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Abstract. We investigate array separation logic (ASL), a variant of
symbolic-heap separation logic in which the data structures are either
pointers or arrays, i.e., contiguous blocks of memory. This logic provides
a language for compositional memory safety proofs of array programs.
We focus on the biabduction problem for this logic, which has been es-
tablished as the key to automatic specification inference at the industrial
scale. We present an NP decision procedure for biabduction in ASL, and
we also show that the problem of finding a consistent solution is NP-hard.
Along the way, we study satisfiability and entailment in ASL, giving
decision procedures and complexity bounds for both problems. We show
satisfiability to be NP-complete, and entailment to be decidable with
high complexity. The surprising fact that biabduction is simpler than
entailment is due to the fact that, as we show, the element of choice over
biabduction solutions enables us to dramatically reduce the search space.
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1 Introduction

In the last 15 years, separation logic [34] has evolved from a novel way to rea-
son about pointers to a mainstream technique for scalable program verification.
Facebook’s Infer [13] is perhaps the best known tool based on separation logic;
other examples include SLAyer [5], VeriFast [28] and HiP [15].

Separation logic is based upon Hoare triples of the form {A}C {B}, where
C is a program and A,B are formulas in a logical language. Its compositional
nature has two main pillars. The first pillar is the soundness of the frame rule:

{A}C {B}
(Frame)

{A ∗ F}C {B ∗ F}

where the separating conjunction ∗ is read as “and separately in memory”, and
subject to the restriction that C does not modify any free variables in F [39].

The second pillar is a tractable algorithm for biabduction [14]: given formu-
las A and B, find formulas X, Y such that A ∗ X |= B ∗ Y , usually subject
to the proviso that A ∗ X should be satisfiable. Solving this problem enables



us to infer specifications for whole programs given specifications for their indi-
vidual components [14]. E.g., if C1 and C2 have specifications {A′}C1 {A} and
{B}C2 {B′}, we can use a solution X,Y to the above biabduction problem to
construct a specification for C1;C2 as follows, using the frame rule and the usual
Hoare logic rules for consequence (|=) and sequencing (;):

{A′}C1 {A}
(Frame)

{A′ ∗X}C1 {A ∗X}
(|=)

{A′ ∗X}C1 {B ∗ Y }

{B}C2 {B′}
(Frame)

{B ∗ Y }C2 {B′ ∗ Y }
(;)

{A′ ∗X}C1;C2 {B′ ∗ Y }

Bottom-up interprocedural analyses based on separation logic, such as Facebook
Infer, employ biabduction to infer program specifications from unannotated
code. Typically, the underlying assertion language is the “symbolic heap” frag-
ment of separation logic over linked lists [4], which is known to be tractable [16].

Here, we focus on a different, but ubiquitous data structure, namely arrays,
which we view as contiguous blocks of memory. We propose an array separation
logic (ASL) in which we replace the usual “list segment” predicate ls by an
“array” predicate array(a, b), which denotes a contiguous block of allocated heap
memory from address a to address b (inclusive), as was first proposed in [32].
In addition, since we wish to reason about array bounds, we allow assertions to
contain linear arithmetic. Thus, for example, a pointer x to a memory block of
length n > 1 starting at a can be represented in ASL by the assertion

n > 1 : x 7→ a ∗ array(a, a+ n− 1) .

The array predicate only records the bounds of memory blocks, not their contents;
this is analogous to the abstraction from pointers to lists in standard separation
logic. Similar to the situation for lists, memory safety of array-manipulating
programs typically depends only on the memory footprint of the arrays.

Our focus is on the biabduction problem for ASL, the most critical step in
building a bottom-up memory safety analysis à la Infer for array-manipulating
programs. Our first main contribution is a decision procedure for the (quantifier-
free) biabduction problem in ASL (Sec. 5). It relies on the idea that, given A and
B, we can look for some consistent total ordering of all the array endpoints and
pointers in both A and B, and impose this ordering, which we call a solution seed,
as the arithmetical part of the solution X. Having done this, the computation
of the “missing” arrays and pointers in X,Y is a polynomial-time process, and
thus the entire algorithm runs in NP-time. We demonstrate that this algorithm
is sound and complete, and that the biabduction problem itself is NP-hard, with
further bounds for cases involving quantifiers.

We also study the satisfiability and entailment problems in ASL, and, as
our second main contribution, we provide decision procedures and upper/lower
complexity bounds for both problems. We find that satisfiability is NP-complete,
while entailment is decidable with very high complexity: it can be encoded in Π0
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Presburger arithmetic, and is ΠP
2 -hard. It may at first sight appear surprising
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that entailment is harder than biabduction, as biabduction also seems to involve
solving an entailment problem. However, in biabduction, there is an element of
choice over X,Y , and we exploit this to dramatically reduce the cost of checking
these conditions. Namely, committing to a specific solution seed (see above)
reduces biabduction to a simple computation rather than a search problem.

The remainder of this paper is structured as follows. Section 2 gives an exam-
ple motivating the ASL biabduction problem in practice. The syntax and seman-
tics of ASL is given formally in Section 3. We present algorithms and complexity
bounds for satisfiability, biabduction and entailment for ASL in Sections 4, 5
and 6 respectively. Section 7 surveys related work, and Section 8 concludes.

Due to space limitations, the proofs of the results in this paper are omitted or
only sketched. They are, however, available in the long version of this article [11].

2 Motivating example

Here, we give a simple example illustrating how the biabduction problem arises
when verifying array programs, using ASL as our assertion language. Our ex-
ample is deliberately high-level, in order to illustrate some key features of the
general problem. However, more concrete examples, involving concrete array
programs, can be found in section 2 of [11].

Suppose we have a procedure foo that manipulates an array somehow, with
specification {array(c, d)} foo(c, d) {Q} (supplied in advance, or computed at
an earlier stage of the analysis). Now, consider a procedure including a call to
foo, say C; foo(c, d); . . ., and suppose that we have computed the specification
{emp}C {array(a, b)}, say, for the code C prior to this call. As in the Introduc-
tion, this gives rise to the biabduction problem

array(a, b) ∗X |= array(c, d) ∗ Y

with the effect that {X}C; foo(c, d) {Q ∗ Y } then becomes a valid specification
for the initial code including the call to foo.

Solving this problem depends crucially on the position in memory of c and
d relative to a and b; depending on whether and how the arrays array(a, b) and
array(c, d) overlap, we have to add different arrays to X and Y so that the
memory footprint of the two sides becomes the same. Such ordering information
might be available as part of the postcondition computed for C; if not, then we
have to guess it, as part of the “antiframe” X. The solutions include:

X := a = c ∧ b = d : emp and Y := emp
X := d < a : array(c, d) and Y := array(a, b)
X := a < c ∧ d < b : emp and Y := array(a, c− 1) ∗ array(b+ 1, d)
X := a < c < b < d : array(b+ 1, d) and Y := array(a, c− 1)

et cetera. Note that these solutions are all (a) spatially minimal, relative to
the ordering constraints in X (i.e. the arrays are as small as possible), and
(b) logically incomparable to one another. Thus, when dealing with arrays in
separation logic, any complete biabduction algorithm must take into account
the possible ways in which the arrays might be positioned relative to each other.
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3 Array separation logic, ASL

Here, we present separation logic for arrays, ASL, which employs a similar sym-
bolic heap formula structure to that in [4], but which treats contiguous arrays in
memory rather than linked list segments; we additionally allow linear arithmetic.

Definition 3.1 (Symbolic heap). Terms t, pure formulas Π, spatial formulas
F and symbolic heaps SH are given by the following grammar:

t ::= x | n | t+ t | nt
Π ::= t = t | t 6= t | t ≤ t | t < t | Π ∧Π
F ::= emp | t 7→ t | array(t, t) | F ∗ F

SH ::= ∃z. Π : F

where x ranges over an infinite set Var of variables, z over sets of variables, and
n over N.Whenever one of Π,F is empty in a symbolic heap, we omit the colon.
We write FV (A) for the set of free variables occurring in A. If A = ∃z. Π : F
then we write qf(A) for Π : F , the quantifier-free part of A.

We interpret this language in a stack-and-heap model, where both locations
and values are natural numbers. A stack is a function s : Var → N. We extend
stacks over terms as usual: s(n) = n, s(t1 + t2) = s(t1)+s(t2) and s(nt) = ns(t).
If s is a stack, z ∈ Var and m ∈ N, we write s[z 7→ v] for the stack defined as s
except that s[z 7→ v](z) = v. We extend stacks pointwise over term tuples.

A heap is a finite partial function h : N ⇀fin N mapping finitely many loca-
tions to values; we write dom (h) for the domain of h, and e for the empty heap
that is undefined on all locations. We write ◦ for composition of domain-disjoint
heaps: if h1 and h2 are heaps, then h1 ◦ h2 is the union of h1 and h2 when
dom (h1) and dom (h2) are disjoint, and undefined otherwise.

Definition 3.2. The satisfaction relation s, h |= A, where s is a stack, h a heap
and A a symbolic heap, is defined by structural induction on A.

s, h |= t1 ∼ t2 ⇔ s(t1) ∼ s(t2) where ∼ is =, 6=,< or ≤
s, h |= Π1 ∧Π2 ⇔ s, h |= Π1 and s, h |= Π2

s, h |= emp ⇔ h = e
s, h |= t1 7→ t2 ⇔ dom (h) = {s(t1)} and h(s(t1)) = s(t2)
s, h |= array(t1, t2)⇔ s(t1) ≤ s(t2) and dom (h) = {s(t1), . . . , s(t2)}
s, h |= F1 ∗ F2 ⇔ ∃h1, h2. h = h1 ◦ h2 and s, h1 |= F1 and s, h2 |= F2

s, h |= ∃z. Π : F ⇔ ∃m ∈ N|z|. s[z 7→m], h |= Π and s[z 7→m], h |= F

Satisfaction of pure formulas Π does not depend on the heap; we write s |= Π
to mean that s, h |= Π (for any heap h). We write A |= B to mean that A entails
B, i.e. that s, h |= A implies s, h |= B for all stacks s and heaps h.

Remark 3.3. Our array predicate employs absolute addressing: array(k, `) denotes
an array from k to `. In practice, one often reasons about arrays using base-
offset addressing, where array(b, i, j) denotes an array from b + i to b + j. We
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can define such a ternary version of our array predicate, overloading notation, by
array(b, i, j) =def array(b+i, b+j). Conversely, any array(k, `) can be represented
in base-offset style as array(0, k, `). Thus, we may freely switch between absolute
and base-offset addressing.

Satisfiability in the unrestricted pure part of our language is already NP-hard.
Thus, in order to obtain sharper complexity results, we will sometimes confine
our attention to symbolic heaps in the following special two-variable form.

Definition 3.4. A symbolic heap ∃z. Π : F is said to be in two-variable form if

(a) its pure part Π is a conjunction of ‘difference constraints’ of the form x = k,
x = y + k, x ≤ y + k, x ≥ y + k, x < y + k, and x > y + k, where x and y
are variables, and k ∈ N; (notice that x 6= y is not here);

(b) its spatial part F contains only formulas of the form k 7→ v, array(a, 0, j),
array(a, 1, j), and array(k, j, j), where v, a, and j are variables, and k ∈ N.

When pure formulas are conjunctions of ‘difference constraints’ as in Defini-
tion 3.4, their satisfiability becomes polynomial [17].

4 Satisfiability in ASL

Here, we show that satisfiability in ASL is NP-complete. This stands in contrast
to the situation for symbolic-heaps over list segments, where satisfiability is poly-
nomial [16], and over general inductive predicates, where it is EXP-complete [10].

Satisfiability problem for ASL. Given symbolic heap A, decide if there is a
stack s and heap h with s, h |= A.

First, we show that satisfiability of a symbolic heap can be encoded as a Σ0
1

formula of Presburger arithmetic and can therefore be decided in NP time.

Definition 4.1. Presburger arithmetic (PbA) is defined as the first-order theory
(with equality) of the natural numbers N over the signature 〈0, s,+〉, where s
is the successor function, and 0 and + have their usual interpretations. It is
immediate that the relations 6=, ≤ and < can be encoded (possibly introducing
an existential quantifier), as can the operation of multiplication by a constant.

Note that a stack is just a standard first-order valuation, and that a pure
formula in ASL is also a formula of PbA. Moreover, the satisfaction relations for
ASL and PbA coincide on such formulas. Thus, we overload |= to include the
standard first-order satisfaction relation of PbA.

The intuition behind our encoding of satisfiability is that a symbolic heap is
satisfiable exactly when the pure part is satisfiable, each array is well-defined, and
all pointers and arrays are non-overlapping with all of the others. For simplicity
of exposition, we do this by abstracting away pointers with single-cell arrays.
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Definition 4.2. Let A be a quantifier-free symbolic heap, written (without loss
of generality) in the form: A = Π :∗ni=1

array(ai, bi)∗∗mi=1
ci 7→ di. We define

its array abstraction as

bAc =def Π :∗ni=1
array(ai, bi) ∗∗mi=1

array(ci, ci) .

Lemma 4.3. Let A be a quantifier-free symbolic heap and s a stack. Then,
∃h. s, h |= A iff ∃h′. s, h′ |= bAc.

Definition 4.4. Let A be a quantifier-free symbolic heap, and let bAc be of the
form Π :∗ni=1

array(ai, bi). We define a corresponding formula γ(A) of PbA as

γ(A) =def Π ∧
∧

1≤i≤n ai ≤ bi ∧
∧

1≤i<j≤n(bi < aj) ∨ (bj < ai) .

Note that γ(A) is defined in terms of the abstraction bAc.

Lemma 4.5. For any stack s and any quantifier-free symbolic heap A, we have
s |= γ(A) iff ∃h. s, h |= A.

Proposition 4.6. Satisfiability for ASL is in NP.

Proof. Follows from Lemma 4.5 and the fact that satisfiability for Σ0
1 Presburger

arithmetic is in NP [35].

Prop. 4.6 may also be obtained by viewing ASL as a sub-fragment of the
array property fragment [8]. However, we put forward Defn. 4.4 and Lemma 4.5
as we make heavy use of them in Sec. 5.

Satisfiability is shown NP-hard by reduction from the 3-partition problem [21].

3-partition problem. Given B ∈ N and a sequence of natural numbers S =
(k1, k2, . . . , k3m) such that

∑3m
j=1 kj = mB, and B/4 < kj < B/2 for all j ∈

[1, 3m], decide whether there is a partition of S into m groups of three, say
{(kji,1 , kji,2 , kji,3) | i ∈ [1,m]}, such that kji,1 +kji,2 +kji,3 = B for all i ∈ [1,m].

Definition 4.7. Given an instance (B,S) of the 3-partition problem, we define
a symbolic heap AB,S as follows. First we introduce m+ 1 numbers di acting
as single-cell “delimiters” between chunks of memory of length B, (therefore,
di+1 = di +B + 1), and aj to allocate arrays of length kj in the space between
some pair of delimiters di and di+1. Visually, the arrangement is as follows:

. . .
di

•

B︷ ︸︸ ︷
· · · · ·︸ ︷︷ ︸

kji,1

· · · ·︸ ︷︷ ︸
kji,2

· · ·︸ ︷︷ ︸
kji,3

di+1

• . . .

Concretely, AB,S is the following symbolic heap:

3m∧
j=1

(d1 ≤ aj) ∧ (aj + kj < dm+1) :
m+1∗
i=1

array(di, 0, 0) ∗
3m∗
j=1

array(aj , 1, kj) .
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Lemma 4.8. Given a 3-partition problem (B,S), and letting AB,S be given by
Defn. 4.7, we have that AB,S is satisfiable iff there is a 3-partition of S (w.r.t. B).

Theorem 4.9. The satisfiability problem for ASL is NP-complete, even when
symbolic heaps are restricted to be quantifier-free, and in two-variable form.

Proof. Prop. 4.6 provides the upper bound. For the lower bound, Defn. 4.7 and
Lemma 4.8 establish a polynomial reduction from the 3-partition problem.

5 Biabduction

Here, we turn to the central focus of this paper, biabduction for ASL. In stating
this problem, it is convenient to first lift the connective ∗ to symbolic heaps:

(∃x. Π : F ) ∗ (∃y. Π ′ : F ′) = ∃x ∪ y. Π ∧Π ′ : F ∗ F ′ ,

where the existentially quantified variables x and y are assumed disjoint, and
no free variable capture occurs (this can always be avoided by α-renaming).

Biabduction problem for ASL. Given satisfiable symbolic heaps A,B, find
symbolic heaps X,Y such that A ∗X is satisfiable and A ∗X |= B ∗ Y .

We first consider quantifier-free biabduction (Sec. 5.1), and investigate its
complexity in Sec. 5.2. We then show that when quantifiers appear in B, Y
which are appropriately restricted, existence of solutions can be decided using
the machinery for the quantifier-free case (Sec. 5.3). In the same section we also
characterise the complexity of biabduction in the presence of quantifiers.

5.1 An algorithm for quantifier-free biabduction

We give an algorithm for quantifier-free biabduction. Let (A,B) be a biabduction
problem and (X,Y ) a solution. The intuition is that a model s, h of both A and
B induces a total order over the terms of A,B, dictating the form of X,Y .

Consider Fig. 1, which depicts a biabduction instance (A,B) and a solution
(X,Y ), where all array endpoints in A,B are totally ordered. Using this order,
we can compute X,Y by covering parts that B requires but A does not provide
(X) and by covering parts that A requires but B does not provide (Y ).

We capture this intuition by introducing a formula ∆, called a solution seed,
capturing the total order over the terms of A,B. We show that the existence of
a solution seed ∆ implies the existence of a solution (X,Y ) for the biabduction
problem (A,B), and is in turn implied by the satisfiability of a certain PbA
formula β(A,B). To complete the circle, we show that β(A,B) is satisfiable
whenever there is a biabduction solution for (A,B):

solution (X,Y )
for (A,B) exists

β(A,B)
satisfiable

solution seed ∆
for (A,B) exists

Prop. 5.2 Thm. 5.5

Thm. 5.11
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A ∗X

B ∗ Y

c1 a1 − 1

a1 b1

b1 + 1 d2 c3 a2 − 1

a2 b2

b2 + 1 d3

c1 d1

d1 + 1 c2 − 1

c2 d2 c3 d3

Fig. 1. Example showing solutions in Defn. 5.6. Arrays of A,B are displayed as boxes
and arrays in X,Y as hatched rectangles.

Finally, we show that the problem of finding a solution to a biabduction
problem is in NP and that our algorithm is complexity-optimal (Prop. 5.13).

Definition 5.1 (The formula β). Let (A,B) be an biabduction instance, where

A = Π :
n∗
i=1

array(ai, bi) ∗
k∗
i=1

ti 7→ ui B = Π ′ :
m∗
i=1

array(ci, di) ∗
`∗
i=1

vi 7→ wi

We define a formula β(A,B) of PbA as follows:

β(A,B) =def γ(A)∧ γ(B)∧
∧̀
j=1

n∧
i=1

(vj < ai ∨ vj > bi)∧
∧̀
i=1

k∧
j=1

(ti 6= vj ∨ui = wj)

Proposition 5.2. If (A,B) has a solution, then β(A,B) is satisfiable.

Proof. (Sketch) Letting X,Y be a solution for (A,B), there is a model s, h of
A ∗X. We show that s |= β(A,B), using Lemma 4.5 for the first conjunct of β,
and the fact that A ∗X |= B ∗ Y for the other conjuncts.

Given an instance of the form in Defn. 5.1, we define a set TA,B of terms by:

TA,B =def T (A) ∪ T (B) ∪
n⋃
i=1

{bi + 1} ∪
m⋃
i=1

{di + 1} ∪
k⋃
i=1

{ti + 1} ∪
⋃̀
i=1

{vi + 1}

where T (−) denotes the set of all terms in a symbolic heap.

Definition 5.3 (Solution seed). A solution seed for a biabduction problem
(A,B) in the form of Defn. 5.1 is a pure formula ∆ =

∧
i∈I δi such that:

1. ∆ is satisfiable, and ∆ |= β(A,B);
2. δi is of the form (t < u) or (t = u), where t, u ∈ TA,B, for any i ∈ I;
3. for all t, u ∈ TA,B, there is i ∈ I such that δi is (t < u) or (u < t) or (t = u).

Lemma 5.4. Let ∆ be a solution seed for the problem (A,B). ∆ induces a total
order on TA,B: for any e, f ∈ TA,B, ∆ |= e < f or ∆ |= e = f or ∆ |= f < e.

This lemma justifies abbreviating ∆ |= e < f by e <∆ f ; ∆ |= e ≤ f by
e ≤∆ f ; and, ∆ |= e = f by e =∆ f .
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1 Function arrcovA,∆(e, f)
Data: a quantifier-free symbolic heap A;

solution seed ∆; terms e, f in TA,B
Result: quantifier-free symbolic heap

// work with 7→-abstraction of A

2 let

(
Π :∗n+k

i=1
array(âi, b̂i)

)
= bAc;

3 if f <∆ e then
// nothing to cover

4 return emp;

5 end

6 if ∃i ∈ [1, n+ k]. âi ≤∆ e ≤∆ b̂i then

// endpoint e covered by array(âi, b̂i)

7 return arrcovA,∆(b̂i + 1, f);

8 end

// left endpoint e not covered

9 E :=

{
âj

∣∣∣∣ e <∆ âj ≤∆ f
for j ∈ [1, n+ k]

}
;

10 if E = ∅ then
// no part of array(e, f) covered

11 return array(e, f);

12 end

// middle covered by array(âi, b̂i)
13 âi := min∆(E);

14 return (â′i + 1 = âi :

array(e, â′i)) ∗ arrcovA,∆(b̂i + 1, f);

1 Function ptocovA,∆(e, f)
2 letΠ :

n∗
i=1

array(ai, bi) ∗
k∗
i=1

ti 7→ ui

 = A;

3 if ∃i ∈ [1, k]. ti =∆ e then
4 return emp;
5 end
6 if ∃i ∈ [1, n]. ai ≤∆ e ≤∆ bi then
7 return emp;
8 end
9 return e 7→ f ;

– Arrays of A / B appear as boxes with indicated
bounds.

– Arrays of X appear in a hatched pattern.
– Recursive calls appear as dashed boxes with

parameters.
– Terms a′i are shown as ai − 1 for readability.

A ∗X

B

Line 7:
ai bi arrcovσ(bi + 1, u)

t u

A ∗X

B

Line 11:

t u

t u

A ∗X

B

Line 14:

t ai − 1

ai bi arrcovσ(bi + 1, u)

t u

Fig. 2. Left: the function arrcovA,∆(e, f). Top right: the function ptocovA,∆(e, f). Bot-
tom right: arrays of A, B, X relevant to each return statement in the arrcov function.

Theorem 5.5. If β(A,B) is satisfiable, then there exists a solution seed ∆ for
the biabduction problem (A,B).

Proof. (Sketch) Given a stack s such that s |= β(A,B), we define the formula

∆ =
∧
e,f∈TA,B , s(e)<s(f) e < f ∧

∧
e,f∈TA,B , s(e)=s(f) e = f

and show that it satisfies Defn. 5.3.

We now present a way to compute a solution (X,Y ) given a solution seed ∆.
They key ingredient is the arrcov algorithm (Fig. 2). Intuitively, arrcov takes a
solution seed ∆ and the endpoints of an array(cj , dj) in B, and constructs arrays
for X so that every model of A∗X includes a submodel that satisfies array(cj , dj).
Arrays in A contribute to the coverage of array(cj , dj) and, in addition, the newly
created arrays do not overlap with those of A (or themselves) for consistency.

Note that in arrcov we sometimes need to generate terms denoting the pre-
decessor of the start of an array, even though there is no predecessor function
in PbA. We do this by using primed terms a′i, and add constraints that induce
this meaning (ai + 1 = a′1). This is done on demand in order to avoid the risk of
trying to decrement a zero-valued term, thus obtaining an inconsistent formula.
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Definition 5.6 (The formulas X,Y ). Let ∆ be a solution seed for an instance
(A,B) in the form given in Defn. 5.1. The formulas X,Y are defined as follows:

ΘX : FX =def∗mj=1
arrcovA,∆(cj , dj) ∗∗`j=1

ptocovA,∆(vj , wj)

ΘY : FY =def∗ni=1
arrcovB,∆(ai, bi) ∗∗ki=1

ptocovB,∆(ti, ui)

∆̂ =def ∆ ∧ΘX ∧ΘY X =def ∆̂ : FX Y =def ∆̂ : FY

Every quantifier-free formula A of ASL is precise [33] (by structural induc-
tion): for any model s, h there exists at most one subheap h′ of h such that
s, h′ |= A. This motivates the following notation: we will write JAKs,h to denote
the unique subheap h′ ⊆ h such that s, h′ |= A, when it exists.

Proposition 5.7. Let (A,B) be a biabduction problem of the form shown in
Defn. 5.1. Let ∆ be a solution seed and let e, f be terms in TA,B. Then, the call
arrcovA,∆(e, f):

1. always terminates, issuing up to n+ k recursive calls;
2. returns a formula

∧
i∈I(ai = a′i + 1) ∧

∧
i∈J(ti = t′i + 1) :∗qi=1

array(li, ri)

for some q ∈ N and sets I, J ⊆ N, where for all i ∈ [1, q], li ∈ TA,B;

3. for every i ∈ [1, q], ∆̂ |= e ≤ li ≤ ri ≤ f ;
4. for every i ∈ [1, q − 1], ∆̂ |= ri < li+1.

Lemma 5.8. Let (A,B) be a biabduction instance, ∆ a solution seed and X as
in Defn. 5.6. Then, A ∗X is satisfiable.

Definition 5.9 (Barr,Bpto,Yarr,Ypto). Let (A,B) be a biabduction problem, ∆ a
solution seed, X,Y as in Defn. 5.6 and s, h a model such that s, h |= A∗X. Then
we define the following sequences Barr,Bpto,Yarr,Ypto of subheaps of h, such that:

Barr
i = Jarray(ci, di)Ks,h i ∈ [1,m] Yarr

i = JarrcovB,∆(ai, bi)Ks,h i ∈ [1, n]
Bpto
i = Jvi 7→ wiKs,h i ∈ [1, `] Ypto

i = JptocovB,∆(ti, ui)Ks,h i ∈ [1, k]

Lemma 5.10. All heaps in Barr,Bpto,Yarr,Ypto are well-defined. Also,

1. For any S of Barr,Bpto,Yarr,Ypto, and any distinct i, j ∈ [1, |S|], Si # Sj.
2. For any two distinct S, T of Barr, Bpto, Yarr, Ypto, and any i, j, Si # Tj.
3. dom (h) ⊆

⋃m
i=1 Barr

i ∪
⋃`
i=1 B

pto
i ∪

⋃n
i=1 Yarr

i ∪
⋃k
i=1 Y

pto
i .

Theorem 5.11. Given a solution seed ∆ for the biabduction problem (A,B), the
formulas X and Y , as computed by Defn. 5.6, form a solution for that instance.

Proof. That (X,Y ) is a solution means that A∗X is satisfiable and that A∗X |=
B∗Y . The first requirement is fulfilled by Lemma 5.8. Here, we show the second.

Let s, h be a model of A ∗ X. We need to show that s, h |= B ∗ Y . Using
Defn. 5.6, we have A ∗X = Π ∧ ∆̂ : FA∗X and B ∗Y = Π ′ ∧ ∆̂ : FB∗Y . It is easy
to see that s |= Π ′ ∧ ∆̂: by assumption, s |= ∆̂, and as ∆̂ |= ∆ (Defn. 5.6) and
∆ |= γ(B) (Defn. 5.3), it follows that s |= Π ′ as well (Defn. 4.4).
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It remains to show that s, h |= FB∗Y . We will do this by (a) defining a
subheap h′ ⊆ h for each atomic formula σ in FB∗Y , such that s, h′ |= σ. Having
done this we will need (b) to show that all such subheaps are disjoint, and that
(c) their disjoint union equals h.

The sequences Barr,Bpto,Yarr,Ypto from Defn. 5.9, by construction, fulfil re-
quirement (a) above, given they are well-defined as guaranteed by Lemma 5.10
(main statement). Requirement (b) is covered by items 1 and 2 of Lemma 5.10.
Finally, requirement (c) is covered by item 3 of Lemma 5.10.

The solutions obtained via Defn. 5.6 are constructed from terms in TA,B ,
so X,Y are as ‘symbolic’ as A,B are. However, our solutions are potentially
stronger than required; our algorithm here always imposes a total order over
all array endpoints in the antiframe X, even if only a part of this information
is actually required in order to compute the spatial formulas in X and Y . We
believe that our algorithm can be refined so as to avoid “over-committing”.

Our method is, also, complete in the following sense. Suppose (X,Y ) is a
solution that does not impose a total order over TA,B . Then, there exists a
solution (X ′, Y ′) computable by our method, such that X ′ |= X and Y ′ |= Y .

5.2 Complexity of quantifier-free biabduction in ASL

Lemma 5.12. Let (A,B) be a biabduction instance and ∆ a formula satisfying
Conditions 2 and 3 of Defn. 5.3. Let Γ =

∧∨
π be a formula where π is of the

form t < u or t = u and t, u ∈ TA,B. Then, checking ∆ |= Γ is in PTIME.

Proposition 5.13. Deciding if there is a solution for a biabduction problem
(A,B), and constructing it if it exists, can be done in NP.

Proof. (Sketch) We guess a total order over TA,B and a polynomially-sized as-
signment of values s ([35, Theorem 6]) to all terms in TA,B . We convert this order
to a formula ∆ and check if s |= ∆ (thus showing the satisfiability of ∆) and
whether ∆ |= β(A,B). If all these conditions hold, we use Defn. 5.6 and obtain
formulas X,Y . By Prop. 5.7 and Lemma 5.12 this process runs in PTIME.

We establish NP-hardness of quantifier-free biabduction by reduction from
the 3-partition problem, similarly to satisfiability in Section 4.

Definition 5.14. Let (B,S) be an instance of the 3-partition problem. We de-

fine corresponding symbolic heaps ÃB,S and B̃B,S . First, we define a satisfiable

ÃB,S as:
∧m
i=1(di+1 = di +B + 1): ∗m+1

i=1
array(di, 0, 0). The formula B̃B,S , a

relaxed but satisfiable version of AB,S from Defn 4.7, is given by:

m∧
i=1

di+1 > di ∧
3m∧
j=1

(d1 ≤ aj ∧ aj + kj < dm+1) :

m+1∗
i=1

array(di, 0, 0) ∗
3m∗
j=1

array(aj , 1, kj)
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Lemma 5.15. Let AB,S be the symbolic heap given by Definition 4.7. Then we

have the Presburger equivalence β(ÃB,S , B̃B,S) ≡ γ(AB,S).

Proof. (Sketch) Follows from Defns. 5.14, 5.1 and 4.4.

Theorem 5.16. The biabduction problem for ASL is NP-hard, even for (A,B)
such that A,B are satisfiable, quantifier-free, and in two-variable form.

Proof. (Sketch) By reduction from the 3-partition problem (see Section 4). By
Lemmas 4.5, 4.8 and 5.15, there is a complete 3-partition on S w.r.t. bound B
iff β(ÃB,S , B̃B,S) is satisfiable. Using (Prop. 5.2 / Thm. 5.5 / Thm. 5.11), this

is equivalent to the existence of a biabduction solution for (ÃB,S , B̃B,S).

5.3 Biabduction for ASL with quantifiers

Here we show two complementary results about biabduction when B contains
existential quantifiers. First, if the quantifiers are appropriately restricted, then
the biabduction problem is equivalent to the quantifier-free case (thus in NP). If
quantifiers are not restricted, then the problem becomes ΠP

2 -hard [36].

Proposition 5.17. Let A be quantifier-free, and let B be such that no variable
appearing in the RHS of a 7→ formula is existentially bound. Then, a biabduction
instance (A,B) has a solution if and only if (A, qf(B)) has a solution.

The construction of a suitable heap h in the proof of the nontrivial (⇒)
direction of Prop. 5.17 explains the reasons for our restrictions on quantifiers: the
contents of the arrays in hmust be chosen different to the data values occurring in
the 7→-formulas in B. If any such values are quantified, this may be impossible.
Indeed, X = Y = emp is a trivial biabduction solution for array(x, x) ∗ X |=
(∃y. x 7→ y) ∗ Y , but no solution exists if we remove the quantifier.

In order to obtain the ΠP
2 lower bound for biabduction with unrestricted

quantifiers, we reduce from the following colourability problem, from [1].

2-round 3-colourability problem. Let G = (V,E) be an undirected graph with
n vertices v1, . . . , vk, vk+1, . . . vn, and let v1, v2, . . . , vk be its leaves. The problem
is to decide if every 3-colouring of the leaves can be extended to a 3-colouring of
the graph, such that no two adjacent vertices share the same colour.

Let ci,1 denote the colour, 1,2, or 3, the vertex vi is marked by. We mark also
each edge (vi, vj) by c̃ij , the colour “complementary” to ci,1 and cj,1.

As for the leaves vi, we introduce k distinct locations d1, . . . , dk so that the
value ci stored in di can be used subsequently to identify the colour ci,1 marking
vi, e.g., with the help of (ci,1 − 1 ≡ ci (mod3)) .

We encode the fact that ci,1, cj,1, and c̃ij are distinct by taking ci,1, cj,1, and
c̃ij as the addresses, adjusted with a base-offset eij , for three consecutive cells
within a memory chunk of length 3 given by array(eij , 1, 3), which forces these
colours to form a permutation of (1, 2, 3).
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Definition 5.18. An arbitrary 3-colouring of the leaves is encoded with a sat-
isfiable AG taken as

AG =def (b = 3):
k∗
i=1

array(di, 1, 1) ∗ ∗
(vi,vj)∈E

array(eij , 1, 3) .

For a fixed b, a perfect b-colouring of the whole G is encoded with BG taken as

∃z.
( n∧
i=1

(1 ≤ ci,1 ≤ b) ∧
∧

(vi,vj)∈E

(1 ≤ c̃ij ≤ b) ∧
k∧
i=1

(ci,1 − 1 ≡ ci (mod3)) :

k∗
i=1

di 7→ ci ∗ ∗
(vi,vj)∈E

array(eij , ci,1, ci,1) ∗ array(eij , cj,1, cj,1) ∗ array(eij , c̃ij , c̃ij)
)
.

where the existentially quantified variables z are all variables occurring in BG
that are not mentioned explicitly in AG.

B is satisfiable, e.g., for a large b, each vertex vi can be marked by its own colour.

Lemma 5.19. Let G be a 2-round 3-colouring instance. The biabduction prob-
lem (AG, BG) has a solution iff there is a winning strategy for the perfect 3-
colouring G, where AG and BG are the symbolic heaps given by Defn. 5.18.

Theorem 5.20. The biabduction problem (A,B) for ASL is ΠP
2 -hard, even if

A is quantifier-free and both A and B are satisfiable.

Proof. Follows from Lemma 5.19.

6 Entailment

We now focus on entailment for ASL. We establish an upper bound of ΠEXP
1 in

the weak EXP hierarchy [26] via an encoding into Π0
2 PbA, and a lower bound

of ΠP
2 [36]. Moreover, quantifier-free entailment is coNP-complete.

Entailment for ASL. Given symbolic heaps A,B, decide if A |= B. A may be
considered quantifier-free; similar to Prop. 5.17, the existential quantifiers in B
may not mention variables appearing in the RHS of a 7→-formula.

The intuition underlying our encoding of entailment: There exists a counter-
model for A |= B iff there exists a stack s that induces a model for A (captured by
γ(A) from Section 4) and, for every instantiation of the existentially quantified
variables in B (say z), one of the following holds under s:

1. the quantifier-free body qf(B) of B becomes unsatisfiable; or
2. some heap location is covered by an array or pointer in A, but not by any

array or pointer in B, or vice versa; or
3. the LHS of some pointer in B is covered by an array in A (thus we can choose

the contents of the array different to the contents of the pointer); or
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4. a pointer in B is covered by a pointer in A, but their data contents disagree.

Similar to Prop. 5.17, this intuition explains our restriction on quantification
in the entailment problem: if we allow quantifiers over the RHS of 7→ formulas,
then item 3 above might or might not be sufficient to construct a countermodel.
For example, there is a countermodel for array(x, x) |= ∃y. y ≤ 3 : x 7→ y, and
for array(x, x) |= x 7→ y, but not for array(x, x) |= ∃y. x 7→ y.

Definition 6.1. Let A and B be two 7→-free symbolic heaps such that

A = array(a1, b1) ∗ . . . ∗ array(an, bn)
B = array(c1, d1) ∗ . . . ∗ array(cm, dm)

Then we define the formula φ(A,B) of PbA to be

φ(A,B) =def ∃x.
∨n
i=1 ai ≤ x ≤ bi ∧

∧m
j=1(x < cj) ∨ (x > dj) ,

where x is fresh. We lift φ to arbitrary symbolic heaps by ignoring quantifiers and
abstracting pointers to arrays using b−c, i.e., φ(A,B) = φ(bqf(A)c, bqf(B)c).

Lemma 6.2. We can rewrite φ(A,B) as a quantifier-free formula in polytime.

Definition 6.3. Let A and B be symbolic heaps with A quantifier-free:

A = Π :∗ni=1
array(ai, bi) ∗∗ki=1

ti 7→ ui

B = ∃z. Π ′ :∗mj=1
array(cj , dj) ∗∗`j=1

vj 7→ wj

where the existentially quantified variables z are disjoint from all variables in A.
We define formulas ψ1(A,B), ψ2(A,B) and χ(A,B) of PbA as follows:

ψ1(A,B) =
∨n
i=1

∨`
j=1 ai ≤ vj ≤ bi ,

ψ2(A,B) =
∨k
i=1

∨`
j=1(ti = vj) ∧ (ui 6= wj) , and

χ(A,B) = γ(A) ∧ ∀z.
(
¬γ(qf(B)) ∨ φ(A,B) ∨ φ(B,A) ∨ ψ1(A,B) ∨ ψ2(A,B)

)
where γ(−) is given by Defn. 4.4, and φ(−,−) by Defn. 6.1.

Lemma 6.4. For any instance (A,B) of the ASL entailment problem above, and
for any stack s, we have s |= χ(A,B) iff ∃h. s, h |= A and s, h 6|= B.

Theorem 6.5. Entailment is in ΠEXP
1 . If the no. of variables in A,B is fixed,

the problem is in ΠP
2 , and if B is quantifier-free then the problem is in coNP.

Proof. Follows from Lemmas 6.2 and 6.4, plus relevant complexity results for
Presburger arithmetic [23, 25, 36].

In order to obtain the ΠP
2 lower bound for entailment, we exhibit a reduction

from the same colourability problem as in Section 5.3. See [11] for details.
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Theorem 6.6. The entailment problem A |= B is ΠP
2 -hard, even when A is

quantifier-free, and A,B are satisfiable symbolic heaps in two-variable form.
Moreover, the entailment problem is coNP-hard even for quantifier-free symbolic
heaps in two-variable form.

Proof. For the general case, we reduce from the 2-round 3-colourability problem,
which is ΠP

2 -hard [1]. For the quantifier-free case, the upper bound is immediate
by Thm. 6.5. For the lower bound, consider the entailment AB,S |= x < x : emp
where (B,S) is a 3-partition instance (see Section 4) and AB,S is the symbolic
heap in two-variable form given by Defn. 4.7. Using Lemma 4.8, this entailment is
valid iff there is no complete 3-partition on S w.r.t. B, a coNP-hard problem.

In the general case, there is a gap between our upper and lower bounds for
entailment: ΠEXP

1 = coNEXP versus ΠP
2 = coNPNP, respectively. It is plausible

that the lower bound is at least EXP: however, an encoding of, e.g., Π2
0 PbA in

ASL is not straightforward, because our pure formulas are conjunctions rather
than arbitrary Boolean combinations of atomic Presburger formulas.

Nevertheless, we note the essential difference between the biabduction and en-
tailment problems for ASL: by Theorem 6.6, entailment is still ΠP

2 -hard whereas,
by Props. 5.13 and 5.17, biabduction is in NP.

7 Related work

Here we briefly survey the literature most closely related to the present paper.
A fuller discussion appears in [11].

First, symbolic-heap separation logic over linked lists [4], underpinning the
Infer tool [13], has been extensively studied; its satisfiability and entailment
problems have been shown to be in PTIME [16], and its abduction problem
(where only an “antiframe” X is computed) is known NP-complete [22]. The
biabduction problem is studied in [14]. However, this fragment and our ASL are
largely disjoint: our arrays cannot be defined in terms of list segments or vice
versa, while ASL also employs linear arithmetic rather than simple (dis)equalities.
This is also reflected in the differences in their respective complexity bounds.

Moreover, even when arbitrary inductive definitions over symbolic heaps are
permitted [9], an area that has received significant recent interest (see e.g. [3,
10, 12, 27, 38]) our ASL cannot be encoded in the absence of arithmetic. Very
recently, in [24], decidability of satisfiability and entailment was obtained for
a fragment of symbolic-heap separation logic with (“linearly compositional”)
inductive predicates and arithmetic. However, ASL cannot be encoded in this
fragment, because pointers and data variables belong to disjoint sorts, effec-
tively disallowing pointer arithmetic. A semidecision procedure for satisfiabil-
ity in symbolic-heap separation logic with inductive definitions and Presburger
arithmetic appears in [30]. ASL can be encoded in their logic, but, as far as we
can tell, not into the subfragment for which they show satisfiability decidable.

The iterated separating conjunction (ISC) [34], a binding operator for ex-
pressing various unbounded data structures, was recognised early on as a way
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of reasoning about arrays. E.g., [31] uses the ISC to reasoning about memory
permissions, with the aim of enabling symbolic execution of concurrent array-
manipulating program. However, although our array predicate can be expressed
using the ISC, we do not know of any existing decision procedures for biab-
duction, entailment or even satisfiability in such a logic, which may be of high
complexity or become undecidable. We note for example that the analysis in [31]
requires programs to be fully annotated.

Finally, a significant amount of research effort has previously focused on the
verification of array-manipulating programs either via invariant inference and
theorem proving, or via abstract interpretation (for instance [29, 20, 19, 7, 2, 37]).
These approaches differ from ours technically, but also in intention. First, the
emphasis in these investigations is on data constraints and, thus, tends towards
proving general safety properties of programs. Here, we intentionally restrict the
language so that we can obtain sound and complete algorithms which can be
used for establishing memory safety of programs but not for proving arbitrary
safety properties. Second, such approaches are typically whole-program analyses
that cannot be used bottom-up (with the possible exception of the non-SL-based
[6, 18]). In contrast, our focus is on biabduction, one of the key ingredients that
makes such a compositional approach possible.

8 Conclusions and future work

In this paper, we investigate ASL, a separation logic aimed at compositional
memory safety proofs for array-manipulating programs. We give a sound and
complete NP algorithm for the crucial biabduction problem in this logic, and we
show that the problem is NP-hard in the quantifier-free case. In addition, we
show that the satisfiability problem for ASL is NP-complete, and entailment is
decidable, being coNP-complete for quantifier-free formulas, and at least ΠP

2 -
hard (perhaps much harder) in general.

An obvious direction for future work is to build an abductive program anal-
ysis à la Infer [13] for array programs, using ASL as the assertion language. An
outstanding issue is finding biabduction solutions that are as logically weak as
possible; our algorithm currently commits to a total ordering of all arrays even if
a partial ordering would be sufficient. We believe that, in practice, this could be
resolved by refining the notion of a solution seed so that it carries just enough
information for computing the spatial formulas.A more conceptually interesting
problem is how we might assess the quality of logically incomparable solutions.

In addition, a program analysis for ASL will rely not just on biabduction but
also on suitable abstraction heuristics for discovering loop invariants; this seems
an interesting and non-trivial problem for the near future.

Another possible direction for future work is on combining ASL with other
fragments of separation logic, such as the linked list fragment, for increased
expressivity. We are uncertain whether our techniques would extend naturally
to such logics, but we consider this a very interesting area for future study.
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