
Reasoning over Permissions Regions in

Concurrent Separation Logic

James Brotherston1, Diana Costa1, Aquinas Hobor2, and John Wickerson3

1 University College London, UK
2 National University of Singapore

3 Imperial College London, UK

Abstract. We propose an extension of separation logic with fractional
permissions, aimed at reasoning about concurrent programs that share
arbitrary regions or data structures in memory. In existing formalisms,
such reasoning typically either fails or is subject to stringent side condi-
tions on formulas (notably precision) that signi�cantly impair automa-
tion. We suggest two formal syntactic additions that collectively remove
the need for such side conditions: �rst, the use of both �weak� and
�strong� forms of separating conjunction, and second, the use of nom-
inal labels from hybrid logic. We contend that our suggested alterations
bring formal reasoning with fractional permissions in separation logic
considerably closer to common pen-and-paper intuition, while imposing
only a modest bureaucratic overhead.

Keywords: Separation logic, permissions, concurrency, veri�cation.

1 Introduction

Concurrent separation logic (CSL) is a version of separation logic designed to en-
able compositional reasoning about concurrent programs that manipulate mem-
ory possibly shared between threads [6, 26]. Like standard separation logic [28],
CSL is based on Hoare triples {A}C {B}, where C is a program and A and B
are formulas (called the precondition and postcondition of the code respectively).
The heart of the formalism is the following concurrency rule:

{A1}C1 {B1} {A2}C2 {B2}

{A1 ~A2}C1 ||C2 {B1 ~B2}

where ~ is a so-called separating conjunction. This rule says that if two threads
C1 and C2 are run on spatially separated resources A1~A2 then the result will be
the spatially separated result, B1 ~B2, of running the two threads individually.

However, since many or perhaps even most interesting concurrent programs
do share some resources, ~ typically does not denote strict disjoint separation of
memories, as it does in standard separation logic (where it is usually written as
∗). Instead, it usually denotes a weaker sort of �separation� designed to ensure

that the two threads at least cannot interfere with each others' data. This gives
rise to the idea of fractional permissions, which allow us to divide writeable
memory into multiple read-only copies by adding a permission value to each
location in heap memory. In the usual model, due to Boyland [5], permissions
are rational numbers in the half-open interval (0, 1], with 1 denoting the write
permission, and values in (0, 1) denoting read-only permissions. We write the
formula Aπ, where π is a permission, to denote a �π share� of the formula A.

For example, (x 7→ a)0.5 (typically written as x
0.57→ a for convenience) denotes

a �half share� of a single heap cell, with address x and value a. The separating
conjunction A~B then denotes heaps realising A and B that are �compatible�,
rather than disjoint: where the heaps overlap, they must agree on the data value,
and one adds the permissions at the overlapping locations [4]. E.g., at the logical
level, we have the entailment:

x
0.57→ a~ x

0.57→ b |= a = b ∧ x 7→ a . (1)

Happily, the concurrency rule of CSL is still sound in this setting (see e.g. [29]).
However, the use of this weaker notion of separation ~ causes complications

for formal reasoning in separation logic, especially if one wishes to reason over
arbitrary regions of memory rather than individual pointers. There are two par-
ticular di�culties, as identi�ed by Le and Hobor [24]. The �rst is that, since
~ denotes possibly-overlapping memories, one loses the main useful feature of
separation logic: its nonambiguity about separation, which means that desirable
entailments such as A0.5 ~B0.5 |= (A~B)0.5 turn out to be false. E.g.:

x
0.57→ a~ y

0.57→ b 6|= (x 7→ a~ y 7→ b)0.5 .

Here, the two �half-pointers� on the LHS might be aliased (x = y and a = b),
meaning they are two halves of the same pointer, whereas on the RHS they
must be non-aliased (because we cannot combine two �whole� pointers). This
ambiguity becomes quite annoying when one adds arbitrary predicate symbols
to the logic, e.g. to support inductively de�ned data structures.

The second di�culty is that although recombining single pointers is straight-
forward, as indicated by equation (1), recombining the shares of arbitrary for-
mulae is challenging. E.g., A0.5 ~A0.5 6|= A, as shown by the counterexample

(x 7→ 1 ∨ y 7→ 2)0.5 ~ (x 7→ 1 ∨ y 7→ 2)0.5 6|= x 7→ 1 ∨ y 7→ 2 .

The LHS can be satis�ed by a heap with a 0.5-share of x and a 0.5-share of y,
whereas the RHS requires a full (1) share of either x or y.

Le et al. [24] address these problems by a combination of the use of tree shares
(essentially Boolean binary trees) rather than rational numbers as permissions,
and semantic restrictions on when the above sorts of permissions reasoning can
be applied. For example, recombining permissions (A0.5~A0.5 |= A) is permitted
only when the formula is precise in the usual separation logic sense (cf. [28]).
The chief drawback with this approach is the need to repeatedly check these side

2

conditions on formulas when reasoning, as well as that said reasoning cannot be
performed on imprecise formulas.

Instead, we propose to resolve these di�culties by a di�erent, two-pronged
extension to the syntax of the logic. First, we propose that the usual �strong�
separating conjunction ∗, which enforces the strict disjointness of memory, should
be retained in the formalism in addition to the weaker ~. The stronger ∗ supports
entailments such as A0.5 ∗ B0.5 |= (A ∗ B)0.5, which does not hold when ~ is
used instead. Second, we introduce nominal labels from hybrid logic (cf. [3, 10])
to remember that two copies of a formula have the same origin. We write a
nominal α to denote a unique heap, in which case entailments such as (α ∧
A)0.5 ~ (α ∧ A)0.5 |= α ∧ A become valid. We remark that labels have been
adopted for similar �tracking� purposes in several other separation logic proof
systems [10, 21, 23, 25].

The remainder of this paper aims to demonstrate that our proposed exten-
sions are (i) weakly necessary, in that expected reasoning patterns fail under
the usual formalism, (ii) correct, in that they recover the desired logical princi-
ples, and (iii) su�cient to verify typical concurrent programming patterns that
use sharing. Section 2 gives some simple examples that motivate our extensions.
Section 3 then formally introduces the syntax and semantics of our extended
formalism. In Section 4 we show that our logic obeys the logical principles that
enable us to reason smoothly with fractional permissions over arbitrary formu-
las, and in Section 5 we give some longer worked examples. Finally, in Section 6
we conclude and discuss directions for future work.

2 Motivating examples

In this section, we aim to motivate our extensions to separation logic with per-
missions by showing, �rstly, how the failures of the logical principles described in
the introduction actually arise in program veri�cation examples and, secondly,
how these failures are remedied by our proposed changes.

The overall context of our work is reasoning about concurrent programs that
share some data structure or region in memory, which can be described as a
formula in the assertion language. If A is such a formula then we write Aπ to
denote a �π share� of the formula A, meaning informally that all of the pointers
in the heap memory satisfying A are owned with share π. The main question
then becomes how this notion interacts with the separating conjunction ~. There
are two key desirable logical equivalences:

(A~B)π ≡ Aπ ~Bπ (I)

Aπ⊕σ ≡ Aπ ~Aσ (II)

Equivalence (I) describes distributing a fractional share over a separating con-
junction, whereas equivalence (II) describes combining two pieces of a previously
split resource. Both equivalences are true in the |= direction but, as we have seen
in the Introduction, false in the =| one. Generally speaking, ~ is like Humpty
Dumpty: easy to break apart, but not so easy to put back together again.

3

The key to understanding the di�culty is the following equivalence:

x
π7→ a~ y

σ7→ b ≡ (x
π7→ a ∗ y σ7→ b) ∨ (x = y ∧ a = b ∧ x π⊕σ7→ a)

In other words, either x and y are not aliased, or they are aliased and the per-
missions combine (the additive operation ⊕ on rational shares is simply normal
addition when the sum is ≤ 1 and unde�ned otherwise). This disjunction under-
mines the notational economies that have led to separation logic's great successes
in scalable veri�cation [11]; in particular, (I) fails because the left disjunct might
be true, and (II) fails because the right disjunct might be. At a high level, ~ is
a bit too easy to introduce, and therefore also a bit too hard to eliminate.

2.1 Weak vs. strong separation and the distribution principle

One of the challenges of the weak separating conjunction ~ is that it interacts
poorly with inductively de�ned predicates. Consider porting the usual separa-
tion logic de�nition of a possibly-cyclic linked list segment from x to y from a
sequential setting to a concurrent one by a simple substitution of ~ for ∗:

lsx y =def (x = y ∧ emp) ∨ (∃z. x 7→ z ~ ls z y) .

Now consider a simple recursive procedure foo(x,y) that traverses a linked list
segment from x to y:

foo(x,y) { if x=y then return; else foo([x],y); }

It is easy to see that foo leaves the list segment unchanged, and therefore satis�es
the following Hoare triple:

{(lsx y)0.5} foo(x,y); {(lsx y)0.5} .

The intuitive proof of this fact would run approximately as follows:

{(lsx y)0.5} foo(x,y) {

if x=y then return; {(lsx y)0.5}
else {x 6= y ∧ (x 7→ z ~ ls z y)0.5}

{x 0.57→ z ~ (ls z y)0.5}
foo([x],y); {x 0.57→ z ~ (ls z y)0.5}

×
{(x 7→ z ~ ls z y)0.5}
{(lsx y)0.5}

} {(lsx y)0.5}

However, because of the use of ~, the highlighted inference step is not sound:

x
0.57→ z ~ (ls z y)0.5 6|= (x 7→ z ~ ls z y)0.5 . (2)

4

To see this, consider a heap with the following structure, viewed in two ways:

x
0.57→ z ~ z

0.57→ x~ x
0.57→ z = x 7→ z ~ z

0.57→ x

This heap satis�es the LHS of the entailment in (2), as it is the ~-composition
of a 0.5-share of x 7→ z and a 0.5-share of ls z z, a cyclic list segment from z back
to itself (note that here z = y). However, it does not satisfy the RHS, since it is
not a 0.5-share of the ~-composition of x 7→ z with ls z z, which would require
the pointer to be disjoint from the list segment.

The underlying reason for the failure of this example is that, in going from

(x 7→ z ~ ls z z)0.5 to x
0.57→ z ~ (ls z z)0.5, we have lost the information that the

pointer and the list segment are actually disjoint. This is re�ected in the general
failure of the distribution principle Aπ ~ Bπ |= (A ~ B)π, of which the above
is just one instance. Accordingly, our proposal is that the �strong� separating
conjunction ∗ from standard separation logic, which forces disjointness of the
heaps satisfying its conjuncts, should also be retained in the logic alongside ~,
on the grounds that (II) is true for the stronger connective:

(A ∗B)π ≡ Aπ ∗Bπ . (3)

If we then de�ne our list segments using ∗ in the traditional way, namely

lsx y =def (x = y ∧ emp) ∨ (∃z. x 7→ z ∗ ls z y) ,

then we can observe that this second de�nition of ls is identical to the �rst on
permission-free formulas, since ~ and ∗ coincide in that case. However, when we
replay the veri�cation proof above with the new de�nition of ls, every ~ in the
proof above becomes a ∗, and the proof then becomes sound. Nevertheless, we
can still use ~ to describe permission-decomposition of list segments at a higher
level; e.g., lsx y can still be decomposed as (lsx y)0.5 ~ (lsx y)0.5.

2.2 Nominal labelling and the combination principle

Unfortunately, even when we use the strong separating conjunction ∗ to de�ne
list segments ls, a further di�culty still remains. Consider a simple concurrent
program that runs two copies of foo in parallel on the same list segment:

foo(x,y); || foo(x,y);

Since foo only reads from its input list segment, and satis�es the speci�cation
{(lsx y)0.5} foo(x,y); {(lsx y)0.5}, this program satis�es the speci�cation

{lsx y} foo(x,y); || foo(x,y); {lsx y} .

Now consider constructing a proof of this speci�cation in CSL. First we view the
list segment lsx y as the ~-composition of two read-only copies, with permission
0.5 each; then we use CSL's concurrency rule (see Section 1) to compose the

5

speci�cations of the two threads; last we recombine the two read-only copies to
obtain the original list segment. The proof diagram is as follows:

{lsx y}

{(lsx y)0.5 ~ (lsx y)0.5}

{(lsx y)0.5} {(lsx y)0.5}

foo(x,y); foo(x,y);

{(lsx y)0.5} {(lsx y)0.5}

{(lsx y)0.5 ~ (lsx y)0.5}
× {lsx y}

However, again, the highlighted inference step in this proof is not correct:

(lsx y)0.5 ~ (lsx y)0.5 6|= lsx y . (4)

A countermodel is a heap with the following structure, again viewed in two ways:

(x
0.57→ y ~ y

0.57→ y)~ x
0.57→ y = x 7→ y ~ y

0.57→ y

According to the �rst view of such a heap, it satis�es the LHS of (4), as it is the
~-composition of two 0.5-shares of lsx y (one of two cells, and one of a single
cell). However, it does not satisfy lsx y, since that would require every cell in the
heap to be owned with permission 1.

Like in our previous example, the reason for the failure of this example is that
we have lost information. In going from lsx y to (lsx y)0.5 ~ (lsx y)0.5, we have
forgotten that the two formulas (lsx y)0.5 are in fact copies of the same region.
For formulas A that are precise in that they uniquely describe part of any given
heap [12], e.g. formulas x 7→ a, this loss of information does not happen and
we do have A0.5 ~ A0.5 |= A; but for non-precise formulas such as lsx y, this
principle fails.

However, we regard this primarily as a technical shortcoming of the formal-
ism, rather than a failure of our intuition. It ought to be true that we can take
any region of memory, split it into two read-only copies, and then later merge the
two copies to re-obtain the original region. Were we conducting the above proof
on pen and paper, we would very likely explain the di�culty away by adopting
some kind of labelling convention, allowing us to remember that two formulas
have been obtained from the same memory region by dividing permissions.

In fact, that is almost exactly our proposed remedy to the situation. We
introduce nominals, or labels, from hybrid logic, where a nominal α is interpreted
as denoting a unique heap. Any formula of the form α∧A is then precise (in the
above sense), and so obeys the combination principle

(α ∧A)π ~ (α ∧A)σ |= (α ∧A)σ⊕π , (5)

6

where ⊕ is addition on permissions. Thus we can repair the faulty CSL proof
above by replacing every instance of the formula lsx y by the �labelled� formula
α ∧ lsx y (and adding an initial step in which we introduce the fresh label α).

2.3 The jump modality

However, this is not quite the end of the story. Readers may have noticed that
replacing lsx y by the �labelled� version α ∧ lsx y also entails establishing a
slightly stronger speci�cation for the function foo, namely:

{(α ∧ lsx y)0.5} foo(x,y); {(α ∧ lsx y)0.5} .

This introduces an extra di�culty in the proof (cf. Section 2.1); at the recursive

call to foo([x],y), the precondition now becomes α0.5 ∧ (x
0.57→ z ∗ (ls z y)0.5)),

which means that we cannot apply separation logic's frame rule [32] to the
pointer formula without �rst weakening away the label-share α0.5.

For this reason, we shall also employ hybrid logic's �jump� modality @_,
where the formula @αA means that A is true of the heap denoted by the label
α. In the above, we can introduce labels β and γ for the list components x 7→ z
and ls z y respectively, whereby we can represent the decomposition of the list
by the assertion @α(β ∗ γ). Since this is a pure assertion that does not depend
on the heap, it can be safely maintained when applying the frame rule, and used
after the function call to restore the label α, using the easily veri�able fact that

@α(β ∗ γ) ∧ (β ∗ γ) |= α.

Similar reasoning over labelled decompositions of data structures is seemingly
necessary whenever treating recursion; we return to it in more detail in Section 5.

3 Separation logic with labels and permissions (SLLP)

Following the motivation given in the previous section, here we give the syntax
and semantics of a separation logic, SLLP, with permissions over arbitrary formu-
las, making use of both strong and weak separating conjunctions, and nominal
labels (from hybrid logic [3, 10]). First, we de�ne a suitable notion of permissions
and associated operations.

De�nition 3.1. A permissions algebra is a tuple 〈Perm,⊕,⊗, 1〉, where Perm is
a set (of �permissions�), 1 ∈ Perm is called the write permission, and ⊕ and ⊗ are
respectively partial and total binary functions on Perm, satisfying associativity,
commutativity, cancellativity and the following additional axioms:

π1 ⊕ π2 6= π2 (non-zero)
∀π. π ⊕ 1 is unde�ned (top)
∀π. ∃π1, π2. π = π1 ⊕ π2 (divisibility)
(π1 ⊕ π2)⊗ π = (π1 ⊗ π)⊕ (π2 ⊗ π) (left-dist)

7

The most common example of a permissions algebra is the Boyland fractional
permission model 〈(0, 1]∩Q,⊕,×, 1〉, where permissions are rational numbers in
(0, 1], × is standard multiplication, and ⊕ is standard addition but unde�ned if
p+ p′ > 1. From now on, we assume a �xed but arbitrary permissions algebra.

With the permissions structure in place, we can now de�ne the syntax of
our logic. We assume disjoint, countably in�nite sets Var of variables, Pred of
predicate symbols (with associated arities) and Label of labels.

De�nition 3.2. We de�ne formulas of SLLP by the grammar:

A ::= x = y | ¬A | A ∧A | A ∨A | A→ A (pure)
| emp | x 7→ y | P (x) | A ∗A | A~A | A −−∗ A | A −−~ A (spatial)
| Aπ | α | @αA (perms / labels)

where x, y range over Var, π ranges over Perm, P ranges over Pred, α ranges
over Label and x ranges over tuples of variables of length matching the arity of
the predicate symbol P . We write x

π7→ y for (x 7→ y)π, and x 6= y for ¬(x = y).

The �magic wands� −−∗ and −−~ are the implications adjoint to ∗ and ~, as
usual in separation logic. We include them for completeness, but we use −−∗ only
for fairly complex examples (see Section 5.3) and in fact do not use −−~ at all.

Semantics. We interpret formulas in a standard model of stacks and heaps-
with-permissions (cf. [4]), except that our models also incorporate a valuation
of nominal labels. We assume an in�nite set Val of values of which an in�nite
subset Loc ⊂ Val are considered addressable locations. A stack is as usual a map
s : Var → Val. A heap-with-permissions, which we call a p-heap for short, is a
�nite partial function h : Loc⇀fin Val×Perm from locations to value-permission
pairs. We write dom (h) for the domain of h, i.e. the set of locations on which h
is de�ned. Two p-heaps h1 and h2 are called disjoint if dom (h1)∩dom (h2) = ∅,
and compatible if, for all ` ∈ dom (h1) ∩ dom (h2), we have h1(`) = (v, π1)
and h2(v, π2) and π1 ⊕ π2 is de�ned. (Thus, trivially, disjoint heaps are also
compatible.) We de�ne the multiplication π ·h of a p-heap h by permission π by
extending ⊗ pointwise:

(π · h)(`) = (v, π ⊗ π′) ⇔ h(`) = (v, π′) .

We also assume that each predicate symbol P of arity k is given a �xed inter-
pretation JP K ∈ (Valk×PHeaps), where PHeaps is the set of all p-heaps. Here we
allow an essentially free interpretation of predicate symbols, but they could also
be given by a suitable inductive de�nition schema, as is done in many papers on
separation logic (e.g. [7, 8]). Finally, a valuation is a function ρ : Label→ PHeaps
assigning a single p-heap ρ(α) to each label α.

De�nition 3.3 (Strong and weak heap composition). The strong compo-
sition h1 ◦ h2 of two disjoint p-heaps h1 and h2 is de�ned as their union:

(h1 ◦ h2)(`) =

{
h1(`) if ` 6∈ dom (h2)

h2(`) if ` 6∈ dom (h1)

8

s, h, ρ |= x = y ⇔ s(x) = s(y)

s, h, ρ |= ¬A ⇔ s, h, ρ 6|= A

s, h, ρ |= A ∧B ⇔ s, h, ρ |= A and s, h, ρ |= B

s, h, ρ |= A ∨B ⇔ s, h, ρ |= A or s, h, ρ |= B

s, h, ρ |= A→ B ⇔ s, h, ρ |= A implies s, h, ρ |= B

s, h, ρ |= emp ⇔ dom (h) = ∅
s, h, ρ |= x 7→ y ⇔ dom (h) = {s(x)} and h(s(x)) = (s(y), 1)

s, h, ρ |= P (x) ⇔ (s(x), h) ∈ JP K
s, h, ρ |= A ∗B ⇔ ∃h1, h2. h = h1 ◦ h2 and s, h1, ρ |= A and s, h2, ρ |= B

s, h, ρ |= A~B ⇔ ∃h1, h2. h = h1 ◦ h2 and s, h1, ρ |= A and s, h2, ρ |= B

s, h, ρ |= A −−∗ B ⇔ ∀h′. if h ◦ h′ de�ned and s, h′, ρ |= A then s, h ◦ h′, ρ |= B

s, h, ρ |= A −−~ B ⇔ ∀h′. if h ◦ h′ de�ned and s, h′, ρ |= A then s, h ◦ h′, ρ |= B

s, h, ρ |= Aπ ⇔ ∃h′. h = π · h′ and s, h′, ρ |= A

s, h, ρ |= α ⇔ h = ρ(α)

s, h, ρ |= @αA ⇔ s, ρ(α), ρ |= A

Fig. 1. De�nition of the satisfaction relation s, h, ρ |= A for SLLP.

If h1 and h2 are not disjoint then h1 ◦ h2 is unde�ned.
The weak composition h1 ◦ h2 of two compatible p-heaps h1 and h2 is de�ned

as their union, adding permissions at overlapping locations:

(h1 ◦ h2)(`) =


(v, π1 ⊕ π2) if h1(`) = (v, π1) and h2(`) = (v, π2)

h1(`) if ` 6∈ dom (h2)

h2(`) if ` 6∈ dom (h1)

If h1 and h2 are not compatible then h1 ◦ h2 is unde�ned.

De�nition 3.4. The satisfaction relation s, h, ρ |= A, where s is a stack, h a
p-heap, ρ a valuation and A a formula, is de�ned by structural induction on A
in Figure 1. We write the entailment A |= B, where A and B are formulas, to
mean that if s, h, ρ |= A then s, h, ρ |= B. We write the equivalence A ≡ B to
mean that A |= B and B |= A.

4 Logical principles of SLLP

In this section, we establish the main logical entailments and equivalences of
SLLP that capture the various interactions between the separating conjunctions
~ and ∗, permissions and labels. As well as being of interest in their own right,
many of these principles will be essential in treating the practical veri�cation
examples in Section 5. In particular, the permission distribution principle for
∗ (cf. (3), Section 2) is given in Lemma 4.3, and the permission combination
principle for labelled formulas (cf. (5), Section 2) is given in Lemma 4.4.

9

Proposition 4.1. The following equivalences all hold in SLLP:

A~B ≡ B ~A A ∗B ≡ B ∗A
A~ (B ~ C) ≡ (A~B)~ C A ∗ (B ∗ C) ≡ (A ∗B) ∗ C

A~ emp ≡ A A ∗ emp ≡ A

Additionally, the following residuation laws hold:

A |= B −−~ C ⇔ A~B |= C and A |= B −−∗ C ⇔ A ∗B |= C .

In addition, we can always weaken ∗ to ~: A ∗B |= A~B.

Next, we establish an additional connection between the two separating con-
junctions ~ and ∗.

Lemma 4.2 (~/∗ distribution). For all formulas A, B, C and D,

(A~B) ∗ (C ~D) |= (A ∗ C)~ (B ∗D) . (~/∗)

Proof. First we show a corresponding model-theoretic property: for any p-heaps
h1, h2, h3 and h4 such that (h1 ◦ h2) ◦ (h3 ◦ h4) is de�ned,

(h1 ◦ h2) ◦ (h3 ◦ h4) = (h1 ◦ h3) ◦ (h2 ◦ h4) (6)

Since (h1 ◦ h2) ◦ (h3 ◦ h4) is de�ned by assumption, we have that h1 ◦ h2 and
h3 ◦ h4 are disjoint and that h1 and h2, as well as h3 and h4 are compatible.
In particular, h1 and h3 are disjoint, so h1 ◦ h3 is de�ned; the same reasoning
applies to h2 and h4. Moreover, since h1 and h2 are compatible, h1 ◦ h3 and
h2 ◦ h4 must be compatible and so (h1 ◦ h3) ◦ (h2 ◦ h4) is de�ned.
Now, writing h for (h1 ◦ h2) ◦ (h3 ◦ h4), and letting ` ∈ dom (h), we have

h(`) =



h1(`) if ` 6∈ dom (h3) , ` /∈ dom (h4) and ` /∈ dom (h2)

h2(`) if ` 6∈ dom (h3) , ` /∈ dom (h4) and ` /∈ dom (h1)

(v, π1 ⊕ π2) if ` 6∈ dom (h3) , ` /∈ dom (h4) and h1(`) = (v, π1)

and h2(`) = (v, π2)

h3(`) if ` 6∈ dom (h1) , ` /∈ dom (h2) and ` /∈ dom (h4)

h4(`) if ` 6∈ dom (h1) , ` /∈ dom (h2) and ` /∈ dom (h3)

(u, π3 ⊕ π4) if ` 6∈ dom (h1) , ` /∈ dom (h2) and h3(`) = (u, π3)

and h4(`) = (u, π4)

We can merge the �rst and fourth cases by noting that h(`) = (h1 ◦ h3)(`) if ` 6∈
dom (h2 ◦ h4), and similarly for the second and �fth cases. We can also rewrite
the last two cases by observing that ` /∈ dom (h3) implies h1(`) = (h1 ◦ h3)(`),
and so on, resulting in

h(`) =


(h1 ◦ h3)(`) if ` 6∈ dom (h2 ◦ h4)

(h2 ◦ h4)(`) if ` 6∈ dom (h1 ◦ h3)

(w, σ1 ⊕ σ2) if (h1 ◦ h3)(`) = (w, σ1) and (h2 ◦ h4)(`) = (w, σ2)

= ((h1 ◦ h3) ◦ (h2 ◦ h4))(`) .

10

Now we show the main result. Suppose s, h, ρ |= (A~B)∗ (C~D). This gives us
h = (h1 ◦ h2) ◦ (h3 ◦ h4), where s, h1, ρ |= A and s, h2, ρ |= B and s, h3, ρ |= C
and s, h4, ρ |= D. By equation (6), we have h = (h1 ◦h3) ◦ (h2 ◦h4), which gives
us exactly that s, h, ρ |= (A ∗ C)~ (B ∗D), as required.

Next, we establish principles for distributing permissions over various con-
nectives, in particular over the strong ∗, stated earlier as (3) in Section 2.

Lemma 4.3 (Permission distribution). The following equivalences hold for
all formulas A and B, and permissions π and σ:(

Aσ
)π ≡ Aσ⊗π (⊗)

(A ∨B)π ≡ Aπ ∨Bπ (∨π)
(A ∧B)π ≡ Aπ ∧Bπ (∧π)
(A ∗B)π ≡ Aπ ∗Bπ (∗π)

Proof. We just show the most interesting case, (∗π). First of all, we establish
a corresponding model-theoretic property: for any permission π and disjoint p-
heaps h1 and h2, meaning h1 ◦ h2 is de�ned,

π · (h1 ◦ h2) = (π · h1) ◦ (π · h2) . (7)

To see this, we �rst observe that for any ` ∈ dom (h1 ◦ h2), we have that either
` ∈ dom (h1) or ` ∈ dom (h2). We just show the case ` ∈ dom (h1), since the other
is symmetric. Writing h1(`) = (v1, π1), and using the fact that ` 6∈ dom (h2),

π · (h1 ◦ h2)(`) = (v1, π ⊗ π1) = (π · h1)(`) = ((π · h1) ◦ (π · h2))(`) .

Now for the main result, let s, h and ρ be given. We have

s, h, ρ |= (A ∗B)π

⇔ h = π · h′ and s, h′, ρ |= A ∗B
⇔ h = π · h′ and h′ = h1 ◦ h2 and s, h1, ρ |= A and s, h2, ρ |= B
⇔ h = π · (h1 ◦ h2) and s, h1, ρ |= A and s, h2, ρ |= B
⇔ h = (π · h1) ◦ (π · h2) and s, h1, ρ |= A and s, h2, ρ |= B by (7)
⇔ h = h′1 ◦ h′2 and s, h′1, ρ |= Aπ and s, h′2, ρ |= Bπ

⇔ s, h, ρ |= Aπ ∗Bπ .

We now establish the main principles for dividing and combining permissions
formulas using ~. As foreshadowed in Section 2, the combination principle holds
only for formulas that are conjoined with a nominal label (cf. equation (5)).

Lemma 4.4 (Permission division and combination). For all formulas A,
nominals α, and permissions π1, π2 such that π1 ⊕ π2 is de�ned:

Aπ1⊕π2 |= Aπ1 ~Aπ2 (Split~)

(α ∧A)π1 ~ (α ∧A)π2 |= (α ∧A)π1⊕π2 (Join~)

11

Proof. Case (Split~): Suppose that s, h, ρ |= Aπ1⊕π2 . We have h = (π1⊕π2)·h′,
where s, h′, ρ |= A. That is, for any ` ∈ dom (h), we have h′(`) = (v, π) say and,
using the permissions algebra axiom (left-dist) from De�nition 3.1,

h(`) = (v, (π1 ⊕ π2)⊗ π) = (v, (π1 ⊗ π)⊕ (π2 ⊗ π)) .

Now we de�ne p-heaps h1 and h2, both with domain exactly dom (h), by

hi(`) = (v, πi ⊗ π) ⇔ h′(`) = (v, π) for i ∈ {1, 2} .

By construction, h1 = π1 · h′ and h2 = π2 · h′. Since s, h′, ρ |= A, this gives us
s, h1, ρ |= Aπ1 and s, h2, ρ |= Aπ2 . Furthermore, also by construction, h1 and h2

are compatible, with h = h1 ◦ h2. Thus s, h, ρ |= Aπ1 ~Aπ2 , as required.

Case (Join~): First of all, we show that for any p-heap h,

(π1 · h) ◦ (π2 · h) = (π1 ⊕ π2) · h . (8)

To see this, we observe that for any ` ∈ dom (h), writing h(`) = (v, π) say,

((π1 ⊕ π2) · h)(`)
= (v, (π1 ⊕ π2)⊗ π)
= (v, (π1 ⊗ π)⊕ (π2 ⊗ π)) by (left-dist)
= (h1 ⊕ h2)(`) where h1(`) = (v, π1 ⊗ π) and h2 = (v, π2 ⊗ π)
= ((π1 · h) ◦ (π2 · h))(`) .

Now, for the main result, suppose s, h, ρ |= (α ∧ A)π1 ~ (α ∧ A)π2 . We have
h = h1 ◦ h2 where s, h1, ρ |= (α ∧ A)π1 and s, h2, ρ |= (α ∧ A)π2 . That is,
h = (π1 · h′1) ◦ (π2 · h′2), where s, h′1, ρ |= α ∧ A and s, h′2, ρ |= α ∧ A. Thus
h′1 = h′2 = ρ(α) and so, by (8), we have h = (π1⊕π2) ·h′1, where s, h′1, ρ |= α∧A.
This gives us s, h, ρ |= (α ∧A)π1⊕π2 , as required.

Lastly, we state some useful principles for labels and the �jump� modality.

Lemma 4.5 (Labelling and jump). For all formulas A and labels α,

@αA ∧ απ |= Aπ (@Elim)

(α ∧A)π |= @αA (@Intro)

@α(β1
π ∗ β2

σ) ∧ (β1
π ~ β2

σ) |= α ∧ (β1
π ∗ β2

σ) (@/ ∗ /~)

Proof. We just show the case (@/∗/~), the others being easy. Suppose s, h, ρ |=
@α(β1

π ∗ β2
σ) ∧ (β1

π ~ β2
σ), meaning that s, ρ(α), ρ |= β1

π ∗ β2
σ and s, h, ρ |=

β1
π ~ β2

σ. Then we have ρ(α) = (π · ρ(β1)) ◦ (σ · ρ(β2)), while h = (π · ρ(β1)) ◦
(σ · ρ(β2)). Since ◦ is de�ned only when its arguments are disjoint p-heaps, we
obtain that h = ρ(α) = (π ·ρ(β1))◦ (σ ·ρ(β2)). Thus s, h, ρ |= α∧ (β1

π ∗β2
σ).

12

{A1}C1 {B1} {A2}C2 {B2}
(�) (Par)

{A1 ~A2}C1 ||C2 {B1 ~B2}

{α ∧A}C {B}
(�) (Label)

{A}C {B}

{A}C {B}
(†, ‡) (Frame ∗)

{A ∗ F}C {B ∗ F}

{A}C {B}
(†) (Frame ~)

{A~ F}C {B ~ F}

(�) ModVars(C2) ∩ FreeVars(A1, B1) = ModVars(C1) ∩ FreeVars(A2, B2) = ∅
(�) α fresh (†) ModVars(C) ∩ FreeVars(F) = ∅ (‡) see �5.3

Fig. 2. The key CSL proof rules used in our examples; not shown are standard rules for
consequence, conditionals, load/store, etc. The fresh-labelling rule (Label) and com-
bination of both weak (Frame ~) and strong (Frame ∗) frame rules are novel to our
approach. We require weak conjunction ~ for the parallel rule (Par).

5 Concurrent program veri�cation examples

In this section, we demonstrate how SLLP can be used in conjunction with the
usual principles of CSL to construct veri�cation proofs of concurrent programs,
taking three examples of increasing complexity.

Our examples all operate on binary trees in memory, de�ned as usual in
separation logic (again note the use of ∗ rather than ~):

tree(x) =def (x = null ∧ emp) ∨ (∃d, l, r. x 7→ (d, l, r) ∗ tree(l) ∗ tree(r)) .

Our proofs employ (a subset of) the standard rules of CSL�with the most im-
portant being the concurrency rule from the Introduction, the separation logic
frame rules for both ∗ and ~, and a new rule enabling us to introduce fresh
labels into the precondition of a triple (similar to the way Hoare logic usually
handles existential quanti�ers). These key rules are shown in Figure 2. We sim-
plify our Hoare triple to remove elements to handle function call/return and
furthermore omit the presentation of the standard collection of rules for con-
sequence, load, store, if-then-else, assignment, etc.; readers interested in such
aspects can consult [1]. Both of our frame rules have the usual side condition on
modi�ed program variables. The strong frame rule (Frame ∗) has an additional
side condition that will be discussed in �5.3; until then it is trivially satis�ed.

5.1 Parallel read

Consider the following program:

check(x) {

if (x == null) { return; }

read(x); read(x);

}

13

This is intended to be a straightforward example where we take a tree rooted
at x and, if x is non-null, split into parallel threads that run the program read

on x, and whose speci�cation is {απ ∧ tree(x)σ} read(x) {απ ∧ tree(x)σ}. We
prove that check satis�es the speci�cation {tree(x)π} check(x) {tree(x)π}; the
veri�cation proof is in Figure 3. The proof makes use of the basic operations
of our theory: labelling, splitting and joining. The example follows precisely
these steps, starting by labelling the formula tree(x)π ∧ x 6= null with α. The
concurrency rule (Par) allows us to put formulas back together after the parallel
call, and the two copies (α ∧ tree(x)π)0.5 that were obtained are glued back
together to yield tree(x)π, since they have the same label.

{tree(x)π}
check(x) {

{(tree(x)π ∧ x = null) ∨ (tree(x)π ∧ x 6= null)}
if (x == null) { {x = null ∧ tree(x)π}
return;

{tree(x)π}
}

{α ∧ tree(x)π ∧ x 6= null} by (Label)
{(α ∧ tree(x)π)0.5 ~ (α ∧ tree(x)π)0.5} by (Split~)

{(α ∧ tree(x)π)0.5}
{α0.5 ∧ tree(x)π⊗0.5} by (∧π),(⊗)
read(x); . . .
{α0.5 ∧ tree(x)π⊗0.5}
{(α ∧ tree(x)π)0.5} by (∧π),(⊗)

{(α ∧ tree(x)π)0.5 ~ (α ∧ tree(x)π)0.5} by (Par)
{α ∧ tree(x)π} by (Join~)
}

{tree(x)π}

Fig. 3. Veri�cation proof of program check in Example 5.1.

5.2 Parallel tree processing (Le and Hobor [24]):

Consider the following program, which was also employed as an example in [24]:

proc(x) {

if (x == null) { return; }

print(x->d); print(x->d);

proc(x->l); proc(x->l);

proc(x->r); proc(x->r);

}

This code takes a tree rooted at x and, if x is non-null, splits into parallel
threads that call proc recursively on its left and right branches. We prove, in Fig-

14

ure 4, that proc satis�es the speci�cation {α ∧ tree(x)π} proc(x) {α ∧ tree(x)π}.
First we unroll the de�nition of tree(x) and distribute the permission over
Boolean connectives and ∗. If the tree is empty the process stops. Otherwise,
we label each component with a new label and introduce the �jump� statement
@α(β1 ∗ β2 ∗ β3), recording the decomposition of the tree into its three com-
ponents. Since such statements are pure, i.e. independent of the heap, we can
�carry� this formula along our computation without interfering with the frame
rule(s). Now that every subregion is labelled, we split the formula into two copies,
each with half share, but after distributing 0.5 over ∗ and ∧ we end up with half
shares in the labels as well. We relabel each subregion with new �whole� labels,
and again introduce pure @-formulas that record the relation between the old
and the new labels. At this moment we enter the parallel threads and recur-
sively apply proc to the left and right subtrees of x. Assuming the speci�cation
of proc for subtrees of x, we then retrieve the original label α from the trail of
crumbs left by the @-formulas. We can then recombine the α-labelled threads
using (Join~) to arrive at the desired postcondition.

5.3 Cross-thread data transfer

Our previous examples involve only �isolated tank� concurrency: a program
has some resources and splits them into parallel threads that do not commu-
nicate with each other before �remembering Humpty Dumpty!� ultimately
re-merging. For our last example, we will show that our technique is expressive
enough to handle more sophisticated kinds of sharing, in particular inter-thread
coarse-grained communication. We will show that we can not only share read-
only data, but in fact prove that one thread has acquired the full ownership of
a structure, even when the associated root pointers are not easily exposed.

To do so, we add some communication primitives to our language, together
with their associated Hoare rules. Coarse-grained concurrency such as locks,
channels, and barriers have been well-investigated in various �avours of concur-
rent separation logic [26, 31, 19]. We will use a channel for our example in this
section but with simpli�ed rules: the Hoare rule for a channel c to send message
number i whose message invariant is Rci is {Rci (x)} send(c, x) {emp}, while the
corresponding rule to receive is {emp} receive(c) {λret . Rci (ret)}. We ignore
details such as identifying which party is allowed to send / receive at a given
time [14] or the resource ownership of the channel itself [18].

These rules interact poorly with the strong frame rule from Figure 2:

{A}C {B}
(†, ‡) (Frame ∗)

{A ∗ F}C {B ∗ F}
(†) ModVars(C) ∩ FreeVars(F) = ∅
(‡) C does not receive resources

The revealed side condition (‡)means that C does not contain any subcommands
that �transfer in� resources, such as unlock, receive, etc.; this side condition
is a bit stronger than necessary but has a simple de�nition and can be checked
syntactically. Without (‡), we can reach a contradiction. Assume that the current

15

{α ∧ tree(x)π}
proc(x) {
{(α ∧ (x = null ∧ emp)π) ∨ (α ∧ (x 7→ (d, l, r) ∗ tree(l) ∗ tree(r))π)}by (∧π),(∨π)
{(α ∧ x = null ∧ emp) ∨ (α ∧ (x 7→ (d, l, r) ∗ tree(l) ∗ tree(r))π)}
if (x == null) { {α ∧ x = null ∧ emp}
return;
{α ∧ (x = null ∧ emp)π}
{α ∧ tree(x)π}
}

{α ∧ (x
π7→ (d, l, r) ∗ tree(l)π ∗ tree(r)π)} by (∗π)

{((β1 ∧ x
π7→ (d, l, r)) ∗ (β2 ∧ tree(l)π) ∗ (β3 ∧ tree(r)π))∧ by (Label),

@α(β1 ∗ β2 ∗ β3} (@Intro)

{(((β0.5
1 ∧ x π⊗0.57→ (d, l, r)) ∗ (β0.5

2 ∧ tree(l)π⊗0.5)∗
(β0.5

3 ∧ tree(r)π⊗0.5)) ∧ (@α(β1 ∗ β2 ∗ β3))0.5)~
(((β0.5

1 ∧ x π⊗0.57→ (d, l, r)) ∗ (β0.5
2 ∧ tree(l)π⊗0.5)∗ by (Split~),

(β0.5
3 ∧ tree(r)π⊗0.5)) ∧ (@α(β1 ∗ β2 ∗ β3))0.5)} (∗π), (∧π)

{(((γ1 ∧ x
π⊗0.57→ (d, l, r) ∧@γ1β

0.5
1) ∗ (γ2 ∧ tree(l)π⊗0.5 ∧@γ2β

0.5
2)∗

(γ3 ∧ tree(r)π⊗0.5 ∧@γ3β
0.5
3)) ∧@α(β1 ∗ β2 ∗ β3))~

(((γ4 ∧ x
π⊗0.57→ (d, l, r) ∧@γ4β

0.5
1) ∗ (γ5 ∧ tree(l)π⊗0.5 ∧@γ5β

0.5
2)∗ by (Label),

(γ6 ∧ tree(r)π⊗0.5 ∧@γ6β
0.5
3)) ∧@α(β1 ∗ β2 ∗ β3))} (@Intro)

{((γ1 ∧ x
π⊗0.57→ (d, l, r) ∧@γ1β

0.5
1)∗

(γ2 ∧ tree(l)π⊗0.5 ∧@γ2β
0.5
2)∗

(γ3 ∧ tree(r)π⊗0.5 ∧@γ3β
0.5
3)) ∧@α(β1 ∗ β2 ∗ β3)}

print(x->d);

{((γ1 ∧ x
π⊗0.57→ (d, l, r) ∧@γ1β

0.5
1)∗

(γ2 ∧ tree(l)π⊗0.5 ∧@γ2β
0.5
2)∗

(γ3 ∧ tree(r)π⊗0.5 ∧@γ3β
0.5
3)) ∧@α(β1 ∗ β2 ∗ β3)}

proc(x->l); . . .

{((γ1 ∧ x
π⊗0.57→ (d, l, r) ∧@γ1β

0.5
1)∗

(γ2 ∧ tree(l)π⊗0.5 ∧@γ2β
0.5
2)∗

(γ3 ∧ tree(r)π⊗0.5 ∧@γ3β
0.5
3)) ∧@α(β1 ∗ β2 ∗ β3)}

proc(x->r);

{((γ1 ∧ x
π⊗0.57→ (d, l, r) ∧@γ1β

0.5
1)∗

(γ2 ∧ tree(l)π⊗0.5 ∧@γ2β
0.5
2)∗

(γ3 ∧ tree(r)π⊗0.5 ∧@γ3β
0.5
3)) ∧@α(β1 ∗ β2 ∗ β3)}

{((β0.5
1 ∧ x π⊗0.57→ (d, l, r)) ∗ (β0.5

2 ∧ tree(l)π⊗0.5)∗
(β0.5

3 ∧ tree(r)π⊗0.5)) ∧ (@α(β1 ∗ β2 ∗ β3))0.5}
{(((β1 ∧ x

π7→ (d, l, r)) ∗ (β2 ∧ tree(l)π)∗
(β3 ∧ tree(r)π)) ∧@α(β1 ∗ β2 ∗ β3))0.5} by (∧π),(∗π)
{(α ∧ (x

π7→ (d, l, r) ∗ tree(l)π ∗ tree(r)π))0.5} by (@/ ∗ /~)
{(α ∧ (x

π7→ (d, l, r) ∗ tree(l)π ∗ tree(r)π))0.5~
(α ∧ (x

π7→ (d, l, r) ∗ tree(l)π ∗ tree(r)π))0.5} by (Par)
{α ∧ (x

π7→ (d, l, r) ∗ tree(l)π ∗ tree(r)π)} by (Join~)
}
{α ∧ tree(x)π}
Fig. 4. Veri�cation proof of Le and Hobor's program from [24] in Example 5.2.

16

100 void transfer(int key) { { emp }
101 rt* = make_tree ();

102 { tree(rt) }
{ (α ∧ tree(rt))0.5 } || { (α ∧ tree(rt))0.5 }
tree* sub = find(rt, key) || ... ;

send(ch, sub) || tree* sub = receive(ch) ;

... || modify(sub) ;

receive(ch) || send(ch, ()) ;

{ (ε ∧ tree(rt))0.5 } || { (ε ∧ tree(rt))0.5 }
400 { tree(rt) }
401 delete_tree(rt); { emp } }

Fig. 5. Veri�cation proof of the top and bottom of transfer in Example 5.3.

message invariant Rc

i is x
0.57→ a, which has been sent by thread B. Now thread A,

which had the other half of x
0.57→ a, can reason as follows:

{emp} receive(c) {x 0.57→ a}
(Frame ∗), without (‡)

{emp ∗ x 0.57→ a} receive(c) {x 0.57→ a ∗ x 0.57→ a}

The postcondition is a contradiction as no location strongly separates from itself.
However, given (‡) the strong frame rule can be proven by induction.

The consequence of (‡), from a veri�cation point of view, is that when re-
sources are transferred in they arrive weakly separated, by ~, since we must use
the weak frame rule around the receiving command. The troublesome issue is
that this newly �arriving� state can thus ~-overlap awkwardly with the existing
state. Fortunately, judicious use of labels can sort things out.

Consider the code in Figure 5. The basic idea is simple: we create some
data at the top (line 101) and then split its ownership 50-50 to two threads.
The left thread �nds a subtree, and passes its half of that subtree to the right
via a channel. The right thread receives the root of that subtree, and thus has
full ownership of that subtree along with half-ownership of the rest of the tree.
Accordingly, the right thread can modify that subtree before notifying the left
subtree and passing half of the modi�ed subtree back. After merging, full own-
ership of the entire tree is restored and so on line 401 the program can delete
it. Figure 5 only contains the proof and line numbers for the top and bottom
shared portions. The left and the right thread's proofs appear in Figure 6.

By this point the top and bottom portions of the veri�cation are straight-
forward. After creating the tree tree(rt) at line 102, we introduce the label α,
split the formula using (Split~), and then pass (α∧ tree(rt))0.5 to both threads.
After the parallel execution, due to the call to modify(sub) in the right thread,
the tree has changed in memory. Accordingly, the label for the tree must also
change as indicated by the (ε∧ tree(rt))0.5 in both threads after parallel process-
ing. These are then recombined on line 400 using the re-combination principle
(Join~), before the tree is deallocated via standard sequential techniques.

17

200 { (α ∧ tree(rt))0.5 }
201 tree* sub = find(rt, key);

202 {
(
α0.5 ∧ tree(sub) ∗ (tree(sub) −−∗ tree(rt))

)0.5 }
203 {

(
α0.5 ∧ (β ∧ tree(sub)) ∗ (γ ∧ (tree(sub) −−∗ tree(rt)))

)0.5 }
204

{
α0.5 ∧

(
(β ∧ tree(sub)) ∗ (γ ∧ (tree(sub) −−∗ tree(rt)))

)0.5 ∧(
@0.5
α ((β ∧ tree(sub)) ∗ (γ ∧ (tree(sub) −−∗ tree(rt))))0.5

) }
205

{
(β ∧ tree(sub))0.5 ∗ (γ ∧ (tree(sub) −−∗ tree(rt)))0.5 ∧(
@0.5
α ((β ∧ tree(sub)) ∗ (γ ∧ (tree(sub) −−∗ tree(rt))))0.5

) }
206

{
(γ ∧ (tree(sub) −−∗ tree(rt)))0.5 ~ (β ∧ tree(sub))0.5 ∧(
@0.5
α ((β ∧ tree(sub)) ∗ (γ ∧ (tree(sub) −−∗ tree(rt))))0.5

) }
207 send(ch, sub);

208

{
(γ ∧ (tree(sub) −−∗ tree(rt)))0.5

}
209 ...

210

{
(γ ∧ (tree(sub) −−∗ tree(rt)))0.5

}
211 receive(ch);

212

{
(γ ∧ (tree(sub) −−∗ tree(rt)))0.5 ~

(
(@0.5

γ (δ ∧ tree(sub) −−∗ ε ∧ tree(rt))0.5) ∧
γ ⊥ δ ∧ δ ∧ tree(sub)0.5

) }
213

{
γ ∧ (δ ∧ tree(sub) −−∗ ε ∧ tree(rt))0.5 ~ δ ∧ tree(sub)0.5 ∧ γ ⊥ δ

}
214

{
(δ ∧ tree(sub) −−∗ ε ∧ tree(rt))0.5 ∗ δ ∧ tree(sub)0.5

}
215 { (ε ∧ tree(rt))0.5 }

300 { (α ∧ tree(rt))0.5 }
301 ...

302 { (α ∧ tree(rt))0.5 }
303 tree* sub = receive(ch);

304

{
(α ∧ tree(rt))0.5 ~ (β ∧ tree(sub))0.5 ∧(
@0.5
α ((β ∧ tree(sub)) ∗ (γ ∧ (tree(sub) −−∗ tree(rt))))0.5

) }
305

{
((β ∧ tree(sub)) ∗ (γ ∧ (tree(sub) −−∗ tree(rt))))0.5 ~ (β ∧ tree(sub))0.5

}
306

{
((β ∧ tree(sub))0.5 ~ (β ∧ tree(sub))0.5) ∗ (γ ∧ (tree(sub) −−∗ tree(rt)))0.5

}
307

{
tree(sub) ∗ (γ ∧ (tree(sub) −−∗ tree(rt)))0.5

}
308 modify(sub);

309

{
tree(sub) ∗ (γ ∧ (tree(sub) −−∗ tree(rt)))0.5

}
310

{
(δ ∧ tree(sub)) ∗ (γ ∧ ((δ ∧ tree(sub)) −−∗ (ε ∧ tree(rt))))0.5 ∧ γ ⊥ δ

}
311

{
((δ ∧ tree(sub))0.5 ~ (δ ∧ tree(sub))0.5) ∗ (γ ∧ ((δ ∧ tree(sub)) −−∗ (ε ∧ tree(rt))))0.5 ∧
γ ⊥ δ ∧

(
@0.5
γ ((δ ∧ tree(sub)) −−∗ (ε ∧ tree(rt)))0.5

) }
312

{
((δ ∧ tree(sub))0.5 ∗ (γ ∧ ((δ ∧ tree(sub)) −−∗ (ε ∧ tree(rt))))0.5)~
(δ ∧ tree(sub))0.5 ∧ γ ⊥ δ ∧

(
@0.5
γ ((δ ∧ tree(sub)) −−∗ (ε ∧ tree(rt)))0.5

) }
313

{
(ε ∧ tree(rt))0.5 ~
(δ ∧ tree(sub))0.5 ∧ γ ⊥ δ ∧

(
@0.5
γ ((δ ∧ tree(sub)) −−∗ (ε ∧ tree(rt)))0.5

) }
314 send(ch, ());

315 { (ε ∧ tree(rt))0.5 }

Fig. 6. Veri�cations of the left (top) and right (bottom) threads of transfer.

18

Let us now examine the more interesting proofs of the individual threads in
Figure 6. Line 201 calls the find function, which searches a binary tree for a
subtree rooted with key key. Following Cao et al. [13] we specify find as follows:

{ tree(x)π } find(x) { λret .
(
tree(ret) ∗ (tree(ret) −−∗ tree(x))

)π }
Here ret is bound to the return value of find, and the postcondition can be
considered to represent the returned subtree tree(ret) separately from the tree-
with-a-hole tree(ret) −−∗ tree(x), using a ∗/−−∗ style to represent replacement as
per Hobor and Villard [20]. This is the invariant on line 202.

Line 203 then attaches the fresh labels β and γ to the ∗-separated subparts,
and line 204 snapshots the formula current at label α using the @ operator; @παP
should be read as �when one has a π-fraction of α, P holds�; it is de�nable using
@ and an existential quanti�er over labels. On line 205 we forget (in the left
thread) the label α for the current heap for housekeeping purposes, and then
on line 206 we weaken the strong separating conjunction ∗ to the weak one ~
before sending the root of the subtree sub on line 207.

In the transfer program, the invariant for the �rst channel message is

(β ∧ tree(sub))0.5 ∧
(
@0.5
α ((β ∧ tree(sub)) ∗ (γ ∧ (tree(sub) −−∗ tree(rt))))0.5

)
In other words, half of the ownership of the tree rooted at sub plus the (pure)
@-fact about the shape of the heap labeled by α. Comparing lines 206 and 208 we
can see that this information has been shipped over the wire (the @-information
has been dropped since no longer needed). The left thread then continues to
process until synchronizing again with the receive in line 211.

Before we consider the second synchronization, however, let us instead jump
to the corresponding receive in the right thread at line 303. After the receive,
the invariant on line 304 has the (weakly separated) resources sent from the left
thread on line 206. We then �jump� label α using the @-information to reach
line 305. We can redistribute the β inside the ∗ on line 306 since we already know
that β and γ are disjoint. On line 307 we reach the payo� by combining both
halves of the subtree sub, enabling the modi�cation of the subtree in line 308.

On line 310 we label the two subheaps, and specialize the magic wand so that
given the speci�c heap δ it will yield the speci�c heap ε; we also record the pure
fact that γ and δ are disjoint, written γ ⊥ δ. On line 311 we snapshot γ and split
the tree sub 50-50; then on line 312 we push half of sub out of the strong ∗. On
line 313 we combine the subtree and the tree-with-hole to reach the �nal tree ε.
We then send on line 314 with the channel's second resource invariant:

(δ ∧ tree(sub))0.5 ∧ γ ⊥ δ ∧
(
@0.5
γ ((δ ∧ tree(sub)) −−∗ (ε ∧ tree(rt)))0.5

)
After the send, on line 315 we have reached the �nal fractional tree ε.

Back in the left-hand thread, the second send is received in line 211, leading
to the weakly-separated postcondition in line 212. In line 213 we �jump� label γ,
and then in line 214 we use the known disjointness of γ and δ to change the ~
to ∗. Finally in line 215 we apply the magic wand to reach the postcondition.

19

6 Conclusions and future work

We propose an extension of separation logic with fractional permissions [4] in
order to reason about sharing over arbitrary regions of memory. We identify two
fundamental logical principles that fail when the �weak� separating conjunction
~ is used in place of the usual �strong� ∗, the �rst being distribution of permis-
sions � Aπ ~ Bπ 6|= (A ~ B)π � and the second being the re-combination of
permission-divided formulas, Aπ ~ Aσ 6|= Aπ⊕σ. We avoid the former di�culty
by retaining the strong ∗ in the formalism alongside ~, and the latter by us-
ing nominal labels, from hybrid logic, to record exact aliasing between read-only
copies of a formula.

The main previous work addressing these issues, by Le and Hobor [24], uses
a combination of permissions based on tree shares [17] and semantic side condi-
tions on formulas to overcome the aforementioned problems. The rely-guarantee
separation logic in [30] similarly restricts concurrent reasoning to structures de-
scribed by precise formulas only. In contrast, our logic is a little more complex,
but we can use permissions of any kind, and do not require side conditions. In
addition, our use of labelling enables us to handle examples involving the transfer
of data structures between concurrent threads.

On the other hand, we think it probable that the kind of examples we consider
in this paper could also be proven by hand in at least some of the veri�cation
formalisms derived from CSL (e.g. [16, 27, 22]). For example, using the �concur-
rent abstract predicates� in [16], one can explicitly declare shared regions of
memory in a fairly ad-hoc way. However, such program logics are typically very
complicated and, we believe, quite unlikely to be amenable to automation.

We feel that the main appeal of the present work lies in its relative simplicity
� we build on standard CSL with permissions and invoke only a modest amount
of extra syntax � which bodes well for its potential automation (at least for
simpler examples). In practical terms, an obvious way to proceed would be to
develop a prototype veri�er for concurrent programs based on our logic SLLP.
An important challenge in this area is to develop heuristics � e.g., for splitting,
labelling and combining formulas � that work acceptably well in practice.

An even greater challenge is to move from verifying user-provided speci�-
cations to inferring them automatically, as is done e.g. by Facebook Infer.
In separation logic, this crucially depends on solving the biabduction problem,
which aims to discover �best �t� solutions for applications of the frame rule [11,
9]. In the CSL setting, a further problem seems to lie in deciding how applications
of the concurrency rule should divide resources between threads.

Finally, automating the veri�cation approach set out in this paper will likely
necessitate restricting our full logic to some suitably tractable fragment, e.g.
one analogous to the well-known symbolic heaps in standard separation logic
(cf. [2, 15]). The identi�cation of such tractable fragments is another important
theoretical problem in this area. It is our hope that this paper will serve to
stimulate interest in the automation of concurrent separation logic in particular,
and permission-sensitive reasoning in general.

20

References

1. Appel, A.W., Dockins, R., Hobor, A., Beringer, L., Dodds, J., Stewart, G., Blazy,
S., Leroy, X.: Program Logics for Certi�ed Compilers. Cambridge University Press,
New York, NY, USA (2014)

2. Berdine, J., Calcagno, C., O'Hearn, P.: A decidable fragment of separation logic.
In: Proceedings of FSTTCS-24. LNCS, vol. 3328, pp. 97�109. Springer (2004)

3. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press
(2001)

4. Bornat, R., Calcagno, C., O'Hearn, P., Parkinson, M.: Permission accounting in
separation logic. In: Proceedings of POPL-32. pp. 59�70. ACM (2005)

5. Boyland, J.: Checking interference with fractional permissions. In: Proceedings of
SAS-10. pp. 55�72. Springer (2003)

6. Brookes, S.: A semantics for concurrent separation logic. Theoretical Computer
Science 375(1�3), 227�270 (2007)

7. Brotherston, J.: Formalised inductive reasoning in the logic of bunched implica-
tions. In: Proceedings of SAS-14. pp. 87�103. Springer (2007)

8. Brotherston, J., Fuhs, C., Gorogiannis, N., Navarro Pérez, J.: A decision procedure
for satis�ability in separation logic with inductive predicates. In: Proceedings of
CSL-LICS. pp. 25:1�25:10. ACM (2014)

9. Brotherston, J., Gorogiannis, N., Kanovich, M.: Biabduction (and related prob-
lems) in array separation logic. In: Proceedings of CADE-26. pp. 472�490. Springer
(2017)

10. Brotherston, J., Villard, J.: Parametric completeness for separation theories. In:
Proceedings of POPL-41. pp. 453�464. ACM (2014)

11. Calcagno, C., Distefano, D., O'Hearn, P., Yang, H.: Compositional shape analysis
by means of bi-abduction. J. ACM 58(6) (December 2011)

12. Calcagno, C., O'Hearn, P., Yang, H.: Local action and abstract separation logic.
In: Proceedings of LICS-22. pp. 366�378. IEEE Computer Society (2007)

13. Cao, Q., Wang, S., Hobor, A., Appel, A.W.: Proof pearl: Magic wand as frame
(2019)

14. Costea, A., Chin, W., Qin, S., Craciun, F.: Automated modular veri�cation for re-
laxed communication protocols. In: Proceedings of APLAS-16. pp. 284�305 (2018)

15. Demri, S., Lozes, E., Lugiez, D.: On symbolic heaps modulo permission theories.
In: Proceedings of FSTTCS-37. pp. 25:1�25:13. Dagstuhl (2017)

16. Dinsdale-Young, T., Dodds, M., Gardner, P., Parkinson, M.J., Vafeiadis, V.: Con-
current abstract predicates. In: Proceedings of ECOOP-24. pp. 504�528. Springer
(2010)

17. Dockins, R., Hobor, A., Appel, A.W.: A fresh look at separation algebras and share
accounting. In: Proceedings of APLAS. pp. 161�177. Springer (2009)

18. Hobor, A., Appel, A.W., Nardelli, F.Z.: Oracle semantics for concurrent separation
logic. In: Proceedings of ESOP-17. pp. 353�367 (2008)

19. Hobor, A., Gherghina, C.: Barriers in concurrent separation logic: Now with tool
support! Logical Methods in Computer Science 8(2) (2012)

20. Hobor, A., Villard, J.: The rami�cations of sharing in data structures. In: Proceed-
ings of POPL-40. pp. 523�536. ACM (2013)

21. Hóu, Z., Clouston, R., Goré, R., Tiu, A.: Proof search for propositional abstract
separation logics via labelled sequents. In: Proceedings of POPL-41. pp. 465�476.
ACM (2014)

21

22. Krebbers, R., Jung, R., Bizjak, A., Jourdan, J.H., Dreyer, D., Birkedal, L.: The
essence of higher-order concurrent separation logic. In: Proceedings of ESOP-26.
pp. 696�723. Springer (2017)

23. Larchey-Wendling, D., Galmiche, D.: Exploring the relation between intuitionis-
tic BI and Boolean BI: An unexpected embedding. Mathematical Structures in
Computer Science 19, 1�66 (2009)

24. Le, X.B., Hobor, A.: Logical reasoning for disjoint permissions. In: Proceedings of
ESOP-27. pp. 385�414. Springer (2018)

25. Lee, W., Park, S.: A proof system for separation logic with magic wand. In: Pro-
ceedings of POPL-41. pp. 477�490. ACM (2014)

26. O'Hearn, P.W.: Resources, concurrency and local reasoning. Theoretical Computer
Science 375(1�3), 271�307 (2007)

27. Raad, A., Villard, J., Gardner, P.: Colosl: Concurrent local subjective logic. In:
Proceedings of ESOP-24. pp. 710�735. Springer (2015)

28. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
Proceedings of LICS-17. pp. 55�74. IEEE Computer Society (2002)

29. Vafeiadis, V.: Concurrent separation logic and operational semantics. In: Proceed-
ings of MFPS-27. pp. 335�351. Elsevier (2011)

30. Vafeiadis, V., Parkinson, M.: A marriage of rely/guarantee and separation logic.
In: Proceedings of CONCUR-18. pp. 256�271. Springer (2007)

31. Villard, J., Lozes, É., Calcagno, C.: Tracking heaps that hop with heap-hop. In:
Proceedings of TACAS-16. pp. 275�279. Springer (2010)

32. Yang, H., O'Hearn, P.: A semantic basis for local reasoning. In: Proceedings of
FOSSACS-5. pp. 402�416. Springer (2002)

22

