
Machine-checked Interpolation Theorems for
Substructural Logics using Display Calculi

Jeremy E. Dawson1⋆, James Brotherston2⋆⋆, and Rajeev Goré1

1 Research School of Computer Science, Australian National University
2 University College London, UK

Abstract. We present a mechanised formalisation, in Isabelle/HOL, of
Brotherston and Goré’s proof of Craig interpolation for a large class
display calculi for various propositional substructural logics.
Along the way, we discuss the particular difficulties associated with the
local interpolation property for various rules, and some important differ-
ences between our proofs and those of Brotherston and Goré, which are
motivated by the ease of mechanising the development.
Finally, we discuss the value for this work of using a prover with a pro-
grammable user interface (here, Isabelle with its Standard ML interface).

Keywords: Craig interpolation, display logic, interactive theorem proving

1 Introduction

In calculi for logical entailment, Craig interpolation is the property that for any
entailment A ⊢ B between formulae, there exists an interpolant formula I such
that A ⊢ I and I ⊢ B are both entailments of the calculus, while I mentions only
those variables or nonlogical constants that are common to both A and B. It has
long been known that there are close connections between interpolation and other
central logical concerns (see e.g. [9]); indeed, one of Craig’s original applications
of interpolation was to give a new proof of Beth’s Definability Theorem [6]. More
recently, though, it has transpired that interpolation has significant applications
in program verification as well; e.g., in the inference of loop invariants [11], and
in model checking [5].

Recently, Brotherston and Goré [3] gave a modular proof of interpolation for
a class of propositional substructural logics, based on Belnap’s display logic [2]
(here we prefer the term display calculi). Roughly speaking, display calculi are
two-sided sequent calculi equipped with a richer-than-usual notion of sequent
structure and a principle by which sequents can be rearranged so as to “dis-
play” any chosen substructure as the entire left or right hand side (much like
rearranging a mathematical equation for a chosen variable). The main attrac-
tion of display calculi is Belnap’s general cut-elimination result, which says that

⋆ Supported by Australian Research Council Discovery Grant DP120101244
⋆⋆ Supported by an EPSRC Career Acceleration Fellowship

cut-elimination holds for any display calculus whose rules satisfy eight easily
verifiable syntactic conditions. Cut-elimination is generally essential to the stan-
dard proof-theoretic approach to interpolation, which is to proceed by induction
on cut-free derivations (see e.g. [4]). Despite the availability of a general cut-
elimination result, however, there seem to have been no proofs on interpolation
based on display calculi prior to [3], probably due to the inherent complexity
of their sequent structure and display principles. Indeed, in line with this gen-
eral expectation, Brotherston and Goré’s proof is very technical, involving many
case distinctions, and many intricate properties of substitutions. Moreover, due
to space restrictions, most of the proofs are only sketched, leaving the potential
for errors. Thus we believe it is vital to verify these intricate details using an
interactive theorem prover, to give us greater confidence in their very general
interpolation theorems.

In this paper, we describe the Isabelle/HOL formalisation of their results,
discuss the difficulties in formalising their proofs and describe the differences be-
tween their proofs and ours. We also highlight the usefulness of a programmable
user interface. Our Isabelle mechanisation, comprising over 8000 lines of Isabelle
theory and proof code, can be found at [1].

2 Display calculi for (some) substructural logics

Here, we briefly describe display calculi, and recall those display calculi for which
Brotherston and Goré proved interpolation [3].

We assume a fixed infinite set of propositional variables. Formulae F and
structures X are then given by the following grammars, where P ranges over
propositional variables:

F ::= P | ⊤ | ⊥ | ¬F | F & F | F ∨ F | F → F | ⊤a | ⊥a | F &a F | F ∨a F

X ::= F | ∅ | ♯X | X ; X

Formula connectives with an “a” subscript stand for an additive version of that
connective, while connectives without a subscript are construed as multiplicative.
However, in the Isabelle formulation we do not duplicate the connectives in this
way — rather, we identify the logical rules for which our various results apply.
We write F,G etc. to range over formulae and W,X, Y, Z etc. to range over
structures. If X and Y are structures then X ⊢ Y is a consecution.

The complete set of proof rules for our display calculi is given in Figure 1. As
usual, we begin by giving a set of display postulates, and taking the least equiva-
lence closed under the postulates to be our notion of display-equivalence. We then
have the usual display theorem, which says that for any structure occurrence Z
in a consecution X ⊢ Y , one has either X ⊢ Y ≡D Z ⊢ W or X ⊢ Y ≡D W ⊢ Z
for some W , depending on whether Z occurs positively or negatively in X ⊢ Y .
Rearranging X ⊢ Y into Z ⊢ W or W ⊢ Z in this way is called displaying Z. We
remark that the display postulates “build in” commutativity of the structural
semi-colon, so that we consider only calculi for commutative logics.

2

Brotherston and Goré [3] consider the additive rules, collectively, and each
structural rule, individually, to be optional inclusions in their calculi. At present,
our mechanisation assumes the presence of the unit rules (∅WL), (∅WR), (∅CL),
(∅CR) and the associativity rule (α). Thus the smallest display calculus we con-
sider gives multiplicative linear logic MLL. By adding the additive logical rules
we obtain multiplicative-additive linear logic MALL, and by adding the full
weakening rule (W) or the full contraction rule (C) we obtain affine or strict vari-
ants of these logics, respectively. Note that rules for weakening and contraction
on the right can be derived using the display postulates from the corresponding
left rules. Of course, if we add both weakening and contraction then we obtain
standard classical propositional logic.

No matter which variant of these display calculi we consider, we have the
standard cut-elimination result due to Belnap. Since we omit the cut rule from
our presentation of the display calculi in Figure 1, we state it here in the weaker
form of cut admissibility :

Theorem 1 (cf. [3]). If X ⊢ F and F ⊢ Y are both provable then so is X ⊢ Y .
Moreover, this property is not affected by the presence or otherwise of the additive
logical rules (collectively), or of any of the structural rules.

3 Interpolation for Display Calculi

In traditional sequent calculi, it is fairly straightforward to decorate each rule
with interpolants by building up the interpolant for the conclusion sequent from
the interpolants for the premise sequents. this approach is harder in display cal-
culi since the sequent X ⊢ Y goes through many transformations while display-
ing some substructure Z. Brotherston & Goré therefore consider the following
“LADI” property [3, Definition 3.4], where ≡AD is the equivalence obtained by
combining display equivalence with applications of associativity (α) if present in
the calculus:

LADI: a rule with premises Ci and conclusion C satisfies the local AD display
interpolation property (LADI) if for all premises Ci, all sequents C

′
i such that

C′
i ≡AD Ci satisfy the interpolation property, then all sequents C′ such that

C′ ≡AD C satisfy the interpolation property.

Although Brotherston and Goré [3] give the separate variants of the logical
connectives ⊤,⊥,∧ and ∨ for the additive and multiplicative forms of the log-
ical introduction rules, we just use one connective for each of ⊤,⊥,∧ and ∨.
Although the additive and multiplicative forms are equivalent in the presence of
contraction and weakening, [3] contains results which are relevant to the situa-
tion where not all structural rules are included. Thus they prove results for both
the rules shown below, even though the second rule is much easier to deal with.

X ⊢ A Y ⊢ B

X,Y ⊢ A ∧B

X ⊢ A X ⊢ B

X ⊢ A ∧B

We first considered the second (additive) rule shown; we subsequently developed
a proof dealing with the first (multiplicative) rule directly.

3

Display postulates:

X;Y ⊢ Z ⇄D X ⊢ ♯Y ;Z ⇄D Y ;X ⊢ Z

X ⊢ Y ;Z ⇄D X; ♯Y ⊢ Z ⇄D X ⊢ Z;Y

X ⊢ Y ⇄D ♯Y ⊢ ♯X ⇄D ♯♯X ⊢ Y

Identity rules:

(Id)
P ⊢ P

X
′ ⊢ Y

′

X ⊢ Y ≡D X ′ ⊢ Y ′ (≡D)
X ⊢ Y

Multiplicative logical rules:

∅ ⊢ X
(⊤L)

⊤ ⊢ X
(⊤R)

∅ ⊢ ⊤

F ;G ⊢ X
(&L)

F & G ⊢ X

X ⊢ F Y ⊢ G
(&R)

X ; Y ⊢ F & G

(⊥L)
⊥ ⊢ ∅

X ⊢ ∅
(⊥R)

X ⊢ ⊥

F ⊢ X G ⊢ Y
(∨L)

F ∨G ⊢ X ; Y

X ⊢ F ;G
(∨R)

X ⊢ F ∨G

♯F ⊢ X
(¬L)

¬F ⊢ X

X ⊢ ♯F
(¬R)

X ⊢ ¬F

X ⊢ F G ⊢ Y
(→L)

F → G ⊢ ♯X ; Y

X ; F ⊢ G
(→R)

X ⊢ F → G

Additive logical rules:

(⊥aL)
⊥a ⊢ X

Fi ⊢ X
i ∈ {1, 2} (&aL)

F1 &a F2 ⊢ X

F ⊢ X G ⊢ X
(∨aL)

F ∨a G ⊢ X

(⊤aR)
X ⊢ ⊤a

X ⊢ F X ⊢ G
(&aR)

X ⊢ F &a G

X ⊢ Fi

i ∈ {1, 2} (∨aR)
X ⊢ F1 ∨a F2

Structural rules:

∅;X ⊢ Y
(∅CL)

X ⊢ Y

X ⊢ Y ; ∅
(∅CR)

X ⊢ Y

X ⊢ Y
(∅WL)

∅;X ⊢ Y

X ⊢ Y
(∅WR)

X ⊢ Y ; ∅

(W ;X);Y ⊢ Z
(α)

W ; (X;Y) ⊢ Z

X ⊢ Z
(W)

X;Y ⊢ Z

X;X ⊢ Y
(C)

X ⊢ Y

Fig. 1. Display calculus proof rules. In the display rule (≡D), the relation ≡D is the
least equivalence containing the relation ⇄D given by the display postulates. Note that
all our formalisation, and all our results, omit the →-connective and its rules.

4 The Isabelle mechanisation

Our mechanisation builds on the work of Dawson & Goré [7] in formalising
Display Logic. Some of our notation and choices of properties, lemmas, etc, are
attributable to this. In particular, we use Comma, Star and I for ‘;’, ‘#’ and ‘∅’.

4

The work in [7] is a deep embedding of rules and of the variables in them,
and we have followed that approach here (see [8] for our understanding of what
this means, and for more details). That is, we define a language of formulae and
structures, which contains explicit structure and formula variables, for which we
define explicit substitution functions. We also define the rules as specific data
structures (of which there is a small finite number, such as those in Figure 1),
and infinitely many substitution instances of these rules.

4.1 Formalising Display Logic in Isabelle

An actual derivation in a Display Calculus involves structures containing formu-
lae which are composed of primitive propositions (which we typically represent
by p, q, r). It uses rules which are expressed using structure and formula variables,
typically X,Y, Z and A,B,C respectively, to represent structures and formulae
made up from primitive propositions. We are using a “deep embedding” of vari-
ables, so our Isabelle formulation explicitly represents variables such as X,Y, Z
and A,B,C, and defines substitution for them of given structures and formulae,
which may themselves contain variables.

Thus, in our Isabelle formulation we use PP name, SV name and FV name to
represent propositional, formula and structure variables respectively. The oper-
ator Structform “casts” a formula into a structure. We can then give recursive
datatypes formula and structr for formulas and structures respectively (pos-
sibly parameterised by formula or structure variables), in the obvious way.

Thus the datatype formula for formulae has constructors FV, PP and the
logical operators & ∨ ¬ ⊤ ⊥ whereas the datatype structr for structures has
constructors SV, Structform and the structure operators ; ♯ ∅.

A rule (type is represented as a list of premises and a conclusion, and a
sequent by a Isabelle/HOL datatype:

types ’a psc = "’a list * ’a"

datatype sequent = Sequent structr structr

A sequent (Sequent X Y) can also be represented as $X |- $Y.
Since a “deep” embedding requires handling substitution explicitly, we de-

fined functions to substitute for structure and formula variables, in structures,
sequents and rules. In particular, we have an operator rulefs, where rulefs

rules is the set of substitution instances of rules in the set rules. Also, when we
refer to derivability using a set of rules, this allows inferences using substitu-
tion instances of these rules, and derivableR rules sequents means the set of
sequents which can be derived from sequents using rules, instantiated.

derivableR :: "rule set => sequent set => sequent set

rulefs :: "rule set => rule set"

We also use some general functions to describe derivability. An inference
rule of type ’a psc is a list ps of premises and a conclusion c. Then derl rls

is the set of rules derivable from the rule set rls while derrec rls prems is

5

the set of sequents derivable using rules rls from the set prems of premises.
We defined these using Isabelle’s package for inductively defined sets. A more
detailed expository account of these, with many useful lemmas, is given in [10].

derl :: "’a psc set => ’a psc set"

derrec :: "’a psc set => ’a set => ’a set"

Note that these functions do not envisage instantiation of rules. Thus we
have the following relationship between derivableR and derrec.

"derivableR ?rules == derrec (rulefs ?rules)"

The “deep embedding” approach to rules enables us to express properties of
rules, such as that “no structure variable appears in both antecedent and succe-
dent positions”. Such lemmas apply to all display postulates satisfying conditions
of this sort. We used this in [7] in showing that cut-admissibility applies whenever
the structural rules were all of a particular form (as in Belnap’s cut elimination
theorem). In regards to interpolation, possible future work may include showing
that interpolation results hold whenever rules are of a particular form, but our
present work (except for some lemmas) do not do this.

The work in [7] is also a deep embedding of proofs (where we took proof
objects and explicitly manipulated them) but we have not done that here.

4.2 Definitions relating to interpolation

We define the following sets of rules:

dps: is the set of six display postulates in [3, Definition 2.5] (Display-equivalence);
aidps: is dps, their inverses, and the associativity rule (ie, 13 rules);
ilrules: is the unit-contraction and unit-weakening rules;
rlscf: is the set of all rules of the logic as shown in [3, Figures 1 and 3], plus

aidps; that is, the rules of Figure 1, except the additive logical rules (and
we omit throughout this work the derivable rules for implication →);

rlscf nw: is as rlscf, but excluding the weakening rule.

Definition 1. We define several predicates to do with interpolation:

interp :: "rule set => sequent => formula => bool"

edi :: "rule set => rule set => sequent => bool"

ldi :: "rule set => rule set => sequent list * sequent => bool"

cldi :: "rule set => rule set => sequent list * sequent => bool"

interp rules (X ⊢ Y) intp: iff intp is an interpolant for X ⊢ Y . Thus X ⊢
intp and intp ⊢ Y are derivable using rules and the (formula) variables
in intp are among the formula variables of the structures X and Y ;

edi lrules drules (X ⊢ Y): (Extended Display Interpolation) iff for all se-
quents X ′ ⊢ Y ′ from which X ⊢ Y is derivable using lrules, the sequent
X ′ ⊢ Y ′ has an interpolant defined in terms of derivability using drules

where lrules would typically be a set of display postulates;

6

ldi lrules drules (ps, c): (Local Display Interpolation) iff the rule (ps, c) pre-
serves the property edi: that is, if, for all p ∈ ps, edi lrules drules p
holds, then edi lrules drules c holds. Thus, if lrules is the set AD of
rules (our aidps), and drules is the set of rules of the logic, then the LADI-
property [3, Definition 3.4] for rule (ps, c) is ldi aidps drules (ps, c).

Note that none of these definitions involves a condition that X ⊢ Y be deriv-
able. Of course, cut-admissibility would imply that if X ⊢ Y has an interpolant
then X ⊢ Y is derivable, but we avoid proving or using cut-admissibility. Even
so, in most cases we do not need such a condition. However we do need X ⊢ Y
in the case of a sequent I ⊢ Y,#X produced by weakening and displaying I.
Thus we need a predicate with that condition:

Definition 2 (Conditional Local Display Interpolation).
cldi lrules drules (ps, c) holds iff:
if c is is derivable using drules, then ldi lrules drules (ps, c) holds.

We also need variants interpn, edin, ldin and cldin, of these predicates,
where the derivation of interpolated sequents is from a given set of rules, rather
than from given rules and their substitution instances. We use these in lemmas
which involve rule sets which are not closed under substitution.

We mention here that many of our lemmas about these properties assume,
although we do not specifically say so, that AD (rule set aidps) is used as
lrules in the above definitions, and that the derivation rules, drules in the above
definitions, contain the AD rules.

Lemma 3.5 of [3] says that if all rules satisfy the local AD-interpolation
property, then the calculus has the interpolation property. In fact the stronger
result, Lemma 1(a) (below) is true, that LADI is preserved under derivation.
But for the conditional local display interpolation property, a result analogous
to the first-mentioned, only, of these results holds: see Lemma 1(b).

Lemma 1 (ldi derl, cldi ex interp).

(a) if each rule from a set of rules satisfies the local display interpolation prop-
erty, then so does a rule derived from them;

(b) if all the derivation rules satisfy the conditional local AD-interpolation prop-
erty, then the calculus has the interpolation property.

4.3 Substitution of congruent occurrences

In [3, Lemmas 3.6, 3.7] the concept of congruent occurrences of some structure
Z is used, with substitution for such congruent occurrences. Where two sequents
C and C′ are related by a display postulate, or sequence of them, a particular
occurrence of Z in C will correspond to a particular occurrence of Z in C′,
according to the sequence of display postulates used to obtain C′ from C.

This concept looked rather difficult to define and express precisely and for-
mally: note that the in the notation in [3], C[Z/A] ≡AD C′[Z/A], the meanings

7

of C[Z/A] and C′[Z/A] depend on each other, because they refer to particular,
corresponding, instances of A in C and C′.

So we adopted the alternative approach, used successfully in [7]: rather than
trying to define C′[Z/A] we would prove that there exists a sequent (call it C′

Z/A)

satisfying C[Z/A] ≡AD C′
Z/A and satisfying the property that some occurrences

of A in C′ are replaced by Z in C′
Z/A. This approach turned out to be sufficient

for all the proofs discussed here.
In previous work [7], we defined and used a relation seqrep, defined as follows.

Definition 3 (seqrep).

seqrep : "bool => structr => structr => (sequent * sequent) set"

(U, V) ∈ seqrep b X Y means that some (or all or none) of the occurrences
of X in U are replaced by Y , to give V ; otherwise U and V are the same; the
occurrences of X which are replaced by Y must all be in succedent or antecedent
position according to whether b is true or false.

For this we write U X
❀

Y V , where the appropriate value of b is understood.
Analogous to [3, Lemma 3.9] we proved the following result

Lemma 2 (SF some sub). For formula F , structure Z, and rule set rules, 3 if

(a) the conclusions of rules do not contain formulae; and
(b) the conclusion of a rule in rules does not contain more than one occurrence

of any structure variable; and
(c) the rules obeys Belnap’s C4 condition: when the conclusion and a premise

of a rule both contain a structure variable, then both occurrences are in an-
tecedent or both are in succedent positions; and

(d) concl is derivable from prems using rules; and
(e) concl F

❀
Z sconcl

then there exists a list sprems (of the same length as prems) such that

(1) sconcl is derivable from sprems using rules; and
(2) premn

F
❀

Z spremn holds for corresponding members premn of prems and
spremn of sprems.

4.4 LADI property for unary logical rules

Proposition 3.10 of [3] covers the display postulates, the associativity rule, and
the nullary or unary logical introduction rules.

The first case ((≡D), that is, any sequence of display postulates) of [3, Propo-
sition 3.10] is covered by the following result (which holds independently of the
choice of set of derivation rules).

Lemma 3 (bi lrule ldi lem). Let rule ρ be a substitution instance of a rule
in AD. Then ρ has the LADI property.

3 In Lemma 3.9 [3] this set of rules is the AD rules

8

With the next lemma we can handle the rules (Id), (⊤R) and (⊥L).

Lemma 4 (non bin lem gen). Assume the derivation rules include (¬L) and
(¬R). Let ρ be a substitution instance of a rule in AD whose premise does not
contain any ‘;’. If the premise of ρ has an interpolant then so does its conclusion.

Since the conclusions of the three nullary rules (Id), (⊤R) and (⊥L) clearly
themselves have interpolants, Lemma 4 shows they satisfy the extended display
interpolation property, and so the rules have the LADI property.

Proposition 1. The rules (Id), (⊤R) and (⊥L) satisfy the LADI property.

The remaining cases of Proposition 3.10 are the logical introduction rules
with a single premise. For these we use the four lemmas (of which one is shown)

Lemma 5 (sdA1). if the rule shown below left is a logical introduction rule, and
the condition in the middle holds, then the rule shown below right is derivable
(ie, using AD and the logical introduction rules)

Y ′ ⊢ U

Y ⊢ U
W Y

❀
Y ′

W ′ W ′ ⊢ Z

W ⊢ Z

Then from these lemmas we get

Lemma 6 (seqrep interpA). For the logical introduction rule shown below left,
if formula variables in Y ′ also appear in Y , the condition on the right holds, and
I is an interpolant for W ′ ⊢ Z ′, then I is also an interpolant for W ⊢ Z:

Y ′ ⊢ U

Y ⊢ U
W ⊢ Z Y

❀
Y ′

W ′ ⊢ Z ′ (in antecedent positions)

Finally we get the following result which gives Proposition 3.10 for single
premise logical introduction rules (additive or multiplicative).

Proposition 2 (logA ldi). if F is a formula, and the rule (F ⊢) below is a
logical introduction rule, and the formula variables in Y are also in F , then
(F ⊢) satisfies the LADI property:

Y ⊢ U

F ⊢ U
(F ⊢)

This last result requires Lemma 2. We have analogous results for a logical
introduction rule for a formula on the right.

Remark 1. At this stage, we have a general method for proving local display
interpolation for a given rule ρ, with premises psρ and conclusion cρ: identify a
relation rel such that

(a) (psρ, cρ) ∈ rel
(b) whenever c ≡AD cρ, we can find a list ps (often got from sequents in psρ

using the same sequence of display postulates which get c from cρ) such that
(ps, c) ∈ rel, and p ≡AD pρ for each p ∈ ps and corresponding pρ ∈ psρ

(c) whenever (ps, c) ∈ rel, c is derivable from ps (not used except to prove (d))
(d) whenever (ps, c) ∈ rel, and each p ∈ ps has an interpolant, then c has an

interpolant (proof of this will normally use (c))

9

4.5 LADI property for (unit) contraction

This is relatively easy for the unit-contraction rule: the relation rel is given by:
(p, c) ∈ rel if p is obtained from c by deleting, somewhere in c, some #n∅, and
we get (b) using roughly the same sequence of display postulates.

Lemma 7 (ex box uc). if sequent Cd is obtained from C by deleting one oc-
currence of some #n∅, and if Cd′ →∗

AD Cd, then there exists C ′, such that
C ′ →∗

AD C, and Cd′ is obtained from C ′ by deleting one occurrence of #n∅.

The proof of this required a good deal of programming repetitive use of
complex tactics similar to (but less complex than) those described in §4.6.

The following lemma gives (c) of the general proof method above.

Lemma 8 (delI der). If (p, c) ∈ rel (defined above), and if the derivation rules
include AD and the unit contraction rules, then c is derivable from p

Proposition 3 (ldi ila, ldi ils). The unit contraction rules satisfy LADI.

For the case of contraction, we defined a relation mseqctr: (C,C ′) ∈ mseqctr

means that C ′ is obtained from C, by contraction of substructures (X,X) to X.
Contractions may occur (of different substructures) in several places or none.

Lemma 9 (ex box ctr). if sequent Cd is obtained from C by contraction(s) of
substructure(s), and if Cd′ →∗

AD Cd, then there exists C ′, such that C ′ →∗
AD C,

and Cd′ is obtained from C ′ by substructure contraction(s).

Proof. The proof of ex box ctr is a little more complex that that for unit-
contraction, because (for example) when X;Y ⊢ Z ≡AD X ⊢ Z; #Y , and
X;Y ⊢ Z is obtained by contracting (X;Y); (X;Y) ⊢ Z, we need to show
(X;Y); (X;Y) ⊢ Z ≡AD X;X ⊢ Z; #(Y ;Y)

Lemma 10 (ctr der). If (p, c) ∈ mseqctr (defined above), and if the derivation
rules include AD and the left contraction rule, then c is derivable from p

Proposition 4 (ldi cA). The left contraction rule satisfies the LADI property.

4.6 Deletion Lemma ([3], Lemma 4.2)

For weakening or unit-weakening, it is more difficult: a sequence of display pos-
tulates applied to the conclusion X; ∅ ⊢ Y may give ∅ ⊢ Y ; #X, so the same or
similar sequence cannot be applied to the premise X ⊢ Y .

For this situation we need Lemma 4.2 (Deletion Lemma) of [3]: this result says
that for F a formula sub-structure occurrence in C, or F = ∅, and C →∗

AD C ′,
then (in the usual case) C \ F →∗

AD C ′ \ F , where C \ F and C ′ \ F mean
deleting only particular occurrence(s) of F in C, and deleting the congruent
(corresponding) occurrence(s) of F in C ′, where congruence is determined by
the course of the derivation of C ′ from C.

We did not define congruent occurrences in this sense: see the general discus-
sion of this issue in §4.3. It seemed easier to define and use the relation seqdel:

10

Definition 4 (seqdel). Define (C,C ′) ∈ seqdel Fs to mean that C ′ is obtained
from C by deleting one occurrence in C of a structure in the set Fs.

Then we proved the following result about deletion of a formula:

Lemma 11 (deletion). Let F be a formula or F = ∅. If sequent Cd is obtained
from C by deleting an occurrence of some #iF , and if C →∗

AD C ′, then either

(a) there exists Cd′, such that Cd →∗
AD Cd′, and Cd′ is obtained from C ′ by

deleting an occurrence of some #jF , or
(b) C ′ is of the form #nF ⊢ #m(Z1;Z2) or #

m(Z1;Z2) ⊢ #nF , where Cd →∗
AD

(Z1 ⊢ #Z2), or Cd →∗
AD (#Z1 ⊢ Z2)

Proof. Thus the premise is that Cd is got from C by deleting instance(s) of the
substructure formula F , possibly with some # symbols. The main clause of the
result says that there exists Cd′ (this corresponds to C ′ \ F in [3]) which is
got from Cd by deleting instance(s) of #nF (for some n), but there is also an
exceptional case where #nF is alone on one side of the sequent.

The proof of this result required considerable ML programming of proof
tactics.

When we get cases as to the last rule used in the derivation C →∗
AD C ′, this

gives 13 possibilities. For each rule there are two main cases for the shape of
the sequent after the preceding rule applications: in the first, #nF appears in
#nF,Z or Z,#nF and so could be deleted (F is “delible”), and in the second,
the relevant occurrence of #nF is the whole of one side of the sequent.

Then where, in the case of the associativity rule for example, the sequent
which is (X;Y);Z ⊢ W (instantiated) has F delible, #nF may be equal to
X,Y or Z, or may be delible from X,Y, Z or W . Without the possibility of
programming a tactic in Standard ML to deal with all these possibilities, each
of these seven cases, and a similar (less numerous) set of cases for each of the
other 12 rules, would require its own separate proof.

For the second case, where #nF is equal to one side of the sequent (W in
the above example), a variety of tactics is required: for those display rules which
move the comma from one side to the other one function works for all, but the
other cases have to be proved individually. ⊣

We then proved this result for F = ∅ instead of a formula, to give a theorem
deletion I; the changes required in the proof were trivial.

4.7 LADI property for (unit) weakening rules

To handle weakening in a similar way, we considered two separate rules, one
to weaken with instances of #n∅ and one to change any instance of ∅ to any
formula. Thus, where Y∅ means a structure like Y but with every formula or
structure variable in it changed to ∅, a weakening is produced as shown:

X ⊢ Z =⇒ X,Y∅ ⊢ Z =⇒ X,Y ⊢ Z

11

We first consider the second of these, replacing any instance of ∅ with a
structural atom, that is, a formula or a structure variable which are atomic so
far as the structure language is concerned.

We use the relation seqrepI str atoms: (c, p) ∈ seqrepI str atoms means
that some occurrences of ∅ in p are changed to structural atoms in c.

Lemma 12 (ex box repI atoms). If sequent C is obtained from Cd by replac-
ing ∅ by structural atoms, and if C ′ →∗

AD C, then there exists Cd′, such that
Cd′ →∗

AD Cd, and C ′ is obtained from Cd′ by replacing ∅ by structural atoms.

For this relation, property (b) was quite easy to prove, since exactly the same
sequence of AD-rules can be used.

We proved that there are derived rules permitting replacing instances of ∅ by
anything, and this gave us that such rules, where the replacement structure is a
formula or structure variable, have the the local display interpolation property.

Lemma 13 (seqrepI der). If the derivation rules include weakening and unit-
contraction, and (c, p) ∈ seqrepI Fs, ie some occurrences of ∅ in p are replaced
by anything to give c, then c is derivable from p.

The next lemma gives the LADI property, not for a rule of the system, but
for inferences ([p], c) where (c, p) ∈ seqrepI str atoms.

Proposition 5 (ldi repI atoms). Where (c, p) ∈ seqrepI str atoms, ie some
occurrences of ∅ in p are replaced by structural atoms to give c, ([p], c) has the
LADI property.

Next we consider the structural rules allowing insertion of #n∅.
We use the variant of the theorem deletion (see §4.6) which applies to

deletion of ∅ rather than of a formula.
Then we show that inserting occurrences of anything preserves derivability.

Lemma 14 (seqwk der). If the derivation rules include weakening, and (c, p) ∈
seqdel Fs, ie, c is obtained from p by weakening, then c is derivable from p.

Then we need the result that such rules satisfy the local display interpolation
property. In this case, though, where a sequent containing ∅ is rearranged by the
display postulates such that the ∅ is alone on one side (such as where X ⊢ Y ; ∅
is rearranged to X; #Y ⊢ ∅), then to prove the LADI property requires using
the derivability of X ⊢ Y rather than the fact that X ⊢ Y satisfies LADI. Thus
we can prove only the conditional local display interpolation property.

Proposition 6 (ldi wkI alt). If the derivation rules include unit weakening,
unit contraction, and the left and right introduction rules for ⊤ and ⊥, then a rule
for #n∅-weakening (ie, inserting #n∅) satisfies the conditional LADI property.

At this point we also proved that the additive forms of the binary logical
introduction rules satisfy the LADI property. The proofs are conceptually similar
to those for the unary logical introduction rules — but more complex where

12

single structures/sequents become lists of these entities. For reasons of space,
and because we proceed to deal with the more difficult multiplicative forms of
the binary introduction rules, we give the details in Appendix §A.3.

Now we can give the result for a system which contains weakening, contrac-
tion, and the binary rules in either additive or multiplicative form. To get this
we define a set of rules called ldi rules a, which contains the additive binary
logical rules, and does not contain the weakening rules but does contain the rela-
tions of Propositions 6 and 5. We have that all of its rules satisfy the conditional
LADI property, so the system has interpolants. We show this gives a deductive
system equivalent to the given set of rules rlscf, which system therefore also
has interpolants. Details are similar to the derivation of Theorem 3.

Theorem 2 (rlscf interp). The system of substitutable rules rlscf satisfies
display interpolation

4.8 LADI property for binary multiplicative logical rules

Here, we just consider the multiplicative version of these rules; the case of their
additive analogues is similar, but easier.

We deal with these rules in two stages — firstly, weakening in occurrences of
#n∅, then changing any occurrence of ∅ to any structural atom, as shown below.

X ⊢ A
wk∗

∅
X,Y∅ ⊢ A

Y ⊢ B
wk∗

∅
X∅, Y ⊢ B

(ands rep)
X,Y ⊢ A ∧B

Here X∅ and Y∅ mean the structures X and Y , with each structural atom
(formula or uninterpreted structure variable) replaced by ∅. The first stage,
the inferences labelled wk∗

∅
above, are obtained by repeatedly weakening by

occurrences of #n∅ in some substructure. The second stage (for which we define
the relation ands rep), consists of changing the X∅ of one premise, and the Y∅

of the other premise, to X and Y respectively. For the second of these stages,
then, when any sequence of display postulates is applied to X,Y ⊢ A ∧ B, the
same sequence can be applied to the two premises, X,Y∅ ⊢ A and X∅, Y ⊢ B.
This simplifies the proof of local display interpolation for these rules.

For the first stage we proceed as described for §4.7, using Proposition 6 to
show that the inferences labelled wk∗

∅
satisfy the conditional LADI property.

The second stage consists of the rule shown as ands rep in the diagram. Con-
sidering the four points in Remark 1, since any display postulate applied to the
conclusion can be applied to the premises, we need to define a suitable relation
between conclusion and premises which is preserved by applying any display
postulate to them. For this we define a relation lseqrepm between sequents,
analogous to seqrep (§4.3, Definition 3) and lseqrep (§A.3, Definition 6):

lseqrepm :: "(structr * structr list) set =>

bool => [structr, structr list] => (sequent * sequent list) set"

13

Definition 5 (lseqrepm, repnI atoms).

(a) (U,Us) ∈ lseqrepm orel b Y Ys means that there is one occurrence of Y in
U which is replaced by the nth member of Ys in the nth member of Us; this
occurrence is at an antecedent or succedent position, according to whether
b is True or False. However elsewhere in U , each structural atom A in
U is replaced by the nth member of As in the nth member of Us, where
(A,As) ∈ orel;

(b) (A,As) ∈ repnI atoms iff one of the As is A and the rest of the As are ∅.

We use lseqrepm only with orel = repnI atoms. For example, for the (∧R)
rule, we use lseqrepm repnI atoms True (A ∧B) [A,B]. as the relation rel of
the four points in Remark 1. We get the following lemmas.

Lemma 15 (repm some1sub). Whenever Y is a formula, and
(U,Us) ∈ lseqrepm orel b Y Ys, and U is manipulated by a display postulate
(or sequence of them) to give V , then the Us can be manipulated by the same
display postulate(s) to give Vs (respectively), where (V,Vs) ∈ rel

The following lemmas refer to derivation in the system containing the ands rep

rule (not the regular (∧R) rule), and also unit-weakening and unit-contraction.

Lemma 16 (ands mix gen). Whenever (V,Vs) ∈ rel, then V can be derived
from the Vs.

This lemma relies on taking the conjunction or disjunction of interpolants
of premises. So the next two results require a deductive system containing the
ands rep and ora rep rules, and also the (∨R) and (∧L) rules.

Lemma 17 (lseqrepm interp andT). Whenever (V,Vs) ∈ rel, then we can
construct an interpolant for V from interpolants for the Vs

Proposition 7 (ldin ands rep). The rule ands rep satisfies LADI.

We recall from §4.2 the set rlscf nw of substitutable rules, the rules of
Figure 1, except the additive logical rules and weakening. From this set we
define a set of rules called ldi add by omitting from rlscf nw the the binary
logical rules (∨L) and (∧R), but including the rule ands rep (see diagram above)
and a corresponding rule ora rep. Note that these latter rules, and therefore
ldi add, are not closed under substitution. (Note that, as mentioned earlier,
our formalisation had not included the connective →, or any rules for it).

Lemma 18 (ldi add equiv). The calculi ldi add and rlscf nw (defined above)
are deductively equivalent.

Theorem 3 (ldi add interp, rlscf nw interp).

(a) the system ldi add satisfies display interpolation
(b) the system of substitutable rules rlscf nw satisfies display interpolation

Proof. We have all rules in ldi add satisfying at least the conditional local
display interpolation property (ldi add cldin). By cldin ex interp, this gives
us that the system ldi add satisfies display interpolation ldi add interp, and
so therefore does the equivalent system of substitutable rules rlscf nw.

14

5 Conclusions

As we have seen, interpolation proofs for display calculi are very technical, due
to the inherent complexity of mixing the display principle with the definition of
interpolation. As a consequence of this, the proof of Brotherston and Goré [3] is
very technical, and most of the proofs were only sketched, leaving the potential
for errors. Consequently it is valuable to have confirmed the correctness of their
result using an mechanised theorem prover. And while the detailed proofs have
only been sketched in this paper too, the files containing the Isabelle proofs
enable the proofs to be examined to any desired level of detail.

This work has illustrated some interesting issues in the use of a mechanised
prover. We have indicated where we found it necessary to follow a (slightly)
different line of proof. This arose where their proof involved looking at corre-
sponding parts of two display-equivalent sequents — an intuitively clear notion,
but one which seemed so difficult to formalise that a different approach seemed
easier. The two-stage approach used in §4.8 is also somewhat different from the
proof in [3].

This work illustrated the enormous value of having a prover with a pro-
grammable user interface. Isabelle is written in Standard ML, and (for its older
versions) the user interacts with it using that language. This proved invaluable
in the work described in §4.5 and §4.6, where we were able to code up sequences
of attempted proof steps which handled enormous numbers of cases efficiently.

References

1. Isabelle/HOL mechanisation of our interpolation proofs. Available at http://

users.cecs.anu.edu.au/~jeremy/isabelle/2005/interp/.
2. N D Belnap. Display logic. J. of Philosophical Logic, 11:375–417, 1982.
3. James Brotherston & Rajeev Goré. Craig Interpolation in Displayable Logics In

Proceedings of TABLEAUX-20, LNAI, pages 88–103. Springer, 2011.
4. Buss, S.R.: Handbook of Proof Theory, chap. I: Introduction to Proof Theory.

Elsevier Science (1998)
5. Nicolas Caniart. Merit: an interpolating model-checker. In Proceedings of CAV-

22, volume 6174 of LNCS, pages 162–166. Springer, 2010.
6. William Craig. Three uses of the Herbrand-Gentzen theorem in relating model

theory and proof theory. Journal of Symbolic Logic, 22(3):269–285, 1957.
7. J E Dawson and R Goré. Formalised Cut Admissibility for Display Logic. In Proc.

TPHOLS’02, LNCS 2410, 131–147, Springer, 2002.
8. J E Dawson and R Goré. Generic Methods for Formalising Sequent Calculi Applied

to Provability Logic. In Proc. Logic for Programming, Artificial Intelligence and
Reasoning (LPAR 2010), LNCS 6397, 263-277.

9. Solomon Feferman. Harmonious logic: Craigs interpolation theorem and its de-
scendants. Synthese, 164:341–357, 2008.

10. R Goré. Machine Checking Proof Theory: An Application of Logic to Logic. Invited
talk, Third Indian Conference on Logic and Applications, Chennai, January 2009.

11. Kenneth L. McMillan. Quantified invariant generation using an interpolating sat-
uration prover. In TACAS-14, volume 4963 of LNCS, pages 413–427, 2008.

15

A Isabelle text of selected definitions and theorems

A.1 Isabelle text of definitions and basic lemmas

ldi_derl :

"[| ALL psc:?pscs. ldi ?lrules ?drules psc; (?ps, ?c) : derl ?pscs |] ==>

ldi ?lrules ?drules (?ps, ?c)"

cldi_ex_interp :

"[| (ALL psc : ?pscs. cldi ?lrules ?drules psc);

?c : derivableR ?drules {} |] ==> edi ?lrules ?drules ?c"

A.2 Isabelle text of lemmas for §4.4, unary logical rules

Belnap’s C4 property is used in the proof of cut-elimination, it being one of the
properties that structural rules must satisfy for Belnap’s cut-elimination theorem
to apply to a Display Calculus.

Here, seqSVs’ b seq is a list of the structural variables in succedent (if b =
True) or antecedent (if b = False) position in a sequent seq

C4_def : "C4 ?rule == ALL prem:set (premsRule ?rule).

ALL b. ALL s:set (seqSVs’ b (conclRule ?rule)).

s ~: set (seqSVs’ (~ b) prem)"

SF_some_sub :

"[| ALL (ps, c):PC ‘ ?rules. ~ seqCtnsFml c & distinct (seqSVs c);

ALL r:?rules. C4 r; (?prems, ?concl) : derl (PC ‘ rulefs ?rules);

(?concl, ?sconcl) : seqrep ?sa (Structform ?fml) ?Z |]

==> EX sprems.

(?prems, sprems) : seqreps ?sa (Structform ?fml) ?Z &

(sprems, ?sconcl) : derl (PC ‘ rulefs ?rules)"

Lemma 3 is actually proved more generally. We define an invertible set of
rules to be a set of unary rules such that the inverse of any of them is derivable
from the substitution instances of them. The set aidps of rules satisfies this
property (theorem inv rules aidps)

inv_rules_def : "inv_rules ?rules == ALL r:?rules. EX p.

premsRule r = [p] & ([conclRule r], p) : derl (PC ‘ rulefs ?rules)"

inv_rules_aidps : "inv_rules aidps"

Then Lemma 3 actually holds for any invertible set of rules.

bi_lrule_ldi_lem : "[| ?r : rulefs ?lrules; inv_rules ?lrules |] ==>

ldi ?lrules ?drules (PC ?r)"

16

non_bin_lem_gen "[| aidps <= ?drules; {nota, nots} <= ?drules;

(?ps, ?concl) : PC ‘ rulefs aidps;

ALL p:set ?ps. ~ seqHasComma p;

ALL p:set ?ps. Ex (interp ?drules p) |] ==>

Ex (interp ?drules ?concl)"

tS_ldi : "ldi aidps rlscf ([], $I |- T)"

fA_ldi : "ldi aidps rlscf ([], F |- $I)"

idf_ldi : "ldi aidps rlscf ([], ?A |- ?A)"

sdA1 : "[| ALL U. ([$?Y’ |- $U], $?Y |- $U) : ?logI; strIsLog ?W;

(True, ?W, ?W’) : strrep ?Y ?Y’ |] ==>

([$?W’ |- $?Z], $?W |- $?Z) : derl (?logI Un PC ‘ rulefs aidps)"

seqrep_interpA : "[| ALL U. ([$?Y’ |- $U], $?Y |- $U) : ?logI;

seqIsLog ($?W |- $?Z); strFVPPs ?Y’ <= strFVPPs ?Y;

($?W |- $?Z, $?W’ |- $?Z’) : seqrep False ?Y ?Y’;

?logI <= PC ‘ rulefs ?rules; aidps <= ?rules;

interp ?rules ($?W’ |- $?Z’) ?intp |] ==>

interp ?rules ($?W |- $?Z) ?intp"

logA_ldi : "[| ALL (ps, c):PC ‘ aidps. ~ seqCtnsFml c & distinct (seqSVs c);

Ball aidps C4; strFVPPs ?Y <= fmlFVPPs ?fml; seqIsLog (?fml |- $?U);

ALL U. ([$?Y |- $U], ?fml |- $U) : ?logI;

?logI <= PC ‘ rulefs ?rules; aidps <= ?rules |] ==>

ldi aidps ?rules ([$?Y |- $?U], ?fml |- $?U)"

We have results analogous top the above for a logical introduction rule for a
formula on the right, are seqrep interpS and logS ldi.

A.3 Binary Additive Logical Introduction Rules

We now discuss extending the results for unary logical introduction rules to
the binary rules in the additive form; that is, where the rule contains a single
structure variable which appears uniformly in the premises and conclusion.

This involved, first, defining an analogue of seqrep, which we called lseqrep.
As with seqrep, we use the notation U Y

❀
Y s Us

lseqrep :

"bool => structr => structr list => (sequent * sequent list) set"

Definition 6 (lseqrep). (U,Us) ∈ lseqrep b Y Y s means that there is some
occurrence of Y in U such that the nth member of Us is obtained from U by
changing the occurrence of Y to the nth member of Y s.

Note that, unlike seqrep, this definition involves just one occurrence of Y in U .
For this property we proved SF some1sub, analogous to SF some sub, but

where the rules must satisfy a slightly stricter set of requirements:

17

Lemma 19 (SF some1sub). For a formula F , a list Zs of structures and a rule
set rules, if

(a) the conclusions of rules do not contain formulae ; and
(b) each premise of a rule in rules contains the same structure variables, in

antecedent positions and in succedent positions, as the conclusion; and
(c) the structure variables of the conclusion and of each premise of a rule in

rules are distinct; and
(d) if concl is derivable from prems using rules; and
(e) if concl F

❀
Zs sconcls holds

then there exists a list spremss of lists of sequents where

(1) premn
F
❀

Zs spremsn holds for each premn in prems and each corresponding
member spremsn of spremss; and

(2) each member of sconcls is derivable from the corresponding member of each
list in spremss using rules.

Then, corresponding to Lemma 5 (sdA1) in §4.4, we have a lemma msdA1,
like Lemma 5 except that, in its statement, Y ′ and W ′ can be lists.

Then, corresponding to Lemma 6 (seqrep interpA), we have the following
lemma: again, the difference is that in the statement of Lemma 6, we replace Y ′

by a list of structures and W ′ ⊢ Z ′ by a list of sequents.

Lemma 20 (lseqrep interpA). If a logical introduction rule has conclusion
Y ⊢ U and premises Yi ⊢ U for Yi ∈ Y s, formula variables in each Yi also appear
in Y , W ⊢ Z Y

❀
Y s Ss (in antecedent positions), and for each Si = Wi ⊢ Zi ∈ Ss

there exists an interpolant, then there exists an interpolant for W ⊢ Z

Proof. There are two major cases in the proof: all the sequents Wi are the same,
or all the sequents Zi are the same. This is because the relation S Z

❀
Zs Ss

means that there is exactly one location in S where the Ss differ from S. In
those cases the proof uses the conjunction or disjunction, respectively, of a list
of interpolants. Of course this idea is taken from the proof of [3, Theorem 3.10].

Thence we get the result mlogA ldi, analogous to logA ldi, which basically
says that additive logical rules satisfy the local display interpolation property.

Proposition 8 (mlogA ldi). For a formula F , if a logical introduction rule ρ
has conclusion F ⊢ U and premises Yi ⊢ U for Yi ∈ Y s, and formula variables
in each Yi also appear in Y , then ρ satisfies the LADI property.

A.4 Isabelle text of lemmas for §A.3, additive binary logical rules

SF_some1sub : "[| ALL (ps, c):PC ‘ ?rules.

~ seqCtnsFml c & distinct (seqSVs c) & seqIsLog c &

Ball (set ps) seqIsLog &

(ALL p:set ps. distinct (seqSVs p) &

18

(ALL b. set (seqSVs’ b p) = set (seqSVs’ b c)));

Ball ?rules C4; (?prems, ?concl) : derl (PC ‘ rulefs ?rules);

(?concl, ?sconcls) : lseqrep ?sa (Structform ?fml) ?Zs |] ==>

EX spremss. (?prems, spremss) : lseqreps ?sa (Structform ?fml) ?Zs &

(ALL n<length ?Zs. (map (%l. l ! n) spremss, ?sconcls ! n) :

derl (PC ‘ rulefs ?rules))"

lseqrep_interpA : "[| rlscf <= ?rules;

ALL U. (map (%Y’. $Y’ |- $U) ?Ys, $?Y |- $U) : ?logI;

seqIsLog ($?W |- $?Z); ALL Y’:set ?Ys. strFVPPs Y’ <= strFVPPs ?Y;

($?W |- $?Z, ?Ss’) : lseqrep False ?Y ?Ys;

?logI <= PC ‘ rulefs ?rules; aidps <= ?rules;

ALL S:set ?Ss’. Ex (interp ?rules S) |] ==>

Ex (interp ?rules ($?W |- $?Z))"

mlogA_ldi : "[| ALL (ps, c):PC ‘ aidps. ~ seqCtnsFml c &

distinct (seqSVs c) & seqIsLog c & Ball (set ps) seqIsLog &

(ALL p:set ps. distinct (seqSVs p) &

(ALL b. set (seqSVs’ b p) = set (seqSVs’ b c)));

Ball aidps C4; seqIsLog (?fml |- $?U);

ALL U. (map (%Y’. $Y’ |- $U) ?Ys, ?fml |- $U) : ?logI;

ALL Y:set ?Ys. strFVPPs Y <= fmlFVPPs ?fml;

?logI <= PC ‘ rulefs ?rules; aidps <= ?rules; rlscf <= ?rules |] ==>

ldi aidps ?rules (map (%Y’. $Y’ |- $?U) ?Ys, ?fml |- $?U)"

A.5 Isabelle text of lemmas for §4.5, Unit-Contraction and
Contraction

The set stars S is the set of all structures which consist of the structure S
preceded by any number of occurrences of Star (ie, of # symbols).

The relation seqdel (stars I) will be the relation used for unit-contraction,
where (p, c) ∈ seqdel Fs if p is obtained from c by deleting (in any number of
places) a structure in Fs.

ex_box_uc : "[| ?atom = I; (?C, ?Cd) : seqdel (stars ?atom);

?Cd : derivableR aidps {?Cd’} |] ==>

EX C’. (C’, ?Cd’) : seqdel (stars ?atom) &

C : derivableR aidps {?C’}"

The rules for replacing (∅, X) by X on the left and the right of the ⊢ are ila
and ils, and the left contraction rule is cA.

delI_der : "[| (?Y, ?Y’) : strdel (stars I); aidps <= ?rules;

{ila, ils} <= ?rules |] ==>

{([$?X |- $?Y], $?X |- $?Y’), ([$?Y |- $?X], $?Y’ |- $?X)} <=

derl (PC ‘ rulefs ?rules)"

19

ldi_ila : "[| aidps <= ?rules; {ila, ils} <= ?rules |] ==>

ldi aidps ?rules (PC ila)"

ctr_der : "[| (?Y, ?Y’) : mstrctr; aidps <= ?rules; {cA} <= ?rules |] ==>

{([$?X |- $?Y], $?X |- $?Y’), ([$?Y |- $?X], $?Y’ |- $?X)} <=

derl (PC ‘ rulefs ?rules)" :

ldi_cA : "[| aidps <= ?rules; {cA} <= ?rules |] ==> ldi aidps ?rules (PC cA)"

Note that the theorem ctr der needs to be applied twice (once for each side
of the ⊢) to give the result in the main text.

A.6 Isabelle text of lemmas for §4.6, the Deletion Lemma

The proof threw up a number of (logically) trivial cases which nonetheless needed
particular results to be included as lemmas to be used automatically in simpli-
fication, such as:

stars_Sf_not_Comma : "Comma ?X ?Y ~: stars (Structform ?fml)"

Stars_Sf_ne_Comma : "Comma ?X ?Y ~= funpow Star ?n (Structform ?fml)"

Stars_eq_Comma_iff : "(Comma ?X ?Y = funpow Star ?n (Comma ?U ?V)) =

(?n = 0 & ?X = ?U & ?Y = ?V)"

deletion :

"[| ?atom = Structform ?fml; (?C, ?Cd) : seqdel ?pn (stars ?atom);

?C’ : derivableR aidps {?C} |]

==> (EX Cd’.

(?C’, Cd’) : seqdel ?pn (stars ?atom) &

Cd’ : derivableR aidps {?Cd}) |

(EX n m Z1 Z2.

?C’ = ($(funpow Star n ?atom) |- $(funpow Star m (Comma Z1 Z2))) &

(if odd m then $Z1 |- * $Z2 else * $Z1 |- $Z2)

: derivableR aidps {?Cd} |

?C’ = ($(funpow Star m (Comma Z1 Z2)) |- $(funpow Star n ?atom)) &

(if even m then $Z1 |- * $Z2 else * $Z1 |- $Z2)

: derivableR aidps {?Cd})" : Thm.thm

A.7 Isabelle text of lemmas for §4.7, Unit-Weakening and
Weakening

ex_box_repI_atoms :

"[| (?C, ?Cd) : seqrepI str_atoms; ?C : derivableR aidps {?C’} |] ==>

EX Cd’. (?C’, Cd’) : seqrepI str_atoms & ?Cd : derivableR aidps {Cd’}"

seqrepI_der : "[| (?S’, ?S) : seqrepI ?Fs; aidps <= ?rules;

{ila, ils, mra} <= ?rules |] ==>

([?S], ?S’) : derl (PC ‘ rulefs ?rules)"

20

ldi_repI_atoms : "[| aidps <= ?rules; {ila, ils, mra} <= ?rules;

(?c, ?p) : seqrepI str_atoms |] ==>

ldi aidps ?rules ([?p], ?c)"

seqwk_der : "[| (?S’, ?S) : seqdel ?Fs;

aidps <= ?rules; {mra} <= ?rules |] ==>

([?S], ?S’) : derl (PC ‘ rulefs ?rules)"

ldi_wkI : "[| aidps <= ?rules; {mra, ila, ils, tS, fA} <= ?rules;

(?c, ?p) : seqdel (stars I) |] ==>

cldi aidps ?rules ([?p], ?c)"

A.8 Isabelle text of lemmas for §4.8, Binary Multiplicative Logical
Introduction rules

wkI_der : "[| (?Y’, ?Y) : strdel (stars I); aidps <= ?rules;

{iila, iils} <= ?rules |] ==>

{([$?X |- $?Y], $?X |- $?Y’), ([$?Y |- $?X], $?Y’ |- $?X)}

<= derl (PC ‘ rulefs ?rules)"

ldi_wkI_alt : "[| aidps <= ?drules;

{iila, iils, tS, fA, ila, ils, tA, fS} <= ?drules;

(?c, ?p) : seqdel (stars I) |] ==>

cldi aidps ?drules ([?p], ?c)"

The following result applies to display postulates satisfying a set of standard
set of display postulates properties.

dp_props_def : "dp_props (?ps, ?c) =

(length ?ps = 1 & ~ seqCtnsFml ?c & distinct (seqSVs ?c) & seqIsLog ?c &

(ALL p:set ?ps. seqIsLog p & distinct (seqSVs p) & ~ seqCtnsFml p &

(ALL b. set (seqSVs’ b p) = set (seqSVs’ b ?c))))"

repm_some1sub :

"[| ALL rule:?rules. dp_props (PC rule); ?As ~= [];

([?prem], ?concl) : derl (PC ‘ rulefs ?rules);

(?concl, ?sconcls) : lseqrepm ?rsa ?sa (Structform ?fml) ?As |]

==> EX sprems.

(?prem, sprems) : lseqrepm ?rsa ?sa (Structform ?fml) ?As &

(ALL k<length ?As.

([sprems ! k], ?sconcls ! k) : derl (PC ‘ rulefs ?rules))"

We mention that the proof of repm some1sub involved very considerable
effort; it used the following lemma (see the proofs of it in GRepm.ML)

21

repm_seq_sub :

"[| ~ seqCtnsFml ?pat; distinct (seqSVs ?pat);

(seqSubst ?suba ?pat, ?Ys) : lseqrepm ?rsa ?pn (Structform ?A) ?Xs |]

==> EX subys. map (%suby. seqSubst suby ?pat) subys = ?Ys"

ands_mix_gen :

"[| PC ‘ rulefs aidps <= ?rules; ands_rep <= ?rules;

PC ‘ rulefs ilrules <= ?rules;

(?Z, [?X, ?Y]) : lseqrepm repnI_atoms True (Structform (?A && ?B))

[Structform ?A, Structform ?B] |] ==> ?Z : derrec ?rules {?X, ?Y}"

lseqrepm_interp_andT :

"[| ands_rep <= ?rules; ora_rep <= ?rules;

PC ‘ rulefs {anda} <= ?rules; PC ‘ rulefs {ors} <= ?rules;

PC ‘ rulefs aidps <= ?rules; PC ‘ rulefs ilrules <= ?rules;

(?WZ, [?pa, ?pb]) : lseqrepm repnI_atoms True

(Structform (?A && ?B)) [Structform ?A, Structform ?B];

ALL S:set [?pa, ?pb]. Ex (interpn ?rules S) |]

==> Ex (interpn ?rules ?WZ)"

ldin_ands_rep : "[| (?ps, ?WZ) : ands_rep; PC ‘ rulefs ilrules <= ?drules;

PC ‘ rulefs aidps <= ?drules; PC ‘ rulefs {ors} <= ?drules;

PC ‘ rulefs {anda} <= ?drules; ora_rep <= ?drules;

ands_rep <= ?drules; ?lrules <= aidps |] ==>

ldin ?lrules ?drules (?ps, ?WZ)"

ldi_add_equiv : "(?c : derrec ldi_add {}) = (?c : derivableR rlscf_nw {})"

ldi_add_cldin : "?rule : ldi_add ==> cldin aidps ldi_add ?rule"

ldi_add_interp : "Ball (derrec ldi_add {}) (edin aidps ldi_add)"

rlscf_nw_interp : "Ball (derivableR rlscf_nw {}) (edi aidps rlscf_nw)"

22

