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Abstract. We describe the design and implementation of an automated
theorem prover realising a fully general notion of cyclic proof. Our tool,
called Cyclist, is able to construct proofs obeying a very general cycle
scheme in which leaves may be linked to any other matching node in the
proof, and to verify the general, global infinitary condition on such proof
objects ensuring their soundness. Cyclist is based on a new, generic
theory of cyclic proofs that can be instantiated to a wide variety of log-
ics. We have developed three such concrete instantiations, based on: (a)
first-order logic with inductive definitions; (b) entailments of pure sepa-
ration logic; and (c) Hoare-style termination proofs for pointer programs.
Experiments run on these instantiations indicate that Cyclist offers sig-
nificant potential as a future platform for inductive theorem proving.

1 Introduction

In program analysis, inductive definitions are essential for specifying the shape of
complex data structures held in memory. Thus automated reasoning about such
definitions, a.k.a. inductive theorem proving, is a key activity supporting program
verification. Unfortunately, the explicit induction rules employed in standard in-
ductive proofs pose considerable problems for proof search [10]. Cyclic proof has
been recently proposed as an alternative to traditional proof by explicit induction
for fixed point logics. In contrast to standard proofs, which are simply derivation
trees, a cyclic proof is a derivation tree with “back-links” (see Figure 1), subject
to a global soundness condition ensuring that the proof can be read as a proof
by infinite descent à la Fermat [5]. This allows explicit induction rules to be
dropped in favour of simple unfolding or “case split” rules.

Cyclic proof systems seem to have first arisen in computer science as tableaux
for the propositional modal µ-calculus [23]. Since then, cyclic proof systems have
been proposed for a number of applications, including: first-order µ-calculus [22];
verifying properties of concurrent processes [20]; first-order logic with inductive
definitions [4, 9], bunched logic [6]; and termination of pointer programs [7].
However, despite the fairly rich variety of formal cyclic proof systems, automated
tools implementing these formal systems remain very thin on the ground.

In this paper we describe the design and implementation of a new cyclic
theorem prover, called Cyclist, based on a generic theory of cyclic proofs and
instantiable to a wide variety of logical systems. We have implemented three
concrete instantiations of Cyclist: (a) a system for a fragment of first-order
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Fig. 1. Left: a typical proof structured as a finite tree, with the parent-child relation
between nodes (•) given by a set of inference rules. Right: a typical cyclic pre-proof,
structured as a tree proof with “back-links” between nodes (shown as arrows).

logic with inductive definitions, based on the formal system in [4]; (b) a system
for entailment in separation logic, extending the one in [8]; and (c) a Hoare-style
system for termination of pointer programs using separation logic, based on [7].

In Section 2, we give our general cyclic proof framework and, in parallel,
discuss our implementation of Cyclist using its instantiation (a) to first-order
logic as a running example.

As above, cyclic proofs can be generally characterised as derivation trees with
back-links (“pre-proofs”) obeying a global, infinitary soundness condition quali-
fying them as bona fide cyclic proofs. The soundness condition states that every
infinite path in the pre-proof must possess a syntactic trace that “progresses”
infinitely often; informally, a trace can be thought of as a well-founded measure
and its progress points to strict decreases in this measure. Our generic theory
formalises this characterisation of cyclic proofs, which is entirely independent of
the choice of any particular logical formalism.

There are two main technical obstacles to implementation of cyclic proof,
both stemming from the structural complexity of cyclic proofs compared to stan-
dard proofs. First, the prover must be able to form back-links in the derivation
tree. This inevitably leads to a global view of proofs, rather than one localised
to the current subgoal as in most theorem provers. Second, the prover must be
able to check whether or not a given pre-proof satisfies the general soundness
condition. Our approach to both difficulties is described in Section 2.

Section 3 briefly describes our instantiations (b) and (c) of Cyclist to sep-
aration logic frameworks. Then, in Section 4, we examine some of the issues
pertaining to automated proof search in Cyclist, and report on our experimen-
tal evaluation of the prover’s performance in all three instantiations. Particular
issues for cyclic proof search include looking for potential back-links in the proof,
and deciding when to invoke the (potentially expensive) soundness check. Other
issues, such as the priority ordering of rules and the conjecture / application of
appropriate lemmas during a proof, are features of inductive theorem proving
in general. Finally, Section 5 compares our contribution with related work, and
Section 6 outlines directions for future work.

The theoretical framework on cyclic proofs in Section 2 is based on its earlier
presentation in the first author’s PhD thesis [5].
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2 Cyclic proofs and the Cy
list prover

In this section we develop a general notion of a cyclic proof system, which gener-
alises the concrete formal systems given in, e.g., [4, 6–8, 20–23]. In an interleaved
fashion we also describe Cyclist, a mechanised theorem proving framework for
cyclic proof. We use its instantiation CyclistFO to first-order logic with induc-
tive predicates as a running example to illustrate our ideas and design choices.
However, most of the issues we discuss here are relevant to any logical instan-
tiation of the prover, and in particular to the two other instantiations we have
also implemented: pure entailment in separation logic (cf. [8]) and termination of
pointer programs based on separation logic (cf. [7]). In order to avoid overwhelm-
ing the reader with technical details, we intentionally elide some finer points of
our implementation to begin with, and introduce these gradually as we go along.

2.1 Implementation platform. The core of Cyclist is an OCaml functor
parameterised over a user-defined datatype that describes the desired logic and
its basic rules of inference. The functor provides functions for proof search and
basic manipulation of cyclic proofs. Cyclist also provides an OCaml interface
to a custom model checker in C++ that checks the soundness of cyclic proofs.

In contrast to e.g. [8], we decided against implementing Cyclist inside a
theorem prover such as Isabelle or HOL Light. This is because the structural
machinery of cyclic proof cannot be straightforwardly represented inside a tool
employing a standard, tree-like internal notion of proof. Consequently, as in [8], a
deep embedding of cyclic proof systems would be necessary, whereby cyclic proofs
are represented as explicit datatypes, and reasoned about using functions defined
over those datatypes. In addition to its technical difficulty, this approach negates
most of the advantages of using a trusted theorem prover, as correctness depends
fundamentally on the (unproven) correctness of the deep embedding as well as
the correctness of the external soundness checker. Thus we gain implementation
efficiency at relatively little expense of confidence by working directly in OCaml.

2.2 Sequents and inference rules. First, we assume a set S of objects,
corresponding to the ‘•’s in Figure 1 and called sequents, from which our proofs
will be built. Next we assume a set R of proof rules which are each of the form:

S1 . . . Sn
(R)

S

where n ≥ 0 and S, S1, . . . , Sn are sequents. S is called the conclusion of rule
(R) and S1, . . . , Sn its premises ; a rule with no premises is called an axiom.
(Strictly speaking, the rules are usually understood as rule schemata, where
parts of sequents may act as parameters.) A derivation tree is then, as usual, a
tree each of whose nodes v is labelled with a sequent S(v), and the rule R(v) of
which it is the conclusion, in such a way as to respect the proof rules.

Cyclist expects a user-defined type for sequents, and for inference rules,
each of which reduces a given conclusion sequent to a list of premises. However,
because rules are really rule schemata, a rule may have multiple different appli-
cations to a sequent. To support this, rules in Cyclist return a list of lists of
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premises, corresponding to the results of all possible applications of the rule to
the sequent. In particular, axioms always return a list of empty lists of premises.

In CyclistFO, we define a type for negation-free ∀∃-sequents in disjunc-
tive normal form, built from first-order formulas with equality and disequality,
function terms and inductively defined predicates. It is straightforward to define
standard rules and axioms for handling equalities, contradiction, simplification,
quantifiers and conjunction / disjunction.

2.3 Inductive predicates and unfolding rules. Inductive predicates are
specified by a set of inductive rules each of the form F ⇒ P t, where P is an
inductive predicate, t is a tuple of appropriately many terms and F is a formula
(subject to certain restrictions to ensure monotonicity of the definitions).

Example 1. We can define a “natural number” predicate N , mutually defined
“even / odd” predicates E andO, and a ternary “addition” predicate Add (where
Add(x, y, z) should be read as “x+ y = z”) via the following inductive rules:

⇒ N0 ⇒ E0 Ny ⇒ Add(0, y, y)
Nx ⇒ Nsx Ox ⇒ Esx Add(x, y, z) ⇒ Add(sx, y, sz)

Ex ⇒ Osx

where 0 is a constant symbol and s is a unary function symbol, understood as
the usual zero and “successor” function in Peano arithmetic respectively. ⊓⊔

Given a set of inductive rules, CyclistFO generates rules for unfolding inductive
predicates on the right and left of sequents. As usual, the right-unfolding rules
for a predicate P are just sequent versions of the inductive rules introducing P .

Example 2. Applying the right-unfolding rule corresponding to Nx ⇒ Nsx from
Example 1 to the conclusion sequent F ⊢ Nsy,Nssz3 yields:

[

[F ⊢ Ny,Nssz] ; [F ⊢ Nsy,Nsz]
]

(RN )
F ⊢ Nsy,Nssz

Note the bracketing indicating the two possible applications of this rule (we use
‘;’ to separate list items), each resulting in a single premise sequent. ⊓⊔

The left-unfolding rule for an inductive predicate can be seen as a case distinction
principle that replaces an inductive predicate in the left of a conclusion sequent
with a premise for every clause of its definition.

Example 3. Applying the left-unfolding rule for the predicate E given in Exam-
ple 1 to the conclusion sequent Ey ⊢ G yields the following:

[

[ y = 0 ⊢ G ; y = sz,Oz ⊢ G ]
]

(LE)
Ey ⊢ G

where z is a fresh variable. Observe that, in this case, there is only one possible
application of the rule which results in two premises. ⊓⊔

3 As usual in sequent calculi, comma corresponds to ∧ in the LHS and ∨ in the RHS.
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2.4 Cyclic proofs and the forming of back-links. We first define cyclic
pre-proofs below. Here, a leaf of a derivation tree is called open if it is not the
conclusion of an axiom, i.e. if R(v) is undefined.

Definition 1 (Pre-proof). A pre-proof of a sequent S is a pair (D,L), whereD
is a finite derivation tree whose root is labelled by S, and L is a back-link function
assigning to every open leaf ℓ of D a node L(ℓ) of D such that S(L(ℓ)) = S(ℓ).

Any pre-proof P = (D,L) can be understood as a graph by identifying each
open leaf ℓ of D with L(ℓ). A path in P is an infinite sequence vi of nodes of P
such that for every i, either (yi, yi+1) is an edge in D, or L(vi) = vi+1.

According to Definition 1, a back-link in a cyclic pre-proof is formed by
assigning to a leaf ℓ in the derivation tree another node L(ℓ) such that S(ℓ) =
S(L(ℓ)). Cyclist relaxes this strict requirement slightly and permits back-links
between a leaf node S1 and any other node S2 such that a user-defined matching
function returns true, given S1, S2 as arguments.4

In CyclistFO, we use the following matching function: S1 matches S2 if S1

is derivable from S2 using only weakening and substitution principles.

Example 4. In CyclistFO, the sequent S1 below matches S2 because there is a
derivation of S1 from S2 using weakening and substitution principles, as follows:

S2 : Oy ⊢ Ny
(Subst)

Osz ⊢ Nsz
(Weak)

S1 : Osz,Essz, Ez ⊢ Nsz,Ny

Thus a leaf labelled by S1 can be back-linked to any node labelled by S2. ⊓⊔

2.5 Defining the trace pair function. To qualify as a bona fide proof, a
cyclic pre-proof must satisfy a global soundness condition, defined using the
notion of a trace along a path in a pre-proof.

Definition 2 (Trace). Let T be a set of trace values. A trace pair function is a
function δ : (S×R×S) → Pow((T ×T ×{0, 1})) (where Pow(−) is powerset) such
that for any S, S′ ∈ S and R ∈ R, the set δ(S,R, S′) is finite (and computable).
If (α, α′, n) ∈ δ(S,R, S′) for some n ∈ {0, 1} then (α, α′) is said to be a trace
pair for (S,R, S′), and if n = 1 then (α, α′) is said to be a progressing trace pair.

Now let π = (vi)i≥0 be a path in a pre-proof P . A trace following π is a
sequence τ = (αi)i≥0 such that, for all i ≥ 0, (αi, αi+1) is a trace pair for
(S(vi), R(vi), S(vi+1)). If infinitely many of these (αi, αi+1) are progressing trace
pairs, then τ is said to be infinitely progressing.

Since we are only interested in traces following paths in a pre-proof, we may
assume for simplicity that the domain of a trace pair function δ, written dom(δ),

4 One could also simply include a rule allowing one to conclude S1 from S2 whenever
S1 matches S2, but our treatment is typically more convenient for proof search.
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is restricted to triples (S,R, S′) such that S is the conclusion of an instance of
the rule R and S′ is one of the premises of that instance. Given such a δ, the
tuple (S,R, T , δ) is then called a cyclic proof system.

In order to facilitate checking the global soundness condition, Cyclist re-
quires pre-proofs to carry information about trace pairs. According to Defn. 2,
a trace pair function δ takes as input a sequent S, the rule R applied to it
and one of the premises S′ obtained as a result, and returns the sets of associ-
ated progressing and non-progressing trace pairs. Intuitively, a progressing trace
pair identifies a measure that becomes strictly smaller when moving from S to
S′ under the application of R, while a non-progressing trace pair identifies a
measure that at least does not increase. (Defn. 5 below will make precise the
correspondence between trace pairs and measures.)

In CyclistFO, we adopt the notion of trace from [4, 5]. There, trace values
are atomic formulas of the form P t occurring on the left of sequents, where P is
an inductive predicate. Then (P t, Qt′) is a progressing trace pair on (S,R, S′)
if R is a left-unfolding rule, P t is the formula in S being unfolded and Qt′ is
obtained in S′ by unfolding P t. (P t, Qt′) is a non-progressing trace pair if P t
and Qt′ occur on the left of S and S′ respectively and P t ≡ Qt′, where the
equivalence is equality modulo any substitution applied by the rule R.

To implement this notion in CyclistFO, each atomic formula P t in the left
of a sequent is annotated with a natural number, called its tag. Then for any
conclusion sequent S and rule R we use these tags to attach to each premise S′

the lists of progressing and non-progressing trace pairs associated with (S,R, S′).
Similarly, matching functions are also required to return lists of (usually non-
progressing) trace pairs for matching sequents.

Example 5. The following example shows how the premises of an instance of
(LE) are extended with lists of progressing and non-progressing trace pairs (in
that order), where the numeric subscripts on atomic formulas are tags:

[

[ (N1x, y = 0 ⊢ G, [], [(1, 1)]) ; (N1x, y = sz,O3z ⊢ G, [(2, 3)], [(1, 1)]) ]
]

(LE)
N1x,E2y ⊢ G

Thus, in the right hand premise, the first list indicates that (2, 3), denoting
the formulas E2y in the conclusion and O3y in the premise, is a progressing
trace pair, and the second list indicates that (1, 1), denoting the formulas N1x

occurring in both conclusion and premise, is a non-progressing trace pair. The
left hand premise is similar, except that there are no progressing trace pairs. ⊓⊔

2.6 Soundness of cyclic proofs and decision procedures. It is clear that
a pre-proof may not be sound, e.g., a sequent back-linked to itself. The following
definition captures a sufficient condition of soundness.

Definition 3 (Cyclic proof). A pre-proof P in a cyclic proof system is said
to be a (cyclic) proof if, for every infinite path (vi)i≥0 in P , there is a tail of the
path, π = (vi)i≥n, such that there is an infinitely progressing trace following π.
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Our trace-based condition qualifying pre-proofs as proofs follows the one by
Sprenger and Dam [21], who showed that their trace condition for the first-order
µ-calculus subsumed a number of previous formulations by others. Analogous
trace conditions were adopted for other logics in [4, 6, 7]. Sprenger and Dam also
established that their trace condition was decidable, a result we extend to the
generic notion of trace given by Defn. 2.

Theorem 4 (Decidability of soundness condition). In any cyclic proof
system (S,R, T , δ) it is decidable whether or not a pre-proof is a cyclic proof.

Proof. (Sketch) From a given pre-proof P we construct two Büchi automata
over strings of nodes of P . The path automaton APath simply accepts all infinite
paths in P . The trace automaton ATrace accepts all infinite paths in P such
that an infinitely progressing trace exists on some tail of the path. P is then a
proof if and only if ATrace accepts all strings accepted by APath. We are then
done since inclusion between the languages of Büchi automata is known to be
decidable. The full details appear as Appendix A of [5]. ⊓⊔

Checking that a pre-proof P satisfies the soundness condition on cyclic proofs
(Defn. 3) amounts to checking language inclusion between two Büchi automata
APath and ATrace constructed from P (see the proof of Theorem 4). We imple-
ment this check as a function that, given a Cyclist pre-proof, constructs the
two automata and then uses a model checker to decide language inclusion.

We use transition-labelled Büchi automata [11] in constructing APath and
ATrace, as they allow the most succinct representation. We represent such an
automaton as a directed graph with labelled edges, where (u, v, l, n) with n ∈
{0, 1} describes an edge from u to v accepting the label l. The automaton accepts
any infinite string of labels such that edges with n = 1 are visited infinitely often.
The path automaton APath accepts all infinite paths in P , and thus it has an
edge (u, v, v, 1) for every edge (u, v) of P (viewing P as a graph in the obvious
way). The trace automaton ATrace is more complicated, and built using both the
node identifiers of P and the trace pair information attached to rule instances
as described above. Essentially, ATrace accepts any infinite path through P that
eventually (a) is decorated with trace values that agree with the trace pair
function and (b) goes through a progressing trace pair infinitely often. Thus, in
particular, ATrace contains an edge ((u, α1), (v, α2), v, n) whenever (u, v) is an
edge of P and (α1, α2) is a trace pair annotating the corresponding rule instance
in P , with n = 1 if (α1, α2) is progressing and n = 0 otherwise. For full details
of the construction, see Appendix A of [5].

Our model checker is built using Spot [13], an open-source C++ library for
building custom, on-the-fly model checkers. We also provide an OCaml interface
between Cyclist and the model-checking C++ code.

Checking inclusion between Büchi automata is computationally expensive,
as it entails complementing one of the automata, which can lead to an explosion
in the number of states [15]. Thus readers may wonder whether the general
infinitary soundness condition on cyclic proofs ought to be discarded in favour
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of a stronger but simpler condition. The following (admittedly artificial) example
is intended to show that a fairly complex proof condition is in fact needed.

Example 6. Define a binary predicate R via the following inductive rules:

⇒ R(0, y) R(x, 0) ⇒ R(sx, 0) R(ssx, y) ⇒ R(sx, sy)

The following is a cyclic proof of the sequent Nx,Ny ⊢ R(x, y), where N is the
natural number predicate defined in Example 1 (for brevity, we omit applications
of equality rules, contraction and weakening):

(RR)
⊢ R(0, y)

(∗) Nx,Ny ⊢ R(x, y)
(Subst)

Nx′, N0 ⊢ R(x′, 0)
(RR)

Nx′, N0 ⊢ R(sx′, 0)

(∗) Nx,Ny ⊢ R(x, y)
(Subst)

Nssx′, Ny′ ⊢ R(ssx′, y′)
(Cut)

Nx′, Ny′ ⊢ R(ssx′, y′)
(RR)

Nx′, Ny′ ⊢ R(sx′, sy′)
(LN )

Nx′, Ny ⊢ R(sx′, y)
(LN )

(∗) Nx,Ny ⊢ R(x, y)

where we suppress the easy proof that Nx′ ⊢ Nssx′ in the instance of (Cut) on
the right hand branch. The leaves marked (∗) are both back-linked to the root.

To see that this pre-proof is in fact a cyclic proof, we must show that any
infinite path π has a tail on which an infinitely progressing trace exists. There
are two cases to consider. First, if π has a tail consisting entirely of repetitions
of the left-hand loop, then we can form a trace following this tail given by the
overlined formulas, which progresses (infinitely often) at the first application of
(LN ). Otherwise, π must traverse the right-hand loop infinitely often (and might
also traverse the left-hand loop infinitely often). In that case, we can form a trace
following π given by the underlined formulas, which progresses (infinitely often)
at the second application of (LN ). ⊓⊔

CyclistFO is in fact capable of proving the above example. We note that
the overlapping of cycles in this example is essentially unavoidable, and that
we are forced to select different traces for the left-hand cycle depending on the
order in which these overlapping cycles are traversed. Thus, the proof condition
cannot be restated in this case as a simpler property to be satisfied by each cycle
individually. However, this proof does satisfy Brotherston’s condition of having
a “trace manifold”, which is stated in terms of connected sets of cycles [4, 5].

2.7 Soundness of cyclic proof systems. Although our implementation of
cyclic proof naturally deals only with the syntactic notion of provability given by
Defn. 3, we shall nevertheless outline here how soundness of a cyclic proof system
may be established. We assume a set I of interpretations of sequents, which are
functions from S into {true, false}; we write I |= S to mean I(S) = true. S is
called valid if I |= S for all I ∈ I.

Definition 5 (Ordinal trace function). An ordinal trace function for a cyclic
proof system (S,R, T , δ) and interpretations I is a function σ : (T × I) → O,
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applyrule(rule,proof,node) :
begin

result := [];
applications := rule(node);
foreach subgoallist in applications do

(proof’,subgoalnodes) :=
replacenode(proof, node, subgoallist, rule);

result := (proof’,subgoalnodes) :: result;

end

return result;

end

backlink (matchfun,proof,node) :
begin

result := [];
foreach node’ in proof do

if matchfun node node’ then
proof’ := linknode(proof,node,node’,matchfun);
if sound(proof’) then result := (proof’, []) :: result;

end

end

return result;

end

proofsearch(bound,proof,node) :
begin

if closed(node) then return proof;
if bound=0 then return nil;
foreach rule in ruleset do

if rule is a matching function then

results := backlink(rule, proof, node);
else

results := applyrule(rule, proof, node);
end

foreach (proof’, subgoalnodes) in results do
p’ := proof’;
foreach node’ in subgoalnodes do

p’ := proofsearch(bound-1,p’,node’);
if p’=nil then break;

end

if p’=nil then return nil else return p’;

end

end

end

Fig. 2. Pseudocode for proof search in Cyclist.

where O is an initial segment of the ordinals, satisfying the following conditions
for all I ∈ I and S ∈ S:

if I 6|= S then ∃S′ ∈ S, R ∈ R, I ′ ∈ I.
I ′ 6|= S′ and (S,R, S′) ∈ dom(δ) and

if (α, α′, n) ∈ δ(S,R, S′) then

{

σ(α′, I ′) ≤ σ(α, I) if n = 0
σ(α′, I ′) < σ(α, I) if n = 1

We note that the existence of an ordinal trace function subsumes local soundness
of the proof rules, because of the requirement in Definition 5 that falsifiability
of the conclusion of a rule implies falsifiability of one of its premises.

In the case of first-order logic, it is well known that an inductive predicate
P can be generated semantically via a chain of ordinal-indexed approximants
(P γ)γ≥0 . Here, given a suitable interpretation I the ordinal trace function
σ(P t, I) returns the smallest γ such that I |= P γt. See e.g. [5, 4, 9] for details.

Theorem 6 (Soundness). Suppose there exists an ordinal trace function for
(S,R, T , δ) and I. Then, if S has a cyclic proof, then S is valid.

Proof. (Sketch) Let P be a cyclic proof of S, and suppose for contradiction
that I 6|= S. Using local soundness of the rules, we can construct an infinite
path π = (vj)j≥0 in P and an infinite sequence (Ij)j≥0 of interpretations such
that Ij 6|= S(vj) for all j ≥ 0. Since P is a cyclic proof, there exists an infinitely
progressing trace (αj)j≥n following some tail (vj)j≥n of π. It follows from Defini-
tion 5 that the sequence (σ(αj , Ij))≥n is monotonically decreasing, and strictly
decreases infinitely often. This contradicts the well-foundedness of O. ⊓⊔

2.8 Proof search. Provided with the appropriate descriptions of sequents,
inductive definitions and inference rules, Cyclist instantiates a proof search
function, proofsearch(), shown in pseudo-code in Figure 2. This function, given
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a proof, a node within that proof and a maximum recursion depth, performs
an iterative depth-first search aiming at closing open nodes in the proof. The
global variable “ruleset” provides the ordered list of inference rules and matching
functions defined by the user; the functions replacenode() and linknode() do
the requisite graph surgery in order to replace an open node in the proof with
either the application of an inference rule or a back-link, respectively. Finally,
the function sound() checks the global soundness of a cyclic proof. The design
and trade-offs regarding this algorithm will be further discussed in Section 4.

3 Separation logic instantiations of Cy
list
We briefly present the two instantiations of Cyclist based on separation logic.

3.1 Separation logic entailment prover. CyclistSL is a prover for separa-
tion logic similar to the prover in [8]. The syntax (left) and semantics (right) of
the ∀∃ DNF-like fragment of separation logic the prover accepts appear below.

t ::= x | nil
α ::= t = t

| t 6= t
| emp

| t 7→ 〈t, . . . , t〉
| P (t, . . . , t)

H ::= α | H ∗H
F ::= H

| F ∨ F
| ∃x.F

s(nil) /∈ dom(h), for all s, h
s, h |= x = y iff s(x) = s(y)
s, h |= x 6= y iff s, h 6|= x = y
s, h |= emp iff h = ∅
s, h |= a0 7→ 〈a1, . . . , an〉 iff h = {s(a0) 7→ (s(a1), . . . , s(an))}
s, h |= H1 ∗H2 iff ∃ domain-disjoint h1, h2, s.t.

s, h1 |= H1 and s, h2 |= H2 and h = h1 ◦ h2

s, h |= F1 ∨ F2 iff s, h |= F1 or s, h |= F2

s, h |= ∃x.F iff ∃v. s[x 7→ v], h |= H

where stacks s are functions from variables to values, heaps h are finite partial
maps from addresses to value tuples (where addresses are a subset of values) and
◦ is disjoint union. The semantics of inductive predicates are standard [6, 7].

Inductive predicates are defined in a manner similar to that in CyclistFO.
For example, an acyclic, possibly empty, singly-linked list segment is defined as:

(a1 = a2) ⇒ ls(a1, a2) (a1 6= a2) ∗ a1 7→ 〈e3〉 ∗ ls(e3, a2) ⇒ ls(a1, a2)

Left- and right-unfolding rules are generated as in CyclistFO. Back-linking is
also as in CyclistFO, except that classical weakening is replaced by the spatial
weakening of separation logic, captured by the rule B ⊢ C =⇒ A ∗B ⊢ A ∗ C.

3.2 Separation logic termination prover. CyclistTerm implements a ter-
mination prover for heap-manipulating programs in a simple imperative lan-
guage, the theory of which was presented in [7]. By way of illustrating the pro-
gramming language, a program that traverses a linked list is as follows.

0: if a1=nil goto 3; 1: a1 := a1→next; 2: goto 0; 3: stop.

Sequents are of the form F ⊢i↓, where F is a precondition in separation logic as
in CyclistSL, and i is the line of the program to which the sequent applies. Such
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a sequent expresses the fact that if execution starts with the program counter
set to i at a state satisfying F , then the program will (safely) terminate. For
example, the sequent ls(a1, nil) ⊢0↓means that the above program will terminate
if started at line 0 with a heap satisfying ls(a1, nil).

CyclistTerm builds on CyclistSL. Additional are rules for the symbolic
execution of commands, derived via weakest preconditions. Unfolding rules for
inductive predicates are generated in a manner similar to that in CyclistSL

apart from the fact that there are no right-unfold rules. Back-linking is also
similar to that in CyclistSL, except that in CyclistTerm the program counters
in the sequents must also match (exactly). We note that CyclistTerm is not a
program analysis as it lacks abstraction capability.

4 Proof search issues and experimental results

Designing a proof search procedure for a cyclic theorem prover poses some design
challenges distinct to those of standard proof search. Here we discuss the main
issues, and report on our tests of Cyclist’s proof search performance.

4.1 Global search strategy. Non-ancestral back-links, i.e. back-links that
point to a sequent which is not an ancestor of the back-link, can significantly
reduce the depth of a proof [4]. Thus it is reasonable to conjecture that a breadth-
first search might find these shorter proofs, and consequently yield a faster search
algorithm than depth-first. Our early experiments overwhelmingly favoured the
latter. We conjecture that the high fan-out degree of the search space makes
breadth-first search impractical, even though shorter proofs may be found. Also,
employing a depth-first strategy will allow some non-ancestral back-links ‘to the
left’ of the current subgoal but also to open subgoals ‘to the right’ of the current
subgoal, thus representing a reasonable compromise. A best-first strategy might
perform better and we intend to pursue this question in future work.

4.2 Soundness checking. Invoking a model checker to check the soundness
of a pre-proof can be a costly step during proof search. To mitigate this we
employ an abstraction/minimisation heuristic that reduces the size of the proof
graphs to be checked by pruning leaf subgoals and composing certain types of
successive arcs. In the context of iterative depth-first search we also memoise the
results of these checks so as to avoid duplication of effort. This led to an order
of magnitude of reduction in the cost of the soundness check, and is reflected in
the low proportion of time spent checking soundness in our tests (see Table 4).

4.3 Forming back-links. When a partial pre-proof is found to be unsound
then we know that it can never form part of a sound, closed proof. Thus we
have the choice of either checking soundness once when the proof is closed, or to
apply the check eagerly, i.e. every time a back-link is formed. Our tests showed a
clear advantage in the eager soundness checking strategy under both depth- and
breadth-first search schemes. We conjecture that early elimination of an unsound
proof leads to a major reduction of the size of the search space outweighing the
cost of frequent soundness checking, especially after our optimisations.
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It is known that the set of sequents provable with the use of non-ancestral
back-links is equal to that with back-linking restricted to ancestor nodes [4].
This raises the question whether using only ancestral back-links improves per-
formance, due to a smaller number of calls to matching functions and soundness
checks. Restricting back-links to ancestral nodes does not speed up the instantia-
tions we provide, but makes some proofs impractical. It seems that the matching
functions we use will not fire significantly more often when allowed access to non-
ancestral nodes, and thus will not lead to excessive soundness checking.

4.4 Order of rule applications. As in most theorem provers, the order in
which inference rules/tactics are attempted directly impacts performance. We
list here two points specific to cyclic theorem proving. First, when matching
functions are computationally cheap, they can be prioritised and attempted early
and often, eagerly creating back-links. Used within tactics such as fold-then-
match, they can entail a higher computational cost and are thus placed last in
the priority order. Second, unfolding rules generally increase the size of sequents,
thus have lower priority than other inference rules. In particular, left-unfolding
precedes right-unfolding as it introduces progressing trace pairs in the cyclic
proof, and, it may (after simplification) enable right-unfolding rules to fire.

4.5 Predicate folding/lemma application. It seems certain that Cut elim-
ination does not hold, in general, for cyclic proof systems. Thus the ability to
conjecture and apply lemmas can be crucial to a successful proof, as is the case,
e.g., in our Example 6 above. Our instantiations of Cyclist do not yet permit
the application of arbitrary lemmas. Instead, we currently permit only predicate
foldings, where the lemma applied is essentially an inductive rule. For example,
the inductive rule Add(x, y, z) ⇒ Add(sx, y, sx) from Example 1 becomes the
“folding” lemma Add(x, y, z) ⊢ Add(sx, y, sx). We found empirically that this
very limited form of lemma application is very useful in quite a number of proofs.

4.6 Limitations. Cyclist is a young framework aimed at proving theorems
with a complex inductive structure. As such, it does not yet utilise the totality
of existing know-how on theorem proving, and this entails some limitations.

Focussing on inductive predicates means that function declaration and re-
lated equational reasoning facilities are lacking. As a result CyclistFO has diffi-
culty dealing with heavily-equational goals, since such goals have to be translated
into a predicate-based language resulting in loss of structural information.

Another limitation is that, although we do provide a predicate folding facility
as explained above, we have no functionality currently for applying general lem-
mas, and this restricts the ability of Cyclist instantiations to prove theorems
that must rely on the use of Cut in their proofs.

A well-known example that is unprovable as yet in CyclistFO and demon-
strates both limitations is the commutativity of addition. In CyclistFO this goal
can be expressed relationally as Nx,Ny,Add(x, y, z) ⊢ Add(y, x, z). This form
discourages the use of rewriting techniques guided by the structure of terms. In
addition, the cyclic proof of the theorem requires essentially the same lemma,
x + sy = s(x + y), as is needed for the standard inductive proof (relationally,
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this lemma can be stated as Nx,Ny,Add(x, y, z) ⊢ Add(x, sy, sz)). In standard
inductive theorem provers, this lemma would be supplied as a “hint” to the
prover, or would be found by an appropriate conjecture mechanism (cf. [16]).

4.7 Experimental results. The results of tests run on the three instantiations
of Cyclist are summarised in Table 4. All tests were run on a x64 Linux system
with an Intel i5 3.33GHz. Cyclist and all tests are available online at [1].Cy
listFO. We ran a number of tests with the first-order prover, mainly involv-
ing natural number induction. The two most interesting theorems we managed
to prove are “the P & Q example” [24], and the sequent appearing in Example 6.
Both proofs have a complex inductive structure, multiple cycles and require the
use of predicate folding. They are both found in under a second. It is notable
that Example 6 uses a lemma (Nx ⊢ Nssx) that is not an instance of folding (it
represents a “double fold”). CyclistFO proves this theorem by finding a deeper
proof that requires only single folds.Cy
listSL. The prover was run on the test cases from [8]. Proving time is
nearly zero for most, suggesting that CyclistSL could be used as a backend for
program analysis that automatically handles arbitrary inductive datatypes.Cy
listTerm. We ran the termination checker on a number of small programs
including the programs in [7]. Notable are an iterative binary-tree search (pro-
gram B in Table 4) and the reversal of a frying-pan list (program C, last theorem
in Table 4). The authors of [3] report that the Mutant tool for separation logic,
which deals only with lists, fails to prove the latter theorem (under an appro-
priate precondition). A cyclic termination proof was later presented in [7] where
it was painstakingly constructed by hand. CyclistTerm proves this in under a
second. Its proof contains five cycles, all requiring predicate folding.

5 Related work

There are a few theorem provers employing cyclic proof in some form. The
QuodLibet tool [2], based on first-order logic with inductive datatypes, uses a
version of infinite descent to prove inductive theorems whereby a proof node is
annotated with a weight, which must strictly decrease at back-link sites. Com-
pared to Cyclist, which is fully automatic, QuodLibet is intended for semi-
interactive proof. An automated cyclic prover for entailments of separation logic,
implemented in HOL Light, appeared in [8]. Compared to CyclistSL, the prover
in [8] disallows non-ancestral back-links and uses a restricted soundness condi-
tion, which in particular rules out the use of predicate folding. Nguyen and
Chin [19] provide a separation logic entailment prover using cyclic proof, but
which appears to be restricted in at least as many ways as [8].

In summary, the main restrictions on previous cyclic provers are: (a) a sin-
gle logical setting; (b) ancestral cycle schemes; (c) strong soundness conditions
that rule out many proofs; and (d) automated search limited to cut-free proofs.
Cyclist lifts all of these restrictions, albeit only partially in the case of (d).
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Theorem Time SC% Depth Nodes Uns./All

O1x ⊢ Nx 16 0 5 7 0/1
E1x ∨ O2x ⊢ Nx 20 0 6 15 4/6
E1x ∨ O1x ⊢ Nx 16 25 4 9 2/4

N1x ⊢ Ox ∨ Ex 12 0 4 6 0/1
N1x ∧ N2y ⊢ Q(x, y) 512 31 7 13 171/181

N1x ⊢ Add(x, 0, x) 4 0 3 5 0/1
N1x ∧ N2y ∧ Add3(x, y, z) ⊢ Nz 24 0 4 6 3/4
N1x ∧ N2y ∧ Add3(x, y, z) ⊢ Add(x, s(y), s(z)) 40 20 5 12 8/9

N1x ∧ N2y ⊢ R(x, y) 560 44 7 26 176/183

x 7→ y ∗ RList1(y, z) ⊢ RList(x, z) 16 0 5 8 0/1
RList1(x, y) ∗ RList2(y, z) ⊢ RList(x, z) 16 0 4 7 0/1

List1(x, y) ∗ y 7→ z ⊢ List(x, z) 8 0 4 6 0/1
List1(x, y) ∗ List2(y, z) ⊢ List(x, z) 8 0 3 5 0/1
PeList1(x, y) ∗ y 7→ z ⊢ PeList(x, z) 12 0 4 6 0/1

PeList1(x, y) ∗ PeList2(y, z) ⊢ PeList(x, z) 12 0 3 4 0/1
DLL1(x, y, z, w) ⊢ SLL(x, y) 12 0 3 5 0/1
DLL1(x, y, z, w) ⊢ BSLL(z, w) 12 0 4 6 0/1

DLL1(x, y, z, w) ∗ DLL2(a, x, w, b) ⊢ DLL(a, y, z, b) 8 0 3 4 0/1
ListO1(x, y) ∗ ListO2(y, z) ⊢ ListE(x, z) 12 0 5 12 0/1
ListE1(x, y) ∗ ListE2(y, z) ⊢ ListE(x, z) 20 0 5 8 0/1
ListE1(x, y) ∗ ListO2(y, z) ⊢ ListO(x, z) 24 0 5 8 0/1

BinListFirst1x ⊢ BinTreex 8 0 4 6 0/1
BinListSecond1x ⊢ BinTreex 20 0 4 6 0/1

BinPath1(x, z) ∗ BinPath2(z, y) ⊢ BinPath(x, y) 24 0 3 6 0/2
BinPath1(x, y) ⊢ BinTreeSeg(x, y) 16 0 4 8 0/2

BinTreeSeg
1
(x, z) ∗ BinTreeSeg

2
(z, y) ⊢ BinTreeSeg(x, y) 12 0 3 6 0/2

BinTreeSeg
1
(x, y) ∗ BinTreey ⊢ BinTree(x) 12 0 3 6 0/2

x 6= z ∗ x 7→ y ∗ ls1(y, z) ⊢ ls(x, z) 0 0 2 2 0/0
ls1(x, y) ∗ ls2(y, nil) ⊢ ls(x, nil) 16 0 3 4 0/1

ListE1(x, y) ∨ ListO1(x, y) ⊢ List(x, y) 16 0 4 9 2/4

A: ls1(x, nil) ⊢0↓ 16 0 5 7 0/1
B: btx ⊢0↓ 12 0 6 13 0/2
C: ls1(x, nil) ∗ ls2(y, nil) ⊢1↓ 52 8 8 10 13/14
D: y 6= nil ∗ ls1(x, nil) ∗ ls2(y, nil) ⊢0↓ 2036 16 12 24 197/233

C:

ls(x, z) ∗ ls(y, nil) ∗ z 7→ a ∗ ls(a, z)
∨ ls(b, nil) ∗ z 7→ b ∗ ls(x, z) ∗ ls(y, z)
∨ ls(x, nil) ∗ ls(y, z) ∗ z 7→ c ∗ ls(c, z) ⊢1↓ 124 0 9 39 19/23

A B C D

// List traversal

0: if x=nil goto 3;
1: x := x→next;

2: goto 0;
3: stop

// Bin. tree search

0: if x=nil goto 6;
1: if * goto 4;

2: x := x→left ;
3: goto 0 ;
4: x := x→right ;

5: goto 0 ;
6: stop

// List reversal

0: y := nil;
1: if x=nil goto 7;

2: z := x;
3: x := x→next;
4: z→next := y;

5: y := z;
6: goto 1;

7: stop

// List append

// (one-at-a-time)
0: if x=nil goto 10;

1: z := y→next;
2: if z 6=nil goto 8;
3: y→next := x;

4: x := x→next;
5: y := y→next;

6: y→next := nil;
7: goto 0;
8: y := y→next;

9: goto 0;
10: stop

Table 1. Upper: Theorems proved by the instantiations. The column labelled ‘Time’ is
the time taken in milliseconds, ‘SC%’ is the percentage of time taken by the soundness
checks, ‘Depth’ is the depth of the proof found, ‘Nodes’ is the number of nodes in the
proof and the last column shows the number of calls to the model checker as (calls on
unsound proof)/(total calls). Lower: The input programs to the termination prover.
NB the formulas used for program C are loop invariants and as such the program
counter in the judgment is set to 1, i.e., a statement in the loop.
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The “size change principle” for program termination by Lee et al [18] is based
on a condition similar to the soundness condition for cyclic proofs: a program
terminates if every possible infinite execution in the control flow graph would
result in an infinite descent of some well-founded data value. It is plausible that
the approach of [18] to termination checking, empirically shown to often be
more efficient in practice than a Büchi automata construction [14], would also
benefit the soundness checking in Cyclist. However, in contrast to size-change
termination problems, the main problem we face is not in checking the soundness
condition, but in discovering the correct candidate pre-proofs.

Finally, there are a number of mature, automated theorem provers employ-
ing explicit induction, including ACL2 [17], IsaPlanner [12], LambdaOtter and
many others. Unfortunately, most test suites for these provers are largely based
on equational reasoning about functions over inductive datatypes, whereas our
instantiations of Cyclist currently only cater for inductively defined predicates,
making a direct comparison difficult. These tools will most probably outperform
ours on problems requiring extensive rewriting, generalisation or the application
of non-trivial lemmas. On the other hand, Cyclist performs well on small prob-
lems requiring complex induction schemes, which are typically problematic for
explicit induction (cf. Example 6). Thus we believe that integrating the sophis-
ticated non-inductive features of explicit-induction provers into Cyclist might
yield significant benefits. For example, conjecturing appropriate lemmas (cf. [16])
seems extremely useful in forming back-links during proof search.

6 Conclusions and future work

The main contributions of this paper are our generic theory of cyclic proof,
its unrestricted implementation in our theorem prover Cyclist, and the appli-
cation of Cyclist to three concrete logical systems, including automated proof
search procedures. In particular, we provide the first implementation of the cyclic
proof system for program termination proposed in [7]. We believe that Cyclist

represents the first fully general implementation of cyclic proof.

Although Cyclist is by no means an industrial-strength theorem prover, the
results of our experiments to date are nevertheless encouraging. In its various
instantiations, the prover is capable of automatically proving theorems with a
complex inductive structure, notable Wirth’s “P&Q” example, the proof of in-
place reversal of a “frying-pan” list from [7], and our own Example 6.

There are obvious directions in which Cyclist could be improved, both
at the generic level (e.g. function definition over datatypes, rewriting support,
lemma application and generalisation mechanisms) and in its various instantia-
tions (e.g. more advanced search strategies for particular logics). There is also
the potential for developing new instantiations of Cyclist to other fixed-point
logics, such as the µ-calculus or temporal logics. We warmly encourage the de-
velopment of such instantiations by interested readers.
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