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Abstract—We present our formalization of Arm’s Virtual Memory
System Architecture (VMSA). This work has been developed with, and ratified by,
Arm and its partners, and is now part of the Arm Architecture Reference Manual.
Additionally, we present our experimental validation methodology, which required
extending KVM-unit-tests, a test harness for the Kernel Virtual Machine (KVM).
We used this infrastructure to run around 1300 VMSA litmus tests on a variety of
Arm machines, thereby validating our model w.r.t. existing hardware. Our testing
uncovered infidelities to the definition of a feature called Translation Table Hardware
Management, which led Arm to relax its architecture to accommodate those
cases. Finally, as part of this work, we uncovered subtleties in the definition of
a feature of the VMSA called Enhanced Translation Synchronization (ETS), which
led Arm to deprecate ETS and replace it with a stronger feature called ETS2.

Virtual memory is a mechanism giving an abstract
view of memory, providing software with more mem-
ory than might be physically available and enforcing
security boundaries. It is a result of cooperation be-
tween hardware and operating systems. The Memory
Management Unit (MMU) translates virtual addresses
(VAs) to physical addresses (PAs). The mappings from
VAs to PAs are managed by the operating system and
reside in a collection of page table entries that Arm
calls Translation Table Descriptors (TTDs).

Chapter D8 of the Arm Architecture Reference
Manual (Arm ARM) provides an informal record of
intent of its Virtual Memory System Architecture
(VMSA)1. We aim to provide a formal basis for rea-
soning about systems-level code managing TTDs by
extending Arm’s application-level memory model2 with
essential features of VMSA. Using our model, we
illustrate the fact that Translation Lookaside Buffers do
not provide any ordering by default, and how to restore
ordering when needed—illustrated by a CopyOnWrite
example from Linux. We also give an overview of a fea-
ture called Translation Table Hardware Management,
whereby hardware updates TTDs itself.

As in the case for the Arm application-level model2,
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we use the cat language3 to write our formalization.
This also enables us to use the herd7 tool4, a simu-
lator for litmus tests under memory models formalized
in cat. A litmus test is a small concurrent program with
a specific initial state and a question about its final
states. The herd7 tool determines which final states
can be reached from the initial state specified under
that cat model. We extended herd7 to run VMSA
litmus tests. Hence our VMSA model is an executable
artifact, allowing user interaction to develop intuition.

We validated our model in two ways. First, by dis-
cussing and refining it with Arm and its partners, up to
ratification and integration in the Arm ARM1. Second,
by testing it extensively on hardware. We extended the
litmus7 testing tool, distributed alongside herd74, to run
VMSA litmus tests. This required extending KVM-unit-
tests5, a test harness for the Kernel Virtual Machine
(KVM), to run our tests as virtual machines.

Supplementary materials
In the Appendix, we discuss the Enhanced Translation
Synchronization (ETS) feature (as described in the
version I.a. of the Arm ARM1), which allows lightweight
synchronization in specific cases of managing TTDs.
We expose the subtleties we uncovered in the defini-
tion of ETS, which led Arm to deprecate it in favour of
a new feature called ETS21.
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We release a number of companion artifacts: the
VMSA cat file itself, our litmus tests, the extensions to
the herdtools6 distribution necessary to handle VMSA,
the KVM-unit-tests patches necessary to run VMSA
litmus tests on hardware and our testing logs7, and an
extended manuscript8.

Finally, an English transliteration of the VMSA cat

file appears in Section B2.3 of the Arm ARM1.

VMSA-aware instruction semantics
We elaborate the instruction semantics for memory
accesses in order to express various outcomes of ad-
dress translation: a memory access to a VA first must
induce an Implicit Memory Effect to a corresponding
TTD in order to translate the VA into a PA. Each TTD
holds a bit indicating its validity: if the bit is set, there is
an Explicit Memory Effect to the PA (translated from its
VA); otherwise, the instruction triggers an MMU Trans-
lation Fault. (Other kinds of faults may be triggered too;
in particular, we discuss MMU Permission Faults in a
later section.)

Figure 1 illustrates new Effects associated with
the LDR X1,[X2] instruction. Its source register X2
holds address x, initilized in memory with 1. Figure 1(i)
gives the semantics of LDR without VMSA: we read the
source register X2 (Effect a), which gives us location x.
We then read location x (Effect b), which gives us
value 1, and then write that value 1 into the target
register X1 (Effect c). The Intrinsic data dependency
arrows a iico_data−−−−−→ b and b iico_data−−−−−→ c depict that Effect a
hands over some data (viz, the location x) to Effect b
and that Effect b provides its value to Effect c.

Figure 1(ii) gives the semantics of LDR with VMSA:
instead of reading x immediately after obtaining x from
register X2, we instead read TTD(x) (Effect b)—Arm
calls this an Implicit TTD Read Effect. In this case
TTD(x) is valid, so from the Effect b we proceed
to the Read d of PA(x)—Arm calls this an Explicit
Memory Read Effect. The Read d gets the value 1
from memory, which is then written into X1 (Effect e).

In Figure 1(ii), the Branching Effect c indicates that
a decision has been made: depending on the TTD
that Effect b reads is valid, the instruction proceeds to
access PA(x) as in Figure 1(ii), or to fault. In contrast,
Figure 1(iii) illustrates the case of invalid TTD(x), so
there after reading TTD(x) at Effect b, and checking
its validity at Branching Effect c, we fault at Effect d .

Application-level memory model
We use litmus tests to illustrate the memory model,

as they can encode questions about the memory or-

(i) Without VMSA

Thread 0

z: W[x]=1
Init

b: R[x]=1
proc:P0 poi:0
LDR X1,[X2]

rf

a: R0:X2=x
proc:P0 poi:0
LDR X1,[X2]

iico_data

c: W0:X1=1
proc:P0 poi:0
LDR X1,[X2]

iico_data

(i) without VMSA

(ii) With VMSA

Thread 0

b: R[TTD(x)]Imp=(oa:PA(x),valid:1)
proc:P0 poi:0

LDR X1,[X2]

c: Branching(valid:1)
proc:P0 poi:0
LDR X1,[X2]

z: W[TTD(x)]=(oa:PA(x),valid:1)
Init

rf

y: W[PA(x)]=1
Init

d: R[PA(x)]=1
proc:P0 poi:0
LDR X1,[X2]

rf

a: R0:X2=x
proc:P0 poi:0
LDR X1,[X2]

iico_data

iico_data

iico_data tr-ib

iico_ctrl

e: W0:X1=1
proc:P0 poi:0
LDR X1,[X2]

iico_data

(ii) with VMSA, TTD is valid

Thread 0

z: W[TTD(x)]=(oa:PA(x), valid:0)
Init

b: R[TTD(x)]Imp=(oa:PA(x), valid:0)
proc:P0 poi:0

LDR X1,[X2]

rf

a: R0:X2=x
proc:P0 poi:0
LDR X1,[X2]

iico_data

c: Branching(valid:0)
proc:P0 poi:0
LDR X1,[X2]

iico_data

d: Fault(P0:L0,loc:x,MMU:Translation)
proc:P0 poi:0

LDR X1,[X2]

tr-ib

iico_ctrl

(iii) with VMSA, TTD is invalid

FIGURE 1. Instruction semantics with and without VMSA
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AArch64 coRR

{

0:X2=x; 1:X2=x;

int64_t x=1;

}

P0 | P1 ;

LDR X0,[X2] | MOV X0,#2 ;

LDR X1,[X2] | STR X0,[X2];

exists(0:X0=2 /\ 0:X1=1)

(i) A load hazarding example—Forbidden

AArch64 coRR-Translation

{

[TTD(x)]=(valid:0);

0:X1=(oa:PA(x),valid:1);

0:X2=TTD(x); 1:X3=x;

}

P0 | P1 ;

STR X1,[X2] | MOV X4,#1 ;

| L1: STR X4,[X3] ;

| L0: STR X4,[X3] ;

exists ~Fault(P1:L1,x) /\

Fault(P1:L0,x,MMU:Translation)

(ii) A TLBUncacheable example—Allowed

AArch64 CopyOnWrite

{

int64_t x=1; int64_t y=0;

[TTD(x)]=(oa:PA(x),valid:1);

[TTD(z)]=(oa:PA(x),valid:1); 2:X7=(valid:0);

0:X2=x; 1:X2=x; 2:X2=x; 2:X4=y; 2:X10=z;

2:X6=TTD(x); 2:X8=TTD(y);

}

P0 | P1 | P2 ;

(*unmap VA x *)

| | STR X7,[X6] ;

(*TLB maintenance*)

| | DSB ISH ;

| | LSR X3,X2,#12 ;

| | TLBI VAAE1IS,X3;

| | DSB ISH ;

(*copy data via z*)

| | LDR X5,[X10] ;

| | STR X5,[X4] ;

| | DMB ISH ;

(*map x to PA(y) *)

LDR X0,[X2]| MOV X0,#2 | LDR X1,[X8] ;

LDR X1,[X2]| STR X0,[X2]| STR X1,[X6] ;

exists 0:X0=2 /\ 0:X1=1

(iii) A CopyOnWrite example from Linux—Forbidden

FIGURE 2. Hazarding examples with and without the VMSA context

dering rules. Figure 2(i) presents a coRR litmus test
illustrating a classic load hazarding behavior. Threads
P0 and P1 represent instructions executing on the
same Processing Element. The initial state in curly
brackets indicates that the register X2 on both P0

and P1 holds the address of a location x, writ-
ten 0:X2=x and 1:X2=x respectively), and that x is
initialized to 1, written int64_t x=1. Thread P0 reads
from x twice (via LDR X0,[X2] and LDR X1,[X2]).
Thread P1 updates x to 2 (via STR X0,[X2]).
The exists clause is an assertion asking if there is
an execution of this program where P0 first reads the
updated value of x and then the initial one.

A litmus test can be put in correspondence with
its concurrent executions, which are graphs whose
nodes represent Effects of the instructions in the test
such that the memory ordering of those may affect the
final state of memory locations and registers. Consider
an execution satisfying the exists clause, and let a
denote Explicit Read Effect of LDR X0,[X2], b denote
Explicit Read Effect of LDR X0,[X2], c denote Ex-
plicit Write Effect of STR X0,[X2] and d denote Initial
Write Effect initializing x. The following relationships
between them hold:

• c rf−→ a (a Reads-from c), i.e., a reads the value
written by c.

• d rf−→ b (b Reads-from d), i.e., b reads the initial
value of the location x .

• d ca−→ c (c is Coherence-after d), i.e., c over-
writes the initial value of the location x .

• b ca−→ c (c is Coherence-after b), i.e., c over-
writes the value b reads.

• a
po−→ b (a is program-order-before b), i.e., the

loads generating a and b are in program order.

The Arm application-level memory model deter-
mines which concurrent program executions are al-
lowed by the Arm architecture. To this end, it restricts
which values a Read Effect may see in a concurrent
execution, and does so by ensuring consistency of ob-
servations with ordering implications (such as Reads-
from or Coherence-after) for the Explicit Effects in an
execution with the orderings enforced by hardware
(such as due to barriers and dependencies). Together
these two kinds of orderings form the Ordered-before
relation on Effects, which represents the order in which
Effects become visible to other threads, or in other
words, externally visible. Formally, the External visibility
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requirement determines an execution as forbidden if it
has cycles in the Ordered-before relation, and allowed
otherwise.

The Arm memory model forbids the coRR test,
meaning that it forbids all executions satisfying its
exists clause. When a

po−→ b ca−→ c, a is considered
Ordered-before c (as captured by Explicitly-Hazard-
ordered-before relation). However, c rf−→ a is an ob-
servation meaning that c is Ordered-before a. Thus,
the execution induces a cycle in Ordered-before, and
therefore violates the External visibility requirement of
Arm’s memory model.

Address translation in presence of
concurrent modifications of TTDs

Handling TTDs efficiently necessitates Translation
Lookaside Buffers (TLBs): special caches to store VA-
to-PA translations. The effects of caching in TLBs can
be managed by system-level software operating at a
more privileged level that Arm calls Exception Level 1
(EL1); if not managed correctly, they may become vis-
ible to application-level software (EL0) and undermine
the virtual memory properties. Our formalization cap-
tures the ordering guarantees of the Arm architecture
and enables checking sufficiency of TLB maintenance.

In the Arm memory model, the Coherence-after
relation provides order for Explicit Memory Effects—
as a consequence of cache coherence. As TTDs
change infrequently, it is pragmatic for hardware not
to enforce coherence of TLBs. Architecturally, some
translations cannot be cached in a TLB (e.g., if they
are invalid); Arm calls TTDs corresponding to those
TLBUncacheable. We model this nuance in our for-
malization by letting Coherence-after from Implicit TTD
Effects contribute to Ordered-before only if they are
TLBUncacheable or if they are affected by a TLBI

instruction.
Consider the coRR-Translation test in Fig-

ure 2(ii). Initially, TTD(x) is not valid. Thread P0 over-
writes it with (oa:PA(x),valid:1), i.e., a valid TTD
with an output address PA(x). Let the corresponding
Explicit Write Effect be a, and Implicit TTD Read
Effects of stores at lines L1 and L0 be b and c, re-
spectively. The exists clause considers an execution
where the STR at line L1 does not trigger a fault and
the STR at line L0 does. To satisfy that, Implicit TTD
Read Effect c must read the initially invalid TTD(x),
so it is TLBUncacheable. Overall, we have a rf−→ b and
c ca−→ a both contributing to Ordered-before. However,
in absence of synchronization for Effects b and c, there
is no cycle in this execution, so it is allowed.

The missing order can be enforced in three ways.

Firstly, a combination of DSB ISH and ISB barriers
can be used on Thread P1. These may be costly and
undesirable in otherwise VMSA-agnostic application-
level code. Secondly, Arm provides an instruction
called TLBI that ensures TLBs are not out-of-date
and enforces synchronization w.r.t. concurrent address
translations. The next example illustrates our mod-
elling of TLBI. Thirdly, and specifically for the TLBUn-
cacheable cases like in coRR-Translation, Arm
provides a feature of the architecture called Enhanced
Translation Synchronization (ETS) offering stronger or-
dering guarantees. Please refer to the supplementary
materials for further detail.

CopyOnWrite example from Linux
A typical TTD manipulation sequence appears in Fig-
ure 2(iii), a CopyOnWrite excerpt of the Linux kernel
given to us by its maintainers. Threads P0 and P1, as
well as the exists clause of the test, coincide with the
coRR example. They represent user-level instructions
occurring in a wider context of the OS manipulating
TTDs: Thread P2 remaps VA x to a different PA and
copies the data over. To provide the virtual memory
abstraction to Threads P0 and P1 in presence of
concurrent modification of TTDs, Thread P2 employs
a so called break-before-make sequence:

• STR X7,[X6] overwrites TTD(x), initialized as
mapping the VA x to PA(x), with an invalid TTD,
which makes it TLBUncacheable;

• DSB ISH is a strong barrier that orders
STR X7,[X6] ahead of TLBI VAAE1IS,X3;

• LSR X3,X2,#12 performs a logical shift right
to the VA x, removing 12 bits identifying the
address within the page, but leaving the other
bits identifying TTD(x);

• TLBI VAAE1IS,X3 invalidates out-of-date val-
ues of TTD(x) cached in TLB;

• DSB ISH orders TLBI VAAE1IS,X3 ahead of
the subsequent Explicit Memory Effects;

• LDR X5,[X10] reads from PA(x) using an
alias VA z, whose TTD(z) maps it to PA(x);

• STR X5,[X4] writes the just-read value into
VA y, whose TTD(y) maps it to PA(y);

• DMB ISH, which is a barrier to ensure the data
is copied over ahead of the subsequent Explicit
Memory Effects;

• LDR X1,[X8] and STR X1,[X6] copy
TTD(y) into TTD(x), mapping VA x to PA(y).

The CopyOnWrite test is forbidden thanks to
the break-before-make sequence: it ensures the TLB
maintenance on Thread P2 not only invalidates out-of-
date TLB entries, but also synchronizes with Threads
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P0 and P1. At the hardware implementation level, the
TLBI instruction performs a synchronizing broadcast:
it sends a message to other threads and only proceeds
to executing after acknowledging a response that ac-
tive uses of affected address translations are resolved.
We model this by enumerating every pair of a TLBI
Effect and an Implicit TTD Read Effect in the same
invalidation scope, and considering two executions for
the two orders in which the Effects could be ordered.
The TLBI-before relation denotes this communication
order and enables reasoning formally as follows.

Consider executions satisfying the exists clause.
Let a and c denote the Implicit TTD Reads of LDR
X0,[X2] and LDR X1,[X2]; let e and k denote the
Explicit Writes of STR X7,[X6] and STR X1,[X6];
and z denote the Effect of TLBI VAAE1IS,X3. Then
we have:

• a
po-va-loc−−−−−→ c, i.e. LDR X0,[X2] is to the same

VA and in program order before LDR X1,[X2].
• k rf−→ a, i.e. the Implicit TTD Read Effect a of LDR
X0,[X2] on P0 reads-from the Explicit Write
Effect k of STR X1,[X6] on P2.

• c ca−→ e, i.e. c reads the initial value of TTD
overwritten by Explicit Write Effect e.

• e DSB-ob−−−−→ z, i.e. e is Ordered-before z thanks
to DSB ISH between STR X7,[X6] and TLBI.

The first execution has z TLBI-before−−−−−−→ c denoting
that the TLBI message arrives before the Implicit TTD
Read c. This creates a cycle forbidden by the External
Visibility requirement: z TLBI-before−−−−−−→ c ca−→ e DSB-ob−−−−→ z.
Therefore, the execution is forbidden.

The second execution has c TLBI-before−−−−−−→ z denoting
that the TLBI message does not arrive before the Im-
plicit TTD Read c—and so it ensures c and the Implicit
TTD Read Effects to the same VA earlier in program
order (such as a) result in a Explicit Memory or a Fault
Effect before Thread P2 proceeds past the second DSB
ensuring completion of the TLBI, in particular, before
Explicit Write Effect k of a subsequent in program order
STR X1,[X6]. We display this causal chain in the
execution using a TLBI-ob relation, according to which
c TLBI-ob−−−−→ k contributes to Ordered-before and, since
a

po-va-loc−−−−−→ c holds, so does a TLBI-ob−−−−→ k . This way
TLBI creates a cycle forbidden by External Visibility:
k rf−→ a

po-va-loc−−−−−→ c TLBI-ob−−−−→ k . Therefore, the execution
is forbidden.

Translation Table Hardware
Management

Translation Table Hardware Management (TTHM) is
a feature of the Arm architecture introduced in v8.1,

to let hardware update permissions in TTDs and re-
lieve software from this responsibility. Under TTHM the
hardware is expected to update bits of a TTD called
Access Flag and Dirty Bit, which represent read and
write permissions on TTDs respectively. Depending on
whether two bits are set in the special Translation Con-
trol Register, TCR_ELx.HA for the Access Flag and
TCR_ELx.HD for the Dirty Bit, the hardware manages
TTD permissions differently.

We model a TTD value as a tuple (oa, valid,

af, db, dbm) of an output address oa, a validity bit
valid an Access Flag bit af, a Dirty Bit db, and a
Dirty Bit Management bit dbm indicating if Hardware
Updates of the Dirty Bit are enabled. In litmus tests,
our convention is that the default value of TTD(x)

is (oa:PA(x), valid:1, af:1, db:1, dbm:0),
and that fields take default values whenever omitted.

We outline several cases of how our formaliza-
tion extends the instruction semantics with permis-
sion checks in addition to previously exposed validity
checks.

When TCR_ELx.{HA,HD} == {0,0} or TTHM is
not implemented:

• If TTD(x) has af unset, a memory access to
VA x raises a Permission Fault;

• If TTD(x) has db unset, a store to VA x raises a
Permission Fault. Software is expected to man-
age permissions with store or atomic instructions
to TTD(x).

When TCR_ELx.{HA,HD} == {1,0}:

• If TTD(x) has af unset, a memory access to
VA x continues without a Fault and the MMU
sets af;

• If TTD(x) has db unset, a store to VA x raises
a Permission Fault.

When TCR_ELx.{HA,HD} == {1,1}:

• If TTD(x) has af unset, a memory access to
VA x continues without a Fault and the MMU
sets af;

• If TTD(x) has db and dbm unset, a store to VA x

raises a Permission Fault;
• If TTD(x) has db unset, but dbm set, a store

to VA x continues without a Fault and the MMU
sets db.

To enable studying the listed behaviors, litmus tests
may specify if the TCR_ELx.{HA,HD} bits are set (by
default they are not).

The test in Figure 3(i) specifies that TTHM is im-
plemented and that TCR_ELx.HA==1 using keywords
TTHM=HA. Initially x is 1, and TTD(x) has af unset.
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AArch64 LDRaf0

TTHM=HA

{

0:X2=x;

int64_t x=1;

[TTD(x)]= (af:0);

}

P0 ;

L0: LDR X0,[X2] ;

exists 0:X0=1 /\ [TTD(x)]=(af:1)

/\ ~Fault(P0:L0,x,MMU:Permission)

Thread 0

c: W[TTD(x)]=(oa:PA(x), af:0)
Init

e: R[TTD(x)]*ImpAF=(oa:PA(x), af:0)
Spurious

rf

f: W[TTD(x)]*ImpAF=(oa:PA(x))
Spurious

ca

b: R[PA(x)]=1
proc:P0 poi:0
LDR X0,[X2]

d: W[PA(x)]=1
Init

rf

a: R[TTD(x)]ImpAF=(oa:PA(x))
proc:P0 poi:0

LDR X0,[X2]

iico_data tr-ib
h: Branching(valid:1)
proc:P0 poi:0
LDR X0,[X2]

iico_data

i: W0:X0=1
proc:P0 poi:0
LDR X0,[X2]

iico_data

g: R0:X2=x
proc:P0 poi:0
LDR X0,[X2]

iico_data

iico_ctrl

iico_dataca

rf

(i) LDR with the Access Flag unset

AArch64 STRdb0dbm1

TTHM=HA HD

{

0:X2=x;

[TTD(x)]=(db:0,dbm:1);

}

P0 ;

MOV X0,#1 ;

L0: STR X0,[X2] ;

exists(x=1 /\

[TTD(x)]=(db:1,dbm:1) /\

~Fault(P0:L0,x,MMU:Permission))

Thread 0

a: R[TTD(x)]*ImpAFDB=(oa:PA(x), db:0, dbm:1)
proc:P0 poi:1

STR X0,[X2]

b: W[TTD(x)]*ImpAFDB=(oa:PA(x), dbm:1)
proc:P0 poi:1

STR X0,[X2]

e: W[PA(x)]=0
Init

c: W[PA(x)]=1
proc:P0 poi:1
STR X0,[X2]

ca

d: W[TTD(x)]=(oa:PA(x), db:0, dbm:1)
Init

rf

ca

f: W0:X0=1
proc:P0 poi:0
MOV X0,#1

g: R0:X2=x
proc:P0 poi:1
STR X0,[X2]

po

j: R0:X0=1 (data)
proc:P0 poi:1
STR X0,[X2]

rf-reg

iico_data ca

iico_data tr-ib
h: Branching(valid:1 && (db:1 || dbm:1 && hd))
proc:P0 poi:1

STR X0,[X2]

iico_data

i: Branching(af:0 || db:0)
proc:P0 poi:1

STR X0,[X2]

iico_data

iico_data

iico_ctrl iico_ctrl

iico_ctrl

iico_data

(ii) STR with the Dirty Bit unset and Dirty Bit Management on

FIGURE 3. Instruction semantics with TTHM

6

This article has been accepted for publication in IEEE Micro. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/MM.2024.3422668

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



At line L0 thread P0 attempts a load of x. The exists

clause asks if register X0 holds the value 1, TTD(x)
has af set to 1 and there is no Fault at line L0 relative
to x. In the execution, also in Figure 3(i), we see the
atomic pair (e, f ) setting the af bit. This represents the
hardware management of the Access Flag.

The Arm architecture permits spontaneous hard-
ware updates to Access Flags, that is, without any
ordering relation to corresponding memory accesses.
In Figure 3(i), our formalization does not require that
the Hardware Update f of af be Ordered-after any
other Effect besides the Read e of the TTD.

The test in Figure 3(ii) specifies that TTHM is imple-
mented and that TCR_ELx.HD == 1 using keywords
TTHM=HA HD. Initially x is 0, db is unset and dbm is
set. At line L0 thread P0 attempts a store of 1 to x.
The exists clause asks if x holds the value 1, db
is set and there is no Fault at L0 relative to x. In
the execution, also in Figure 3(ii), we see the atomic
pair (a, b) setting the db bit. This represents the hard-
ware management of the Dirty Bit.

The Arm architecture does not permit spontaneous
hardware updates to Dirty Bits, as certain OSes rely
on that. In Figure 3(ii), our formalization requires that
the Hardware Update k of db be Ordered-after the
Branching Effect i , or in other words, after the TTD
has been checked and a decision has been made by
the MMU. This discrepancy is documented in the Arm
ARM1 (clause R_LHQRX in D8.4.5 for af, and clause
R_DYCFD in D8.4.6 for db).

Validating our model
We validated the Arm VMSA memory model by dis-
cussing with Arm architects and Arm partners, and by
testing extensively against existing hardware.

Ratification by Arm and partners
We validated our model via 3-year long in depth dis-
cussions with a forum made of Arm architects and
partners. First, we developed and validated the in-
struction semantics, including in presence of hardware
management: for example, the execution graphs in
Figures 1 and 3 were discussed and refined in that
forum.

Second, we recorded the architectural intent by
studying litmus tests (e.g. the ones in this paper)
and discussing their expected behavior, both from
hardware implementation and software usage point of
views.

Third, after having developed an initial model which
matched the recorded intent, we discussed the defini-
tions themselves. Much reorganization and redefinition

happened at that stage: one difficulty was devising
definitions which would not only make the model be-
have as intended, but also would be transliterated into
English in an acceptable manner, and would convey
relatable intuition to both hardware and software folks.

Fourth, we reviewed this revamped model with Arm
and its partners from start to finish, and eventually
ratified it. It was then incorporated into Chapter B2.3 of
the Arm Architecture Reference Manual1, and released
in the herdtools distribution4.

Testing against a variety of Arm hardware
We tested the Arm VMSA model extensively against
existing hardware7. To do so, we have put together a
suite of about 1300 litmus tests that exercise different
aspects of the new semantics, such as the ones shown
in this paper. Most of those tests have also been
discussed during model design to validate intent.

For testing we use the open source tool litmus74

to produce binaries that we can run on hardware. The
litmus7 tool takes litmus tests as input and generates C
with inline AArch64 assembly source code. The source
code is compiled and linked to provide executable
binaries that run at EL0.

We extended litmus7 to support running litmus
tests at EL1 or EL2: that is where TTD features used
by many litmus tests of interest can be controlled.
Hence, we extended litmus7 to build binaries that can
run on top of a virtual machine—we handle Linux
KVM and MacOS HVF—using QEMU. The source
code generated by litmus7 uses the library functions
provided by KVM-unit-tests to setup the system, get
pointers to TTDs and install fault handlers as neces-
sary. For the purposes of this work, we added support
for configurable translation granule for the arm64 target
in KVM-unit-tests5,6.

Our testing uncovered infidelities to the principle
that the Dirty Bit must not be updated spontaneously
by hardware. More precisely, we observed 32 contra-
dicting tests; Figure 4 shows one of them.

Initially it was hypothesized that we could see this
result due to interactions with virtualization in our test-
ing setup. This led to two significant next steps: (a) Arm
relaxed the architecture to allow those behaviors in
the virtualized case1 (see 1st bullet of R_DYCFD); and
(b) we developed a bare-metal testing infrastructure
as well, to remove noisy interactions with virtualization
and confirm the hypothesis.

To that aim, we extended KVM-unit-tests and added
support for building binaries that run as Extensible
Firmware Interface (EFI) applications. An EFI appli-
cation is typically used for booting or interfacing with
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an operating system. Our work is open-source and we
have already worked with the community to upstream
the first series of patches to KVM-unit-tests5,6.

Interestingly, we observed tests contradicting the
Dirty Bit principle (e.g. Figure 4) in our bare-metal
infrastructure. Some designs were confirmed to allow
such behaviors, and relaxations to the architecture
were introduced (see clause R_DYCFD in Chapter
D8.51).

Related works
Previous work on application-level memory models,
including the Arm application-level memory model2,
paved the way for the methodology that we use here:
writing executable models validated both by discussion
with architects and testing.

A model of virtual memory called x86t_elt9 extends
the x86-TSO memory model in a style similar to ours.
Empirical validation of x86t_elt remains open and could
be approached with our testing methodology.

A VRM verification framework10 for system-level
software accounts for virtual memory and Arm’s
application-level memory model. It abstracts away the
semantics of Arm VMSA by relying on a discipline
called wDRF, shown to be followed by an implementa-
tion of Linux KVM. Our model provides a step towards
proving that the wDRF conditions assumed by VRM
hold on Arm hardware.

The work of Simner et al.11 is closest to ours. It
presents a VMSA extension to the Arm application-
level memory model (without Hardware Updates) writ-
ten in pseudo cat. To validate their model, the authors
have developed tools similar to ours. For simulation,
they rely on Isla12, which builds the semantics of Arm

AArch64 STRva-SWPttd

TTHM=HA HD

{

0:X2=x;

1:X4=TTD(x);

1:X6=(oa:PA(x),valid:0,db:0,dbm:1);

[TTD(x)=(db:0,dbm:1);

}

P0 | P1 ;

MOV X1,#1 | SWP X6,X8,[X4] ;

L0:STR X1,[X2] | ;

exists (1:X8=(oa:PA(x), dbm:1)

/\ [TTD(x)]=(oa:PA(x),valid:0,db:0,dbm:1)

/\ [x]=0 /\ Fault(P0:L0,x,MMU:Translation))

FIGURE 4. Dirty Bit set spontaneously—Forbidden?

instructions from their machine-readable description
given in the Arm ARM1. Meanwhile herd7 relies on
hand-coded semantics devised with and ratified by
Arm and its partners. It appears that herd7 is faster
than Isla by one order of magnitude12, but herd7
would necessitate more work by hand to handle radical
architecture evolution transcribed through ASL code.

For testing, the custom tool of Simner et al.11 and
our extended litmus7 tool offer similar functionalities:
including manipulation of TTDs, custom fault handlers,
EL0/EL1 transitions in both directions and possibility
of bare-metal execution. However, the simulator and
testing tool of Simner et al.11 consume litmus tests in
different formats; whereas all our tools consume the
same format and produce outputs that we can compare
automatically. This guarantees the identity of simulated
and executed tests by design, and partly explains that
our test base, and as a result our testing campaigns,
are significantly larger.

To compare the model of Simner et al.11 to
ours, we implemented it in cat to execute it with
herd7, and some amount of guess work as to cer-
tain relations, undefined in the paper (e.g. trf, Is-
From{W,R}, instruction-order, po-pa) proved neces-
sary. Under those assumptions, the model of Simner
et al.11 differs from ours: it is both stronger on cer-
tain tests (e.g., coRR-Translation in Fig. 2(ii)) and
weaker on others (e.g., CopyOnWrite in Fig. 2(iii)).

Conclusion and Limitations
We provide a formalization of the Arm Virtual Memory
System Architecture, as a machine-readable and exe-
cutable model written in cat3,4. This model has been
validated extensively against hardware, and ratified
by Arm—it now appears in Chapter B2.3 of the Arm
Architecture Reference Manual1.

Our work does not address the matter of Stage 2
translation, which can be used to ensure that a VM
can only see resources allocated to it, and not the
resources allocated to other VMs or the hypervisor.
Instead, our model goes from VA to PA directly, as
opposed to through an intermediate address (which
Arm calls IPA), as a two stage translation would.

Furthermore, our instruction semantics assumes
that accesses have naturally aligned addresses and do
not cross page boundaries. Accesses crossing a page
boundary for instance may necessitate two translations
(viz, Implicit TTD Reads).

Despite these limitations, our work has already
helped clarify Arm’s intent for the Enhanced Translation
Synchronization feature. Furthermore, our testing in-
frastructure uncovered exceptions to architectural prin-
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ciples about the Dirty Bit with and without virtualization.
This led Arm to relax the cases with virtualization, and
investigate how to accommodate the cases without
virtualization. This exemplifies how recording the archi-
tectural intent in a formal model helps bridging the gap
between the intent and its hardware interpretations.
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