
Automated Cyclic Entailment Proofs

in Separation Logic

James Brotherston1, Dino Distefano2, and Rasmus L. Petersen2

1 Dept. of Computing, Imperial College London
2 Dept. of Computer Science, Queen Mary University of London

Abstract. We present a general automated proof procedure, based upon
cyclic proof, for inductive entailments in separation logic. Our procedure
has been implemented via a deep embedding of cyclic proofs in the HOL
Light theorem prover. Experiments show that our mechanism is able to
prove a number of non-trivial entailments involving inductive predicates.

1 Introduction

Separation logic [19] has recently become a very popular formalism for the ver-
ification of imperative, memory-manipulating programs. Proofs of programs in
separation logic are based on the Hoare triples {P}C{Q} familiar from first-order
approaches to verification. However, the pre- and post-conditions of triples may
contain a special separating conjunction ∗, which allows the disjointness of por-
tions of heap memory to be expressed: The formula F ∗G denotes those heaps
which can be separated into two disjoint parts satisfying F and G, respectively.
This characteristic feature enables one to construct proofs that are highly mod-
ular, and thus separation logic scales well to large programs. Indeed, there are
now several tools based upon separation logic that are capable of verifying code
on an industrial scale [8, 23, 13].

In this paper, we address the issue of automatically proving entailments
F1 |= F2 between formulas in separation logic. In proof systems and automated
verification tools based on Hoare triples, the obligation to prove such entailments
typically arises via the standard rule of consequence:

{P’}C{Q’}
P |= P ′, Q′ |= Q (Consq)

{P}C{Q}

This rule might be applied during a proof search to remove redundant infor-
mation from the precondition P , or to convert P and Q into a format which
matches a rule for the command C. Other activities in which entailments need
to be proved include abstraction [12] and discharging the guards of conditional
commands during symbolic execution. Thus, effective procedures for establishing
entailments are at the foundation of automatic verification based on separation
logic. Due to the intense use of dynamically-allocated data structure in real-world
software (e.g., system code [23]), in practice, the pre- and postconditions occur-
ring in separation logic proofs typically contain inductively defined predicates.

Thus any proof-theoretic approach to establishing entailments is essentially a
problem of inductive theorem proving, which is known to present serious diffi-
culties for automated search (see [7] for an overview). Moreover, in the case of
separation logic, the induction hypotheses required for an inductive proof are
often not even expressible in the fragments of the logic handled by automatic
tools since they require unsupported operators like the spatial implication —∗.

Unfortunately, due to the current lack of off-the-shelf general theorem provers,
most of the existing automated verification tools have to appeal to their own the-
orem prover for checking the validity of entailments. Because building them is
a difficult and time-consuming activity, these provers tend to be rather ad-hoc
and often do not provide support for inductive methods. Here, we present a pro-
totype theorem prover for entailments of separation logic that uses cyclic proof
to handle inductive theorems. Cyclic proof has recently been mooted as an al-
ternative to the default approach of explicit inductive proof that offers potential
advantages for automated proof search [4, 6]. Cyclic proofs differ from explicit
induction proofs in two main respects. First, explicit induction rules are replaced
by simple “case split” rules for the inductively defined predicates. Second, proofs
are allowed to contain cycles, and thus can be seen as infinite derivation trees.
To ensure that such structures correspond to sound proofs, a global soundness
condition is imposed on cyclic proofs guaranteeing the well-foundedness of all
reasoning. The main attraction of cyclic proofs is that, unlike in standard in-
duction proofs, the induction hypotheses are not supplied explicitly via the ap-
plication of an induction rule. Instead, they are constructed implicitly via the
discovery of a valid cyclic proof. This allows a much more exploratory approach
to automated proof search.

Our theorem prover is implemented in HOL Light [15] and supports both fully
automatic and interactive proof. The implementation of a cyclic proof system in
HOL Light, or indeed any of the mainstream theorem provers, presents several
non-trivial technical obstacles stemming from the fact that such provers take a
local viewpoint of proofs, whereas cyclic proof is necessarily global. To overcome
this mismatch, we employ a deep embedding of our formal cyclic proof system,
i.e., a HOL Light representation in which cyclic proofs themselves are first-class
objects. The main advantage of a fully explicit representation of this type is that
we can easily impose the correct soundness conditions on proofs. Although we
employ a fairly simple such condition in this paper, we can easily impose more
general conditions in order to improve completeness at the expense of speed.
We have evaluated our implementation on a series of examples, drawn from the
literature. Although our prover is only a prototype, the results are encouraging
for their coverage as well as their performance. Our implementation approach
should also transfer to other, similar cyclic proof systems as described in [2].

The remainder of this paper is structured as follows. Section 2 introduces
our separation logic fragment. Section 3 introduces our cyclic proof machinery.
Section 4 describes the implementation of our proof procedure and evaluates its
performance. Section 5 compares with related work and Section 6 concludes.

2 Syntax and semantics

In this section we introduce the separation logic formulas that we shall consider
throughout the paper, and their standard semantics with respect to a fixed heap
model. We assume a fixed, infinite set V of first-order variables and a fixed finite
set of predicate symbols, each with associated arity.

Definition 1 (Formulas). Formulas are given inductively by the grammar:

F ::= > | ⊥ | x = y | x 6= y | emp | x 7→ y | x
2
7→ y, z | F ∨ F | F ∗ F | Px

where x, y range over V , P ranges over predicate symbols and x ranges over tuples
of variables of appropriate length to match the arity of P . We write FV (F) to
denote the set of variables occurring in formula F . We consider formulas up to
associativity and commutativity of ∗ and ∨.

The fragment of separation logic considered here is relatively simple and does
not include, for example, function symbols, plain conjunction (∧) or spatial
implication (—∗). These features are not typically employed in separation logic
verification tools (in fact even ∨ is often removed as well) because the complexity
rapidly becomes unmanageable. In fact, it has been shown that unrestricted
separation logic is undecidable even in the purely propositional setting [5].

The definitions of our predicate symbols are supplied by “inductive rule sets”
in the style of [3, 2], which are based on Martin-Löf’s “productions” [16].

Definition 2 (Inductive rule set). An inductive rule set is a finite set of
inductive rules each of the form F ⇒ Px where F and Px are formulas with P
a predicate symbol.

From now on we assume a fixed inductive rule set Φ.

Semantics. Let L be an infinite set of locations, and V be a set of values. Then
H = L ⇀fin V , the set of all finite partial functions from L to V , is called
the set of heaps. (We sometimes choose to work instead with heaps of the form
H = L ⇀fin V × V , where a pair of values is stored at each location.) We write
dom(h) to denote the domain of the heap h, i.e., the set {l ∈ L | h(l) is defined}.
Composition of heaps, h1 ◦ h2, is defined as the union of h1 and h2 if their
domains are disjoint, and undefined otherwise. The empty heap e is the heap
such that e(l) is undefined for all l ∈ L. It is easy to see that 〈H, ◦, e〉 is a
separation algebra (cf. [9]), i.e., a cancellative partial commutative monoid.

The set of stacks is S = V → L∪V , the set of total functions from first-order
variables to locations or values (which are not necessarily disjoint). Satisfaction
of a formula F by a stack s and heap h is denoted s, h |= F and defined by
structural induction on F in Figure 1. There, JP K is as usual a component of
the least fixed point of a monotone operator constructed from the inductive
definition set Φ; see [3, 4] for details. We say the entailment F1 |= F2 holds if,
for all stacks s ∈ S and heaps h ∈ H , we have s, h |= F1 implies s, h |= F2.

s, h |= > ⇔ always
s, h |= ⊥ ⇔ never

s, h |= x = y ⇔ s(x) = s(y)
s, h |= x 6= y ⇔ s(x) 6= s(y)
s, h |= emp ⇔ h = e

s, h |= x 7→ y ⇔ dom(h) = {s(x)} and h(s(x)) = s(y)

s, h |= x
2
7→ y, z ⇔ dom(h) = {s(x)} and h(s(x)) = (s(y), s(z))

s, h |= Px ⇔ (s(x), h) ∈ JP K
s, h |= F1 ∨ F2 ⇔ s, h |= F1 or s, h |= F2

s, h |= F1 ∗ F2 ⇔ ∃h1, h2 ∈ H. h = h1 ◦ h2 and s, h1 |= F1 and s, h2 |= F2

Fig. 1. Semantics of separation logic formulae. Note that the 7→ and
2

7→ predicates are
interpreted only in heaps of type L ⇀fin V and L ⇀fin V × V respectively.

3 Cyclic proofs of separation logic entailments

In this section we define a formal cyclic proof system for a class of separation
logic entailment problems involving inductively defined predicates.

Our proof system employs sequents of the form F ` G where F and G are
separation logic formulas as given by Defn. 1. We write F [θ] for the result of
applying a substitution θ : V → V to the formula F , and extend substitution
pointwise to tuples of variables. We give a set of basic proof rules for sequents in
Figure 2. Note that we write a rule with a double-line between premise and con-
clusion to indicate that the premise and conclusion are interchangeable (so that
a “double-line rule” effectively abbreviates two normal rules). We also comment
that our rules have been chosen for simplicity and ease of implementation, rather
than completeness and expressivity. In particular, there is no rule for rewriting
with equalities; such rewriting techniques are out of the scope of the present
paper, which concentrates on inductive techniques.

To the proof rules in Figure 2 we add simple unfolding rules for the inductive
predicates in the definition set Φ. In order to formulate these, it is essential
to know which variables occur free in our inductive rules, so that they can be
instantiated correctly. We write an annotated inductive rule F

z

⇒ Px, where z
is a tuple of distinct variables, to indicate that FV (F) ∪ {x} = {z}.

Definition 3 (Unfolding rules). To any predicate symbol P we associate a
finite number of right-unfolding rules and a single left-unfolding rule, constructed
from its inductive definition in the inductive rule set Φ. First, for each inductive
rule F

z

⇒ Px there is a right-unfolding rule for P :

G ` H ∗ F [y/z]
(PR)

G ` H ∗ Px[y/z]

where y is any tuple of variables of the same length as z. (Note that {x} ⊆ {z}
by definition, so that in Px[y/z] all of the variables in x are uniformly replaced
by arbitrary variables from y.)

(Id)
F ` F

(⊥L)
⊥ ∗ F ` G

(>R)
F ` >

(=R)
F ` x = x

(=L)
x = y ∗ x 6= y ∗ F ` G

(7→)
x 7→ y ∗ x 7→ z ∗ F ` G

(
2
7→)

x
2

7→ y1, y2 ∗ x
2

7→ z1, z2 ∗ F ` G

F ` H H ` G
(Cut)

F ` G

F ` G
========== (empL)
emp ∗ F ` G

F ` G
========== (empR)
F ` G ∗ emp

F1 ` G1 F2 ` G2

(∗)
F1 ∗ F2 ` G1 ∗G2

F1 ∗ F ` G F2 ∗ F ` G
(∨L)

(F1 ∨ F2) ∗ F ` G

F ` Gi ∗G
i ∈ {1, 2}(∨R)

F ` (G1 ∨G2) ∗G

Fig. 2. Basic proof rules. A rule written with a double-line between premise and con-
clusion indicates that the premise and conclusion are interchangeable.

The left-unfolding, or case-split rule for P has the following general schema:

case premises
(Case P)

G ∗ Pv ` H

where, for each inductive rule of the form F
z

⇒ Px, there is a case premise:

G[(x[y/z])/v] ∗ F [y/z] ` H [(x[y/z])/v]

where the variables y are fresh, i.e. y 6∈ FV (G ∗ Pv) ∪ FV (H) for all y ∈ {y}.
We observe that the complicated-seeming variable instantiation here essentially
works in two stages. First, the variables z appearing in the inductive rule F

z

⇒ Px
are replaced by the fresh variables y, giving us a “fresh version” of the rule,

F [y/z]
y

⇒ Px[y/z]. Second, to obtain the case premise we uniformly replace
the variables v appearing in the formula to be unfolded, Pv, with the freshly
instantiated variables x[y/z] appearing in the conclusion of the inductive rule3.

Example 1 (List segment). Define the inductive predicate ls by:

emp
x
⇒ lsxx x 7→ x′ ∗ lsx′ z

x,x′,z
⇒ lsx z

(Note the variable annotations.) The formula lsx y denotes a singly-linked list
segment whose first cell is pointed to by x and whose last cell contains y. The
right-unfolding rules for ls are:

G ` H ∗ emp
(lsR1)

G ` H ∗ ls y y

G ` H ∗ y 7→ y′ ∗ ls y′ v
(lsR2)

G ` H ∗ ls y v

3 We could write this premise more simply as G ∗ v = x[y/z] ∗ F [y/z] ` H . However,
our formulation above allows us to do without rules for equality on the left.

The case-split rule for ls is:

G[y/v, y/v′] ∗ emp ` H [y/v, y/v′]
G[y/v, y′/v′] ∗ y 7→ y′′ ∗ ls y′′ y′ ` H [y/v, y′/v′]

(Case ls)
G ∗ ls v v′ ` H

where y, y′, y′′ are suitably fresh. Note that both v and v′ are replaced by the
same fresh variable y in the first premise, because the corresponding inductive
rule emp

x
⇒ lsxx only has a single free variable x.

Example 2 (Binary trees). Define the inductive predicate btr by:

emp
x
⇒ btrx x

2
7→ y, z ∗ btr y ∗ btr z

x,y,z
⇒ btrx

The formula btrx denotes a binary tree whose first cell is pointed to by x. The
right-unfolding rules for btree are:

G ` H ∗ emp
(btrR1)

G ` H ∗ btr v

G ` H ∗ v
2
7→ v1, v2 ∗ btr v1 ∗ btr v2

(btrR2)
G ` H ∗ btr v

The case-split rule for btr (where y, y1, y2 are suitably fresh) is:

G[y/v] ∗ emp ` H [y/v]

G[y/v] ∗ y
2
7→ y1, y2 ∗ btr y1 ∗ btr y2 ` H [y/v]

(Case btr)
G ∗ btr v ` H

Our proof system allows proofs to be cyclic: that is, our proofs are deriva-
tion trees with “back edges”, subject to a syntactic, global condition ensuring
soundness. The following definitions are adapted from their analogues in [3].

Definition 4 (Pre-proof). A bud in a derivation treeD is a sequent occurrence
in D to which no proof rule has been applied (i.e., it is not the conclusion of any
proof rule instance in D). A companion for a bud B is a sequent occurrence C
in D of which B is a substitution instance, i.e. C = B[θ] for some substitution
θ. A pre-proof of a sequent S is given by (D,R), where D is a derivation tree
whose root is S and R is a function assigning a companion to every bud of D.

A path in a pre-proof is a sequence of sequent occurrences (Fi ` Gi)i≥0 such
that, for all i ≥ 0, it holds that either Fi+1 ` Gi+1 is a premise of the rule
instance in D with conclusion Fi ` Gi, or Fi+1 ` Gi+1 = R(Fi ` Gi).

Definition 5 (Trace). Let (Fi ` Gi)i≥0 be a path in a pre-proof P . A trace
following (Fi ` Gi)i≥0 is a sequence (Ai)i≥0 such that, for all i ≥ 0, Ai is a
subformula occurrence of the form Px in the formula Fi, and either:

(i) Ai+1 is the subformula occurrence in Fi+1 corresponding to Ai in Fi (defined
in the obvious way analogous to [3, 4]), or

(ii) Fi ` Gi is the conclusion of an instance of a case-split rule (Case P), Ai is
the formula Pv unfolded by the rule and Ai+1 is a subformula of the formula
F [y/z] obtained by the unfolding, in which case i is said to be a progress
point of the trace.

We remark that, in particular, condition (i) means that formulas can only be
traced through the left-hand premise of an instance of (Cut) and not its right-
hand premise. An infinitely progressing trace is a (necessarily infinite) trace
having infinitely many progress points.

Definition 6 (Cyclic proof). A pre-proof P is a cyclic proof if it satisfies
the global trace condition: for every infinite path (Fi ` Gi)i≥0 in P , there is an
infinitely progressing trace following some tail (Fi ` Gi)i≥n of the path.

Theorem 7 (Soundness). If there is a cyclic proof of F ` G, then F |= G.

Proof. (Sketch) The proof runs along the lines given in [3, 6, 4]. Briefly, suppose
for contradiction that there is a cyclic proof P of F ` G but F 6|= G, so that
for some stack s and heap h we have s, h |= F but s, h 6|= G. Then, by local
soundness of the proof rules, we would be able to construct an infinite path
(Fi ` Gi)i≥0 in P (with F0 ` G0 = F ` G) such that Fi 6|= Gi for all i ≥ 0.
Since P is a cyclic proof, there exists an n ≥ 0 and an infinitely progressing
trace following (Fi ` Gi)i≥n. It is a standard fact that the least fixed point
interpretation of the inductive predicates can be generated by an ordinal-indexed
chain of approximants (cf. [1]). The fact, guaranteed by the trace condition, that
some occurrence of an inductive predicate is unfolded infinitely often using the
case-split rules then induces an infinite decreasing chain of the ordinals indexing
this chain of approximants, which contradicts their well-foundedness. ut

Example 3 (cf. [3]). The following is a pre-proof of lsxx′ ∗ lsx′ y ` lsx y.

(Id)
ls x y ` lsx y

(empL)
emp ∗ ls x y ` lsx y

(Id)
x 7→ z ` x 7→ z (†) ls z x′ ∗ lsx′ y ` ls z y

(∗)
x 7→ z ∗ ls z x′ ∗ lsx′ y ` x 7→ z ∗ ls z y

(lsR2)
x 7→ z ∗ ls z x′ ∗ lsx′ y ` lsx y

(Case ls)
(†) lsxx′ ∗ lsx′ y ` lsx y

The pairing of a suitable companion with the only bud in this pre-proof is de-
noted by (†). A trace from the companion to the bud is denoted by the underlined
formulas, with a progress point at the displayed application of (Case ls).

We remark that the standard inductive proof of lsxx′ ∗lsx′ y ` lsx y is by
induction on lsxx′ using the induction hypothesis lsx′ y —∗ lsx y, where —∗
is the multiplicative implication of separation logic. Not only is this induction
hypothesis not a subformula of the goal sequent, but it is not even expressible
in our formula language (or that of most available verification tools).

4 Implementation of the cyclic prover

The proof system described in Section 3 has been implemented in HOL Light
as a deep embedding, meaning that proofs as well as sequents are represented
explicitly in our implementation. Thus we provide HOL datatypes for formulas
(with a sequent being represented as a pair of formulas) and pre-proofs, with
the proof rules captured by a HOL relation on sequents.

The main obstacles when implementing a cyclic prover all stem from the
fact that the activities of constructing cycles and verifying the soundness con-
dition are global operations on proof trees, whereas (like most theorem provers)
HOL Light’s internal view of proofs is inherently local. Thus, while one can typ-
ically implement a proof system simply by encoding each proof rule, we have
to explicitly represent (portions of) pre-proofs in order to allow us to identify
suitable companions for buds and to ensure that the resulting pre-proof satisfies
the soundness condition that all infinite paths have infinitely progressing traces.

Our solution is to first tag each occurrence of an inductive predicate in our
sequents, in order to assist in the construction of traces. We then augment each
node with information about the current branch and any progress points in
the traces along it. This gives us enough explicit information in a proof tree to
enable the formation of “downlinks” from buds to companions, and to ensure the
soundness condition on cyclic proofs. The next subsections describe the various
components of the implementation.

4.1 Representation of pre-proofs

As with the proof system in Section 3, the entire implementation is parameterized
by a set of inductive definitions, so an OCaml datatype for inductive definitions
has been designed and a list of such is a parameter to the whole implementation.

The type formula is implemented as a HOL datatype following Defini-
tion 1 except for atomic formulas of the form Px, which have the construc-
tor Ind : num → inductive→ formula. The datatype inductive is generated
from the input list of inductive definitions and simply has an entry Px for each
inductive predicate. The argument to Ind of type num is a tag used to track
occurrences so that traces can be established; Section 4.2 describes how traces
are constructed using predicate tags. When searching for a cyclic proof, unique
tags are assigned to all inductive predicates of the root node.

In the implemented system, the nodes of the proof tree are “augmented
sequents” containing extra information about the proof tree, written as

(α, π) : F ` G

(where F and G are formulas). The component α is called the ancestry of the
current node. It records the entire branch from the root of the proof tree to
the node, in the form of a (finite) list of entailments F1 ` G1, . . . , Fn ` Gn,
with Fn ` Gn being the root of the tree. We write F ` G :: α for the ancestry
obtained by adding F ` G to the beginning of the list α, and write αn for the
nth element of α (if it exists). The component π ∈ N, called the progress pointer,
is the smallest natural number n such that αn is the conclusion of a case-split

rule (denoting the closest progress point below the current node in the sense of
Definition 5). If no such n exists (so that no case-split rules are applied below the
current node), we set π = |α|+ 1, so that π points past the end of the ancestry.

The general transformation from the rules of Figure 2 to rules using aug-
mented sequents in the implemented system is the following:

S1 . . . Sn

S
=⇒

(S :: α, π + 1) : S1 . . . (S :: α, π + 1) : Sn

(α, π) : S

I.e., when applying a rule backwards, the sequent in the conclusion of the rule is
added to the ancestry of each of its premises. The progress pointer is incremented,
because the distance from the current node to the nearest conclusion of a case-
split rule has increased by one (reading the rule from conclusion to premise).

Naturally, the case-split rules are exceptions. When a case-split rule is ap-
plied, the progress pointer is set to 1 in each of its premises. So, for example,
the implemented version of the case-split rule (Case ls) looks like this:

((G ∗ lsi v v
′ ` H) :: α, 1) : G[y/v, y/v′] ∗ emp ` H [y/v, y/v′]

((G ∗ lsi v v
′ ` H) :: α, 1) : G[y/v, y′/v′] ∗ y 7→ y′′ ∗ lsi y

′′ y′ ` H [y/v, y′/v′]

(α, π) : G ∗ lsi v v
′ ` H

where the subscript i on ls denotes the tag assigned to the atomic formula
occurrence; note that the subformula ls y′′ y′ in the second premise, obtained
by unfolding ls v v′ in the conclusion, inherits the tag i, in keeping with the rules
for forming traces in Definition 5.

The axiom rule (Id) is the other exception because, since tags are only rele-
vant for the purpose of constructing traces, they should be ignored when applying
(Id). We define a binary predicate matches on formulas to implement equality
up to change of tags, whence F matches G holds if F and G are equal when all
their tags are erased. The implemented form of (Id) is then as follows:

F matches F ′

(c Id)
(α, π) : F ` F ′

Finally, we need to add a rule that allows us to form cycles. The ancestry
information alone is enough to form cycles, but the progress pointer allows us
to only form cycles which contain at least one progress point: In order to find a
companion for (α, π) : F ` G, it suffices to find a substitution θ and an n such
that n > π, αn is defined and αn = (F ` G)[θ]. However, because traces only
involve predicates occurring on the left of sequents, it suffices that G and the
right hand side of αn are equal up to predicate tags. Thus, the proof rule for
link formation in the implemented system is

|α| > n > π ∃θ. αn = (F ` G′)[θ] G matches G′[θ]
(c downlink)

(α, π) : F ` G

where |α| is the length of the ancestry. This rule ensures that if we can form a
downlink from B to C then there is a progressing trace on the finite path C . . . B
in the proof tree (and this trace has identical values at C and B).

4.2 Soundness of the implementation

We now describe how the soundness of the implemented system follows from the
soundness of the system in Section 3. First, we observe that there is a map E from
proofs in the implemented system to pre-proofs in the system from Section 3.
That is, for any proof tree T in the implemented system, E(T) = (D,R), where:

– D is the derivation tree (in the proof system of section 3) obtained by strip-
ping the ancestry, progress pointer and predicate tags from each node of
T and turning every node occurring as the conclusion of an instance of
(c downlink) into a bud of D;

– R is a function from the buds of D to suitable companions, built from the
applications of (c downlink) in the obvious way.

The main theorem of this section is that for every proof P in the implemented
system, the pre-proof E(P) is actually a cyclic proof:

Theorem 8 (Soundness of the implementation). If there is a proof of
([], 1) : F ` G in the implemented system, then F |= G.

Proof. (Sketch) Given a proof P of ([], 1) : F ` G, we show that E(P) = (D,R)
is a cyclic proof. E(P) is clearly a pre-proof by construction, so it just remains to
show that it satisfies the global soundness condition of Defn. 6. Essentially, the
argument is that our tagging of inductive predicates and the conditions on the
“downlink” rule (c downlink) ensure that there is a “trace manifold” for E(P),
which implies the global soundness condition (see [2], ch. 7).

Let (Si)i≥0 be an infinite path in E(P). There must exist a tail (Si)i≥n of
this path that traverses some strongly connected component C of E(P), which
must be constructed from finite paths of the form R(B) . . . B from companions
to buds. Specifically, there is a non-empty (finite) set B of buds which are visited
infinitely often on (Si)i≥n. Choose B ∈ B such that R(B) is as close as possible
to the root of D. By inspection of the (c downlink) rule, there is some tagged
atomic formula Pix occurring in bothR(B) andB whose case-split rule is applied
on the path R(B) . . . B. There must be an infinitely progressing trace following
(Si)i≥n, with all predicates tagged by i. A trace must exist because all tags on
the left of sequents must be identical to apply (c downlink) and our tagging
discipline for other rules follows the method for constructing traces in Defn. 5.
(In particular, if a tagged predicate is deleted along a path then that tag cannot
be restored further up the tree.) Moreover, this trace is infinitely progressing
because our choice of R(B) to be the lowermost companion in C visited infinitely
often ensures that the path (Si)i≥n passes infinitely often through the case-split
rule that unrolls a predicate tagged by i. ut

We note that the soundness condition used in the implemented system is
much simpler than the global trace condition of the formal system (Defn. 6), and
is almost certainly incomplete. More sophisticated soundness conditions could be
implemented at the expense of speed. We note also that our implementation, and
its soundness, does not significantly depend on specific features of the fragment
of separation logic considered in this paper, and should adapt to other cyclic
proof systems employing a similar soundness condition (see [2], ch. 5).

4.3 Automated proof search

Split entailments. To better manage the sizes of the generated proofs, the entail-
ment relation has been split into two: the augmented entailment (α, π) : P ` Q
and a basic one P `basic Q which is not augmented (and so `basic is actually
a subset of `). The idea is to relay all reasoning using the associativity, com-
mutativity and unit of ∗ to `basic. Such rules as (empR) are then found in this
lightweight entailment rather than in the augmented one.

For the augmented entailment to make use of lightweight entailment rules
such as (empR), we provide cut rules to inject `basic-reasoning into our proofs:

P `basic R (α, π) : R ` Q
(basicL)

(α, π) : P ` Q

(α, π) : P ` R R `basic Q
(basicR)

(α, π) : P ` Q

It is important that `basic does not interfere with the predicate tags, and so it is
limited to reorganizing terms. Its id-rule, for instance, does not use the matches-
predicate, and there is no cut rule. It can be shown that this careful re-factoring
of the entailment relation does not change the truth of Theorem 8.

Tactics. Our prover is a collection of HOL tactics arranged into layers:

1. There is a tactic for each rule of the implemented proof system, and tac-
tics are generated for the unfolding rules given by the inductive definitions,
as described in section 3. The left rules introduce fresh variables and per-
form the (potentially unifying) substitutions, while the right rules introduce
existential metavariables for any extra exposed variables.
Additionally, a rule for link formation is implemented that searches through
the ancestry for sequents of which the current node is a substitution instance
and if one is found, applies (c downlink).

2. Since a rule might not be directly applicable until some rearrangements
have been performed, specialized tactics are using `basic-reasoning to set up
rule applications. For the right-unfolding rules, this amounts to bringing the
conclusion to the front on the right hand side.

3. “Advancing” rule applications. Right-unfolding rules, for instance, typically
expose new state on the right side. An advancing version of such a rule will
try to match this on the left hand side (resolving existential metavariables
if necessary) and invoke a tactic to eliminate common state; the entire rule
application fails if no state can be disposed of.
Elimination of common state is implemented using `basic-reasoning to bring
both sides to similar forms and then using the rules (∗) and a version of
(c Id) which resolves existential metavariables.

With these tactics at hand, one can conveniently use the system interactively
or implement an automatic tactic. We implemented a backtracking proof search
which applies any rule it can, from a prioritized list of rule sets:

1. {(c Id), link formation} 2. advancing right rules 3. case-split rules

The other rules are only invoked as part of auxiliary reasoning for the rules in
these groups.

4.4 Experimental performance

Table 2 presents a list of lemmas that have been proven automatically by our
cyclic prover, while Table 1 shows the definitions of the inductive predicates
appearing in Table 2. The implementation was tested on a MacBook with a 2.4
GHz Intel Core Duo and 2 GB of 667 MHz DDR2 SDRAM running Mac OS
10.5.8. We also proved a more sophisticated lemma interactively, making use of
Lemma 3 from Table 2:

Example 4. The following is a cyclic proof of RListx y ` Listx y, where R and
L below abbreviate RList and List from Table 1, respectively.

(Id)
x 7→ y ` x 7→ y

(LR1)
x 7→ y ` Lxy

(Id)
z 7→ y ` z 7→ y (†) Rxz ` Lxz

(∗)
z 7→ y ∗ Rxz ` z 7→ y ∗ Lxz

(Lemma 3)
·
·
·

z 7→ y ∗ Lxz ` Lxy
(Cut)

z 7→ y ∗Rxz ` Lxy
(Case R)

(†) Rxy ` Lxy

It seems certain that our theorem prover would benefit from remembering earlier
proven lemmas and allowing the automatic tactic to use these, as is provided
e.g. by the lemma application mechanism in [17].

Most of the lemmas in Table 2 were proven with a bound of 3 on the depth of
backtracking. Lemmas 10 through 12 required higher bounds, due to the mutual
recursion (5, 7 and 5 respectively), and a few of the tree lemmas required a
bound of 4 (lemmas 13, 14 and 16). The relatively low bound needed to prove
lemmas is due to the split entailment relations.

5 Related work

There is a substantial body of work in the literature that relates to our own
work in a variety of ways.

Tuerk’s Holfoot [20] is a general framework for separation logic, implemented
in HOL, which has automatically proven properties of several interesting pointer
manipulating programs. However, Holfoot does not currently support cyclic
proof, and we hope that our work may be useful for bringing this technique
into such a general verification framework. Similar remarks apply to jStar [13].

Nguyen and Chin [17] describe an extension of an entailment checking tech-
nique introduced in earlier work [18] employing a fold/unfold mechanism for user
defined inductive predicates. This extension is a mechanism that automatically
proves and applies lemmas provided by the user. This mechanism employs a
simple version of cyclic proof tailored to their specific verification system; when
proving the lemmas, the theorem prover may apply a “smaller” instance of the
lemma itself, with recursive lemma application carried out on the root node of
inductive predicates. While the emphasis of that paper is in the application of
lemmas, the emphasis of our work is rather on the definition and implementation
of cyclic proof as well as in proving the soundness of our system. Here we have

Predicate Definition

RList (nonempty
list segment)

x 7→ y ⇒ RList x y
RList x y * y 7→ z ⇒ RList x z

List (nonempty
list segment)

x 7→ z ⇒ List x z
List z y * x 7→ z ⇒ List x y

ListE / ListO
(nonempty list segment
of even / odd length)

x 7→ z ⇒ ListO x z
ListO z y * x 7→ z ⇒ ListE x y
ListE z y * x 7→ z ⇒ ListO x y

PeList (list segment)
emp ⇒ PeList x x

PeList z y * x 7→ z ⇒ PeList x y

DLL (doubly linked
list segment)

emp ⇒ DLL a a b b

DLL x b c a * a
2

7→ x, d ⇒ DLL a b c d

SLL (singly linked list
segment in binary heap)

emp ⇒ SLL a a

SLL x b * a
2

7→ x, d ⇒ SLL a b

BSLL (reverse SLL)
emp ⇒ BSLL c c

BSLL c x * x
2

7→ a, d ⇒ BSLL c d

BinTree (binary tree)
emp ⇒ BinTree a

BinTree b * BinTree c * a
2

7→ b, c ⇒ BinTree a

BinTreeSeg (binary
tree segment)

emp ⇒ BinTreeSeg a a

BinTreeSeg c b * BinTree d * a
2
7→ c, d ⇒ BinTreeSeg a b

BinTree c * BinTreeSeg d b * a
2

7→ c, d ⇒ BinTreeSeg a b

BinListFirst (list in
cell 1 of binary heap)

emp ⇒ BinListFirst a

BinListFirst b * a
2

7→ b, c ⇒ BinListFirst a

BinListSecond (list in
cell 2 of binary heap)

emp ⇒ BinListSecond a

BinListSecond c * a
2
7→ b, c ⇒ BinListSecond a

BinPath (path in
binary heap)

emp ⇒ BinPath a a

BinPath c b * a
2

7→ c, d ⇒ BinPath a b

BinPath c b * a
2

7→ d, c ⇒ BinPath a b
Table 1. Definitions of predicates

focused on developing a general cyclic entailment checker which could eventu-
ally become an off-the-shelf prover for verification tools or theorem provers. In
addition, we have the flexibility to easily tune the expressivity of our prover
w.r.t. speed by implementing a more general soundness condition (which can be
supplied parametrically to the system).

Chang et al. [11, 10] propose a shape analysis guided by data structure in-
variants (provided by the programmer) that describe inductive predicates, called
invariant checkers. While their emphasis is on defining expressive and precise
shape analyses for a large variety of data structures, our emphasis here is on
solving entailment questions which could be used to assist such analyses. We
believe that our automated cyclic proof engine could be used to support or en-
hance various operations performed in their shape analysis (e.g. approximation
testing, proving termination of fixed point computation, widening, etc.)

There are also a number of provers based upon infinite descent / cyclic proof
that are oriented towards proving inductive theorems of arithmetic; we mention
by way of example the Coq implementation of Voicu and Li [21], and the stan-

Lemma Time (secs) Proven

1 2.37 x 7→ y * RList y z ` RList x z

2 2.37 RList x z * RList z y ` RList x y

3 2.56 z 7→ y * List x z ` List x y

4 2.45 List z y * List x z ` List x y

5 2.78 z 7→ y * PeList x z ` PeList x y

6 1.96 PeList z y * PeList x z ` PeList x y

7 3.54 DLL u v x y ` SLL u v

8 3.82 DLL u v x y ` BSLL x y

9 8.86 DLL w v x z * DLL u w z y ` DLL u v x y

10 5.44 ListO z y * ListO x z ` ListE x y

11 11.2 ListE x z * ListE z y ` ListE x y

12 5.57 ListO z y * ListE x z ` ListO x y

13 4.40 BinListFirst x ` BinTree x

14 4.43 BinListSecond x ` BinTree x

15 4.21 BinPath z y * BinPath x z ` BinPath x y

16 7.00 BinPath x y ` BinTreeSeg x y

17 8.78 BinTreeSeg z y * BinTreeSeg x z ` BinTreeSeg x y

18 8.61 BinTreeSeg x y * BinTree y ` BinTree x
Table 2. Experimental results.

dalone QUODLIBET system of Wirth [22]. Our system differs from these works
in that it is specialised towards separation logic (and thus aims to assist the
analyses provided by automated program verification tools).

Finally, there is a large body of work on automated theorem proving using
explicit induction; we mention IsaPlanner [14] as one contemporary such tool
that employs Bundy’s rippling technique to remove differences between the hy-
potheses of an induction and its goal. We think it far from unlikely that these
techniques might usefully transfer to the setting of cyclic proof.

6 Conclusions and future work
In this paper we have introduced a sound automatic entailment checker for sepa-
ration logic with inductive predicates based on cyclic proofs, focusing particularly
on the soundness of our method and on the careful description of implementa-
tion details. The entailment checker has been implemented in HOL Light and
has shown significant potential by proving a number of non-trivial lemmas for
a range of inductive predicates corresponding to popular data structures. Thus
our procedure represents a relevant first step towards the construction of off-
the-shelf theorem provers based on separation logic. Our approach also adapts
to other cyclic proof systems employing a similar soundness condition.

The automatic entailment checking procedure introduced in this paper opens
up several avenues for future work, and in the future we plan to enhance its ex-
pressivity and effectiveness in a number of different directions. One direction is
to experiment with weakening the soundness condition in order to admit more
sophisticated cyclic proofs. Such a generalisation will necessitate more sophis-
ticated tactics for our automated search procedure. Another direction is to ex-
tend the expressivity of our formulae by adding features such as quantifiers and

arithmetic operations. In doing so it would also be natural to investigate the pos-
sibility of integrating our procedure with SMT solvers and arithmetic provers.
Finally, we plan to explore the integration of our prover with automatic verifica-
tion tools such as Holfoot [20] or jStar [13]. In particular, it would be interesting
to see how our tool performs on the entailment questions those systems generate.

Acknowledgments. We thank Thomas Tuerk and Peter O’Hearn for intensive dis-
cussions, and Huu Hai Nguyen and Wei-Ngan Chin for providing us with sample
lemmas to add to our experiments. We acknowledge the support of EPSRC and
the Royal Academy of Engineering.

References

1. P. Aczel. An introduction to inductive definitions. In Jon Barwise, editor, Handbook
of Mathematical Logic, pp. 739–782. North-Holland, 1977.

2. J. Brotherston. Sequent Calculus Proof Systems for Inductive Definitions. PhD
thesis, University of Edinburgh, November 2006.

3. J. Brotherston. Formalised inductive reasoning in the logic of bunched implications.
In Proceedings of SAS-14, volume 4634 of LNCS, pp. 87–103. Springer, 2007.

4. J. Brotherston, R. Bornat, and C. Calcagno. Cyclic proofs of program termination
in separation logic. In Proceedings of POPL-35, pp. 101–112. ACM, 2008.

5. J. Brotherston and M. Kanovich. Undecidability of propositional separation logic
and its neighbours. In Proceedings of LICS-25, pp. 137–146. IEEE, 2010.

6. J. Brotherston and A. Simpson. Sequent calculi for induction and infinite descent.
Journal of Logic and Computation, 2010.

7. A. Bundy. The automation of proof by mathematical induction. In Handbook of
Automated Reasoning, volume I, chapter 13, pp. 845–911. Elsevier Science, 2001.

8. C. Calcagno, D. Distefano, P. O’Hearn, and H. Yang. Compositional shape analysis
by means of bi-abduction. In Proceedings of POPL-36, pp. 289–300, 2009.

9. C. Calcagno, P. O’Hearn, and H. Yang. Local action and abstract separation logic.
In Proceedings of LICS-22, pages 366–378. IEEE, 2007.

10. B.-Y. Evan Chang and X.Rival. Relational inductive shape analysis. In POPL
2008, pp. 247–260, 2008.

11. B.-Y. Evan Chang, X. Rival, and G. C. Necula. Shape analysis with structural
invariant checkers. In SAS’07, LNCS 4634, pp. 384–401, Springer 2007.

12. D. Distefano, P. O’Hearn, and H. Yang. A local shape analysis based on separation
logic. In TACAS’06, pp. 287-302, LNCS 3920, Springer 2006.

13. D. Distefano and M. Parkinson. jStar: Towards practical verification for Java. In
Proceedings of OOPSLA, pp. 213–226. ACM, 2008.

14. L. Dixon and J. Fleuriot. Higher order rippling in IsaPlanner. In Theorem Proving
in Higher Order Logics ’04, LNCS 3223. Springer, 2004.

15. J. Harrison. HOL Light: An overview. In TPHOLs 2009, LNCS 5674, pp. 60–66.
16. P. Martin-Löf. Haupstatz for the intuitionistic theory of iterated inductive defini-

tions. In Proc. Second Scandinavian Logic Symposium, pp. 179–216, 1971.
17. H. H. Nguyen and W.-N. Chin. Enhancing program verification with lemmas. In

Proceedings of CAV 2008, LNCS 5123, pp. 355–369. Springer, 2008.
18. H. H. Nguyen, C. David, S. Qin, and W.-N. Chin. Automated verification of shape

and size properties via separation logic. In VMCAI, pp. 251–266, Springer 2007.
19. J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In

Proceedings of 17th LICS, 2002.
20. T. Tuerk. A formalisation of Smallfoot in HOL. In Theorem Proving in Higher

Order Logics, LNCS, pp. 469–484. Springer, 2009.
21. R. Voicu and M. Li. Descente infinie proofs in Coq. In Proceedings of the 1st Coq

Workshop. Technische Universität München, 2009.
22. C.-P. Wirth. Descente Infinie + Deduction. In Logic Journal of the IGPL 12(1): 1–

96. Oxford University Press, 2004.
23. H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook, D. Distefano, and P. O’Hearn.

Scalable shape analysis for systems code. In Proceedings of CAV, 2008.

