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ABSTRACT
Accurate inter-subject registration of magnetic resonance
(MR) images of the human brain is required to allow mean-
ingful comparisons across groups of subjects. Some anatomi-
cal structures can be very difficult to match and this can result
in intensity based registration approaches inferring complex
and implausible mappings in some regions. In this work,
we propose a generic probabilistic framework for non-rigid
registration with a spatially varying trade-off between im-
age information and regularisation. This trade-off is based on
local estimates of misalignment “noise”, which effectively in-
creases regularisation in regions which are difficult to register.
We demonstrate that the proposed method infers smoother,
more plausible and slightly more accurate mappings for inter-
subject registration of MR images of the human brain.

Index Terms— Image registration, regularisation, proba-
bilistic modelling, brain MRI

1. INTRODUCTION

Non-rigid registration is widely used in the analysis of MR
images of the human brain, most commonly for mapping sub-
jects to a common anatomical space (spatial normalisation).
Intensity based registration requires a cost function to mea-
sure image similarity, which drives the optimisation. A com-
mon problem is the presence of non-matching image struc-
tures, particularly in inter-subject brain registration, where
there may be regions where an accurate and plausible map-
ping using a chosen transformation model does not exist.

The relative weighting of image information and regular-
isation can cause the inference of complex, non-smooth and
implausible mappings in some regions. Conversely, although
increasing the global level of regularisation can avoid such
phenomena, it leads to a more restricted registration across
the whole image. This may therefore infer an inaccurate, and
overly smooth mapping between images.

A solution to this problem is to use a spatially varying
weight between image information and regularisation. Sev-
eral approaches have been previously proposed addressing
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this. They either require image segmentations e.g. [1][2],
which is likely to be impractical, or they use a data driven ap-
proach. One such data driven method proposed a local image
reliability measure based on image structure and estimated
noise levels, which was then used to derive spatially localised
regularisation [3]. A limitation of that approach is that only
the information in the individual images are used to define the
local regularisation weighting, which may still lead to prob-
lems dealing with non-matching structures. Methods of as-
sessing and appropriately weighting image data based on mu-
tually salient features has been demonstrated to improve reg-
istration [4], although this approach is computationally highly
expensive.

In this work we propose the use of a local Gaussian noise
model to provide a more flexible and robust approach to im-
age alignment. This approach infers localised estimates of
the noise in model fit across the image, yielding a spatially
varying trade-off between image information and regularisa-
tion. The modelled “noise” is based on the registration mis-
alignment, thus is inferred from both images. This means that
regions with non-matching structures will be more strongly
affected by the regularisation, and thus the mapping will be
smoother and more constrained in this region. This will re-
strain the inference of unnecessarily complex warps, which
may not be biologically plausible.

This work extends the generic probabilistic registration
framework introduced in [5]. This framework has intrinsic
benefits in being able to infer a global level of spatial regular-
isation, as well as estimating the uncertainty of the registra-
tion. This framework is similar to that of Risholm et al. [6],
although they choose to infer the model parameters using a
computationally intensive sampling approach. Conversely,
we use a variational Bayesian inference scheme to allow a
more efficient high resolution 3D anatomical alignment.

In the following section we describe our proposed prob-
abilistic registration model and inference scheme. In Section
3 we demonstrate that the proposed registration model infers
smoother, more plausible mappings for inter-subject registra-
tions, with a slight improvement in structural overlap com-
pared to using a global noise model. We conclude with a
discussion of benefits and future work.



2. METHODS

Our approach extends the probabilistic registration frame-
work described in [5] by allowing the inference of local
Gaussian noise estimates which model image misalignment.
The generic generative model for image registration is written
as:

y = t(x,w) + e (1)

where y and x are the target and source images, respectively,
and t is a non-linear transformation function parametrised by
w. This approach is valid for any choice of transformation
model, but in this work we choose to use a free form defor-
mation (FFD) transformation model for t, where w describes
the displacement of the b-spline knots. e is the noise in model
fit which is modelled as Gaussian noise with spatially varying
precision (inverse variance) and is defined as:

e = N (0,diag(ΦT b)−1) (2)

where Φ = {α1φ1, α2φ2, ..., αLφL}, is aL×1 vector of noise
precisions where L is the number of noise components and b
is a L × Nv matrix representing the basis set which assigns
the weighting of each φ across the Nv voxels in the image.
b must represent a non-negative basis set that has a degree of
spatial smoothness to allow estimates of the image gradients.
We choose to use a set of equally spaced normalised Gaus-
sian kernels as our basis set. αl is a locally estimated virtual
decimation factor which compensates for spatial smoothness
in the noise [5]. α is an estimate of the proportion of inde-
pendent voxels in the residual. We now have a probabilistic
model with spatially smooth noise which we can infer upon.
The log likelihood for this model is given as:

logP (y|x,w,Φ) =

L∑
l

(
αlNv,l

2
log

αlφl
2π
− 1

2
mT

l αlφlml

)
(3)

where ml = (bl,:)
1
2 ◦(y−t(x,w)), ◦ refers to the elementwise

matrix product (Hadamard product). Nv,l refers to the num-
ber of partial voxels weighted by φl, Nv,l = rowsum(b(l,:)).

We have a prior distribution on φl which is described us-
ing a Gamma distribution:

P (φl) = Ga(a0, b0) (4)

where a0 is the scale, and b0 the shape parameter of the dis-
tribution. The prior distribution on noise precision is initially
set to be uninformative with a0 = 1010,b0 = 10−10. Once
we have an estimate of Φ, the prior becomes informative, and
models the current distribution of Φ.

The prior on w is normally distributed:

P (w) = N (0, (λΛ)−1) (5)

where Λ is a matrix encoding a bending energy model and λ is
the global level of regularisation. λ has a fixed Gamma prior

P (λ) = Ga(s0, c0). A graphical description of the proba-
bilistic model is given in Fig. 1.

Variational Bayes [7] is used to find analytic iterative up-
dates for approximate posterior distributions of the model pa-
rameters. The posterior distribution for the noise precisions is
approximated using Gamma distributions
P (Φ|y) ∼

∏L
l q(φl), where q(φl) = Ga(al, bl). The updates

for the hyper-parameters are given below:

bl = b0 +
αlNv,l

2
(6)

1

al
=

1

a0
+
αl

2
(rTl rl + Tr(Υ−1JTl Jl) (7)

where Jl is theNc×Nv Jacobian matrix of partial derivatives
of the transformation parameters, calculated on the source
image which has been weighted by the basis function b(l,:).
rl = ((b(l,:))

1
2 ◦ k) where k is a 1×Nv vector containing the

difference image y− t(x,µ).
The approximate posterior distribution on w is normally

distributed P (w|y) ∼ q(w) = N (µ,Υ−1). The updates for
these parameters are given as:

Υ =

L∑
l

αlφ̄lJTl Jl + Λλ̄ (8)

Υµnew =

L∑
l

αlφ̄lJTl (Jlµold + rl) (9)

where φ̄l is the expectation of the approximate noise distribu-
tion φ̄l = E[φl] = albl and similarly λ̄ = E[λ] = sc. The
approximate posterior distribution of λ is Gamma distributed,
q(λ) = Ga(λ; s, c). The hyper-parameter updates are as fol-
lows:

c = c0 +
Nc

2
(10)
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s
=

1
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+

1

2

(
Tr(Υ−1Λ) + µTΛµ

)
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The trace terms in eq. 11 and eq. 7 involve a multiplication
by the full inverse of Υ, which can be very large, and is non-
sparse after inversion. For the purposes of eq. 11 and eq. 7
we treat Υ as diagonalised with the only covariance between
directions to ensure computational tractability. We iteratively
apply these updates until convergence in order to fit the model
parameters. Since VB is essentially an EM update, it is guar-
anteed to converge [8]. In practise convergence at each multi-
resolution level generally occurs within 20 iterations.

We implemented our probabilistic registration model in
FNIRT1, a multi-resolution FFD registration tool, which has
been previously demonstrated to provide good anatomical
overlap in an independent study [9]. In our experiments we
use 4 variants of FNIRT, standard FNIRT, FNIRT VB which

1http://www.fmrib.ox.ac.uk/fsl/fnirt
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Fig. 1. A graphical description of the probabilistic depen-
dencies of the registration model parameters. The variables
in square boxes are constants, and the variables in circles are
random variables.

uses a global noise model and FNIRT VB LN and FNIRT
VBLN2 which both use a local noise model. FNIRT VBLN
uses 48 smooth Gaussian kernels as the basis set for the final
multi-resolution level, and FNIRT VBLN2 uses 125. The ba-
sis set kernels have a full-width at half-maximum that is 50%
of the size of the spacing between kernel centres. There is an
approximately 2 fold increase in runtime for FNIRT VBLN,
and a 4 fold increase for FNIRT VBLN2 over the FNIRT VB
approach. However, as the majority of the computation is
in calculating JT

l Jl which is separable, this could be made
significantly faster if parallelised.

3. EXPERIMENTS AND RESULTS

We present an evaluation of inter-subject registration using
18 real 3D MR scans taken from the publicly available IBSR
dataset2. An example slice and its corresponding segmenta-
tion is given in Fig. 2 a) and b). We use 23 of the annotated
structures in these experiments, and the overlap of these reg-
istered structures can be treated as a gold standard of registra-
tion accuracy. We use the Dice score [10] to calculate overlap
between structures. In our experiments each image was reg-
istered to every other, giving a total of 306 registrations.

All of the VB extensions of FNIRT inferred generally bet-
ter mappings than the original FNIRT in terms of improved
smoothness (Fig. 3 a)), less folding of the deformation field
(Fig. 3 b)) and improved structural volume overlap (Table 1).

Furthermore, we find similar advantages when using a lo-
cal noise model as opposed to a global one. As shown in
figure 3, a local noise model infers smoother mappings, with
much less image folding. The results for FNIRT VBLN2
are almost always diffeomorphic. We also find a slight, but
not statistically significant improvement in structural overlap
when using FNIRT VBLN2 over FNIRT VB (0.37%) across
all structures. These improvements occur mostly in subcorti-
cal regions, e.g. the Amygdala (0.44%), although there is a

2http://www.cma.mgh.hardvard.edu/ibsr

Table 1. Improvement in the accuracy in structural overlap
when using the various VB FNIRT approaches over FNIRT.

Method Average
improve-
ment
%

Maximum
improvement
(%)

Number of
significant
improvements
(p<0.05)

FNIRT
VB

1.83% 6.26%
(Amygdala)

7/30

FNIRT
VBLN

1.75% 6.62% (Pal-
lidum)

8/30

FNIRT
VBLN2

2.20% 6.70%
(Amygdala)

11/30

slight decrease in overlap for cortical regions e.g. the cerebral
cortex (-0.45%).

FNIRT VBLN2 has an average 0.45% higher overlap
across all structures compared to FNIRT VBLN, as well as
a reduction in image folding. This indicates that the use of a
more spatially localised noise model may infer more accurate
and more appropriately constrained mappings.

An example map of inferred noise variance using FNIRT
VBLN2 is given in Figure 2 c). The local noise model tends to
lower the weighting in regions of complex image data which
do not match well. For a volumetric registration approach,
such as we use, this is most commonly in cortical regions.
This decrease in image weighting does results in a small de-
crease in structural overlap in these regions, but it allows a
smoother, more plausible mapping to be inferred. As the im-
age data is weighted highly in subcortical regions, which are
much easier to align using a volumetric registration method,
these tend to get improved overlap.

4. CONCLUSIONS

In this work we have proposed the use of a generic prob-
abilistic registration framework with a spatially varying
noise model. We have shown that for the problem of inter-
subject brain registration, this method infers mappings that
are smoother, more plausible and more accurate.

Although we choose to implement this framework using
a FFD, it could be similarly implemented with a variety of
transformation models, including diffeomorphic strategies.
Using a diffeomorphic transformation model would mean re-
gional under-regularisation would no longer manifest itself as
folding, however it will still result in the inference of overly
complex and potentially inaccurate mappings

In future work we will investigate the use of different ba-
sis sets, with varying levels of smoothness. We will also look
at the effects of inferring local noise on the estimated regis-
tration uncertainty.
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Fig. 2. a) An example image from the IBSR data. b) The associated segmentation map. c) The inferred local noise variance,
corrected for spatial smoothness, from an example registration using FNIRT VBLN2 which uses a noise basis set of 125
Gaussian kernels.
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Fig. 3. a) Boxplot of the level of bending energy in the inferred mapping across the 306 registrations. Bending energy describes
the smoothness of the mapping (lower values are smoother). b) Boxplot of the % of folded image voxels due to an inappropriate
level of regularisation.
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