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Abstract

Concurrent programming is known to be quite hard. It is made even

harder by the fact that, very often, the execution models of the machines

we run our software on are not precisely defined.

This document is a tutorial on the herd tool and the cat language, in

which one can define consistency models.



1 Why herd cats anyway?

Concurrent programming is known to be quite hard.
Look at this pink pony:

It’s been computed on an Intel x86 CPU, with sequential code. It’s healthy!
Now look at this one:

It’s been computed on an Nvidia GPU, with concurrent code. It’s all bro-
ken; this is because multicore machines sometimes do not behave quite as we’d
expect, and sensible looking code can end up producing unexpected results.

Now, there are ways to repair the concurrent pony, look; this pony was also
computed on an Nvidia GPU, under the same conditions as the previous one:

One can repair our pony by placing special instructions in the code used to
compute it. However the semantics of such special instructions is very often
poorly documented.
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In this lecture we present a language, called cat, that can help us tackle this
issue by allowing us to precisely describe the semantics of these special instruc-
tions. More precisely, our cat language gives us means to describe consistency

models, i.e. execution models of concurrent and distributed systems.
By the end of this lecture, you should have been able to build several models:

• Sequential Consistency [8] (see Sec. 3)

• Total Store Order [10] (see Sec. 3),

• a model similar in spirit to IBM Power or ARM [5] (see Sec. 4),

• a model similar in spirit to Nvidia GPUs [3] (see Sec. 5),

• a model inspired by C++ [14] (see Sec. 6).

Reading notes Most of the lecture is going to be interactive, using the herd
tool. For this tutorial to go smoothly, I would suggest to:

• have internet access, to be able to go to the herd web interface: virginia.cs.

ucl.ac.uk/herd-web/?book=tutorial;

• open the appendix, where I give the final models that the tutorial should
help you build; these can act as guidelines along the way.

2 First steps in herding cats

Here we’re going to learn about the essential concepts to follow this lecture.

Litmus tests are small snippets of assembly or pseudo-assembly code that
allow us to examine the behaviour of a chip (see e.g. [5]), or a model like we’re
doing here.

Below is our first litmus test. In this test, called MP (short for message pass-

ing), two processors P0 and P1 communicate via two shared memory locations
x and y, both initialised to 0:

Bell MP

{

x = 0;

y = 0;

}

P0 | P1 ;

w[] x 1 | r[] r1 y ;

w[] y 1 | r[] r2 x ;

exists (1:r1 = 1 /\ 1:r2 = 0)

On the left, the thread P0 writes 1 to memory location x, and 1 to memory
location y. On the right, the thread P1 reads from y and places the result into
register r1, and reads from x and places the result into register r2. The registers
r1 and r2 are private to P1.

Essentially, P0 writes a message in x, then sets up a flag in y, so that when
P1 sees the flag (via its read from y), it can read the message in x.

At the bottom of the test, we ask “is there an execution of this test such
that register r1 contains the value 1 and register r2 contains the value 0?”.
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Exercise: what do you think? Do you think such an execution is possible?

The herd tool Now, let’s try it out! The herd tool lets us simulate a model,
and run litmus tests against that model, to determine which executions are
allowed by this model. So let’s go to virginia.cs.ucl.ac.uk/herd-web/?book=tutorial,.
In the “litmus test” box, find the file mp.litmus in the drop box. Let’s select
“all executions” for the display, and then click on the pink pony.

Histograms In the “histogram” box, we see the following result:

Test MP Allowed

States 4

1:r1=0; 1:r2=0;

1:r1=0; 1:r2=1;

1:r1=1; 1:r2=0;

1:r1=1; 1:r2=1;

Ok

Note that we see the result 1:r1=1; 1:r2=0;, which we asked about in our
test. Thus this result is reachable by our test, and this is why the tool says Ok;
otherwise it would say No.

Executions In the “executions” box, we see that this test can have four dif-
ferent executions. In all of them we see four events : writes to x or y, of the
shape W() x=32, which means that value 32 was written to the memory location
x, and reads from x or y, of the shape R() y=52, meaning that memory location
y was read, and the value read was 52. We also see two types of relations over
these events: po arrows and rf arrows.

mp (data flow 1)

P0

a: Wx=1

b: Wy=1

P1

c: Ry=0

d: Rx=0

po po

rf

rf

mp (data flow 3)

P0

a: Wx=1

b: Wy=1

c: Ry=1

P1

d: Rx=0

po
rf

po

rf

mp (data flow 2)

P0

a: Wx=1

b: Wy=1 d: Rx=1

P1

c: Ry=0

po
rf

po

rf

mp (data flow 4)

P0

a: Wx=1

b: Wy=1 d: Rx=1

c: Ry=1

P1

po
rf

rf
po

Figure 1: Four executions of the MP test
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Program order The po arrows represent the program order. The program
order intuitively corresponds to the order in which the events occur on a thread.

For example in our test, on P0, the write of x is appears in program order
before the write of y. Therefore the two corresponding events in Fig. 1 are
related by po. Similarly the read of y on P1 appears in our test in program
order before the read of x; thus the two corresponding events in Fig. 1 are
related by po.

Note also that po is transitive. In Fig. 1, suppose there was an extra event
e occuring on P1 with a po arrow from d to e. In this case there would also be
a po arrow from c to e. That is, e is after c in the program order.

Read-from The rf (read-from) arrows depict who reads from where; more
precisely, for each read of a certain location, it finds a unique write of the same
location and value.

Let’s go through each execution one by one. In the first one, the two reads
on P1 read from the initial state, which we depict with rf arrows with no sources.
Our test has initialised x and y to 0, thus the read events in the first execution
have the value 0. In the second execution, the read of x reads from the update
of x by P0, hence has the value 1; however the read of y reads from the initial
state still, hence takes the value 0. The third execution is the one our test was
asking about: the read of y reads from the update by P0, whereas the read of
x takes its value from the initial state, i.e. 0. In the last execution, both reads
take their values from the updates by P0, i.e they both read the value 1.

Now we’re going to write a model that will forbid the result 1:r1=1; 1:r2=0;,
which we asked about in our test. It won’t be a minimal model forbidding this
result though (by which I mean that the model will forbid much more behaviours
than this particular one), but that’s okay.

To do so, we need to learn a few more concepts.

Coherence order In most models I know of, there’s a notion of a coherence

order. Intuitively it’s a history of all writes to a given memory location x, that
represents the order in which writes to x hit x. If you were sitting in memory
location x, looking at writes falling down onto you, and recording their values as
they come by, you would get the coherence order. In this lecture, the coherence
order co is a total order over writes to a given memory location.

From-read Using the read-from and coherence relations, we can build a re-
lation called from-read :

r

w1

w2

w0

fr

fr

rf
co

co
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Intuitively, a from-read arrow starts from a read of a given location x, for
example the read r just above, and points to all the writes that overwrite the
value this read has taken. In the drawing above, the read r takes its value from
the write w0, as shown by the rf arrow between them. The write w0 is then
overwritten by the write w1, as shown by the co arrow between them. Hence
there is an fr arrow between r and w1, as w1 overwrites the write w0 from which
r reads. The write w1 is then overwritten by the write w2, as shown by the co
arrow between them. Thus there is an fr arrow between r and w2 too.

A good place to build fr is our cat file: go to the “model” box, and find the
“toggle cat” button. The interface should put you in front of the cat file called
tutorial.cat. If you click on “make custom cat”, you should be able to edit
it, and write the line above underneath the title and preamble of the cat file,
i.e. underneath:

"I can't dance"

include "tutorial.cat"

In cat speak, this is how we can build the from-read fr (you can put this line
in your cat file):

let fr = rf^-1;co

which means that two events a and b are related by fr if it’s possible to follow
an rf arrow backwards from a to some event, then a co arrow forwards from
there, arriving at b. Also let’s add

show fr

to the cat file, to make sure that the tool displays the new fr arrows.
Now let’s run herd on MP again (don’t forget to click on the pink pony!). In

the third execution, observe the fr arrow between the read of x by P1 and the
update of x by P0:

mp

P0

a: Wx=1

b: Wy=1

c: Ry=1

P1

d: Rx=0

po
rf

po
fr

Let’s look at this execution a bit more: the read of y by P1 reads the update
by P0, whereas the read of x by P1 reads the initial state, i.e. ignores the update
of x by P0. Note that this is an execution that leads to the result 1:r1=1;

1:r2=0; that we asked about in our litmus test.
Also, note that such an execution compromises the implementation of mes-

sage passing idioms: intuitively, we’d like P1 to access the update of the data x

after it has read the update of the flag y.
In our models, these kind of violations will occur as cycles. Notice, in the

execution above, how we can follow the arrows to find a cycle: from a to b to c

to e and back to a.
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3 Let’s herd two kittens [12]

There are several models that would forbid this compromising execution. We’ll
build two: Sequential Consistency (SC) [8] and Total Store Order (TSO), which
is the model of Sparc TSO [11] and Intel x86 [10]. In fact we won’t build exactly
TSO below, only a fragment of it, but you’ll get to build TSO properly in an
exercise later on.

Sequential Consistency is such that executions of a program are interleavings
of the instructions appearing on the different threads of the program. One can
show (see e.g. [1, 2]) that this corresponds to an axiomatic model, i.e. model
phrased in terms of events, program order, read-from, coherence and from-read
(such as the ones we are manipulating here), where the program order and what
I call the communication relations (i.e. the union of read-from, coherence and
from-read) are compatible, i.e. there cannot be any cycle in their union. Let’s
first build the communication relations in cat speak (to put in your cat file):

let com = rf | co | fr

Here we’re gathering the read-from rf, coherence order co and the from-read
fr in a relation called com (for communications). In cat speak, the symbol | is
the union of arrows, i.e. of relations over events.

Now we can build a procedure that will implement Sequential Consistency
(to put in your cat file):

procedure sc() =

let sc-order = (po | com)+

acyclic sc-order

end

This procedure we call sc, and its enforces the acyclicity (through the key-
word acyclic) of the relation sc-order. This relation is defined as the union of
the program order po and the communication relation com that we built earlier.
We need to call this procedure later on in the cat file for it to have an effect:

call sc()

Now let’s run our MP example under that new cat file. Let’s have a look at
the histogram:

Test MP Allowed

States 3

1:r1=0; 1:r2=0;

1:r1=0; 1:r2=1;

1:r1=1; 1:r2=1;

No

Observe that there are now only 3 possible states, and the compromising
result 1:r1=1; 1:r2=0; has disappeared. If you look at the executions, you’ll
see that we do not have the compromising one anymore. That’s because there
was a cycle in the union of the program order po and the communicaton com:
from a to b to c to d and back to a.
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Total Store Order is such that write-read pairs (whether to the same memory
location or not) on the same thread can appear to occur out of order. This may
be due to processor caches and buffering (which lead to faster processors, but
surprising behaviours).

Consider the following store buffering litmus test, where two processors P0
and P1 communicate via two shared memory locations x and y, both initialised
to 0:

Bell SB

{

x = 0;

y = 0;

}

P0 | P1 ;

w[] x 1 | w[] y 1 ;

r[] r1 y | r[] r2 x ;

exists (0:r1 = 0 /\ 1:r2 = 0)

On the left, the thread P0 writes 1 to memory location x, and reads from
y and places the result into register r1. Symmetrically, the thread P1 writes 1
to memory location y, and reads from x and places the result into register r2.
The register r1 is private to P0, and r2 is private to P1.

At the bottom of the test, we ask the question “is there an execution of this
test such that both registers contain the value 0?”

Let’s comment out the call to SC because we’re trying to build a different
model here:

(* call sc() *)

Let’s feed this test to herd; find the file sb.litmus in the litmus test drop
box. After clicking on the pink pony, it says:

Test SB Allowed

States 4

0:r1=0; 1:r2=0;

0:r1=0; 1:r2=1;

0:r1=1; 1:r2=0;

0:r1=1; 1:r2=1;

Ok

Note that we see the result 0:r1=0; 1:r2=0;, which we asked about in our
test. This result corresponds to the following execution:

sb

P0

a: Wx=1

b: Ry=0

c: Wy=1

P1

d: Rx=0

po
fr fr

po
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More precisely, the two reads on each thread reads from the initial state
(e.g. the read on P1 reads from the initial state for x). Since the initial state is
overwritten by the updates to x and y, we are exactly in the fr situation: for
example the read of x on P1 is fr-before the write of x on P0.

Such a result can be explained for example by the presence of store buffers,
one per thread: both writes (the write to x on P0 and the write to y on P1) can
sit in their threads’ store buffers for a while, then the reads (from y on P0 and
from x on P1) can take their value from the initial state, i.e. from memory, and
finally the writes can hit the memory.

This would be the case on an Intel x86 [10], or a Sparc TSO machine [11].
One can show (see e.g. [10, 1, 2]) that TSO corresponds to an axiomatic

model (i.e. phrased in terms of events, program order, read-from, coherence
and from-read), where a fragment of the program order and the communication
relations are compatible, i.e. there cannot be any cycle in their union. Re-
member that we’ve built the communication relations earlier, and placed the
definition in our cat file.

To model TSO, we also need to build a notion of read-froms between different
threads, which we often call external read-from (in our cat file, next to the
definition of com for example):

let rfe = rf & ext

where the primitive ext is the relation that gathers pairs of events that belong
to different threads, such as the write of y by P0 and the read of y by P1.

Now, one way to model the store buffering scenarios allowed by TSO is to
reorder write-read pairs (whether to the same memory location or not). This
means that TSO differs from SC on write-read pairs. Thus we have to exclude
all the write-read pairs from sc-order to build TSO. We can then require the
acyclicity of this new relation tso-order. Let’s build this as a procedure once
again (to put in your cat file, just below the sc procedure):

procedure almost-tso() =

let ppo = po \ W*R

let tso-order = ppo | rfe | co | fr

acyclic tso-order

end

Here we’re declaring a procedure called almost-tso, in which there is a local
definition of a relation called ppo (for preserved program order). We define ppo
as the program order po, minus the write-read pairs: in cat speak the “setminus”
operation is \; the (predefined) set of write events is W, the (predefined) set of
read events is R, thus the set of all write-read pairs is W*R.

On the second line of this procedure, we require the acyclicity of the union
(remember that the symbol | is the union in cat speak) of ppo and the commu-
nications com.

We need to call our almost-tso procedure in our cat file:

call almost-tso()

If you run the test now, you should find that the test has still not been
forbidden. Now, most architectures provide special instructions called fences

that prevent certain reorderings. For example, Intel x86 provides mfence, which
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prevents the reordering of write-read pairs allowed by TSO. Let’s build ourselves
such a fence; the right place to do so is in the bell file. Go to the “model” box,
and find the “toggle bell” button; if you click on it, it should put you in front
of tutorial.bell. Clicking on “make custom bell” should allow you to edit
the bell file. Do not remove the title line "I can’t dance"; you could write
another title, but not remove the title entirely.

First we declare a possible annotation for our fence, for example ’wr (for
write-read):

enum Fences = 'wr

More precisely, here we declare an enumeration of possible fence annotations
under the name Fences. For now we only have one annotation, wr. This enum
will also create a set Wr all of the events that bear the annotation wr.

Interlude: Enums, tags, and annotations More precisely, in cat speak,
one can define enumeration types, as follows. This should go into a bell file; if
you want to try it out I would suggest opening a fresh bell file to not spoil the
one we’re currently building; don’t forget to give a title to your file [16]:

"Hey Hey Mama"

enum Led = 'z || 'e || 'p

Here we’re defining an enumeration type Led, which contains three tags : ’z,
’e and ’p. The user can then use these tags to specify that certains events can
bear eponymous annotations ; for example (again in the bell file):

events W[{'z}]

events R[{'e,'p}]

specifies that write events (which belong to the predefined set W) can bear the
annotation z, whilst read events (which belong to the predefined set R) can bear
the annotations e or p.

The user can then use these annotations in litmus tests, for example (if you
want to try it out, find ledzep.litmus in the litmus test drop box):

Bell BlackDog

{

x = 0;

y = 0;

}

P0 | P1 ;

w[z] x 1 | r[p] r2 x ;

r[e] r1 y | ;

exists(0:r1=0 /\ 1:r2=1)

Internally, herd has built one set for each possible tag that was declared in
the enumeration type Led: the set Z gathers all events with annotation z, the
set E all events with annotation e, and the set P all events with annotation p.
Thus in the litmus test LedZep above, the write event on P0 will belong to the
set Z, the read on P0 to the set E, and the read on P1 to the set P.

The user can manipulate these sets in the bell file; for example:
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let ze = Z*E

let ep = E*P

let zep = ze;ep

defines three relations ze, ep, and zep, such that ze gathers all pairs where the
right extremity belongs to Z and the left extremity belongs to E, ep gathers all
pairs where the right extremity belongs to E and the left extremity belongs to
P, and zep builds the sequence of a step of ze and a step of ep. We can add

show ze, ep, zep

if we want to visualise these three relations.

Back to the write-read fence Then we need to say that our fence events
(much like read and write events, but to represent fences) can bear the annota-
tions that we’ve just defined:

events F[Fences]

More precisely, here we say that our fence events, of the shape f(...) can
bear the annotation wr. Let’s go ahead and modify the SB example by adding
fences to it:

Bell SB+fwr+fwr

{

x = 0;

y = 0;

}

P0 | P1 ;

w[] x 1 | w[] y 1 ;

f[wr] | f[wr] ;

r[] r1 y | r[] r2 x ;

exists (0:r1 = 0 /\ 1:r2 = 0)

As you can see, there is a fence instruction f(wr) between each write-read
pair on P0 and P1. Thus the two corresponding events belong to the set Wr.

Now we need to build a relation to gather all pairs of memory events (read
or write) that are separated by a fence in between them in program order; the
standard library has such a primitive, it is called fencerel. We can put the
following lines in our bell file for example (where F & Wr is the set of fence
events that bear the annotation wr):

let fwr = fencerel(F & Wr)

show fwr

The definition of fencerel is in herd’s standard library; it is as follows:

let fencerel(S) = (po & (_ * S)); po

It takes as argument a set S of events, and builds the sequence (the symbol
; designates the sequence of relations in cat speak) of the relation po & ( *

S) and the program order po. Now let’s look at the relation po & ( * S) a
bit more. It is built as the intersection (& is the intersection in cat speak) of the
program order po, and the set of pairs ( * S). These pairs are such that the
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domain (the left extremity) can be anything, whether read or write ( means
“anything” in cat speak), and the range (the right extremity) is in the set S.

So now when we define fwr as fencerel(F & Wr) up above, this means that
we’ve built the relation gathering all pairs of events (read or write), such that
there is a fence event (i.e. that belong to F) in between them in program order,
and this fence event bears the annotation wr (i.e. belongs to the set Wr). This
is true, for example, of the write-read pair on P0 in our example SB+fwr+fwr.

Now we can add this fwr relation to our tso definition; that is, we can
update our almost-tso procedure as follows:

procedure almost-tso() =

let ppo = po \ W*R

let tso-order = ppo | fwr | rfe | co | fr

acyclic tso-order

end

Note how we’ve added the fwr relation to the shape of cycles forbidden by
our tso definition, so that now we can have no cycle that is made of ppo, fwr
or com arrows.

Let’s feed this test to herd and see what it says (find the file sb+fwr+fwr.litmus
in the litmus test drop box):

Test SB+fwr+fwr Allowed

States 3

0:r1=0; 1:r2=1;

0:r1=1; 1:r2=0;

0:r1=1; 1:r2=1;

No

Observe that the final state we were asking about, that can be explained by
the store buffer scenario outlined above, has disappeared, thanks to the fences.

Think of saving your bell and cat files, for example under the names
kittens.bell and kittens.cat.

4 Let’s herd our first big cat: a tiger [6]

Today we’ll learn how to build a model that is similar in spirit to IBM Power
and ARM. These two models revolve around a handful of principles that we’ll
build one by one.

Start from fresh bell and cat files, but keep the definitions of fr, rfe, and
com. We’re going to use the sc procedure in a slightly different way, to flag

the executions that do not satisfy SC; in our kittens.cat file we had:

procedure sc() =

let sc-order = (po | com)+

acyclic sc-order

end

[...]

call sc()
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to forbid non-SC executions, i.e. executions with a cycle in the union of the
program order po and the communications com.

Now we don’t want to forbid SC executions, but just flag them. Thus we
implement a procedure to flag non-SC executions (in our cat file):

procedure sc-flag() =

let sc-order = (po | com)+

flag ~acyclic sc-order as non-sc

end

call sc-flag()

that is we flag, with the name non-sc, all the executions where there is a cycle
in the union of the program order po and the communications com. Note that
~ is the negation. Finally, select the “positive executions” display option.

4.1 SC per location

The first principle is called SC per location. It means that if you analyse your
program through the prism of a sole memory location at a time, everything looks
as if on SC. Formally, this also means that non-relational analyses are sound for
free under for consistency models that respect SC per location [4].

Now, let’s look at a bunch of litmus tests.

coWW

Bell coWW

{

x = 0;

}

P0 ;

w[] x 1 ;

w[] x 2 ;

exists (x=1)

In the coWW test, we have only one thread P0, which does two writes of
memory location x in program order. The first write in program order writes
the value 1 to x; the second writes 2. We’re asking at the end if it is possible to
have the value 1 in x at the end, which means that the write of value 2 has hit
the memory before the write of value 1.

Recall that we have defined the coherence order precisely for that purpose:
describing the order in which writes to a given memory location hit that location.

Now let’s run herd on our cat file and the test coWW (find coww.litmus in
the litmus test drop box). We get the following histogram:

Test coWW Allowed

States 2

x=1;

x=2;

Ok
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On the execution side, we get the execution that leads to the final state
we’ve asked about in our litmus test; note that it’s a non-SC execution (see the
line Flag non-sc in the histogram above) because of its cycle in the union of
po and com:

coWW

P0

a: Wx=1

b: Wx=2

po
co

If you select the “all executions”option, you’ll see two executions; one where
the coherence order co follows the program order po, and the one above, where
the coherence order co is in the opposite direction as po.

coRW1

Bell coRW1

{

x = 0;

}

P0 ;

r[] r1 x ;

w[] x 1 ;

exists (0:r1=1)

In the coRW1 test, we have only one thread P0, which does a read and a write
of memory location x in program order. The read access reads x and places the
result into register r1. The write access writes the value 1 to x. We’re asking
at the end if it is possible to have the value 1 in r1 at the end, which means
that the read takes its value from the po-later write.

Recall that we have defined the read-from precisely for that purpose: de-
scribing who reads from where; in this case if the read of x can take its value
from the po-later write of value 1.

Now let’s run herd on our cat file and the test coRW1 (find the file corw1.litmus
in the litmus test dropbox). We get the following histogram:

Test coRW1 Allowed

States 2

0:r1=0;

0:r1=1;

Ok

On the execution side, we get the execution that leads to the final state
we’ve asked about in our litmus test; note that it’s a non-SC execution (see the
Flag non-sc line just above) because of its cycle in the union of po and com:
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coRW1

P0

a: Rx=1

b: Wx=1

rf
po

If we select the “all executions” display option, we get two executions; one
where the read takes its value from the initial state, and the one above, where
the read takes its value from the po-later write of value 1.

coRW2

Bell coRW2

{

x = 0;

}

P0 | P1 ;

r[] r1 x | w[] x 2 ;

w[] x 1 | ;

exists (0:r1=2 /\ x=2)

In the coRW2 test, we have two threads P0 and P1, communicating via the
shared memory location x which is initialised to 0. P0 is the same as in the
previous test coRW1, i.e. does a read and a write of memory location x in
program order. The read access reads x and places the result into register r1.
The write access writes the value 1 to x. P1 writes the value 2 into memory
location x. We’re asking at the end if it is possible to have the value 2 in r1

and in x at the end, which means that the read takes its value from the write
of x on P1 (r1=2) and that the write by P1 hits the memory after the write by
P0 (x=2).

Now let’s run herd on our cat file and the test coRW2 (find corw2.litmus in
the litmus test dropbox).

On the execution side, we get the following execution; note that it’s a non-SC
execution because of its cycle in the union of po and com:

coRW2

P0

a: Rx=2

b: Wx=1

c: Wx=2

P1

po

co

rf

If we select the “all executions” display option, we get six executions, the
third one being the one leading to the result we’re asking about in the test. In
this execution, the read of x by P0 takes its value from the write by P1 (note the
read-from rf arrow between them), and the write by P0 hits the memory before
the write by P1 (note the coherence arrow co between them).
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coWR

Bell coWR

{

x = 0;

}

P0 | P1 ;

w[] x 1 | w[] x 2 ;

r[] r1 x | ;

exists (0:r1=2 /\ x=1)

In the coWR test, we have two threads P0 and P1, communicating via the
shared memory location x which is initialised to 0. P0 writes 1 into memory
location x, and reads x, placing the result into register r1. P1 writes 1 into x.
At the end we’re asking if it’s possible to have the value 2 into r1, i.e. the read
by P0 reads from the write by P1, and to have the value 1 in x, i.e. the write of
P0 hits the memory after the write of P1.

Now let’s run herd on our cat file and the test coWR (file cowr.litmus). On
the execution side, we get the following non-SC execution:

coWR

P0

a: Wx=1

b: Rx=2

P1

c: Wx=2

po
fr

corf

If we select the “all executions” option, we get six executions, the fourth one
being the one leading to the result we’re asking about in the test. In this
execution, the read of x by P0 takes its value from the write by P1 (note the
read-from rf arrow between them), and the write by P0 hits the memory after
the write by P1 (note the coherence arrow co between them).

Recall that we have defined the from-read precisely for that purpose: starting
from a read such as the one by P0, pointing to all the writes (such as the one
by P0) that overwrite the value read (given by the write on P1). Thus we have
a from-read arrow fr between the read by P0 and the po-preceding write by P0.

coRR

Bell coRR

{

x = 0;

}

P0 | P1 ;

r[] r1 x | w[] x 1 ;

r[] r2 x | ;

exists (0:r1=1 /\ 0:r2=0)

In the coRR test, we have two threads P0 and P1, communicating via the
shared memory location x which is initialised to 0. P0 reads x twice, placing the
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results into r1 and r2; P1 writes 1 to x. At the end we’re asking if it’s possible
for r1 to hold the value 1, i.e. after having read from P1, and for r2 to hold the
value 0, i.e. after having read from the initial state.

Now let’s run herd on our cat file and the test coRR (file corr.litmus).
On the execution side, we get the following execution; note that it’s a non-SC

execution because of its cycle in program order and communications:

coRR

P0

a: Rx=1

b: Rx=0

c: Wx=1

P1

po

fr

rf

If we select the “all executions” option, we get four executions, the third
one being the one leading to the result we’re asking about in the test. In this
execution, the first read by P0 reads from the write on P1 (note the read-from
arrow rf between them), and the second read by P0 reads from the initial state.

Recall that we have defined the from-read precisely for that purpose: starting
from a read such as the second one by P0, pointing to all the writes (such as the
one by P1) that overwrite the value read (given by the initial write of x). Thus
we have a from-read arrow fr between the read by P0 and the write by P1.

Forbidding these idioms Let’s look at all the executions that we have
flagged to be non-SC: observe that they all have a similar shape, in which
the program order contradicts the communication relations. More precisely,
because all of our tests use one memory location only, it’s the program order
restricted to the same location that contradicts the communication relations.

Let’s define a new notion po-loc, i.e. the program order restricted to both
extremities having the same location; in cat speak (a good place to put this
definition would be in the cat file, just next to the definition of com):

let po-loc = po & loc

where the primitive loc gathers all pairs of read and write events that have the
same location.

Now, let’s require for po-loc to not contradict our communication relations
(recall we’ve built this notion before, into the relation com), within a procedure
sc-per-location:

procedure sc-per-location() =

acyclic po-loc | com

end

Don’t forget to call the procedure sc-per-location in your cat file:

call sc-per-location()

Now let’s re-run all of our tests, and observe that we do not have the exe-
cutions that we’ve flagged anymore!

17



Exercise: SC per location with load-load hazard Certain architectures,
such as Sparc RMO [11] allow what is sometimes called load-load hazard, i.e. a
situation where the coRR test that we’ve just seen is allowed to yield the result
0:r1=1; 0:r2=0;.

How do you think we can build a check that forbids all tests coWW, coRW1,
coRW2 and coWR, but allows the test coRR?

4.2 No thin air

The second principle is called no thin air. Intuitively, this principle forbids
scenarios where a read can take its value from a write that depends on this read.
The word “depends” can be interpreted in many different ways; let’s make that
precise. Consider the following litmus test:

Bell LB

{

x = 0;

y = 0;

}

P0 | P1 ;

r[] r1 x | r[] r2 y ;

w[] y 1 | w[] x 1 ;

exists (0:r1 = 1 /\ 1:r2 = 1)

In the LB test, we have two threads P0 and P1. P0 reads x and places the
result into register r1, then writes 1 to y. P1 reads y and places the result into
register r2, then writes 1 to x. At the end we’re asking whether it is possible
for both registers to contain the value 1, i.e. if the two reads can read from the
po-later writes. This is perfectly well possible on ARM or Nvidia machines for
example [5, 3], because the read-write pairs on each thread can be reordered.

Let’s run herd on this test with our current cat file (find the lb.litmus file
in the litmus test drop box); we get the following histogram:

Test LB Allowed

States 4

0:r1=0; 1:r2=0;

0:r1=0; 1:r2=1;

0:r1=1; 1:r2=0;

0:r1=1; 1:r2=1;

Ok

The execution corresponding to the situation we asked about in the test is
as follows; note that it’s a non-SC execution because of its cycle in union of
program order and communications:

lb

P0

a: Rx=1

b: Wy=1

c: Ry=1

P1

d: Wx=1

po
rf rf

po
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Now, we can place something between the read and the write on each thread
to prevent their reordering: we can use dependencies, typically address, data, or
control dependencies. Note that dependency relations always start with a read.

Interlude: Implementing dependencies In this lecture, we’ll abstract
away from actual ways of implementing dependencies. But to give an idea
of what I mean, here’s an example of data dependency. Consider the following
variant of LB:

Bell LB+datas

{

x = 0;

y = 0;

}

P0 | P1 ;

r[] r1 x | r[] r1 y ;

xor r2 r1 r1 | xor r2 r1 r1 ;

add r3 r2 1 | add r3 r2 1 ;

w[] y r3 | w[] x r3 ;

exists (0:r1 = 1 /\ 1:r2 = 1)

Observe how we use operations on registers between the read and write on
each thread. More precisely on P0, we read location x and place the result into
register r1. Then we xor the value in r1 with itself, and place the result into
register r2 (of course the result is always 0, but that’s okay). Then we add 1 to
the value in r2, and place the result (i.e. 1) into r3. Finally we write the value
in r3 into location y. This manipulation of registers is enough to implement a
data dependency from the read of x to the write of y.

Abstracting dependencies For this lecture however, we’re going to model
dependencies as fences. This means that the dependencies that we are manip-
ulating here are stronger than in the wild. However the definitions and axioms
we’re defining should hold with a proper notion of dependencies.

Let’s do it! Let’s open our bell file, and create a tag dep for dependencies;
we can for example declare a Fences type:

enum Fences = 'dep

Now in our litmus test we can use dependencies (note the f[dep] instructions
in between the read and the write on each thread):

Bell LB+dep+dep

{

x = 0;

y = 0;

}

P0 | P1 ;

r[] r1 y | r[] r2 x ;

f[dep] | f[dep] ;

w[] x 1 | w[] y 1 ;

exists (0:r1 = 1 /\ 1:r2 = 1)
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Run it on your current cat file and observe that there are non-SC executions.
Finally we have to give a semantics to our dependencies. The right place to

do this is your cat file. Let’s look at the execution of the LB litmus test that
we give above. We can see a cycle in the union of the program order po and
the read-froms rf between threads. We want to build a check such that having
dependency arrows instead of program order arrows forbids this execution.

So we need to implement a few concepts in cat speak; let’s build the relations
yielded by our special dependency events; recall that herd has a standard library
in which there is a function called fencerel. This function builds, given a set
of events (e.g. F), the relation gathering all pairs of events in program order
that have such an event (e.g. f(dep)) between them. Thus using fencerel we
can build the relation corresponding to dependencies (to put in your bell file):

let deps = fencerel(F & Dep) & (R * _)

show deps

Note how we restrict our dependency relation deps to pairs of events that
start with a read event (which belongs to the predefined set R). Also, we add
show deps to make sure that herd will display this new relation.

Now let’s go back to the execution we want to forbid. By the look of it, we
want to build a check such that a cycle in the union of the dependencies deps and
the external read-froms rfe is forbidden. Let’s call this union happens-before

and write it hb for example. In cat speak (to put in your cat file):

let hb = (deps | rfe)+

Note that we use the transitive closure ()+ to make hb a transitive relation.
We don’t really need to for now, especially since we’re going to require hb to be
acyclic in a minute, but it’s going to be important later.

Now let’s require, in our cat file, for the happens-before relation to be acyclic
to forbid the execution above; in cat speak:

procedure no-thin-air() =

acyclic hb

end

Don’t forget to call this procedure in your cat file:

call no-thin-air()

Now run lb+dep+dep.litmus on your current cat file and observe that there
is no non-SC execution anymore.

Exercise: Implementing address dependencies How do you think we
can implement address dependencies? By this I mean that I’d like to see a
sequence of instructions which, placed between two reads, implement e.g. an
address dependency.

4.3 Propagation

The third principle is called propagation. Intuitively, this principle gives the
semantics of fences, which are special instructions that ensure that two writes
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of distinct locations separated by a fence have to propagate to other threads in
the order in which they appear in the program.

One representative example of this principle is the following:

Bell 2+2w

{

x = 0;

y = 0;

}

P0 | P1 ;

w[] x 2 | w[] y 2 ;

w[] y 1 | w[] x 1 ;

exists (x=2 /\ y=2)

The 2+2w test has two threads P0 and P1 which both write to the shared
memory locations x and y. P0 writes 2 to x and 1 to y, when P2 writes 2 to y

and 1 to x. In the end we’re asking if it’s possible to have both locations holding
the value 2, which could be explained by the write-write pairs being reordered
on both threads. This corresponds to the following execution, which is non-SC:

2+2w

P0

a: Wx=2

b: Wy=1

c: Wy=2

P1

d: Wx=1

po

co co

po

Try running herd on 2+2w.litmus under our current cat file and observe
that there are (flagged) non-SC executions.

Now, placing a fence between each write-write pair should forbid this cycle.
Let’s do it! Let’s open our bell file, and update our fences. Remember that we
had defined an annotation ’dep for them previously:

enum Fences = 'dep

Here we additionally give ourselves lightweight fences ’lw (there will be
heavyweight ones later on):

enum Fences = 'dep || 'lw

Now, placing a lightweight fence between each write-write pair of the 2+2w

test (leading to 2+2w+lwfs) should forbid this cycle.
To do so, we first need to define a relation flw, that contains all the possible

pairs of events in program order separated by a lightweight fence; recall that we
can use the fencerel definition. A good place to do so is our bell file:

let flw = fencerel(F & Lw)

show flw

Let’s also create a fences relation to gather all actual fences (as opposed to
dependencies); for now we only have lightweight fences, but we’ll have heavy-
weight fences in a moment:
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let fences = flw

Now in our cat file we can define the propagation order as the order induced
by lightweight fences:

let prop = fences

In cat speak, we can now forbid the 2+2w cycle by the following procedure
(to put in your cat file):

procedure propagation() =

acyclic prop | co

end

And don’t forget to call the procedure (in your cat file):

call propagation()

Try running herd on 2+2w.litmus on this new cat file and observe that
there is no non-SC execution anymore.

4.4 Observation

The fourth principle is called observation. Intuitively, this principle means
that two reads of distinct locations have to read writes in the order in which
these writes propagate. One representative example of this principle is the
message passing example we’ve seen at the beginning:

Bell MP

{

x = 0;

y = 0;

}

P0 | P1 ;

w() [x], 1 | r() r1, [y] ;

w() [y], 1 | r() r2, [x] ;

exists (1:r1 = 1 /\ 1:r2 = 0)

As we’ve seen before, the test as is can yield the result where P1 sees the
new flag (r1=1), but reads the stale data (r2=0). There are architectural several
reasons for this to happen, amongst which:

1. the two reads on P1 could be reordered—this could happen for example
on ARM, IBM Power, or Nvidia machines [5, 3];

2. the two writes on P0 could be reordered—this could happen for example
on ARM, IBM Power, or Nvidia machines [5, 3];

3. the two writes could swap places on their way to the reading thread P1, the
write of y by P0 hitting P1 before the write of x does—this could happen
for example on ARM or IBM Power machines [5].

We need several devices to protect against each of these items:
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1. to protect against the reordering of reads on P1, one typically uses depen-
dencies such as the ones we’ve defined to deal with LB;

2. to protect against the writes being reordered on their thread or on their
way to the reading thread, we need fences.

Now in our litmus test we can use for example:

1. a data dependency to prevent the reordering of reads on P1 (note the
f(dep) events in between the reads in the litmus test below);

2. a lightweight fence to prevent the write scenarios we mentioned earlier
(note the f(lw) between the writes in the litmus test below).

This corresponds to the following test:

Bell MP+lw+dep

{

x = 0;

y = 0;

}

P0 | P1 ;

w[] x 1 | r[] r1 y ;

f[lw] | f[dep] ;

w[] y 1 | r[] r2 x ;

exists (1:r1 = 1 /\ 1:r2 = 0)

Finally we have to define our observation principle. To do so, let’s first go
back to the LB litmus test: to forbid the non-SC execution, we chose earlier to
use dependencies between the read and write on each thread. Equally we could
have chosen to place a fence on each thread, like so:

Bell LB+lws

{

x = 0;

y = 0;

}

P0 | P1 ;

r[] r1 x | r[] r2 y ;

f[lw] | f[lw] ;

w[] y 1 | w[] x 1 ;

exists (0:r1 = 1 /\ 1:r2 = 1)

or to mix and match fences and dependencies:

Bell LB+dep+lw

{

x = 0;

y = 0;

}

P0 | P1 ;

r[] r1 x | r[] r2 y ;

f[dep] | f[lw] ;

w[] y 1 | w[] x 1 ;

exists (0:r1 = 1 /\ 1:r2 = 1)
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This means that, in our cat file, we can extend our happens-before relation
hb to include our fences, as follows; hb was:

let hb = (deps | rfe)+

and now becomes:

let hb = (deps | fences | rfe)+

The no-thin-air and observation checks can remain unchanged, and now
we forbid tests like LB+lws or LB+dep+lw above.

Now, let’s look at the execution of the MP litmus test that we want to forbid
(note that it is non-SC):

mp

P0

a: Wx=1

b: Wy=1

c: Ry=1

P1

d: Rx=0

po
rf

po
fr

Intuitively, we want to make sure that if the two writes a and b by P0 are
separated by a lightweight fence, they cannot be reordered, and propagate to
the reading thread P1 in the same order as they appear on P0. Moreover we
want to ensure that the two reads c and d by P1 cannot be reordered when
separated by a dependency.

Reading off the drawing very plainly, we want to forbid executions where we
take one step via a lightweight fence, then one step of read-from, then one step
of dependency, then one step of from-read and end up where we started.

Now, observe that there is a hb path from the write a by P0 to the read d

by P1: (a, b) ∈ fences, (b, c) ∈ rf and (c, d) ∈ deps. It is, however, a special
path in hb, as its first step consists of a fence step. This special subset of hb is
in fact the propagation order. Remember that we had defined it in our cat file,
as follows:

let prop = fences

which is not quite right anymore, in the light of the MP example. So let’s refine
our propagation order as follows (to put in your cat file):

let prop = fences;hb*

Thus the propagation order prop starts off with a step of fence, then can
continue with a happens-before chain of any length, through external read-
froms, dependencies, and other fences. This is what is sometimes called B-

cumulativity of a fence [5]: when the propagation order induced by a fence
carries over to chains of happens-before.

We can now phrase our observation axiom in terms of the propagation
order (to put in your cat file):

procedure observation() =

irreflexive fre;prop

end
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where fre is the external from-read, i.e. a from-read arrow between two events
that belong to different threads. In cat speak, we can define it using the prede-
fined ext relation that gathers pairs of events that belong to different threads,
such as the read d by P1 and the write a by P0. A good place to put the
definition of fre is in your cat file, for example next to the definition of rfe:

let fre = fr & ext

Don’t forget to call the procedure observation at the end of your cat file:

call observation()

Running this new cat file on the tests mp+lw+dep.litmus, lb+lws.litmus
and lb+dep+lw.litmus should forbid their non-SC executions.

Observe that the observation principle also forbids distributed variants of
the message passing example, such as ISA2+lw+dep+dep:

Bell ISA2+lw+dep+dep

{

x = 0;

y = 0;

}

P0 | P1 | P2 ;

w[] x 1 | r[] r1 y | r[] r2 z ;

f[lw] | f[dep] | f[dep] ;

w[] y 1 | w[] z 1 | r[] r3 x ;

exists (1:r1 = 1 /\ 2:r2 = 1 /\ 2:r3=0)

The test ISA2+lw+dep+dep is similar to the message passing one (MP), in
that we want to ensure that the two writes by the first thread P0 propagate in
the order in which they’ve been written, to forbid the scenario where, even if
the flag y has been passed over to P1, i.e. r1=1, the read of x on P2 reads from
the initial state instead of from the update of x by P0. This corresponds to the
following non-SC execution:

isa2

P0

a: Wx=1

b: Wy=1

c: Ry=1

P1

d: Wz=1

e: Rz=1

P2

f: Rx=0

po
rf

po
rf

fr po

The difference with MP is that the propagation is over several threads: here
the write of y by P0 propagates to P1, whereas the write of x by P0 propagates
to P2. Because the threads P1 and P2 communicate (via z), and because the
accesses on both P1 and P2 are ordered via dependencies, we have a happens-
before chain from the write of y by P0 to the read of x by P2. This is enough to
create a propagation order arrow from the write of x by P0 to the read of x by
P2, which therefore contradicts the execution where the read of x would read
from the initial state.

The observation principle should also forbid WRC+lw+dep:
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Bell WRC+lw+dep

{

x = 0;

y = 0;

}

P0 | P1 | P2 ;

w[] x 1 | r[] r1 x | r[] r2 y ;

| f[lw] | f[dep] ;

| w[] y 1 | r[] r3 x ;

exists (1:r1=1 /\ 2:r2=1 /\ 2:r3=0)

The difference with MP is that the two writes that we want to ensure propa-
gate in the right order are on different threads: the write of the data x is made
by P0, whereas the write of the flag y is made by P1. We want to ensure that
if the reading thread P2 takes the flag (so that r2=1), then the update of the
data x has reached P2, so that the read of x on P2 cannot read from the initial
state anymore. This would correspond to the following non-SC execution:

wrc

P0

a: Wx=1 b: Rx=1

P1

c: Wy=1

d: Ry=1

P2

e: Rx=0

rf

po
rf

fr po

Our definition of propagation order does not forbid this yet; we have to add
a new notion to our cat file, namely A-cumulativity. We say that a fence is
A-cumulative when it orders two writes on different threads P0 and P1 (just
like the write a of x by P0 and the write c of y by P1), such that P1 reads the
write by P0 then does the fence, then does the second write. Looking at the
execution above, it means that an A-cumulative fence placed between b and c

should create an arrow between a and c. In cat speak:

let A-cumul = rfe;fences

Now let’s update our propagation order to include A-cumulativity (to put
in your cat file):

let prop = (fences | A-cumul);hb*

Observe that WRC+lw+dep is now forbidden.
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Exercise: Distributed 2+2w Consider the following litmus test, which is
essentially a distributed variant of 2+2w:

Bell w+rw+ww

{

x = 0;

y = 0;

}

P0 | P1 | P2 ;

w[] x 2 | r[] r1 x | w[] y 2 ;

| w[] y 1 | w[] x 1 ;

exists (1:r1=2 /\ x=2 /\ y=2)

Which fences should we use to forbid the final state? Why? Where should
we put them?

4.5 Restoring SC with heavyweight fences

The fifth principle explains how to regain SC. To do so, we need to use heavy-

weight fences. We can extend our fences as follows (in our bell file):

enum Fences = 'dep || 'lw || 'hw

Now consider the store buffering litmus test that we’ve seen earlier:

Bell SB

{

x = 0;

y = 0;

}

P0 | P1 ;

w[] x 1 | w[] y 1 ;

r[] r1 y | r[] r2 x ;

exists (0:r1 = 0 /\ 1:r2 = 0)

Putting a heavyweight fence between the write-read pairs on each thread
should forbid the scenario where both reads take their value from the initial
state. More generally, putting a heavyweight fence between any pair of events
in program order should restore SC.

Recall that SC can be defined as the acyclicity of the union of program order
po and the communication relations com. Thus to restore SC with heavyweight
fences, we shouldn’t allow any cycle in the union of the relation fhw, induced
by the heavyweight fences, and the communications.

Let’s define fhw in our bell file:

let fhw = fencerel(F & Hw)

show fhw

And in our cat file, let’s implement our fifth principle:

procedure restoring-sc() =

acyclic fhw | com

end

call restoring-sc()
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Observe that SB+hws is now forbidden; note however that SB+lws is still
allowed, as one really needs heavyweight fences to restore SC. The lightweight
fences only contribute to building the propagation order.

Now, heavyweight fences should also forbid the non-SC executions of LB and
MP. This means that we should add them to our fences relation, so that they
naturally get included in the definitions of hb and prop, thus contribute to the
no-thin-air and observation checks. In our cat file, we had:

let fences = flw

and now we should have:

let fences = flw | fhw

Think of saving these bell and cat files, for example under the names
tiger.bell and tiger.cat.

Exercise: Independent Reads of Independent Writes Consider the fol-
lowing litmus test, known as IRIW:

Bell IRIW

{

x = 0;

y = 0;

}

P0 | P1 | P2 | P3 ;

w[] x 1 | r[] r1 x | w[] y 1 | r[] r3 y ;

| r[] r2 y | | r[] r4 x ;

exists (1:r1 = 1 /\ 1:r2 = 0 /\ 3:r3=1 /\ 3:r4=0)

Which fences should we use to forbid the final state? Why? Where should
we put them?

Exercise: SC and TSO Re-Make Re-Model [9] Remember that we’ve
defined SC and (not quite) TSO earlier in our cat file, as follows:

procedure sc() =

let sc-order = (po | com)+

acyclic sc-order

end

procedure almost-tso() =

let ppo = po \ W*R

let tso-order = ppo | rfe | co | fr

acyclic tso-order

end

Try to reformulate both models in terms of the five principles we’ve just
learnt: sc per location, no thin air, propagation, observation and
restoring sc. The SC model you’ll end up with will be equivalent to the one
above. The TSO model you’ll end up with will be TSO proper!
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5 Let’s herd our second big cat: a jaguar [13]

Today we’ll learn how to build a model that is similar in spirit to Nvidia GPUs.
This model differs from the previous one because GPUs have scopes. Start with
fresh bell and cat files (keep the title and include).

Intuitively, a scope is a set of threads. Here we’ll consider three different
scopes: cta, gpu and system.

5.1 Scopes

gpu gpu
system

cta cta

thread thread thread thread 

Figure 2: Concurrency hierarchy

Scopes are organised hierarchically: cta is narrower than gpu, and gpu is
narrower than system, as shown in Fig. 2.

Building the concurrency hierarchy To build this concurrency hierarchy,
the ideal place is our bell file; we can simply enumerate these three scopes as
follows:

enum Scopes = 'cta || 'gpu || 'system

We also need to specify the hierarchy, with a function called narrower (to
put in your bell file):

let narrower(s) = match s with

|| 'system -> 'gpu

|| 'gpu -> 'cta

end

The dual function is called wider (to put in your bell file):

let wider(s) = match s with

|| 'gpu -> 'system

|| 'cta -> 'gpu

end

Scope tree Litmus tests also need changing; in particular we need to say
which scope a given thread belongs to. Let’s go back to the message passing
example:
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Bell MP

{

x = 0;

y = 0;

}

P0 | P1 ;

w[] x 1 | r[] r1 y ;

w[] y 1 | r[] r2 x ;

exists (1:r1 = 1 /\ 1:r2 = 0)

Let’s implement a variant where P0 and P1 are each on a different cta, but
in the same gpu, hence in the same system:

Bell MP-mit-scopes

{

x = 0;

y = 0;

}

P0 | P1 ;

w[] x 1 | r[] r1 y ;

w[] y 1 | r[] r2 x ;

scopes: (system (gpu (cta P0) (cta P1)))

exists (1:r1 = 1 /\ 1:r2 = 0)

Note the addition of the scope tree scopes: (system (gpu (cta P0)

(cta P1))) that specifies where the threads P0 and P1 are.

Scope annotations Now, we need to say that our instructions can bear these
scope annotations, indicating at which level of the concurrency hierarchy they
can operate.

In this model, we’d like for our fences to have different effects depending on
which scope they apply to. To implement that, we can add scope annotations
to our fences events (that belong to the predefined set F). The right place to do
so is in our bell file:

events F[Scopes]

We will need to be able to say, given an instruction or an event of a litmus
test, which scope it belongs to. There are two different notions of scoping:
syntactic and execution scopes (sometimes called static and dynamic [7, 3]).

Syntactic scope The herd tool provides the primitive tag2events which,
given a tag such as the scope ones ’cta, ’gpu or ’system, returns all the
events that bear this tag. Thus tag2events(’gpu) returns the set of all events
annotated with ’gpu.

Execution scope The herd tool also provides the primitive tag2scopewhich,
given a tag, returns the relation that links events that are executed within the
same scope level as tag. Consider our MP example, and let’s build tag2scope(’cta):

30



for this particular instance of MP, it will contain eight pairs. The first pair gath-
ers the two writes on P0, because the scope tree (system (gpu (cta P0) (cta

P1))) specifies that P0 is in its own cta. Similarly, the second pair will gather
the two reads on P1. The set tag2scope(’cta) also contains the symmetric
pairs to the ones we’ve just studied, that leads to 4 pairs, to which it adds the
four identity pairs, where each event is paired with itself. Note that not all
pairs are shown in diagrams, as most relations undergo a transitivity removal
procedure before being printed.

Building tag2scope(’gpu) will gather all the possible pairs of events, be-
cause the scope tree specifies that P0 and P1 belong to the same gpu; idem for
tag2scope(’system).

5.2 RMO per scope

So now, experimentally Nvidia GPUs implement RMO per scope [3]. Let’s study
RMO first, then the scopes.

Relaxed Memory Order , or RMO, is a Sparc model that allows the reorder-
ing of any pair of read or write events in program order [11, 1, 2]. One can
restore these orderings using dependencies or fences. We’ve defined the depen-
dencies deps earlier. We have defined fences as well, but for today we’ll define
our fences locally.

Let’s write an rmo procedure in our cat file (note that you need the defini-
tions of rfe and fr):

procedure rmo() =

let rmo-fences = fencerel(F)

let rmo-order = deps | rmo-fences | rfe | co | fr

acyclic rmo-order

end

What we do here is the following: we define a relation fence using our
fencerel primitive applied to the set of fence events F. Then we define a relation
that we call rmo-order, which is the union of the dependencies deps, the fence
relation rmo-fences, the external read-from rfe, the coherence order co, and
the from-read fr

One can show (see e.g. [1, 2]) that requiring the acyclicity of this relation
rmo-order is enough to implement RMO.

Exercise: difference between RMO and Power or ARM What’s a test
that distinguishes RMO from Power or ARM (as we’ve defined them previ-
ously)? More precisely, what’s a test that’s forbidden on RMO but allowed on
Power or ARM?

Scope hierarchy Now, we need to express the fact that each level of our
scope hierarchy (cta, gpu, system) will behave like RMO. To do so, we can
modify our rmo procedure to take scopes into account (to put in your cat file):
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procedure rmo() =

let rmo-fences(t) = fencerel(F & tag2events(t))

let rmo-order(t) = (fence(t) | rfe | co | fr) & tag2scope(t)

forall t in Scopes do

acyclic rmo-order(t)

end

end

By contrast to our scope-less rmo procedure, here our local relation fence

takes a scope annotation t as an argument, and builds the relation induced
by fences (which belong to F) that bear the syntactic annotation t. Then the
relation rmo-order uses this scoped fence relation; additionally, we impose that
the extremities of the pairs gathered in rmo-order belong to the same scope
instance of level t. Finally we require the acyclicity of the relation rmo-order

for each level of the concurrency hierarchy, i.e. for each t in the set Scopes.
Don’t forget to call the procedure rmo from your cat file:

call rmo()

Now try to run mp-mit-scopes.litmus and observe that it is allowed; try
again with the following test:

Bell MP-mit-scopes+fgpus

{

x = 0;

y = 0;

}

P0 | P1 ;

w[] x 1 | r[] r1 y ;

f[gpu] | f[gpu] ;

w[] y 1 | r[] r2 x ;

scopes: (system (gpu (cta P0) (cta P1)))

exists (1:r1 = 1 /\ 1:r2 = 0)

and observe that it is forbidden.
Now think of saving your bell and cat files, for example under the names

jaguar.bell and jaguar.cat.

Exercise: Implementing scope inclusion How would you implement an
RMO per scope model as above, but where the fences have an effect not only
at their scopes, but also at narrower scopes? That is, the fence for system also
has an effect at gpu and cta level for example? This procedure should forbid
mp-mit-scopes+fgpu+fsys:
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Bell MP-mit-scopes+fgpu+fsys

{

x = 0;

y = 0;

}

P0 | P1 ;

w[] x 1 | r[] r1 y ;

f[gpu] | f[sys] ;

w[] y 1 | r[] r2 x ;

scopes: (system (gpu (cta P0) (cta P1)))

exists (1:r1 = 1 /\ 1:r2 = 0)

but not mp-mit-scopes+fcta+fgpu:

Bell MP-mit-scopes+fcta+fgpu

{

x = 0;

y = 0;

}

P0 | P1 ;

w[] x 1 | r[] r1 y ;

f[gpu] | f[sys] ;

w[] y 1 | r[] r2 x ;

scopes: (system (gpu (cta P0) (cta P1)))

exists (1:r1 = 1 /\ 1:r2 = 0)

6 Let’s herd our third big cat: a panther [15]

Today we’ll learn how to build a model that is inspired by C++. Start with
fresh bell and cat files (keep the title and include).

This model is different from the previous ones, in particular because it
doesn’t simply reject executions based on the presence of certain cycles. It
also looks for data races, and declares an execution that has a data race to be
undefined.

6.1 Plain and special events

Let’s first build our bell file. We’re going to have two different flavours of
events: plain ones and special ones:

enum Flavours = 'plain || 'special

events R[Flavours]

events W[Flavours]

6.2 Release-acquire semantics

Now let’s focus on our special events. The model we’re building is such that syn-
chronisation happens through special events, more precisely, when two threads
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communicate (i.e. one writes to a location that is read by the other).
Thus the read-from relation over special events is quite central to this model;

let’s add this notion to our cat file, as a relation special-rf (for rf over special
events):

let special-rf = rfe & (Special * Special)

Now we need to implement the notion that when two threads communicate
in an atomic way, they synchronise. Let’s build a happens before relation hb:

let hb = (po | special-rf)+

Here we say that an event e1 happens before another one e2 (i.e. (e1, e2) ∈
hb) when e1 is in program order before e2, or e2 reads from e1 and they’re both
special, or any chain of such steps (note how we use the transitive closure).

Note that we didn’t say anything specific about fences in our bell file;
that’s because fences won’t play much of a role in this model so that we can
focus on the special accesses instead. Therefore today in our happens before
relation, we’re taking all of the program order where we had previously taken
only dependencies and fences. On the other hand we’re only using the special
read-from, whereas previously we used all of rf.

Now to make our happens-before relation an order that we can build on, we
should implement a no thin air check. We can put the following procedure in
our cat file:

procedure no-thin-air() =

acyclic hb

end

Now using this happens-before relation we can forbid message passing sce-
narios from going wrong; recall MP:

Bell MP

{

x = 0;

y = 0;

}

P0 | P1 ;

w[] x 1 | r[] r1 y ;

w[] y 1 | r[] r2 x ;

exists (1:r1 = 1 /\ 1:r2 = 0)

For this test to make sense in our current setup, where reads and writes can
be plain or special, we need to annotate our events as being plain

Bell MP-plain

{

x = 0;

y = 0;

}

P0 | P1 ;

w[plain] x 1 | r[plain] r1 y ;

w[plain] y 1 | r[plain] r2 x ;

exists (1:r1 = 1 /\ 1:r2 = 0)
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If we make the communication over the flag y special, like so:

Bell MP-special

{

x = 0;

y = 0;

}

P0 | P1 ;

w[plain] x 1 | r[special] r1 y ;

w[special] y 1 | r[plain] r2 x ;

exists (1:r1 = 1 /\ 1:r2 = 0)

then we create a happens-before order from the update of the data x (i.e. the
write of x on P0) and the read of x on P1.

Now, to forbid the final state of this variant of MP, we need to build an
observation check (to put in your cat file):

procedure observation() =

irreflexive fre;hb

end

6.3 Validity

Now let’s gather our checks into a single procedure (to put in your cat file).
Note that we added a call to sc-per-location cat files, just because:

procedure valid() =

call sc-per-location()

call no-thin-air()

call observation()

end

Of course for this to work you need to add the definition of the sc-per-location
procedure, which you can copy from your previous cat files.

Don’t forget to call your valid procedure (you need fre as before):

call valid()

Now try to run mp-plain.litmus under your new cat file and observe it is
allowed; try it out on mp-special.litmus and observe it is forbidden.

6.4 Data races and undefined executions

Now we want to be able to distinguish executions that have data races, and flag
them as being undefined. Let’s define data races (in our cat file):

let at-least-one k = (k * _ | _ * k)

let conflict = at-least-one(W) & loc & ext

let race =

let r = conflict & ~(hb | hb^-1)

in r \ ((I * M) | (M * I) | (Special * Special))

show race

Thus we define a race as a pair of accesses that:
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• conflict (which implies that the accesses are distinct, as they must be
on different threads when they conflict), and

• are not ordered by hb or hb^-1 (i.e. take a step of hb backwards), and

• not one of them is an initialisation write, and

• are not both special.

A conflict is pair of accesses, such that at least one is a write (i.e. belongs
to W), both accesses are relative to the same memory location (i.e. they belong
to loc), and they belong to different threads (i.e. they belong to ext).

Now we can flag racy executions as undefined:

procedure race-free() =

flag ~empty race as undefined

end

and define our executions to be both valid and race-free:

procedure execution() =

call valid()

call race-free()

end

Don’t forget to call this procedure in your cat file:

call execution()

and to comment out our previous standalone call to the valid procedure because
it appears in our execution procedure now.

Now try out our new cat file on MP-special, and observe that the tool finds
it is racy. To fix this issue, we can modify our example like so (beq is a branch
instruction; below it branches to END if r1 is equal to 0):

Bell MP-special+branch

{

x = 0;

y = 0;

}

P0 | P1 ;

w[plain] x 1 | r[special] r1 y ;

| beq r1, 0, END ;

w[special] y 1 | r[plain] r2 x ;

| END: ;

exists (1:r1 = 1 /\ 1:r2 = 0)

This is because the branch on P1 here ensures that the read of x on P1 takes
its value only after the flag y has been read by P1. The fact that you need a
branch also shows po is a dynamic notion, otherwise hb = (po | rf-special)+

would catch the test without the branch, and not find it racy.
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Exercise: Release Sequence In C++ there’s a notion of release sequence,
which says that synchronisation does not just happen via special-rf, i.e.
from the special write of a special read-from to the corresponding special read.
Rather, it can happen from any write of the same location and on the same
thread that precedes (in program order) a special write.

How would you modify our model to include this notion?

7 Credits

The cat language is mostly Luc Maranget’s and my work, the five principles
as well [5]. The shiny web interface is thanks to Tyler Sorensen. The bell

subset has benefited from Tyler’s contribution. Tyler has computed the three
pink ponies at the beginning of this document.

For more ponies: https://youtu.be/3-Y8xLsqywY.
For more bell and cat files: virginia.cs.ucl.ac.uk/herd-web. In particular:

• IBM Power: virginia.cs.ucl.ac.uk/herd-web/?book=herding-cats&language=ppc&

cat=ppc

• ARM: virginia.cs.ucl.ac.uk/herd-web/?book=herding-cats&language=arm&cat=arm

• C++: virginia.cs.ucl.ac.uk/herd-web/?book=c11popl15

• Nvidia PTX: virginia.cs.ucl.ac.uk/herd-web/?book=ptx&language=ptx&cat=ptx.

With thanks to the supersonic beta-testers: Patrick Cousot, Matthew Hague,
Luc Maranget, Tyler Sorensen, Michael Tautschnig and Jules Villard.
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A Answers to exercises

A.1 First step in herding cats

Exercise: what do you think? Do you think such an execution is possible?
Yes! On IBM Power or ARM machines for example [5].

A.2 First big cat: tiger

Exercise: SC per location with load-load hazard Certain architectures,
such as Sparc RMO [11] allow what is sometimes called load-load hazard, i.e. a
situation where the coRR test that we’ve just seen is allowed to yield the result
0:r1=1; 0:r2=0;. How do you think we can build a check that forbids all tests
coWW, coRW1, coRW2 and coWR, but allows the test coRR?

In cat speak:

let po-loc-llh = po-loc \ R*R

acyclic po-loc-llh | com as sc-per-location-llh

Intuitively what we’re doing here is removing the read-read pairs (R*R) from
po-loc to build the po-loc-llh relation, then enforcing that this new relation
is compatible with the communication relations com.

Let’s run herd on coWW, coRW1, coRW2, and coWR, and observe that they are
still forbidden. Now let’s run it on coRR and observe that it is allowed. We’ve
built a check that enforces SC per location but allows for load-load hazards!

Exercise: Implementing address dependencies How do you think we
can implement address dependencies? By this I mean that I’d like to see a
sequence of instructions which, placed between two reads, implement e.g. an
address dependency.

Consider the following variant of MP; the reading thread P1 has an address
dependencies between its two reads:

Bell MP+lw+addr

{

x = 0;

y = 0;

}

P0 | P1 ;

w[] x 1 | r[] r1 y ;

f(lw) | xor r3 r1 r1 ;

w[] y 1 | add r4 x r3 ;

| r[] r2 r4 ;

exists (1:r1 = 1 /\ 1:r2 = 0)

This dependency, in conjunction with the lightweight fence on P0, should be
enough to forbid the non-SC execution of MP.

Exercise: Distributed 2+2w Consider the following litmus test, which is
essentially a distributed variant of 2+2w:
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Bell w+rw+ww

{

x = 0;

y = 0;

}

P0 | P1 | P2 ;

w[] x 2 | r[] r1 x | w[] y 2 ;

| w[] y 1 | w[] x 1 ;

exists (1:r1=2 /\ x=2 /\ y=2)

Which fences should we use to forbid the final state? Why? Where should
we put them?

We should put a lightweight fence between the read-write pair on P1, and a
lightweight fence between the write-write pair on P2, like so:

Bell w+rw+ww+lws

{

x = 0;

y = 0;

}

P0 | P1 | P2 ;

w[] x 2 | r[] r1 x | w[] y 2 ;

| f[lw] | f[lw] ;

| w[] y 1 | w[] x 1 ;

exists (1:r1=2 /\ x=2 /\ y=2)

This is because the A-cumulativity of the lightweight fence on P1 will impose
an ordering between the write of x on P0 and the write of y on P1.

Exercise: Independent Reads of Independent Writes Consider the fol-
lowing litmus test, known as IRIW:

Bell IRIW

{

x = 0;

y = 0;

}

P0 | P1 | P2 | P3 ;

w[] x 1 | r[] r1 x | w[] y 1 | r[] r3 y ;

| r[] r2 y | | r[] r4 x ;

exists (1:r1 = 1 /\ 1:r2 = 0 /\ 3:r3=1 /\ 3:r4=0)

Which fences should we use to forbid the final state? Why? Where should
we put them?

We should put a heavyweight fence between the read-read pairs on P1 and
P3, like so:
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Bell IRIW+hws

{

x = 0;

y = 0;

}

P0 | P1 | P2 | P3 ;

w[] x 1 | r[] r1 x | w[] y 1 | r[] r3 y ;

| f[hw] | | f[hw] ;

| r[] r2 y | | r[] r4 x ;

exists (1:r1 = 1 /\ 1:r2 = 0 /\ 3:r3=1 /\ 3:r4=0)

This is because IRIW essentially is a distributed variant of the store buffering
example, therefore reacts to fences in much the same way as SB, just like ISA2

or WRC react to fences (lightweight in their case) in much the same way as MP.
Thus the A-cumulativity of the heavyweight fence will impose an ordering

between the write of x on P0 and the read of y on P1 (idem for the write of y
on P2 and the read of x on P3).

Exercise: SC and TSO Re-Make Re-Model [9] Remember that we’ve
defined SC and (not quite) TSO earlier. Try to reformulate both models in
terms of the five principles we’ve just learnt: sc per location, no thin air,
propagation, observation and restoring sc. The SC model you’ll end up
with will be equivalent to the one above. The TSO model you’ll end up with
will be TSO proper!

Take the tiger cat file, and use the following bell files. For SC:

"Re-Make"

let deps = po

let fhw = po

let fences = fhw

and for TSO:

"Re-Model"

enum Fences = 'wr

events F[Fences]

let fwr = fencerel(F & Wr)

let deps = po

let fhw = fwr | po \ (W*R)

let fences = fhw

show fwr, fhw

A.3 Second big cat: jaguar

Exercise: difference between RMO and Power or ARM What’s a test
that distinguishes RMO from Power or ARM (as we’ve defined them previ-
ously)? More precisely, what’s a test that’s forbidden on RMO but allowed on
Power or ARM?

41



IRIW+deps distinguishes RMO from Power or ARM:

Bell IRIW+deps

{

x = 0;

y = 0;

}

P0 | P1 | P2 | P3 ;

w[] x 1 | r[] r1 x | w[] y 1 | r[] r3 y ;

| f[dep] | | f[dep] ;

| r[] r2 y | | r[] r4 x ;

exists (1:r1 = 1 /\ 1:r2 = 0 /\ 3:r3=1 /\ 3:r4=0)

because it is forbidden on RMO [1, 2], but allowed on Power and ARM [5].

Exercise: Implementing scope inclusion How would you implement an
RMO per scope model as above, but where the fences have an effect not only
at their scopes, but also at narrower scopes? That is, the fence for system also
has an effect at gpu and cta level for example? This procedure should forbid
mp-mit-scopes+fgpu+fsys, but not mp-mit-scopes+fcta+fgpu.

We need to invent a recursive notion of wider, that will return, given a scope
level s, all scope levels wider than s, not just the immediately wider one:

let rec wider2(s) = match s with

|| 'gpu -> 'system

|| 'cta -> 'gpu | 'system

end

We can then use this new notion in the way we define our rmo-fences:

procedure rmo() =

let rmo-fences(t) = fencerel(F & wider2(t))

let rmo-order(t) = (fence(t) | rfe | co | fr) & tag2scope(t)

forall t in Scopes do

acyclic rmo-order(t)

end

end

Note how we replace the call to tag2events by a call to wider2 in the
definition of rmo-fences.

Exercise: Release Sequence In C++ there’s a notion of release sequence,
which says that synchronisation does not just happen via special-rf, i.e.
from the special write of a special read-from to the corresponding special read.
Rather, it can happen from any write of the same location and on the same
thread that precedes (in program order) a special write.

How would you modify our model to include this notion?
Like so:

let hb = (po | co?;special-rf)+
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B Complete bell and cat files

B.1 Kittens

Here’s kittens.bell:

"I'm at your service ma'am, and here's your kitty back"

enum Fences = 'wr

events F[{'wr}]

let fwr = fencerel(F & Wr)

show fwr

Here’s kittens.cat:

"How can I thank you for your bringing kitty back?"

include "tutorial.cat"

let fr = rf^-1;co

show fr

let rfe = rf & ext

let com = rf | co | fr

(* SC *)

procedure sc() =

let sc-order = (po | com)+

acyclic sc-order

end

(* call sc() *)

(* Almost TSO *)

procedure almost-tso() =

let ppo = po \ W*R

let tso-order = ppo | fwr | rfe | co | fr

acyclic tso-order

end

call almost-tso()
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B.2 Tiger

Here’s tiger.bell:

"He went out tiger hunting with his elephant and gun"

enum Fences = 'dep || 'lw || 'hw

events F[Fences]

let deps = fencerel(F & Dep) & (R * _)

show deps

let flw = fencerel(F & Lw)

show flw

let fhw = fencerel(F & Hw)

show fhw

let fences = flw | fhw

Here’s tiger.cat:

"In case of accidents he always took his mum"

include "tutorial.cat"

let fr = rf^-1;co

show fr

let fre = fr & ext

let rfe = rf & ext

let com = rf | co | fr

(* Flag non-SC executions *)

procedure sc-flag() =

let sc-order = (po | com)+

flag ~acyclic sc-order as non-sc

end

call sc-flag()

(* SC per location *)

let po-loc = po & loc

procedure sc-per-location() =

acyclic po-loc | com

end

call sc-per-location()
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(* No thin air *)

let hb = (deps | fences | rfe)+

procedure no-thin-air() =

acyclic hb

end

call no-thin-air()

(* Propagation *)

let A-cumul = rfe;fences

let prop = (fences | A-cumul);hb*

procedure propagation() =

acyclic prop | co

end

call propagation()

procedure observation() =

irreflexive fre;prop

end

call observation()

procedure restoring-sc() =

acyclic fhw | com

end

call restoring-sc()
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B.3 Jaguar

Here’s jaguar.bell:

"I'll call you Jaguar"

enum Scopes = 'cta || 'gpu || 'system

let narrower(s) = match s with

|| 'system -> 'gpu

|| 'gpu -> 'cta

end

let wider(s) = match s with

|| 'gpu -> 'system

|| 'cta -> 'gpu

end

events F[Scopes]

Here’s jaguar.cat:

"If I may be so bold"

include "tutorial.cat"

let fr = rf^-1;co

let rfe = rf & ext

procedure rmo() =

let fence(t) = fencerel(F & tag2events(t))

let rmo-order(t) = (fence(t) | rfe | co | fr) & tag2scope(t)

forall t in Scopes do

acyclic rmo-order(t)

end

end

call rmo()
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B.4 Panther

Here’s panther.bell:

"Kool thing walkin' like a panther"

enum Flavours = 'plain || 'special

events R[Flavours]

events W[Flavours]

Here’s panther.cat:

"Come on and give me an answer"

include "tutorial.cat"

(* SC per location *)

let po-loc = po & loc

let fr = rf^-1;co

let fre = fr & ext

show fr

let com = rf | co | fr

procedure sc-per-location() =

acyclic po-loc | com

end

(* No thin air *)

let special-rf = rfe & (Special * Special)

let hb = (po | special-rf)+

procedure no-thin-air() =

acyclic hb

end

(* Observation *)

procedure observation() =

irreflexive fre;hb

end
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(* Valid executions *)

procedure valid() =

call sc-per-location()

call no-thin-air()

call observation()

end

(* call valid() *)

(* Races *)

let at-least-one k = (k * _ | _ * k)

let conflict = at-least-one(W) & loc & ext

let race =

let r = conflict & ~(hb | hb^-1)

in r \ (id | (I * M) | (M * I) | (Special * Special))

show race

procedure race-free() =

flag ~empty race as undefined

end

procedure execution() =

call valid()

call race-free()

end

call execution()
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