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Abstract: In this work we use bounding-based techniques, such as Branch-and-Bound (BB) and Cascaded
Detection (CD) to efficiently detect objects with Deformable Part Models (DPMs). Instead of evaluating
the classifier score exhaustively over all image locations and scales, we use bounding to focus on promising
image locations. The core problem is to compute bounds that accommodate part deformations; for this we
adapt the Dual Trees data structure of [8] to our problem. We evaluate our approach using the DPM models
of [4]. We obtain exactly the same results but can perform thepart combination substantially faster; for
a conservative threshold the speedup can be double, for a less conservative we can have tenfold or higher
speedups. These speedups refer to the part combination process, after the unary part scores have been
computed.
We also develop a multiple-object detection variation of the system, where hypotheses for 20 categories are
inserted in a common priority queue. For the problem of finding the strongest category in an image this can
result in more than 100-fold speedups.
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Résumé : Dans ce travail, nous utilisons des techniques qui utilisent des bornes, comme ‘Branch-
and-Bound’ (BB) et ‘Cascaded Detection’ (CD) pour détecterefficacement des objets avec des modèles
de pièces déformables. Au lieu d’évaluer le score classificateur d’une manière exhaustive sur tous les
emplacements d’images et toutes échelles, nous utilisons BB qfine qde se concentrer sur les endroits
prometteuses. Le coeur du problème est de calculer des bornes qui peuvent accueillir des déformations
de pièces; pour cela nous avons adapté la structure de données ‘Dual Tree’ de [8] à notre problème. Nous
évaluons notre approche à l’aide des les modèles de pièces déformables de [4]. Nous obtenons exactement
les mêmes résultats, mais effectuons la combinaison de la pièce 10-20 fois plus rapide en moyenne. Nous
développons aussi une variation de la détection de plusieurs objets du système, où les hypothèses pour 20
catégories sont insérés dans une commune file d’attente prioritaire. Pour le problème de trouver la plus
forte catégorie dans une image il peut en résulter une accélération de 100 fois.

Mots-clés : Branch-and-bound, modèles de pièces déformables
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1 Introduction

Deformable Part Models (DPMs) deliver state-of-the-art object detection results [4] on challenging bench-
marks when trained discriminatively, and have become a standard in object recognition research. At the
heart of these models lies the optimization of a merit function -the classifier score- with respect to the
part displacements and the global object pose. In this work we take the classifier for granted, using the
models of [4], and focus on the computational efficiency of the optimization problem.

The most common detection algorithm used in conjunction with DPMs relies on the Generalized
Distance Transform (GDT) algorithm [5], whose complexity is linear in the image size. Despite the
algorithm’s striking efficiency this approach still needs to thoroughly evaluate the object score everywhere
in the image, which can become time demanding. In this work weintroduce bounding-based techniques,
which extend to part-based models the Branch-and-Bound (BB) and Cascaded Detection (CD) techniques
used for Bag-of-Word classifiers in [16], [17] respectively. For this we exploit and adapt the Dual Tree
(DT) data structure of [8] to provide the bounds required by BB/CD.

Our method is fairly generic; it applies to any star-shape graphical model involving continuous vari-
ables, and pairwise potentials expressed as separable, decreasing binary potential kernels. We evaluate
our technique using the mixture-of-deformable part modelsof [4]. Our algorithm deliversexactly the
sameresults, but is substantially faster. We also develop a multiple-object detection variation of the sys-
tem, where all object hypotheses are inserted in the same priority queue. If our task is to find the best (or
k-best) object hypotheses in an image this can result in morethan a 100-fold speedup. These speedups
refer to the part combination process, after the unary part scores have been computed.

This reports provides a more extensive and updated presentation of the technique presented in [13].
The main differences are that (a) the presentation of our method has changed, opting for a ‘hierarchical’
description rather than the ‘linear’ description of [13]. (b) we now consider also Cascaded Detection,
while in [13] we only used Branch-and-Bound. The former is slightly more efficient for detection with
a fixed threshold, as it avoids the use of heap data structureswhich BB requires, and also lends itself to
parallelization. (c) We provide a tighter lower bound for supporter pruning, which accelerates detection
by roughly 10-20%. (d) we have revised the experimental results, after noticing that we were originally
comparing to a slower variant of the algorithm in [4], but also after improving our own algorithm. In the
end the results stay roughly the same.

The report is structured as follows: after briefly covering prior work in Sec. 2, in Sec. 3 we first
describe the cost function used in DPMs, and then motivate the use of bounding-based techniques for
efficient object detection. In Sec. 4 we start with a high-level description of BB and CD in a general
setting, and then proceed to describe the details of their implementation for detection with DPMs: in
Sec. 4.3 we describe how we bound the DPM score and in Sec. 4.3.3 we describe how we keep the
computation of the bound tractable. Qualitative results are provided throughout the text; we provide
systematic experimental results on the Pascal VOC dataset in Sec. 5.

2 Previous Work on Efficient Detection

Cascade Detection (CD) algorithms were introduced in the beginning of the previous decade in the con-
text of boosting [23] and coarse-to-fine detection [7] and have led to a proliferation of computer vision
applications. However these works deal with ‘monolithic’ object models, i.e. there is no notion of de-
formable parts in the representation. Incorporating partscan make detection more challenging, since
combinatorial optimization problems emerge.

The combinatorics of matching have been extensively studied for rigid objects [9], while [20] used
A∗for detecting object instances. For categories, recent works [1, 14, 15, 22, 6, 21, 18] have focused
on reducing the high-dimensional pose search space during detection by initially simplifying the cost
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function being optimized, mostly using ideas similar toA∗and coarse-to-fine processing. In the recent
work of [4] thresholds pre-computed on the training set are used to prune computation and result in
substantial speedups compared to GDTs. However this approach requires tuning thresholds using the
training set, and comes only with approximate -but controllable- guarantees.

A line of work which brought new ideas into detection has beenbased on Branch-and-bound (BB).
Even though BB was studied at least as early as [10], it was typically considered to be appropriate only for
geometric matching/instance-based recognition. A most influential paper has been the Efficient Subwin-
dow Search (ESS) technique of [16], where an upper bound of a bag-of-words classifier score delivers the
bounds required by BB. Later [19] combined Graph-Cuts with BB for object segmentation, while in [17]
a cascaded detection (CD) system for efficient detection wasdevised by introducing a minor variation of
BB.

Our work is positioned with respect to these works as follows: unlike existing BB/CD works [19,
16, 17, 18], we use the DPM cost and thereby accommodate partsin a rigorous energy minimization
framework. And unlike the pruning-based works [1, 6, 4, 21],we do not make any approximations or
assumptions about when it is legitimate to stop computation; our method is exact.

We obtain the bounds required by BB/CD by adapting the Dual Tree data structure of [8], original
developed in the context of nonparametric density estimation. To the best of our knowledge, Dual Trees
have been minimally used in object detection; we are only aware of the work in [11] which used Dual
Trees to efficiently generate particles for Nonparametric Belief Propagation. Here we show that Dual
Trees can be used for part-based detection, which is relatedconceptually, but entirely different technically.

3 Object Detection with DPMs

3.1 DPM score function

We consider a star-shaped graphical model for objects consisting ofP + 1 nodes{n0, . . . nP }; n0 is
called the root andn1, . . . , nP are the part nodes. Each nodep comes with a unary observation potential
Up(x), indicating the fidelity of the image atx to the local model for nodep. For instance in [2]Up(x) =
〈wp, H(x)〉 is the inner product of a HOG featureH(x) atx with a discriminantwp for p. In this work
we consider thatUp(x) have been computed1, and focus on the task of efficiently combining these unary
measurements into a global decision that respects the pairwise constraints among parts.

The pairwise terms constrain the relative locationx′ of each partp w.r.t. the locationx of the root in
terms of a quadratic function of the form:

Bp(x
′, x) = − (x′ − x− µp)

T
Ip (x

′ − x− µp) , (1)

whereIp = diag(Hp, Vp) is a diagonal ‘precision’ matrix,µp is the nominal relative location vector, and
we consider:

B0(x
′, x) =

{

−∞, x′ 6= x
0, x′ = x

(2)

for convenience. We can view the expression in Eq. 1 as related to the log-likelihood of the relative
locations under a diagonal-covariance Gaussian model.

All parts are connected exclusively with the root node, i.e.we have a star-shaped graphical model. If
the root node is placed atx, the merit for a partp being placed atx′ is given bymp(x

′, x) = Up(x
′) +

1A practical concern is that the computation ofUp(x) typically takes substantially longer than their GDT-basedcombination. In
our on-going research we have built on the work reported hereto largely sidestep the unary part computation. Other relevant works
include [21, 17]. See also the discussion at the end of the experimental results section.

Inria
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Bp(x
′, x). The score of a candidate object configurationx = (x0, . . . , xP ) is obtained by summing over

the part merits:

M(x) =

P
∑

p=1

mp(xp, x0). (3)

To decide if a locationx can serve as the root of an object, we maximize over all configurations that place
the root atx:

S(x)
.
= max

x:x0=x
M(x) (4)

= max
x:x0=x

P
∑

p=1

mp(xp, x) (5)

=
P
∑

p=1

max
xp

mp(xp, x) (6)

=

P
∑

p=1

mp(x), where mp(x)
.
= max

x′

Up(x
′) +Bp(x

′, x). (7)

To go from Eq. 4 to Eq. 5 we use Eq. 3, to go from Eq. 5 to Eq. 6 we usethe distributive property and
in Eq. 7 we introduce the notation for the ‘messages’ being sent from the part nodes to the root node.
The part-to-root message passing described by Eq. 7 is identical to the leaf-to-parent message passing
equations of the Max-Product algorithm [12] if we use the logarithm of the probabilities.

3.2 Object Detection

During detection our goal is to identify either (a)M∗ = {argmaxx S(x)}, or (b)Mθ = {x : S(x) ≥ θ}.
We will refer to case (a) asfirst-best detection and (b) as threshold-based detection. Case (a) is
encountered commonly in pose estimation, or during latent SVM training, when maximizing over the
latent variables. Case (b) corresponds to the common setup for detection, where all image positions
scoring above a threshold are used as object hypotheses.

A naive approach to solve both of those cases is to consider all possible values ofx, evaluateS(x) on
them and then recover the solutions. The complexity of this would beO(PN2), whereN = |{x}| is the
cardinality of the set of possible locations considered (Eq. 7 suggests doingN maximizations per point,
and we haveN points andP parts).

But due to the particular form of the pairwise term, the maximization within each summandmp(x) in
Eq. 7 lends itself to efficient computation in batch mode for all values ofx using a Generalized Distance
Transform (GDT) [5], in timeO(N). So the standard approach taken so far is to maximize each summand
separately with GDTs and then add up the scores at all image locations to obtain the overall object score;
this yields an overall complexity ofO(PN). Even though theO(PN) complexity achieved with GDTs
is remarkably fast, theN factor can still slow things down for large images.

4 Bounding-based Detection with DPMs

Coming to how we can accelerate detection, our basic observation is that if we use a fixed threshold for
detection, e.g.−1 for an SVM classifier, then the GDT-based approach can be wasteful. In particular it
treats equally all image locations, even when we can quicklyrealize that some of them score far below the

RR n° 7940



6 Kokkinos

(a) Input & Detection result (b) Detector scoreS(x)

(c) Brand and Bound for{argmaxx S(x)} (d) Cascaded Detection for{x : S(x) ≥ −1}.

Figure 1: Motivation for a bounding-based approach (note that the classifier is designed to ‘fire’ on
the top-left corner of the object’s bounding box): standardpart-based models evaluate a classifier’s score
S(x) over the whole image domain. Typically only a tiny portion ofthe image domain should be positive-
in (b) we draw a black contour around{x : S(x) > −1} for an SVM-based classifier. Our algorithm
ignores large intervals with lowS(x) by upper bounding their values, and postponing their exploration
in favor of more promising ones. In (c) we show as heat maps theupper bounds of the intervals visited
by our algorithm until the strongest location was explored,and in (d) of the intervals visited until all
locationsx with S(x) > −1 were explored.

Inria



Rapid Deformable Object Detection 7

(a) (b)

Figure 2: Illustration of how BB proceeds to maximize a complex, non-concave function within an inter-
val by branching and bounding the function within intervals. Please see text for details.

threshold. This is illustrated in Fig. 1: in (a) we show the part-root configuration that gives the maximum
score, and in (b) the score of a bicycle model from [4] over thewhole image domain. The tiny part of the
image scoring above a conservative threshold of−1 is encircled by a black contour in (b).

Our approach instead speeds up detection by upper bounding the score of the detector withinintervals
of x. These bounds can be rapidly obtained using low-cost operations, as will be detailed in the following.
Having a bound allows us to use a coarse-to-fine strategy thatstarts from an interval containing all possible
object locations and then gradually subdivides it to refine the bounds on promising sub-intervals, while
avoiding the exploration of less promising ones.

This is demonstrated in Fig. 1(c,d) where we show as heat mapsthe upper bounds of the intervals
visited by our approach for first-best and threshold-based detection respectively. The parts of the image
where the heat maps are more fine-grained correspond to imagelocations that seemed promising and
were explored at a finer level. Coarse-grained parts correspond to intervals whose upper bound was low,
and the refinement of the bound was therefore avoided.

Even though the number of operations performed by our bounding-basedapproach is image-dependent,
we can say that it is roughlylogarithmic in the image size, since our approach recursively subdivides the
explored intervals (the best-case complexity of our algorithm isO(|M |P logN)). So rescaling an image
by a factor of 2 will require roughly two more iterations for our algorithm, while for GDT-based compu-
tation it will require four times the original number of operations (since we now have four times as many
pixels).

We now make these high-level ideas more concrete by first describing Branch-and-Bound and Cas-
caded Detection, which respectively address the first-based and threshold-based detection problems out-
lined in Sec. 3.1, and then get into the technical details involved in the bound computation.

4.1 First-best detection with Branch and Bound

Branch and Bound (BB) can be used a generic maximization algorithm for non-convex or even non-
differentiable functions. BB searches for the interval containing the function’s maximum by using a
prioritized search strategy; the priority of an interval isdetermined by the function’s upper bound within
it. The operation of BB for the maximization of a function over a domainX0 is illustrated in Fig. 2:
BB finds the maximum of a function by using a prioritized search strategy over intervals; at each step
branching first takes place, where an interval -X0, here- is split into two subintervals -X1, X2. Then
bounding takes place, where the value of the function is upper bounded within each of the new intervals.
This upper bound serves as a priority, and dictates which interval is explored next.

The main hurdle in devising a BB algorithm is coming up with a bound that is relatively tight and
also easy to compute - in the Fig. 2 a parabola is used to upper bound a complex, non-concave function;
the interval’s priority can then be rapidly estimated by constructing an analytical upper bound on the
parabola’s value.

RR n° 7940



8 Kokkinos

Branch-and-Bound

M∗ = BB(X0, S)
INITIALIZE: Q = {(X0, S(X0)}
while 1 do
X = Pop[Q]
if Singleton[X ] then

RETURNX{First singleton: best X}
end if
[X1, X2] = Branch[X ]
Push[Q, (X1, S(X1))], Push[Q, (X2, S(X2))]

end while

Cascaded Detection

Mθ = CD(X,S, θ)
if S(X) < θ then

RETURN{}
end if
if Singleton[X ] then

RETURNX {Singleton with score> θ}
end if
[X1, X2] = Branch[X ]
Mθ = CD(X1, S, θ) ∪ CD(X2, S, θ)
RETURNMθ

Table 1: Pseudocode for Brand-and-Bound (BB) and Cascaded Detection (CD). Both algorithms use a
KD-tree for the image domain, where the root node,X0, corresponding to an interval for the whole image
domain and the leaves to singletons (pixels). BB starts fromthe root interval and performs prioritized
search to find the interval containing the best configuration. CD starts from the root node and performs a
Center-Left-Right traversal of the tree to return all singletons scoring above a fixed threshold.

More concretely, if the function we want to maximize isS(x), BB requires that we are able to con-
struct an upper bound of this function’s value within an interval. With a slight abuse of notation we
introduce:

S(X)
.
= max

x∈X
S(x), (8)

i.e. we ‘overload’ function symbols to take intervals as arguments. Denoting the upper bound to function
S asS the requirement is that:

S(X) ≥ S(X) = max
x∈X

S(x) ∀X, S({x}) = S(x), (9)

i.e. on a singleton our bound should be tight.
With such a bounding function at our disposal, BB searches for the maximum of a function using

prioritized search over intervals, as illustrated by the pseudocode in Table 1. Starting from an interval
corresponding to all possible object locations (X0) the algorithm splits it into subintervals, and uses the
upper bounds of the latter as priorities in search. At each step the algorithm visits the most promising
subinterval, and the algorithm terminates when the first singleton interval, sayx, is popped. This is
guaranteed to be a global maximum: since the bound is tight for singletons, we know that the solutions
contained in the remaining intervals of the priority queue will score belowx, since the upper bound of
their scores is below the score ofS({x}) = S(x).

4.2 Threshold-based detection: Cascaded Detection

The BB algorithm described above is appropriate when we search for the first-best (or k-best) scoring
configuration(s). This is typically the case for tasks such as training, or pose estimation. But for detection
we typically want to find all object locations that score above a threshold,θ. To accommodate this in [13]
we proposed to use prioritized search, but stop when the popped interval scores belowθ. This will return
all singletons scoring aboveθ indeed, but it is more efficient to use a cascaded detection algorithm similar
to [17], which avoids the overhead of inserting/removing elements from a priority queue, and is also easy
to parallelize.

In particular, our adaptation of the algorithm in [17] uses atree of intervals, with the root corre-
sponding to the whole domain and the leaves to singletons (single pixels). The algorithm, described in

Inria



Rapid Deformable Object Detection 9

pseudocode in Table 1 starts from the root and recursively traverses the tree in a center-left-right manner.
At the center we check if the upper bound of the current node isabove threshold. If it is not, we return an
empty set, meaning that none of the node’s children can contain an object above threshold. Otherwise, if
the node is singleton, we return the actual location. Finally if the node is non-singleton we recurse to its
left and right children (subintervals), and return the union of their outputs.

4.3 Bounding the DPM score

Having given a high-level description of BB/CD we describe in this subsection how we compute the
bounds and in the following one how we organize the computation.

The main operation required by both algorithms is to compute‘cheap’ upper bounds of the DPM
score functionS(x) within an intervalX . From Eq. 7 we have thatS(x) =

∑

p mp(x), and we are now
concerned with forming an upper bound for the quantityS(X) = maxx∈X

∑

p mp(x). We can upper
boundS(X) as follows:

S(X)
.
=

∑

p

mp(X) ≥
∑

p

mp(X) =
∑

p

max
x∈X

mp(x) ≥ max
x∈X

∑

p

mp(x) = S(X), (10)

wheremp(X) are upper bounds on the value ofmp(x) within X - we describe these below. On the left
we have the construction of our upper bound, and on the right the quantity we wanted to bound in the
first place. The first inequality stems from the fact thatmp(X) is an upper bound formp(X), the next
equality from the definition of the ‘overloaded’ notation for m(X). The second inequality stems from
the fact thatmaxx∈X f(x) +maxx∈X g(x) ≥ maxx∈X f(x) + g(x) for any two functionsf, g, and any
intervalX . We clarify that the maximization showing up here is over theintervalX for which the upper
bound is computed; it is not the maximization implicit in thedefinition of the messages in Eq. 7.

As we will focus on the individual summandsmp(X), we omit thep subscript. Based on Eq. 7,
m(X) should satisfy:

m(X) ≥ m(X)
Eq. 8
= max

x∈X
m(x)

Eq. 7
= max

x∈X

[

max
x′∈X′

m(x′, x)

]

, (11)

whereX andX ′ do not need to be identical (by the definition of Eq. 7X ′ is the whole image domain).
We now proceed to describe how we compute the relevant boundsefficiently.

4.3.1 Dual Trees and Domain Paritioning

We decompose the computation of the upper bound in Eq. 11 intosmaller parts by using the partitions
X = ∪d∈DXd,X ′ = ∪s∈SXs as illustrated in Fig. 3. We call points contained inX ′ the source locations
and points inX the domain locations, with the intuition that the points inX ′ contribute to a score inX .
Making reference to Fig. 3, the ‘domain’ intervals-d could be the numbers and the ‘source’ intervals could
be the letters.

For a given partition ofX,X ′ we can rewritem(X) in Eq. 11 as:

m(X) = max
d

max
x∈Xd

max
s

max
x′∈Xs

m(x′, x) = max
d

max
s

µs
d, where (12)

µs
d

.
= max

x∈Xd

max
x′∈Xs

m(x′, x). (13)

The quantityµs
d quantifies the maximal contribution of any source-intervalpointXs to any domain-

interval pointXd; andm(X) expresses the maximal contribution that any point within any point-interval
can have to any point within any letter-interval.
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Figure 3: We rely on a partition of the ‘source’ (red) and ‘domain’ (blue) points to derive rapidly
computable bounds of their ‘interactions’. This could indicate for example that points lying in square 6
cannot have a large effect on points in square A, and therefore we do not need to go to a finer level of
resolution to exactly estimate their interactions.

In order to computem(X) we have at our disposal a range of partitions for the domain and source
points to choose from, represented using separate KD-trees(hence the ‘Dual Tree’ term). As we illustrate
in Fig. 5 and further detail in in Sec. 4.3.3, we start from coarse partitions ofX,X ′ and iteratively refine
and prune both. To describe how exactly this takes place we first provide bounds for the associated terms.

4.3.2 Bounding the appearance and geometric terms

Based on Eq. 13 and the the definition ofm(x′, x) we can upper boundµs
d as follows:

µs
d = max

x∈Xd

max
x′∈X′

s

U(x′) +B(x′, x) ≤ max
x′∈X′

s

U(x′) + max
x∈Xd

max
x′∈Xd

B(x′, x)
.
= µs

d, (14)

where again we use the fact thatmaxx∈X f(x) + maxx∈X g(x) ≥ maxx∈X f(x) + g(x).
For reasons that will become clear in Sec. 4.3.3, we also needto lower bound the quantity

λs
d = min

x∈Xd

max
x′∈Xs

U(x′) +B(x′, x). (15)

This provides the weakest contribution to a domain point inXd by any source point inXs. To boundλs
d

we have two options:

λs
d,1 = max

x′∈Xs

U(x′) + min
x∈Xd

min
x′∈Xs

B(x′, x) ≤ λs
d (16)

λs
d,2 = min

x′∈X′

s

U(x′) + min
x∈Xd

max
x′∈Xs

B(x′, x) ≤ λs
d (17)

The first bound corresponds intuitively to placing the pointof Xs with the best unary score, sayxb to the
worst location withinXs and then evaluating the support that it lends to the ‘hardest’ point of Xs. This
is a lower bound sincexb will actually be in at least as good a position with respect tothe hardest point.
The second bound corresponds to taking the point ofXs with the worst unary score, sayxw and placing
it at the location inXs that supports the hardest point ofXd. This again is a lower bound since in practice
the point ofXs supporting the hardest point inXd will have at least as good a unary score asxw does.

We combine these two bound into a single and tighter lower bound as:

λs
d = max

(

λs
d,1, λ

s
d,2

)

. (18)

Inria
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(hd, vd)

ηd

νd

(hs, vs)

ηs

νs

hd,s hd,s

hd,s

vd,s

vd,s

vd,s

b

b

Figure 4: Illustration of the terms involved in the geometric bound computations of Eq.s 28-33. Thed/s
subscript indicates quantities relevant to the domain/source intervals respectively (we want to bound the
score within the domain interval, using contributions fromthe source interval).

In [13] we had used only the first bound. Computing Eq. 18 requires some additional operations, but the
bound is tighter and accelerates detection substantially.

We can rapidly compute the terms involved in the bounds of Eq.s 14–17. First, the appearance-based
terms,maxx∈Xs

U(x) andminx∈Xs
U(x), can be computed with fine-to-coarse max-/min-imization

through the KD-tree data structures. The overall complexity of computing all of the relevant terms turns
out to be linear in the image size, but with a particularly lowconstant, equal to the cost of themax/min
operation.

Second, the geometric termsminx∈Xd
maxx′∈Xs

B(x′, x),maxx∈Xd
maxx′∈Xd

B(x′, x) can be rapidly
computed by exploiting the fact thatXd andXs are rectangular. For clarity’s sake, we now abandon the
x notation for coordinates and switch to horizonal and vertical coordinates,(h, v). Making reference to
Fig. 4, we consider two 2D intervals, one for the domain-nodeXd and one for the domain-nodeXs; Xd is
centered at(hd, vd), and has an horizontal/vertical range ofηd/νd, while forXs the respective quantities
are(hs, vs), ηs, νs. Using the(h, v) notation, we can write the pairwise term between two points,say
x ∈ Xd, x

′ ∈ Xs as:

Gx,x′ = −H(h− h′)2 − V (v − v′)2 (19)

whereH,V are the diagonal elements of the precision matrix showing upin Eq. 1; we omit the effect of
the meansµ in Eq. 1 for simplicity, but they can be trivially incorporated in what follows.

Since the pairwise cost is separable in the horizontal and vertical dimensions, we can use distributivity
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12 Kokkinos

to break the max-/min-imization operations along separateaxes. In particular, we have to compute:

Gd,s

.
= max

x∈Xd

max
x′∈Xs

Gx,x′ (20)

= max
h∈Xh

d

max
h′∈Xh

s

−H(h− h′)2 + max
v∈Xv

d

max
v′∈Xv

s

−H(v − v′)2 (21)

= −Hh2
d,s − V v2d,s, where (22)

hd,s
.
= min

h∈Xh
d

min
h′∈Xh

s

|h− h′|, vd,s
.
= min

v∈Xv
d

min
v′∈Xc

s

|v − v′| (23)

where we usei, i to indicate respectively that we are max-/min-imizingwithrespect to the points belong-
ing to domaini, and denote byXv, Xh the projections of a 2D intervalX on the horizontal and vertical
axes respectively. Similarly we get

Gd,s
.
= min

x∈Xd

max
x′∈Xs

Gx,x′ = −Hh2
d,s

− V v2
d,s

, where (24)

hd,s

.
= max

h∈Xh
d

min
h′∈Xh

s

|h− h′|, vd,s
.
= max

v∈Xv
d

min
v′∈Xv

s

|v − v′| (25)

Gd,s
.
= min

x∈Xd

min
x′∈Xs

Gx,x′ = −Hh2
d,s

− V v2
d,s

, where (26)

hd,s

.
= max

h∈Xh
d

max
h′∈Xh

s

|h− h′|, vd,s
.
= max

v∈Xv
d

max
v′∈Xv

s

|v − v′| (27)

For the particular configuration shown in Fig. 4 we have:

hd,s = (hd + ηd)− (hs + ηs) (28)

hd,s = (hd − ηd)− (hs + ηs) (29)

hd,s = (hd + ηd)− (hs − ηs) (30)

vd,s = (vd + νd)− (vs + νs) (31)

vd,s = (vd − νd)− (vs + νs) (32)

vd,s = (vd + νd)− (vs − νs) (33)

If we consider all possible relative placements of the two rectangles we obtain the following forms for
the horizontal coordinate:

hd,s = max (⌈(hd + ηd)− (hs + ηs)⌉, ⌈(hs − ηs)− (hd − ηd)⌉) (34)

= ⌈|hd − hs|+ (ηd − ηs)⌉ (35)

hd,s = max (⌈(hd − ηd)− (hs + ηs)⌉, ⌈(hs − ηs)− (hd + ηd)⌉) (36)

= ⌈|hd − hs| − (ηd + ηs)⌉ (37)

hd,s = max (hd + ηd)− (hs − ηs), hs + ηs)− (hd − ηd)⌉) (38)

= |hd − hs|+ (ηd + ηs) (39)

where⌈·⌉
.
= max(·, 0); identical expressions are used for the vertical coordinate after substitutingv, ν

for h, η respectively.

4.3.3 Dual recursion and supporter pruning

We now describe how to control the complexity of maximizing overd ands in Eq. 12. The range ofd and
s will scale inversely with the area of the intervalsXs, Xd, meaning that as the bounds get finer a larger
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Rapid Deformable Object Detection 13

Figure 5:Illustration of supporter pruning. The left column illustrates the succession of domain intervals that leads
to the optimal object configuration. The next four columns illustrate the associated ‘supporters’ of that interval for
four distinct object parts. Our algorithm starts at the top with a large interval that is supported by equally large
intervals. On the way the domain and supporter intervals getrefined. For each part the supporter intervals are also
pruned, making the overall optimization tractable. At the bottom row the part interval is a singleton, and is supporter
by a single, and singleton, supporter interval. This indicates the optimal part placement for the given domain interval.
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number of terms will be involved; in the limit of singletonsXs, Xd we have a quadratic complexity in
the number of pixels. We now describe how we use a coarse-to-fine algorithm to quickly prune the range
of s involved for everyd, without sacrificing accuracy.

For this we use a Dual Recursion algorithm akin to the one originally introduced for Dual Trees by
[8]. An illustration of how the algorithm works is provided in Fig. 5: starting from the root and going to
the leaves, we recursively prune the range of source (s) intervals that should be used to bound the value at
any domain (d) interval. In particular we ‘descend’ simultaneously on the source and domain trees; at the
beginning (top) the root node of the source tree is used to bound the score of the root node of the domain
tree and at the end the leaves of the source tree are used to compute the exact score of the leaves of the
domain tree.

We use a recursive algorithm to limit the number of operations involved until getting to the leaves.
Consider that in Eq. 12 we know that only a set of ‘supporter’ intervalsSd = {si} should be used in
the bound computation relevant to a domain node-intervald. This means that all other source intervals
cannot contribute something to any of the points contained ind. To reduce the number of operations when
refining these domain and source intervals there are two observations that allow us to speed things up.

First, the children (sub-intervals) ofd need to use only the children (sub-intervals) ofS, i.e. Sk ⊂
∪Spa(k){ch(si)}, wherepa, ch denote the parent and child operators. If any other points where necessary,
these should have been included in the domainSd, by the definition of the ‘supporter’ intervals. Second,
we can remove some elements of∪Spa(k){ch(si)} when formingSk, if we know that these cannot con-
tribute to the optimal score at a domain node. This requires combiningµs

d and the lower bounds ofλs
d,

and relies on the following rationale, illustrated in Fig. 6: consider that a noded has supportersl,m, o. If
two nodesl andm support a noded and their bounds are related byµl

d < λm
d , the descendants of interval

l can be ignored from the following maximization. This is intuitively so because the bounds become
tighter as the intervals become smaller, namely lower bounds increase and upper bounds decrease.

Concretely, denote byn1, n2 the two children of noden. We have that

µs
d ≥ µs

d ≥ µsi
dj

∀i ∈ {1, 2}, ∀j ∈ {1, 2} (40)

The first inequality holds from the fact thatµ upper boundsµ. The second inequality holds because
according to Eq. 13,µs

d

.
= maxx∈Xs

maxx′∈Ds
m(x, x′) while X ′

s ⊂ Xs, D
′
s ⊂ Ds; so maximizing a

function over a smaller set will leader to a smaller quantity. In words, Eq. 40 tells us that the contribution
µsi
dj

of any child ofs to any child ofd cannot be larger than the upper boundµs
d to the contribution ofs

to d.
We also have that:

λs
d ≤ λs

d ≤ λs
di

= max(λs1
di
, λs2

di
), i ∈ {1, 2}. (41)

The first inequality holds from the fact thatλs
d lower boundsλs

d. The second from the definition ofλs
d =

minx∈Xd
maxx′∈Xs

m(x, x′) in Eq. 15, and the fact thatXdi
⊂ Xd: since forλs

di
we are minimizing

over a smaller set, it follows thatλs
di

≥ λs
d. Finally the last equality stems from the definition ofλs

d and
the fact thatXs = Xs1 ∪ Xs2 . In words, Eq. 41 tells us that if we include both children,s1, s2 of s as
potential supporters of a childdi of d, the latter is guaranteed to get support, at its worst point,at least
equal toλs

d.
By putting Eq. 40 and Eq. 41 together we obtain that ifµl

d ≤ λn
d it follows that

µli
dj

≤ max(λn1

dj
, λn2

dj
), j ∈ {1, 2}, i ∈ {1, 2} (42)

This tells us that within the domain intervaldj any point will be getting a support fromn1, n2 that will
be at least as good as the best support it can get froml1 or l2. Therefore the intervalsl1, l2 do not need to
be considered anymore.
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Figure 6: Supporter pruning: source nodes{m,n, o} are among the possible supporters of domain-node
l. Their upper and lower bounds (shown as numbers to the right of each node) are used to prune them.
Here, the upper bound forn (3) is smaller than the maximal lower bound among supporters(4, from
o): this implies the upper bound ofn’s children contributions tol’s children (shown here forl1) will not
surpass the lower bound ofo’s children. We can thus safely removen from the supporters. Please see
text for details.

Concisely, we prune the children of supporterl to noded if µl
d < maxj∈Sd

λj
d. This allows us to

keep the maximization overd in Eq. 12 manageable at any point. In practice less than 15 supporters are
typically involved at any point of the computation, as also shown in Fig. 5.

4.4 Pseudocode

Pseudocode summarizing the Branch-and-Bound version of our algorithm is provided in Table 2. A
minimal modification yields the Cascaded Detection variant. The algorithm uses a priority queue for
Domain tree nodes, initialized with the root of the Domain tree (i.e. the whole range of possible locations
x). At each iteration we pop a Domain tree node from the queue, compute upper bounds and supporters
for its children, which are then pushed in the priority queue. The first leaf node that is popped contains
the best domain location: its upper bound equals its lower bound, and all other nodes in the priority queue
have smaller upper bounds, therefore cannot result in a better solution.

We note that each part has its own KDtree (SourcT[p]): we build a separate Source-tree per part using
the part-specific coordinates(xp) and weightswp,i. Each part’s contribution to the score is computed
using the supporters it lends to the node; the total bound is obtained by summing the individual part
bounds.

5 Results - Application to Deformable Object Detection

To estimate the merit of BB we first compare with the mixtures-of-DPMs developed and distributed by
[3]. We directly extend the Branch-and-Bound technique that we developed for a single DPM to deal
with multiple scales and mixtures (‘ORs’) of DPMs [4, 24], byinserting all object hypotheses into the
same queue. In the Cascaded Detection case we simply do a for-loop over scales and components.

Our technique delivers essentially the same results as [4].Other than differences due to floating/double
point arithmetic the results are identical. We therefore donot provide any detection performance curves,
but only timing results.

Coming to time efficiency we compare the results of the original DPM mixture model and our imple-
mentation, using 1200 images from the Pascal dataset and themodels of [4] for all 20 object categories.
As a first experiment we consider the standard detection scenario where we want to detect all objects in
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X∗ = DualTreeBranchandBound(SourceTrees,DomainTree)
X0.DomainNode = DomainTree.Root; {Setup ‘root’ domain node}
for part = 1 to NPartsdo
X0.Supporters[part] ={ SourceTrees[part].Root};

end for
Q = Push({, },{X0,∞}); {Initialization of priority queue}
while 1 do
X = Pop(Q);
if Singleton[X] then

RETURNX ;
end if
[X1, X2] = Branch[X ] {Descend on the domain KD-tree}
for i = 1:2 do
UB = 0;
DomainInterval = DomainTree.[Xi.DomainNode] {Get the domain interval}
for part = 1:Pdo
S = Branch(Xi.Supporters[part]) {Descend on the source KD-tree}
[UP, S′] = Prune(DomainInterval, S, SourceTree[p]);
Xi.Supporters[part] = S′;
UB = UB+UP;

end for
Push(Q, {Xi, UB});

end for
end while

Pruning Routine
[UP, S′] = Prune(DomainInterval, S, SourceTree);
for n ∈ S do
UB[n] = UpperBound(DomainInterval, SourceTree.node[n]); {µn

d }
LB[n] = LowerBound(DomainInterval, SourceTree.node[n]); {λn

d }
end for
MLB = maxn LB[n];
S′ = {Si : UB[i] ≥ MLB};
UP = maxn UB[n];

Table 2: Pseudocode for the Dual-Tree Branch-and-Bound algorithm.
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Figure 7: (a) Single-object speedup of Cascaded Detection over GDTs on images from the Pascal dataset,
(b,c) Multi-object speedup. (d) Speedup due to the front-end computation of the unary potentials. Please
see text for details.

Our algorithm [4]
Unary terms 13.20± 1.49 159.41± 15.82
KD-trees 1.72± 0.21 0.00± 0.00
Detection,θ = 0.0 0.25± 0.07 10.74± 1.02
Detection,θ = −.2 0.47± 0.12 10.74± 1.02
Detection,θ = −.4 0.93± 0.22 10.74± 1.02
Detection,θ = −.6 1.95± 0.42 10.74± 1.02
Detection,θ = −.8 4.17± 0.84 10.74± 1.02
Detection,θ = −1 9.14± 1.79 10.74± 1.02
Detection, 1-best 0.41± 0.08 10.74± 1.02
Detection, 5-best 0.47± 0.09 10.74± 1.02
Detection, 10-best 0.48± 0.10 10.74± 1.02

Table 3: Comparative timings, in seconds, of our approach compared to [4]. Please see text for details.
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an image having score above a certain threshold. We show in Fig. 7 (a) how the threshold affects the
speedup we obtain: for a conservative threshold the speedupis typically tenfold, but as we become more
aggressive it doubles.

As a second application, we consider the problem of identifying the ‘dominant’ object present in the
image, i.e. the category the gives the largest score. Typically simpler models, like bag-of-words classifiers
are applied to this problem, based on the understanding thatpart-based models can be time-consuming,
therefore applying a large set of models to an image would be impractical.

Our claim is that Branch-and-Bound allows us to pursue a different approach, where in fact having
more object categories canincreasethe speed of detection, if we leave the unary potential computation
aside. In specific, our approach can be directly extended to the multiple-object detection setting; as long
as the scores computed by different object categories are commensurate, they can all be inserted in the
same priority queue. In our experiments we observed that we can get a response faster by introducing
more models. The reason for this is that including into our object repertoire a model giving a large score
helps BB stop; otherwise BB keeps searching for another object.

In plots Fig. 7 (b),(c) we show systematic results for this experiment on the Pascal dataset. We
compare the time that would be required by GDT to perform detection of all multiple objects considered
in Pascal, to that of a model simultaneously exploring all categories. In (b) we show how finding the first-
best result is accelerated as the number of objects (M) increases; while in (c) we show how increasing the
‘k’ in ‘k-best’ affects the speedup. For small values ofk the gains become more pronounced. Of course if
we use Cascaded Detection the speedup does not change for multiple categories when compared to plot
(a), since essentially the objects do not ‘interact’ in any way (we do not use nonmaximum suppression).
But as we turn to the best-first problem, the speedup becomes dramatic, and can often be more than
100-fold.

We note that the timings refer to the ‘message passing’ part implemented with GDT and not the
computation of unary potentials, which is common for both models, and is currently the bottleneck, or the
KD-tree construction, which is linear in the image size. Even though it is tangential to our contribution
in this paper, we mention that as shown in plot (d) we compute unary potentials approximately five
times faster than the single-threaded convolution provided by [3] by exploiting Matlab’s optimized matrix
multiplication routines.

A summary of our results can be found in Table 3, where we compare average timings our approach
to the one of [4]. The results are obtained by summing over all20 categories, and averaging over 1200
images from the Pascal VOC dataset; we report mean and standard deviation. The top two rows compare
the front-end efficiency: in the first row we compare our single-threaded Matlab-based convolution code
with the single-threaded, BLAS-free convolution of [4]. Inthe second row we report the time required to
construct the KD-trees for the part and root intervals, alongside with the associated fine-to-coarse max-
/min-imization operations. The next six rows compare the cost of Cascaded Detection for a range of
thresholds, with the linear-time GDT complexity. The last three rows compare the cost of Branch-and-
Bound for K-best detection with GDT. In our comparisons we use the original- and faster- GDT algorithm
of [5] instead of the one provided in [4].

6 Conclusions

In this work we have introduced Dual-Tree Branch-and-Boundfor efficient part-based detection. We have
used Dual Trees to compute upper bounds on the cost function of a part-based model and thereby derived
Branch-and-Bound and Cascaded Detection algorithms for detection. Our algorithm is exact and makes
no approximations, delivering identical results with the DPMs used in [4], but substantially smaller time.
Further, we have shown that the flexibility of prioritized search allows us to consider new tasks, such as
multiple-object detection, which yielded speedups by two orders of magnitude or more in certain cases.
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Our main ongoing research direction is to reduce the unary term computation cost, while the longer-term
goal of our research is to scale up recognition to hundreds oreven thousands of object categories.
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