0.
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PROOF. We trivially have e0 |=ρ0 I. To show e0 |=ρ0 l0, taking into account that
e0 ◦ x = x, we must show that x |=ρ0 l0 implies x |=ρ0 b, that is, that ρ0(l0) ⊆ ρ0(b).
This is immediate by construction of ρ0(b), since 〈L0, 0, 0〉⇓M by definition and
ρ0(l0) = �l0 ∗ I ∗ I�ρ0 = �l0 ∗ p0

1 ∗ p0
2�ρ0 .

THEOREM 9.5. For any machine M, if the sequent

(κ(M) ∗ li ∗ pn1
1 ∗ pn2

2 ∗ (I ∧ l0)) � b

is valid in the RAM-domain model (D, ◦, {e0}), then 〈Li, n1, n2〉⇓M.

PROOF. By the definition of validity and using Lemma 3.8, we have:

�κ(M) ∗ li ∗ pn1
1 ∗ pn2

2 ∗ (I ∧ l0)�ρ0 ⊆ �b�ρ0

i.e., �κ(M)�ρ0 · �li ∗ pn1
1 ∗ pn2

2 �ρ0 · �I ∧ l0�ρ0 ⊆ ρ0(b).

Since e0 ∈ �κ(M)�ρ0 by Lemma 9.3 and e0 ∈ �I ∧ l0�ρ0 . by Lemma 9.4 we have in
particular:

�li ∗ pn1
1 ∗ pn2

2 �ρ0 ⊆ ρ0(b).

By Lemma 9.2, each of the elements of the set �li ∗ pn1
1 ∗ pn2

2 �ρ0 uniquely determines the
configuration 〈Li, n1, n2〉, whence our construction of ρ0(b) yields 〈Li, n1, n2〉⇓M.

9.4. The General Case of Stack-and-Heap-with-Permission Models

Having established as Theorem 9.5 that validity of a sequent of the form FM,C in the
basic RAM-domain model implies termination of machine M from configuration C,
we now extend this result to the most sophisticated stack-and-heap-with-permission
models from Section 2.4. As per Remark 2.1, all the models from Sections 2.1–2.5 can
be seen as special instances of such models by taking appropriate locations L, record
values RV , stacks S and permission algebra (P, •,1). Without loss of generality, we
consider the infinite set of locations L to be given by N. We write ◦′ for the composition in
a stack-and-heap-with-permission model and ·′ for its extension to sets to disambiguate
from the corresponding operations ◦ and · of the RAM-domain model.

Definition 9.6. Let (S × H, ◦′, E) be a stack-and-heap model from Section 2.4, where
S is a set of stacks and H is a set of heaps-with-permissions from locations L = N to
pairs of record values and permissions in RV × P, where (P, •,1) is a permission
algebra. (Recall that 1 • π is undefined for all π ∈ P.) We abuse notation slightly by
writing the unit e0 of the RAM-domain model for the heap with empty domain. Thus,
E = {〈s, e0〉 | s ∈ S}.

Based on our valuation ρ0 for the RAM-domain model and a given machine M in
Definition 9.1, we introduce a valuation ρ1 for (S × H, ◦′, E) as follows. First, we fix an
arbitrary stack s0 ∈ S, and for each finite set d ⊆ N we define the set [d] ⊆ S × H by:

[d] = {〈s0, h〉 | domain(h) = d and ∀� ∈ d. h(�) = 〈 ,1〉}.
where h(�) = 〈 ,1〉 means that h(�) = 〈s,1〉 for some s ∈ S. Then, for any atomic
proposition p, we define its valuation by:

ρ1(p) =
⋃

d∈ρ0(p)

[d].

LEMMA 9.7. For any stack-and-heap model (S × H, ◦′, E) and any atomic proposi-
tions p and q, we have the following identity:

�p ∗ q�ρ1 =
⋃

d∈�p∗q�ρ0

[d].
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PROOF. First, we show that for any d1 ∈ ρ0(p), d2 ∈ ρ0(q),

[d1 ◦ d2] = [d1] ·′ [d2]. (26)

For disjoint d1 and d2, this is given by construction, since

[d1] ·′ [d2] = {〈s0, h1〉 ◦′ 〈s0, h2〉 | 〈s0, h1〉 ∈ [d1], 〈s0, h2〉 ∈ [d2]}
= {〈s0, h1〉 ◦′ 〈s0, h2〉 | domain(h1) = [d1], domain(h2) = [d2],

∀� ∈ d1. h1(�) = 〈 ,1〉,∀� ∈ d2. h2(�) = 〈 ,1〉}
= {〈s0, h〉 | domain(h) = d1 ◦ d2,∀� ∈ d1 ◦ d2. h(�) = 〈 ,1〉}
= [d1 ◦ d2].

For overlapping d1 and d2, we have d1 ◦ d2 undefined and thus [d1 ◦ d2] = ∅. We show
that [d1] ·′ [d2] = ∅. Assume for contradiction that 〈s0, h1〉 ◦′ 〈s0, h2〉 is defined for
some 〈s0, h1〉 ∈ [d1] and 〈s0, h2〉 ∈ [d2]. By construction of [d1] and [d2], and since d1,
d2 are overlapping, this implies h1(�) = h2(�) = 〈 ,1〉 for some � ∈ d1 ∩ d2. But then
since 〈s0, h1〉 ◦′ 〈s0, h2〉 is defined, we must have 1 • 1 defined (because in heap-with-
permissions models (cf. Section 2.3) we add the permissions when composing compatible
heaps), which is a contradiction. Thus, [d1] ·′ [d2] is empty when d1 ◦ d2 is undefined.

Now, using Lemma 3.8, we have as required:

�p ∗ q�ρ1 = �p�ρ1 ·′ �q�ρ1

= {〈s0, h1〉 ◦′ 〈s0, h2〉 | 〈s0, h1〉 ∈ ρ1(p), 〈s0, h2〉 ∈ ρ1(q)}
= {〈s0, h1〉 ◦′ 〈s0, h2〉 | 〈s0, h1〉 ∈ ⋃

d∈ρ0(p) [d], 〈s0, h2〉 ∈ ⋃
d∈ρ0(q) [d]}

= ⋃
d1∈ρ0(p), d2∈ρ0(q) {〈s0, h1〉 ◦′ 〈s0, h2〉 | 〈s0, h1〉 ∈ [d1], 〈s0, h2〉 ∈ [d2]}

= ⋃
d1∈ρ0(p), d2∈ρ0(q) [d1] ·′ [d2]

= ⋃
d1∈ρ0(p), d2∈ρ0(q) [d1 ◦ d2] (by (26))

= ⋃
d∈{d1◦d2 | d1∈ρ0(p), d2∈ρ0(q)} [d]

= ⋃
d∈�p�ρ0 ·�q�ρ0

[d]

= ⋃
d∈�p∗q�ρ0

[d].

LEMMA 9.8. For any stack-and-heap model (S × H, ◦′, E) and any formula A of the
form li, li ∗ pk, or li ∨ lj , we have the equivalence

�A�ρ1 ·′ {〈s0, h〉} ⊆ �b�ρ1 ⇔ 〈s0, h〉 ∈ [d] and �A�ρ0 · {d} ⊆ �b�ρ0 ,

where d = domain(h).

PROOF. First, note that by distinguishing cases on A, and using Lemma 9.7 in the
case A = li ∗ pk, we easily have that

�A�ρ1 =
⋃

d∈�A�ρ0

[d]. (27)

We show each of the required implications separately.

(⇒) Suppose that �A�ρ1 ·′ {〈s0, h〉} ⊆ �b�ρ1 . That is, we have:

{〈s′, h′〉 ◦′ 〈s0, h〉 | 〈s′, h′〉 |=ρ1 A} ⊆ ⋃
d∈ρ0(b) [d]. (28)

Now let d = domain(h), and let x ∈ �A�ρ0 · {d}. Thus, x = d◦d′, where d and d′ are disjoint
and d′ |=ρ0 A. We require to show that d ◦ d′ ∈ �b�ρ0 and 〈s0, h〉 ∈ [d].
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Let 〈s0, h′〉 ∈ [d′]. Since d′ ∈ �A�ρ0 , we have by (27) 〈s0, h′〉 ∈ �A�ρ1 , that is, 〈s0, h′〉 |=ρ1 A.
Since d and d′ are disjoint, 〈s0, h〉 ◦′ 〈s0, h′〉 is defined and, by (28),

〈s0, h〉 ◦′ 〈s0, h′〉 ∈ ⋃
d∈ρ0(b) [d].

That is, 〈s0, h〉 ◦′ 〈s0, h′〉 ∈ [d′′] for some d′′ ∈ ρ0(b). Since the domain of 〈s0, h〉 ◦′ 〈s0, h′〉 is
d ◦ d′ by construction, we must have d′′ = d ◦ d′. Thus, d ◦ d′ ∈ ρ0(b) = �b�ρ0 as required.
Furthermore, 〈s0, h〉 ∈ [d] because d and d′ are disjoint, and thus h and h′ do not overlap,
but 〈s0, h〉 ◦′ 〈s0, h′〉 ∈ [d◦d′], which means that h(�) = 〈 ,1〉 for all � ∈ d. This completes
the “only if” direction.

(⇐) Let d = domain(h), let 〈s0, h〉 ∈ [d] and suppose �A�ρ0 ·{d} ⊆ �b�ρ0 . The latter inclusion
means that:

{d′ ◦ d | d′ |=ρ0 A} ⊆ ρ0(b). (29)
Now suppose that x ∈ �A�ρ1 ·′ {〈s0, h〉}. Thus, x = 〈s′, h′〉 ◦′ 〈s0, h〉 (which implies s′ = s0),
where 〈s′, h′〉 |=ρ1 A. We require to show that 〈s0, h′〉 ◦′ 〈s0, h〉 ∈ �b�ρ1 .

Since 〈s0, h′〉 ∈ �A�ρ1 , we have by (27) some d′ such that d′ ∈ �A�ρ0 , that is, d′ |=ρ0 A,
and 〈s0, h′〉 ∈ [d′] (which implies domain(h′) = d′). Because 〈s0, h〉 ∈ [d] and 〈s′, h′〉 ∈ [d′],
we have h(�) = 〈 ,1〉 for all � ∈ d and h′(�′) = 〈 ,1〉 for all �′ ∈ d′. As 〈s0, h′〉 ◦′ 〈s0, h〉
is defined by assumption, it follows that h and h′ cannot overlap, and so d and d′ are
disjoint. Thus, by (29), d′ ◦ d ∈ ρ0(b). We easily have 〈s0, h′〉 ◦′ 〈s0, h〉 ∈ [d′ ◦ d], and so

〈s0, h′〉 ◦′ 〈s0, h〉 ∈ ⋃
d∈ρ0(b)[d] = ρ1(b) = �b�ρ1 ,

as required. This completes the “if” direction, and the proof.

LEMMA 9.9. 〈s0, e0〉 |=ρ1 κ(M) for any machine M and any stack-and-heap model
(S × H, ◦′, E).

PROOF. As in Lemma 9.3, we show that 〈s0, e0〉 |=ρ1 κ(γ ) for any instruction γ in
Definition 7.1. For any such γ, the formula κ(γ) is of the form ( A —∗ B) where A and
B are of the form li, li ∨ lj or li ∗ pk. Since 〈s0, e0〉 is a unit of the model and 〈s0, e0〉 ◦′ 〈s, h〉
is undefined for s �= s0, we have

〈s0, e0〉 |=ρ1 A —∗ B

⇔ ∀〈s, h〉. 〈s0, e0〉 ◦′ 〈s, h〉 defined and 〈s, h〉 |=ρ1 A implies 〈s0, e0〉 ◦′ 〈s, h〉 |=ρ1 B

⇔ ∀〈s′, h′〉. s = s0 and 〈s, h〉 |=ρ1 A implies 〈s, h〉 |= B

⇔ ∀h. 〈s0, h〉 |=ρ1 A implies 〈s0, h〉 |=ρ1 B.

Recalling that A = A —∗ b, and using Lemma 3.8, this amounts to showing, for any
h ∈ H:

�A�ρ1 ·′ {〈s0, h〉} ⊆ �b�ρ1 ⇒ �B�ρ1 ·′ {〈s0, h〉} ⊆ �b�ρ1 . (30)
Assume �A�ρ1 ·′ {〈s0, h〉} ⊆ �b�ρ1 , and let d = domain(h). By Lemma 9.8, we have
〈s0, h〉 ∈ [d], and �A�ρ0 · {d} ⊆ �b�ρ0 . By Lemma 9.3, we have e0 |=ρ0 κ(γ ) and thus (by
the same reasoning as above) � A�ρ0 ⊆ � B�ρ0 , which means that �A�ρ0 · {d} ⊆ �b�ρ0

implies �B�ρ0 · {d} ⊆ �b�ρ0 . Thus, we have �B�ρ0 · {d} ⊆ �b�ρ0 , whence Lemma 9.8 yields
�B�ρ1 ·′ {〈s0, h〉} ⊆ �b�ρ1 , as required.

LEMMA 9.10. 〈s0, e0〉 |=ρ1 I ∧ l0 for any machine M and any stack-and-heap model
(S × H, ◦′, E).

PROOF. We have 〈s0, e0〉 |=ρ1 I because 〈s0, e0〉 ∈ E. By Lemma 9.4, we have e0 |=ρ0 l0
and thus ρ0(l0) ⊆ ρ0(b). Thus, we have

ρ1(l0) = ⋃
d∈ρ0(l0) [d] ⊆ ⋃

d∈ρ0(b) [d] = ρ1(b),

which implies that 〈s0, e0〉 |=ρ1 l0, as required.
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THEOREM 9.11. For any machine M and configuration 〈Li, n1, n2〉, if a sequent
FM,〈Li ,n1,n2〉 of the form

κ(M) ∗ li ∗ pn1
1 ∗ pn2

2 ∗ (I ∧ l0) � b

is valid in some concrete model listed in Section 2 then 〈Li, n1, n2〉⇓M.

PROOF. The case of Petri net marking models (Section 2.7) and integer partition
models (Section 2.6) with their total ◦ can be covered by the original valuation ρ0 from
Definition 9.1. See also Section 9.5.

For other models, by taking appropriate locations L, record values RV , set of stacks S
and permission algebra P (where L is infinite), we may assume that FM,〈Li ,n1,n2〉 is valid
in a stack-and-heap model (S × H, ◦′, E) as given in Definition 9.6. Thus, we have by
definition of validity, and using Lemma 3.8:

�κ(M) ∗ li ∗ pn1
1 ∗ pn2

2 ∗ (I ∧ l0)�ρ1 ⊆ �b�ρ1

that is, �κ(M)�ρ1 ·′ �li ∗ pn1
1 ∗ pn2

2 �ρ1 ·′ �I ∧ l0�ρ1 ⊆ ρ1(b).

Taking into account that 〈s0, e0〉 ∈ �κ(M)�ρ1 and 〈s0, e0〉 ∈ �I ∧ l0�ρ1 according to
Lemmas 9.9 and 9.10, respectively, we get:

�li ∗ pn1
1 ∗ pn2

2 �ρ1 ⊆ ρ1(b).

Using Lemma 9.7 and our definition of ρ1(b), we obtain:⋃
d∈�li∗p

n1
1 ∗p

n2
2 �ρ0

[d] ⊆ ⋃
d∈ρ0(b)[d].

According to Lemma 9.2, each element from the set �li ∗ pn1
1 ∗ pn2

2 �ρ0 uniquely
determines the configuration 〈Li, n1, n2〉, so that our construction of ρ0(b) yields
〈Li, n1, n2〉⇓M.

9.5. Valuation for the Total Multiset Model over a Fixed Finite Set L

By the same token, we can prove that the following simplified valuation ρmult pro-
vides the desired undecidability results for the total multiset model of Section 2.6 even
for the finite multisets over a fixed finite set L. That is, we have 〈Li, n1, n2〉⇓M whenever
the following sequent FM,〈Li ,n1,n2〉 is valid in this particular total model:

κ(M) ∗ li ∗ pn1
1 ∗ pn2

2 ∗ (I ∧ l0) � b.

Definition 9.12. Given a machine M, we introduce the following valuation ρmult for
the finite multisets over a fixed finite set L of Section 2.6:

ρmult(p1) = { {2} }
ρmult(p2) = { {3} }
ρmult(li) = { {2i + 9} },

where i ≥ −2, and

ρmult(b) =
⋃

〈Li ,n1,n2〉⇓M

�li ∗ pn1
1 ∗ pn2

2 �ρmult ,

where b is the distinguished propositional variable introduced in Definition 7.3. (The
reason behind our choice for ρmult(b) is given in Section 7.1.)

In fact, the cardinality of the finite L is proportional to the number of states of a
universal Minsky machine.
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According to Section 9.2, for our practical heap-like models with their peculiar “dis-
joint heap composition”, the corresponding L is necessarily infinite, in order to guar-
antee that the valuations of the “counter propositions” p1 and p2 have infinitely many
disjoint elements.

10. FINITE APPROXIMATIONS IN INFINITE MODELS

At first sight, our undecidability results for propositional separation logic seem to be at
odds with the decidability of the quantifier-free fragment of a certain separation theory
over an infinite heap model, due to Calcagno et al. [2001].

However, the crucial difference between our setting and theirs is that their decid-
ability result is restricted to specific finite valuations ρ such that ρ(p) is finite for every
atomic proposition p. More precisely, in Calcagno et al. [2001] each p represents one cell,
that is, a heap whose domain is a singleton. Their decidability result is nevertheless
highly non-trivial because their language contains —∗ and the underlying separation
model employs a nontotal ◦, so that, for example, whenever �A�ρ is finite, �A —∗ B�ρ

becomes infinite. Here, we investigate this phenomenon.

LEMMA 10.1. Let (H, ◦, {e0}) be a heap model from Section 2.1. There is an algorithm
that, for any finite valuation ρ, decides whether e0 |=ρ κ(M) holds or not.

PROOF. In principle, this result can be deduced from Calcagno et al. [2001]. The fol-
lowing direct construction illustrates subtleties of the problem, caused by non-totality
of the composition ◦.

As in Lemmas 9.3 and 9.9, we have to check whether

e0 |=ρ κ(γ )

for any machine instruction γ taken from Definition 7.1. For any such γ , the formula
κ(γ ) is of the form ( A —∗ B) where A and B are each of the form li, (li ∨ lj) or (li ∗ pk).
Note that, as ρ is a finite valuation, �A�ρ and �B�ρ are also finite.

Checking whether e0 |=ρ κ(γ ) thus means checking whether the following sentence
is true or not (cf. (19)):

for all h ∈ H, �A�ρ · {h} ⊆ ρ(b) implies �B�ρ · {h} ⊆ ρ(b). (31)

By negating this statement, it suffices to check whether or not there is an h ∈ H
satisfying the following sentence:

�A�ρ · {h} ⊆ ρ(b) and �B�ρ · {h} �⊆ ρ(b). (32)

The tricky point, caused by the fact that ◦ is not total, is that the Eq. (32) may have
an infinite number of solutions h. Nevertheless, we can construct, in advance, two finite
sets H1,H2 ⊆ H such that, if Eq. (32) has a solution, then it has a solution h̃ belonging
to the finite set H1 ∪ H2.

In other words, statement (31), in which the range of the quantified h is infinite, is
equivalent to the following decidable statement, in which the finite range H1 ∪ H2 of
the quantified h can be computed in advance:

for all h ∈ H1 ∪ H2, �A�ρ · {h} ⊆ ρ(b) implies �B�ρ · {h} ⊆ ρ(b). (33)

The practical upshot of this transformation is that checking whether e0 |=ρ κ(γ ) can be
done in a finite number of steps. It just remains to show how to construct the finite sets
H1 and H2.

Let �A�ρ = { f1, f2, . . . , fm} and �B�ρ = {g1, . . . , gt}. Given a solution h to (32), we
consider two cases depending on whether or not �A�ρ · {h} = ∅.

Journal of the ACM, Vol. 61, No. 2, Article 14, Publication date: April 2014.



14:36 J. Brotherston and M. Kanovich

—Case �A�ρ · {h} �= ∅. In this case, the product fi ◦ h must be defined for some i, and,
by (32), we have fi ◦ h ∈ ρ(b). Thus, h is guaranteed to belong to the finite set H1 of
all “sub-heaps” of ρ(b), defined as follows:

H1 = {h ∈ H | ∃h′ ∈ H. h′ ◦ h ∈ ρ(b)}.
—Case �A�ρ · {h} = ∅. In this case, for each i such that 1 ≤ i ≤ m, the product fi ◦ h is

undefined and hence there is an �i such that �i ∈ domain( fi) ∩ domain(h). Notice that,
by (32), we have �B�ρ ·{h} �⊆ ρ(b). Consequently, for some 1 ≤ j ≤ t, we have

domain(gj) ∩ { �1, �2, . . . , �m } = ∅. (34)

(Otherwise, for all j we have that domain(gj) ∩ { �1, �2, . . . , �m } �= ∅, and thereby
domain(gj) ∩ domain(h) �= ∅, resulting in �B�ρ · {h} = ∅, which contradicts (32). )

Now we construct a new solution h̃ in the following way. Let ã be a fresh element
of L such that ã does not occur in �A�ρ , �B�ρ or ρ(b), and let b̃ be a fixed element
of RV . Then, the domain of h̃ is defined as the extended set { �1, �2, . . . , �m, ã }, and
for each x from domain(̃h) we set:

h̃(x) = b̃.

It remains to show that h̃ indeed satisfies the sentence (32).
First, for all 1 ≤ i ≤ m, we have domain( fi) ∩ domain(̃h) �= ∅ because �i ∈ domain(̃h)

by construction. This implies that �A�ρ · {̃h} = ∅.
Second, by (34), domain(gj) and domain(̃h) are disjoint for some 1 ≤ j ≤ t, so that

gj ◦ h̃ is defined and, because of the choice of ã, we have gj◦h̃ �∈ ρ(b), so �B�ρ ·{̃h} �⊆ ρ(b).
Therefore, we can conclude that h̃ is still a solution to (32).

Now we define a set H2 of “solution candidates” as follows. For each choice of �1,
�2, . . . , �m from domain( f1), domain( f2), . . . , domain( fm), respectively, H2 contains the
heap h′ defined as follows:

domain(h′) = { �1, �2, . . . , �m, ã } and ∀x ∈ domain(h′). h′(x) = b̃.

It is clear that H2 is finite and contains every solution of the form h̃, as required.
This completes the proof.

THEOREM 10.2. Let (H, ◦, {e0}) be a heap model from Section 2.1. Then, there is an
algorithm that, for any finite valuation ρ, and any sequent FM,〈Li ,n1,n2〉 of the form:

κ(M) ∗ li ∗ pn1
1 ∗ pn2

2 ∗ (I ∧ l0) � b.

decides whether this sequent is valid under the valuation ρ.

PROOF. Given an FM,〈Li ,n1,n2〉, we first use Lemma 10.1 to compute �κ(M)�ρ and
�I ∧ l0�ρ (note that each of these is either empty, or the singleton set {e0}). If either of
these sets is empty, then trivially FM,〈Li ,n1,n2〉 is valid under the valuation ρ.

Otherwise, �κ(M)�ρ = � I ∧ l0 �ρ = {e0}, so deciding the validity of FM,〈Li ,n1,n2〉 under
ρ means deciding the inclusion

�κ(M) ∗ li ∗ pn1
1 ∗ pn2

2 ∗ (I ∧ l0)�ρ ⊆ ρ(b)

that is, �κ(M)�ρ · �li ∗ pn1
1 ∗ pn2

2 �ρ · �(I ∧ l0)�ρ ⊆ ρ(b)

that is, {e0} · �li ∗ pn1
1 ∗ pn2

2 �ρ · {e0} ⊆ ρ(b)

that is, �li ∗ pn1
1 ∗ pn2

2 �ρ ⊆ ρ(b)

which is straightforward since both �li ∗ pn1
1 ∗ pn2

2 �ρ and ρ(b) are finite.
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10.1. Noncompactness

COROLLARY 10.3. We can construct a sequent FM,〈L1,n0,0〉 of the form

κ(M) ∗ l1 ∗ pn0
1 ∗ (I ∧ l0) � b

so that, for each heap model (H, ◦, {e0}) from Section 2.1,

(a) FM,〈L1,n0,0〉 is not valid in this model (and hence the corresponding computation of
M from 〈L1, n0, 0〉 does not terminate),

(b) but FM,〈L1,n0,0〉 is valid in this model under all finite valuations ρ.

PROOF. Take M such that KM =def {n | 〈L1, n, 0〉⇓M} is undecidable (the existence of
such machines is guaranteed by Minsky [1967]). KM is recursively enumerable.

Now let (H, ◦, {e0}) be a heap model from Section 2.1. According to Figure 1 in
Section 5, we have

KM = {n | FM,〈L1,n,0〉 provable in Minimal BBI}
= {n | FM,〈L1,n,0〉 valid in all separation models}
= {n | FM,〈L1,n,0〉 valid in (H, ◦, {e0})}.

Next, we define

WM =def {n | FM,〈L1,n,0〉 is not valid in (H, ◦, {e0}) under some finite valuation ρ}.
By Theorem 10.2, WM is also recursively enumerable.

However, by construction, KM and WM are disjoint. Moreover, since KM is recursively
enumerable but undecidable, WM is not the whole complement of KM. Therefore, we
can find a number n0 such that n0 �∈ KM ∪ WM. We can now complete the two parts of
the corollary as follows:

(a) Since n0 �∈ KM, Theorem 9.11 implies that FM,〈L1,n0,0〉 is not valid in (H, ◦, {e0}).
(b) However, n0 �∈ WM implies that FM,〈L1,n0,0〉 is valid in (H, ◦, {e0}) under all finite

valuations ρ.

11. EXTENSION TO CLASSICAL BI

In this section, we extend our undecidability results to the class of “dualising separation
models”, whose proof-theoretical basis is given by the bunched logic Classical BI.

Definition 11.1. A CBI-model is given by (H, ◦, e, ·−1), where 〈H, ◦, {e}〉 is a separa-
tion model (with a single unit e) and ·−1 : H → H satisfies h ◦ h−1 = e−1 for all h ∈ H.

The CBI-models we consider here form a subclass of the more general relational
CBI-models given in Brotherston and Calcagno [2010].

Example 11.2. Examples of CBI-Models (cf. Brotherston and Calcagno [2010]).

(a) ([0, 1], ◦, 0, ·−1), where x1 ◦ x2 is x1 + x2 but undefined when x1 + x2 > 1. The inverse
x−1 is 1 − x.

(b) (	, ◦, ε, · ) where 	 is any class of languages containing the empty language ε
and closed under union ∪ and complement · . Here d1 ◦ d2 is the union of disjoint
languages d1 and d2 (in the overlapping case, d1 ◦ d2 is undefined). For example, 	
may be the class of regular languages, or the class of finite and co-finite sets.

(c) Effect algebras [Foulis and Bennett 1994], which arise in the foundations of quan-
tum mechanics, are exactly CBI-models with indivisible units.

(d) Permission algebras (P, •,1) [Bornat et al. 2005] enriched with a “formal unit” e
and “formal equalities” e • h = h • e = e can be shown to be exactly nondegenerate
(i.e., having more than one element) CBI-models with indivisible units.
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Definition 11.3. Following Definition 4.1, we introduce a second chain of logics as
follows:

BBI ⊆ CBI ⊆ CBI+eW ⊆ CBI+W.

—Classical BI, a.k.a. CBI Brotherston and Calcagno [2010] is obtained from BBI by
extending its language with a constant Ĩ, and adding the axiom ∼∼A � A, where ∼A
is an abbreviation for (A —∗ Ĩ ).

—CBI+eW is obtained by extending CBI with the restricted ∗-weakening
I ∧ (A∗ B) � A.

—CBI+W is obtained by extending CBI with the unrestricted ∗-weakening A∗ B � A.

Validity of CBI-formulas with respect to CBI-models (H, ◦, e, ·−1) is given by extend-
ing the satisfaction relation in Definition 3.9 with the clause:

h |=ρ Ĩ ⇔ h �= e−1.

PROPOSITION 11.4. If A is provable in CBI, then A is valid in all CBI-models, and if
A is provable in CBI+eW, then A is valid in all CBI-models with indivisible units.

PROOF. Since CBI-models are special cases of separation models, and BBI is sound
wrt. separation models (Proposition 4.2), it suffices to show for the first part that the
CBI axiom ∼∼A � A is valid in an arbitrary CBI-model (H, ◦, e, ·−1).

First, we observe that for any h ∈ H, the element h−1 is the unique element such
that h ◦ h−1 = e−1. For suppose that h ◦ x = e−1, then we have by associativity and
commutativity of ◦:

e−1 ◦ x = (h ◦ h−1) ◦ x = (h ◦ x) ◦ h−1 = e−1 ◦ h−1,

whence we obtain x = h−1 by cancellativity3 of ◦. As an immediate corollary, we also
have (h−1)−1 = h.

Now by the definition of validity and recalling that ∼A =def (A —∗ Ĩ), we have:

h |=ρ ∼A ⇔ ∀h′. h ◦ h′ defined and h′ |=ρ A implies h ◦ h′ �= e−1.

Since h−1 is the unique element of H such that h ◦ h−1 = e−1, we obtain:

h |=ρ ∼A ⇔ h−1 �|=ρ A.

Thus, using the fact that (h−1)−1 = h, we have:

h |=ρ ∼∼A ⇔ h−1 �|=ρ ∼A ⇔ (h−1)−1 |=ρ A ⇔ h |=ρ A

and so ∼∼A � A (as well as its converse) is valid as required.
For soundness of CBI+eW, the fact that restricted ∗-weakening holds in all CBI-

models with indivisible units follows from the fact that it holds in all separation models
with indivisible units, as established in Proposition 4.2.

COROLLARY 11.5. Interpreting ⊂ as strict inclusion between the set of sequents prov-
able in each system using only the language of BBI, we have:

BBI ⊂ CBI ⊂ CBI+eW ⊂ CBI+W.

PROOF. The nonstrict versions of the inclusions hold easily by construction. The non-
inclusion CBI �⊆ BBI was established in Brotherston and Calcagno [2010]. By the

3The original definition of a CBI-model in Brotherston and Calcagno [2010] requires as an axiom that the
dual h−1 be unique for each h, whereas here we drop this requirement in favour of cancellativity of ◦, which
is arguably more natural.
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same arguments as in Theorem 3.10 and Corollary 4.4, restricted ∗-weakening is not
valid in all CBI-models, and unrestricted ∗-weakening is not valid in all CBI-models
with indivisible units. Thus, the noninclusions CBI+W �⊆ CBI+eW �⊆ CBI hold by
Proposition 11.4.

PROPOSITION 11.6. CBI+W is ordinary classical logic.

PROOF. By the same argument as in Proposition 4.7, the presence of unrestricted
∗-weakening forces the equivalences A∗ B ≡ A∧ B, A —∗ B ≡ A → B and I ≡ .

It just remains to show that Ĩ ≡ ⊥. To see this, first note that ⊥ � Ĩ is trivially
provable by the usual ex falso quodlibet of classical logic. For the reverse direction, first
note that (⊥ —∗ Ĩ) �  is trivially provable. As a consequence, ( —∗ Ĩ) � ((⊥ —∗ Ĩ) —∗ Ĩ)
is also provable. By the CBI axiom, we have ((⊥ —∗ Ĩ) —∗ Ĩ) � ⊥, whence by transitivity
of � we obtain ( —∗ Ĩ) � ⊥. By the equivalence I ≡ , we then have (I —∗ Ĩ) � ⊥. Since
Ĩ � (I —∗ Ĩ) is easily derivable, we have Ĩ � ⊥ provable by transitivity as required.

We observe that, as a consequence, ∼A ≡ A → ⊥ ≡ ¬A.

Since (Minimal) BBI-provability implies CBI-provability, to establish undecidability
for CBI, it suffices (see Figure 1) to prove the analogue of Theorem 9.5 for a CBI-model.

Definition 11.7. We introduce the RAM-codomain model (D+, ◦, e0, ·−1), where D+ is
the class of finite and co-finite subsets of N, ◦ is the union of disjoint sets (and undefined
for nondisjoint sets), the unit e0 is ∅ and ·−1 is set complement.

By extending the valuation ρ0 in Definition 9.1, we define a valuation ρC for
(D+, ◦, e0, ·−1) as follows: ρC coincides with ρ0 on all atomic propositions except b, and

ρC(b) = ρ0(b) ∪ {d ∈ D+ | d is co-finite }.
LEMMA 11.8. e0 |=ρC κ(M) for any machine M.

PROOF. As in Lemma 9.3, we must show e0 |=ρC κ(γ) for any instruction γ. Here we
only examine the case of an increment instruction γ = (Li: ck++; goto Lj ;) for k = 1.
We note that we have, as in Lemma 9.3,

d |=ρC A ⇔ ∀d′. d, d′ disjoint and d′ |=ρC A implies d ◦ d′ ∈ ρC(b). (35)

We have κ(γ) = ( (lj ∗ p1) —∗ li). To show e0 |=ρC κ(γ), we must show for any d ∈ D+,
as in the corresponding case of Lemma 9.3,

d |=ρC (lj ∗ p1) implies d |=ρC li.

Assuming that d |=ρC (lj ∗ p1), there are two cases to consider.
First, if d is finite then we can find (as in the corresponding case of Lemma 9.3)

dj ∈ ρC(lj) and d1 ∈ ρC(p1) such that d, dj and d1 are disjoint, and thus in particular
dj ◦ d1 |=ρC lj ∗ p1. Using equivalence (35), we have:

d ◦ dj ◦ d1 ∈ ρC(b)

= ρ0(b) ∪ {d ∈ D+ | d is co-finite}.
Since d, dj , and d1 are finite, we must have d ◦ dj ◦ d1 ∈ ρ0(b) and thus, by the same
argument as in the corresponding case of Lemma 9.3, d ∈ �pn1

1 ∗ pn2
2 �ρ0 where 〈Lj, n1 +

1, n2〉⇓M and thus 〈Li, n1, n2〉⇓M by applying the instruction γ . Consequently, d ◦ d′ ∈
ρ0(b) ⊆ ρC(b) for any d′ such that d, d′ are disjoint and d′ ∈ ρC(li). Thus, by (35), we
have d |=ρC li as required.

If, on the other hand, d is co-finite then, for any choice of d′ ∈ ρC(li) with d, d′ disjoint,
d ◦ d′ must also be co-finite, in which case d ◦ d′ ∈ ρC(b) because ρC(b) contains all
co-finite sets. Thus, again by (35), we have d |=ρC li as required.

The other cases follow from their analogues in Lemma 9.3 in a similar fashion.
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LEMMA 11.9. e0 |=ρC I ∧ l0 for any machine M.

PROOF. Similar to Lemma 9.4.

THEOREM 11.10. If the sequent κ(M) ∗ li ∗ pn1
1 ∗ pn2

2 ∗ (I ∧ l0) � b is valid in the model
(D+, ◦, e0, ·−1), then 〈Li, n1, n2〉⇓M.

PROOF. By the definition of validity, and using Lemma 3.8, we have:

�κ(M) ∗ li ∗ pn1
1 ∗ pn2

2 ∗ (I ∧ l0)�ρC ⊆ ρC(b)

that is, �κ(M)�ρC · �li ∗ pn1
1 ∗ pn2

2 �ρC · �I ∧ l0�ρC ⊆ ρC(b).

By Lemmas 11.8 and 11.9, we have in particular:

�li ∗ pn1
1 ∗ pn2

2 �ρC ⊆ ρC(b).

Since ρC coincides with ρ0 on all atomic propositions except b, we have �li ∗ pn1
1 ∗ pn2

2 �ρC =
�li ∗ pn1

1 ∗ pn2
2 �ρ0 , so that 〈Li, n1, n2〉 is uniquely determined according to Lemma 9.2. In

particular, �li ∗ pn1
1 ∗ pn2

2 �ρC is finite, so our construction of ρC(b) yields 〈Li, n1, n2〉⇓M.

Again, based on Figure 1, we can assert the following:

COROLLARY 11.11. The following properties of formulas are undecidable, even when
restricted to the language ( ∧,→, I, ∗, —∗ ) of Minimal BBI4:

(a) provability in CBI;
(b) provability in CBI+eW;
(c) validity in the class of all CBI-models;
(d) validity in the class of all CBI-models with indivisible units;
(e) validity in the RAM-codomain model (D+, ◦, e0, ·−1).

PROOF. Similar to Corollary 5.1.

COROLLARY 11.12. Neither CBI nor CBI+eW has the finite model property.

PROOF. Similar to Corollary 5.2.

12. CONCLUDING REMARKS

Our main contribution in this article is that heap-like memory models, of the type con-
sidered in Section 2, have a very complicated logical structure even at the propositional
level.

(A) Separation logic, which provides us with an effective language for reasoning about
such memory models, is undecidable even at the purely propositional level.

(B) Moreover, we have established that for any particular heap-like memory model
drawn from the literature, validity in that model is undecidable even for purely
propositional formulas in this language. Corollary 5.1(h) provides an infinite num-
ber of concrete undecidable models of practical and theoretical importance. That
is, however we choose L, RV , S and P in Section 2 (with L infinite and RV , S, P
possibly degenerate), we always get an undecidable model.

(C) We also have established the undecidability of validity in various classes of sepa-
ration models, and of provability in BBI and CBI and their siblings.

4On the surface, it seems that we are within the framework of Corollary 5.1, since formulas are restricted to
the language (∧,→, I, ∗, —∗), which does not include the new CBI constant Ĩ. However, the problem remains
nontrivial because of the fact that CBI is not a conservative extension of BBI.
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(D) In fact, to obtain a new exhibit for the “Undecidability Zoo” - that is, a minimal
version of BBI that is “as simple as possible” - we only need to add classical
conjunction and implication to the multiplicatives, without invoking either classical
negation or falsum (see Section 6).

(E) From a technical point of view, we kill all our “undecidable birds” with one “stone”:
a single direct encoding of Minsky machines. This single encoding suffices to cover
all cases of interest (see Figure 1).

12.1. New Principles for Separation Logic

In proving our main undecidability results on separation logic, we have found a number
of new principles which should be taken into account at the level of the multiplicative
unit I.

(i) Though ∗-contraction, A � A∗ A, is not generally valid in separation logic, in
Lemma 6.4, we deduce the following restricted ∗-contraction

I ∧ A � A∗ A. (36)
(ii) As for the systems BBI+eW and CBI+eW newly established in this article, we

remark that the memory models of theoretical/practical importance employed in
the literature (cf. Section 2) all have indivisible units in the sense of Definition 3.4,
which is exactly axiomatized by the restricted ∗-weakening principle of BBI+eW
and CBI+eW (see Theorem 3.10):

I ∧ (A∗ B) � A. (37)
This principle is in accordance with the following law on “conservation of matter”:

“The empty memory cannot be split into nonempty pieces.”

12.2. Separation Logic vs. Linear Logic

Our undecidability results also shed new light on the correlations between separation
logic and linear logic.

From the point of view of logical principles, there are clear differences between the
two. For example, distributivity of additive conjunction over disjunction:

A∧ (B∨ C) ≡ (A∧ B) ∨ (A∧ C)

holds even in BI but fails in linear logic.
More specific to Boolean BI, the restricted ∗-contraction:

I ∧ A � A∗ A

holds even in Minimal BBI as shown by our Lemma 6.4, but this too fails in linear
logic.

Finally, while adding the unrestricted ∗-weakening (A∗ B) � A to linear logic gives
us a rich structure of affine logic, adding it to BBI forces a collapse into classical logic
(Proposition 4.7).

From a semantic perspective, the precise expression of properties of memory in
separation logic is based on the fact that we have:

�A∗ B�ρ = �A�ρ · �B�ρ,

that is, the interpretation of A∗ B is exactly the product of the interpretations of A
and B. (This fact is also of crucial importance to its undecidability.) Linear logic in-
terpretations deal only with sets that are closed with respect to a certain closure
operator Cl, which, in particular, violates this exact equality. Indeed, the same is true
of BI interpretations [O’Hearn and Pym 1999]. Not only is this less precise, it admits
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no possibility of finite valuations in these logics since, for example, in linear logic even
Cl(∅) is always infinite.

12.3. Undecidability vs. Decidable Fragments of Memory Models

Finally, our undecidability results for concrete heap-like models give new insights into
the nature of decidable fragments of memory models such as those given in Berdine
et al. [2004] and Calcagno et al. [2001], as well as imposing boundaries on decidability.
For example, we can deduce that to obtain decidability in a heap-like model, one should
either give up arbitrary infinite valuations (as in Calcagno et al. [2001]) or restrict the
formula language (as in Berdine et al. [2004]).
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