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Abstract— In this work we formulate the interaction between
image segmentation and object recognition in the framework
of the Expectation Maximization (EM) algorithm. We consider
segmentation as the assignment of image observations to object
hypotheses and phrase it as the E-step, while the M-step amounts
to fitting the object models to the observations. These two tasks
are performed iteratively, thereby simultaneously segmenting an
image and reconstructing it in terms of objects.

We model objects using Active Appearance Models (AAMs) as
they capture both shape and appearance variation. During the
E-step the fidelity of the AAM predictions to the image is used
to decide about assigning observations to the object. For this we
propose two top-down segmentation algorithms. The first starts
with an oversegmentation of the image and then softly assigns
image segments to objects as in the common setting of EM. The
second uses curve evolution to minimize a criterion derived from
the variational interpretation of EM and introduces AAMs as
shape priors. For the M-step we derive AAM fitting equations
that accommodate segmentation information, thereby allowing
for the automated treatment of occlusions.

Apart from top-down segmentation results we provide system-
atic experiments on object detection that validate the merits of
our joint segmentation and recognition approach.

Index Terms— Image segmentation, object recognition, Expec-
tation Maximization, Active Appearance Models, curve evolution,
top-down segmentation, generative models.

I. I NTRODUCTION

T HE bottom-up approach to vision [28] has considered
the interaction between image segmentation and object

detection in the scenario where segmentation groups coherent
image areas that are then used to assemble and detect objects.
Due to its simplicity this approach has been widely adopted,
but there is a growing understanding that the cooperation
(synergy) of these two processes can enhance performance.

Models that integrate the bottom-up and top-down streams
of information were proposed during the previous decade
by researchers in cognitive psychology, biological vision and
neural networks [12], [31], [33], [41], [48] where the primary
concerns have been at the architectural and functional level.
In this decade the first concrete computer vision approaches
to the problem [7], [54] have inspired a host of more recent
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systems [6], [15], [21], [24], [25], [27], [32], [45], [51], [52],
pursuing the exploitation of this idea.

Several of these works have been inspired from the analysis-
by-synthesis framework of Pattern Theory [17], [34], [45].
In this setting a set of probabilistic, generative models are
used to synthesize the observed image and the analysis task
amounts to estimating the model parameters. This approach
can simultaneously regularize low-level tasks using model-
based information and validate object hypotheses based on
how well they predict the image.

In our work we use Active Appearance Models (AAMs) as
generative models and address the problem of jointly detecting
and segmenting objects in images. Our main contribution,
preliminarily presented in [21], is phrasing this task in the
framework of the Expectation Maximization (EM) algorithm
[13]. Specifically, we view image segmentation as the E-
step, where image observations are assigned to the object
hypotheses. Model fitting is seen as the M-step, where the
parameters related to each object hypothesis are estimated
so as to optimally explain the image observations assigned
to it. Segmentation and fitting proceed iteratively; since we
are working in the framework of EM, this is guaranteed to
converge to a locally optimal solution.

To make the combination of different approaches tractable
we build on the variational interpretation of EM; this phrases
EM as the iterative maximization of a criterion that is a
lower bound on the observation likelihood. Specifically, we
consider two alternative approaches for the implementation
of the E-step; the first uses initially an off-the-shelf overseg-
mentation algorithm and then assigns the formed segments to
objects. The second uses a curve evolution-based E-step that
combines AAMs with variational image segmentation. Both
approaches can be seen as optimizing the criterion used in the
variational interpretation of EM. Further, we combine AAM
fitting and image segmentation based on this criterion. We
derive modified fitting equations that incorporate segmentation
information, thereby automatically dealing with occlusions.

Finally, we provide systematic object detection results for
faces and cars, demonstrating the merit of this joint segmen-
tation and recognition approach.

1) Paper Outline:In Sec.II we introduce the basic notions
of EM and give an overview of our approach. Sec.III presents
the generative models we use and formulates the variational
criterion optimized by EM. We present the two considered
approaches for the E-step Sec.IV, and derive the M-step for
AAMs in Sec. V. Experimental results are provided in Sec.
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System Pseudocode

[O1, . . . ,OK] = DETECT OBJECTS(I)
for i = 1 to K do
Ai = INITIALIZE(Oi)
repeat

SEGi = E STEP(AOi
,B, I)

AOi
= M STEP(SEGi, I)

until CONVERGENCE
VERIFY(Oi, SEGi,AOi

)
end for

Fig. 1: Overview and pseudocode for our approach: a front-end object detection system provides a set of candidate object locations. The
location of each object hypothesisOi is used to initialize the parametersAi of a generative model, that then enters enters an EM-loop. In
the E-step the object obtains the image areas it explains better than the background and in the M-step the model parameters are updated.
After convergence, the model parameters and the object segmentation are used to verify object hypotheses and prune false positives.

VI, while Sec.VII places our work in the context of existing
approaches; technical issues are addressed in App.I.

II. EM A PPROACH TOSYNERGY

Our work builds on the approach of generative models
to simultaneously address the segmentation and recognition
problems. For the purpose of segmentation we use the fidelity
of the generative model predictions to the image in order
to decide of the image a model should occupy. Regarding
recognition, each object hypothesis is validated based on the
image area assigned to the object, as well as the estimated
model parameters, which indicate the familiarity of the object
appearance.

This yields however an intertwined problem: on the one
hand knowing the area occupied by an object is needed for
the estimation of the model parameters and on the other the
model synthesis is used to assign observations to the model.
Since neither is known in advance, we cannot address each
problem separately. We view this problem as an instance of the
broader problem of parameter estimation with missing data: in
our case the missing data are the assignments of observations
to models. A well-known tool for addressing such problems
is the EM algorithm [13], which we now briefly describe for
the problem of parameter estimation for a mixture distribution
[5] before presenting how it applies to our approach.

A. EM algorithm and Variational Interpretation

Consider generating an observationIn by first choosing
one out ofK parametric distributions, with prior probability
πk and then drawing a sample from that distribution with
probability P (In|θk). EM addresses the task of estimating
the parameter setA = {A1, . . . ,Ak} , Ak = (θk, πk), that
optimally explains a set of observationsI = {I1, . . . , IN}
generated this way.

The missing data are the identities of the distributions used
to generate each observation; these are represented with the
binary hidden variablevectors zn = [zn,1, . . . , zn,K ]T . zn

corresponds to then-th observation, and its unique non-zero
element indicates the component used to generateIn. By sum-
ming over the unknown hidden variablesZ = {z1, . . . , zn}
we can express the likelihood of the observations given the
parameter set:

log P (I|A) =
N∑

n=1

log P (In|A) =
N∑

n=1

log
∑
zn

P (In, zn|A)

(1)

We can write the last summand as:

P (In, zn|A) = P (In|zn,A)P (zn|A) =
K∏

k=1

[πkP (In|θk)]zn,k

(2)

Finding the optimal estimateA∗ is intractable, since the sum-
mation overzn appears inside the logarithm in (1). However,
for givenZ, one can write thefull observation log likelihood:

log P (I,Z|A) =
∑

n

∑

k

zn,k log (πkP (In|θk)) . (3)

The parameters in this expression can be directly estimated
since the summation appears outside the logarithm.

The EM algorithm exploits this by introducing the expec-
tation of (3) with respect to the posterior distribution ofzn,k.
Denoting byzn,k the vectorzn that assigns observationn to
thek-th mixture, i.e. haszn,k = 1, we write the EM algorithm
as iterating the following steps:
• E-step: derive the posterior ofz conditioned on the previous
parameter estimates,A∗ and the observations:

En,k ≡ P (zn,k|In,A∗) =
π∗kP (In|θ∗k)∑
j π∗j P (In|θ∗j )

, (4)

and form the expected value of the log-likelihood under this
probability mass function:

〈log P (I,Z|A∗)〉E =
∑

n

∑

k

En,k log (πkP (In|θk)) (5)
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• M-step: maximize the expected log-likelihood with respect
to the distribution parameters:

π∗k =
∑

n En,k

N
, θ∗k = argmax

∑
n

En,k log P (In|θk) (6)

Intuitively, in the E-step the unobserved binary variables in (3)
are replaced with an estimate of each mixture’s ‘responsibility’
for the observations, which is then used to decouple param-
eter estimation in the M-step. This consistently increases the
likelihood [13] and converges to a local maximum of (1).

EM can also be seen as a variational inference algorithm
[18] along the lines of [35]. There it is shown to iteratively
maximize a lower bound on the observation likelihood:

log P (I|A) ≥ LB(I, Q,A)

LB(I,Q,A) =
∑

Z

Q(Z) log
P (I|Z,A)P (Z|A)

log Q(Z)
. (7)

The boundLB is expressed in terms ofQ, an unknown
distribution on the hidden variablesZ, and the parameter setA.
The form in (7) is derived from Jensen’s inequality. Typically
Q is chosen from a manageable family of distributions; for ex-
ample by choosing a factorizable distributionQ =

∏
Qn(zn)

computations become tractable since the summations in (7)
break overn.

The individual distributionQn(zn) determines the prob-
ability of assigning then-th observation to one of theK
components. To make the relation with (4) clear, we useQn,k

to denote the probability ofzn,k. By breaking the product in
the logarithm we can thus write (7) as:

LB(I, Q,A) =
∑

n,k

Qn,k[log P (In|Ak)

+ log P (zn,k|Ak)− log Qn,k]. (8)

Maximizing the bound in (8) with respect toQ subject to
the constraint that

∑
k Qn,k = 1, ∀n leads toQn,k = En,k.

So, the variational approach to EM interprets the E-step as a
maximization with respect to Q.

Apart from providing a common criterion for the two
segmentation algorithms used subsequently, this formulation
makes several expressions easier. For example, by breaking
the product in (7) and keeping the term

∑
Z Q(Z) log P (Z|A),

we have a quantity that captures prior information about
assignments. For mixture modeling this simply amounts to
the expression

∑
n

∑
k Qn,k log πk, that favors assignments

to clusters with larger mixing weights. In image segmentation
however there are other forms of priors, such as small length
of the boundaries between regions, or object-specific priors,
capturing the shape properties of the object. We will express
all of these in terms ofQ(Z) log P (Z|A).

B. Application to Synergy

In the mixture modeling problem the hidden variable vec-
tors provide an assignment of each observation to a specific
mixture component. The analogy with our problem comes by

seeing the object models as the mixture components and the
hidden variables as providing the image segmentation.

We apply the EM algorithm to our problem by treating
segmentation as the E-step and model fitting as the M-
step as shown in Fig.1. In the E-step we determine the
responsibility of the object model for image observations and
in the M-step we estimate the model parameters so as to
optimally explain the data that it has occupied. Intuitively we
consider segmentation as determining a window through which
the object is seen, with binary hidden variables determining
whether the object is visible or not. Top-down segmentation
decides where it is best to open this window, while model
fitting focuses on the object parts seen through it.

Input Image

E−step, iteration 1 E−step, iteration 5 E−step iteration 40

M−step, iteration 1 M−step, iteration 5 M−step, iteration 40

Fig. 2: Improvement of the segmentation and parameter estimates at
increasing iterations of EM: The middle row shows the evolution of
the face hypothesis region (E-step) and the bottom row shows object
fitting results, using the above region (M-step).

Illustrating this idea, Fig.2 shows the result of iterating the
E- and M-steps for a toy example: Starting from a location
in the image proposed by a front-end detection system, the
synthesis and segmentation gradually improve, converging to
a solution that models a region of the image in terms of
an object. The assignment of observations to a model and
the estimation of the model parameters proceed in a gradual,
relaxation-type fashion until convergence.

Apart from providing a top-down segmentation of the
image, this idea can be useful for two more reasons: first,

(a) Input (b) Plain AAM (c) EM-based AAM(d) E-step results

Fig. 3:Dealing with occlusion: the sunglasses in (a) lead to erroneous
AAM fits, as shown in (b). The EM approach leads to the more robust
fit in (c) since the E-step results in (d) do not assign the sunglass
region to the object.
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(a) Detections (b) Syntheses (c) Segmentations

Fig. 4: Top-down information helps prune false positives: Back-
ground clutter leads to a false positive, shown with a red-dashed
box in (a); this is pruned due to both the unlikely AAM parameter
estimates, witnessed as a non-typical face in (b) and the lower values
of the E-step results, shown by a lower gray value in (c).

we use segmentation information to deal with occlusion. The
E-step can decide to assign occluded parts to the background,
thereby freeing the object from explaining these areas. The
fitting can therefore focus on the areas that actually belong
to the object, as shown in Fig.3: based on our approach the
synthesis captures more accurately the intensity pattern of the
face and gives reasonable predictions in the part that has been
occluded. We address this aspect in further detail in Sec.V.

Second, we can use the E-step results as well as the
AAM parameters to prune false positives, as shown in Fig.
4. The likelihood of the AAM parameters under the model’s
prior distribution indicates how close the observed image is
to the object category, which helps discard false positives.
Further, the E-step results quantify the fidelity of the model to
the image data in terms of the extent of the area assigned
to it. Object hypotheses generated from detections due to
background clutter have a low chance of explaining a large
part of the image and thereby obtain a smaller area. We
systematically evaluate the merit of these ideas in Sec.VI .

Both of these uses could, in principle, be pursued with
different approaches like the stochastic search over models
and segmentations of [45]. However our work makes broadly
accessible the use of a bottom-up/top-down loop by using a
deterministic and well-studied inference algorithm. Both the
EM algorithm and the system components are widely used in
current research, and can be incorporated with little additional
effort in existing systems.

III. G ENERATIVE MODELS AND EM CRITERION

A basic ingredient of our approach is the use of generative
models; such models are popular in computer vision as they
can be used to formulate in a principled manner problems like
detection, tracking and in our case top-down segmentation. For
object detection such models are used extensively in the setting
of part-based object models. In our work we are interested in
modeling the whole area occupied by an object instead of a
few interest-points or features. We therefore consider global
generative models for image intensity.

We now introduce the models we use for our object cate-
gories and the alternative, background hypothesis. At the end
of this section we combine them in an EM criterion used in
the rest of the paper. This is then maximized by the E- and
M- steps of our approach.

A. Object Model: AAMs

For Fig. 2 a PCA basis for faces [47] was used as a
generative model, resulting in ‘ghosting artifacts’ e.g. around
the hair. This is due to the absence of a registration step in
typical PCA models that perplexes both the modeling and the
segmentation of deformable objects.

We therefore use Morphable- Active Appearance Models
(AAMs) [9], [20], [30] as models that explicitly account
for shape variability and can drive both the analysis and
segmentation tasks. Since we want our approach to be broadly
applicable to object detection, we use AAMs learned with
the approach of [23]. The only information used there is
the bounding box of the object, which is used also by most
unsupervised learning algorithms for object detection.

AAMs model separately shape and appearance variation
using linear expressions, and combine them in a nonlinear
manner. Specifically, a deformation fieldS

S(x; s) ≡ (Sx(x; s), Sy(x; s)) =
NS∑

i=1

siSi(x) (9)

is synthesized to bring the image pixel(Sx(x; s), Sy(x; s)) in
registration with the template pixelx = (x, y). The appearance
T is synthesized on the deformation-free template grid as

T (x; t) = T0(x) +
NT∑

i=1

tiTi(x). (10)

The model parameters are the shape and texture coefficients
s = (s1, . . . , sNS ), t = (t1, . . . , tNT ), while S, T are
the corresponding basis elements andT0(x) is the mean
appearance.

Given an observed imageI, AAM fitting iteratively mini-
mizes w.r.t.s andt a criterion defined on the template grid:

E(s, t) =
∑
x

H(x) (I(S(x; s))− T (x; t))2 , (11)

whereH(x) is the indicator function of the object’s support.
Observations at locations that do not get warped to the interior
of this support cannot be modeled by the AAM and therefore
do not contribute to the error.

Under a white Gaussian noise error assumption the log-
likelihood of I(x) writes:

log P (I(x)|s, t) = −
(
I(x)− T (S−1(x; s); t)

)2

2σ2
− log 2πσ2

2
.

(12)
HereS−1 fetches from the template coordinate system the pre-
diction T (S−1(x; s); t) corresponding to the observed value
I(x) and as above, this equation holds only ifH(S−1(x; s)) =
1, namely ifx can be explained by the AAM.

If the magnification or shrinking of the template pointx is
negligible we haveP (I|s, t) ∝ exp(−E(s, t)/(2σ2)), which
interprets AAM fitting as providing a Maximum Likelihood
parameter estimate. Further, we can perform Maximum-A-
Posterior estimation by introducing a quadratic penalty on
model parameters in (11), which equals the log-likelihood of
the parameters under a Gaussian prior distribution.
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B. Background Model: Piecewise Constant Image

To determine the assignment of observations to the object
we need a background model as an alternative to compete
with. There are several ways to build a background model,
depending on the accuracy required from it. At the simplicity
extreme, for Fig.2 we use a nonparametric distribution for
the image intensity that is estimated using the whole image
domain. However, for images with complex background this
distribution becomes loose, and the object model may be better
even around false positives. The more complex, full-blown
generative approach of [45], [46] pursues the interpretation of
the whole image so there is no generic background model.
Practically, for the joint segmentation and detection task this
could be superfluous: as we show in the experimental results
a simple background model can both discard false positives
and exclude occluded areas from model fitting.

The approach we take lies between these two cases. We
consider that the background model is built by a set of regions,
within which the image has constant intensity; this is the
broadly used piecewise-constant image model. We assume
that within each regionr the constant value is corrupted by
white Gaussian noise, and estimate the parameters(µr, σr)
from the mean and standard deviation of the region’s image
intensities. These, together with the prior probabilityπBr of
assigning an observation to the region form the parameter set
for background region r:ABr = (µr, σr, πBr ).

We can combine all sub-models in a single background
hypothesisB, under which the likelihood ofI(x) writes:

P (I(x)|AB) =
R∏

r=1

[P (I(x)|ABr )]
Hr(x)

= N(µi − I(x), σi) (13)

whereAB = (AB1 , . . . ,ABR), Hr(x) is the support indicator
for ther-th region andi is the index of the region that contains
x, i.e. Hi(x) = 1. Implicitly, for (13) we assume thatπBr

does not depend onr, and condition onI(x) belonging to the
background; otherwise aπBi term would be necessary. This is
an expression we will use in the following when convenient.

C. EM criterion for Object vs Background Segmentation

We now build a lower bound on the likelihood of the image
observations under the mixture of the object and background
models. For the sake of simplicity we formulate it for the
case of jointly segmenting and analyzing a single object; the
generalization to multiple objects is straightforward.

We split the bound in (8) into object- and background- re-
lated terms. Since our models are formulated in the continuous
domain but EM considers a discrete set of observations, we
denote below withxn the image coordinate corresponding to
observation indexn.

We first consider the part of the EM bound in (8) that
involves the object hypothesis,O. This can be expressed in
terms of the column ofQn,k that relates toO, QO and the
object parametersAO = (s, t, πO) that include the AAM
parameterss, t and the prior probabilityπO of assigning an

observation to the object if it falls within its support. Using
these we write the related part of the bound as:

LB(I, QO,AO) =
∑

n

Qn,O [log P (In|AO) + log P (zn,O|AO)] .

(14)
HereP (In|AO) = P (I(xn)|s, t) is the observation likelihood
under the appearance model of (12) and zn,O is the hidden
variable vector that assigns the observationn to hypothesisO.

The termP (zn,O|AO) equals the prior probability ofzn,O
under the AAM model and constrains the AAM to only model
observations in the template interior. Specifically, we have:

P (zn,O|AO) = H(S−1(xn, s))πO. (15)

In words, hypothesisO can take hold of observationn only if
S−1 brings it inside the object’s interior. In that case, the prior
probability of obtaining it isπO. This brings shape information
directly in segmentation without introducing additional terms
to a segmentation criterion as is done e.g. in [11], [43]. We
therefore see AAMs as providing a natural means to introduce
shape-related information in segmentation.

For the background model we adopt the mixture modeling
approach described in the previous subsection and write:

LB(I,QB,AB) =
∑
n,r

Qn,Br [log P (In|ABr )

+ log P (zn,Br |ABr )]. (16)

As in (14), QB are the columns ofQn,k related to the
background hypotheses andAB are the corresponding param-
eters. The first summand is the likelihood of the observations
under ther-th background sub-model. The second summand
is a prior distribution over the assignments that we use to
balance the complexity of the fore- and background models.
Specifically, the AAM has often larger reconstruction error
than the background model, since it explains an heterogenous
set of observations with a varying set of intensities. Instead,
the background regions are determined using bottom-up cues
and have almost constant intensity, thereby making it easier to
model their interiors. We therefore assign observations to the
object model more easily by settingP (zn,Br |ABr ) = πBr to
a low value; this gives rise later to ‘MDL’ or ‘balloon’ terms.

We combine these two terms with a scaled version of the
entropy-related term of (7) and obtain the following lower
bound on the log-likelihood of the data:

LB(I, Q,A) =
∑

n

∑

h∈{O,B1,...,BR}
Qn,h

[
log P (In|Ah)

+ log P (zn,h|Ah)− 1
α

log Qn,h

]
(17)

where Q = {QO, QB} and A = {AO,AB}. The last
summand favors high-entropy distributions and leads to soft
assignments. Since−∑

n,h Qn,h log Qn,h ≥ 0, for all α ≥ 1
we have a lower bound on the log-likelihood: forα = 1 we
have the original EM bound of (7), while in the winner-take-
all version of EM described in [35] we setα → ∞, so the
entropy term vanishes and all assignments become hard. This
is also the common choice for image segmentation.
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(a) Watershed Segmentation

(b) Background Synthesis

N(µN , σN)

N(µ1, σ1)

I(x; t, s) N(µi, σi)

(c) Fragment-based E-step

Fig. 5: Fragment-based E-step: We break the image into fragments
using the watershed algorithm as shown in (a). The background model
uses a Gaussian distribution within each fragment and its prediction,
shown in (b), is constant within each fragment. During the E-step the
occupation of fragments is determined based on whether the object
synthesis,I(x; s, t) reconstructs the image better than the background
model. The gray value indicates the degree to which a fragment is
assigned to the object.

We can now proceed to the description of the E- and M-
steps; they are both derived so as to minimize (17) with respect
to Q andA respectively.

IV. E-STEP: OBJECT-BASED SEGMENTATION

In what follows we present two alternatives to implementing
the E-step; each constitutes a different approach to finding the
background regions and minimizing the EM criterion of (17).

Our initial approach of [21], described in Sec.IV-A , utilizes
an initial oversegmentation to both determine the background
model and implement the E-step. This is efficient and modular,
since any image segmentation algorithm can be used at the
front-end. Still, it does not fully couple the segmentation
and analysis tasks, since the initial segmentation boundaries
cannot be modified. We therefore subsequently propose an
alternative in Sec.IV-B that utilizes curve evolution for the E-
step, incorporating smoothness priors and edge information.
This yields superior segmentations but comes at the cost of
increased computation demands; these can be overcome using
efficient algorithms such as [38].

A. Fragment-based E-step

As suggested in [2], [32] an initial oversegmentation of
the image can efficiently recover most object boundaries.
Adopting this approach, in our work we use the morphological
watershed algorithm [4]. Specifcially, we use the Brightness-
Gradient boundary strength function of [29] to obtain both
edges and markers; we extract the latter from the local minima
of the boundary strength function. As shown in Fig.5, this
gives us a small set of image fragments that we use in two
complementary ways.

First, we define a background distribution by modeling the
image intensities within each fragment with a normal distri-
bution. We thereby build our piecewise-constant background
model with a set of fixed regions.

Second, since these regions are highly cohesive, we treat
them as ‘bundled’ observations - or ‘atomic regions’ in [2]
and ‘superpixels’ in [32]. We thus use a fragment-based E-
step that uniformly assigns an image fragment to either the
object or the background hypothesis. This reduces the number
of assignment variables considered from the number of pixels
to the number of fragments.

We now consider the part of the EM criterion involving
observations in regionRr, by limiting the summation in (17)
to n ∈ Rr. We can simplify its expression by noting first
that only the background sub-modelBr built within region r
is active, and second by using a common valueQr,k for the
related assignment variablesQn,k, n ∈ Rr. Further, since only
the object and a single background hypothesis are entailed, we
setqr = Qr,O = 1−Qr,Br

for simplicity. We can thus rewrite
the considered part of (17) as:

LB(I, qr,A) =
∑

n∈Rr

qr [log P (In|AO) + log P (zn,O|AO)]

+(1− qr) [log P (In|ABr ) + log P (zn,Br |ABr )]

− 1
α

[qr log qr + (1− qr) log(1− qr)]

Substituting from (15) and maximizing with respect toqr

gives:

1
α

log
qr

1− qr
− β =

1
|Rr|

∑

n∈Rr

log
P (In|AO)H(S−1(xn, s))

P (In|ABr )
,

(18)

where β = log πO
πBr

and |Rr| is the cardinality of regionr.
We treatβ as a design parameter that allows us to determine
how easily we assign fragments to the object. Finally, we use
the notationlogP (I|O)

P (I|B) for the right hand side of (18) so the
optimal qr is given by a sigmoidal function:

qr =
1

1 + exp(−α
[
logP (I|O)

P (I|B) + β
]
)

(19)

For all experiments we use the valuesα = 10, β = 1,
estimated by tuning the system’s performance on a few images.
We note that a different front-end segmentation algorithm
might require different values forα andβ. For example if the
segments returned were significantly smaller, a lower value for
β would be needed: as argued in Sec. III-C, in that case the
background model would generally be more accurate, so we
would need to make it even easier for the foreground model
to acquire a part. To avoid manual tuning, one can therefore
use the simple learning-based approach we had initially used
in [21] to estimateα andβ from ground truth data.

On the left of each column pair in Fig.7 we demonstrate
top-down segmentation results for faces and cars that validate
our system’s ability to segment objects of varying shape
and appearance. We show the border of the region that is
obtained by thresholding the results of the E-step for the object
corresponding to the strongest bottom-up hypothesis.

The segmentations are generally appealing, correctly cap-
turing the pose of the object categories considered, while
excluding unpredictable locations like beards for faces or
pedestrians for cars. However, jagged boundaries can occur,
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N (µ3, σ3)N (µ2, σ2)
I(x; t, s)

N (µ1, σ1)

Fig. 6: Curve evolution-based E-step: we represent the object region
as the interior of an evolving contour. To occupy image observations
the object region changes its boundary by competing with a set of
deformable background hypotheses.

due to the E-values of some fragment falling below threshold.
Further, inaccuracies of front-end segmentation propagate to
the top-down segmentation as is more prominent for the car
images where the low-level cues are unreliable; these problems
led us to consider the segmentation scheme presented next.

B. Curve Evolution-based E-step

In this second approach to implementing the E-step a small
set of deformable regions constitute our background model, as
shown in Fig.6. Their boundaries evolve so that each region
occupies a homogeneous portion of the image while at the
same time the boundary of the object region evolves to occupy
the parts explained by it. This is the common curve evolution
approach to image segmentation [8], [53] that is typically
driven by the the minimization of variational criteria. These
criteria can incorporate smoothness and edge-based terms,
thereby addressing the problems of the previous method.

Our contributions consist in using the variational interpre-
tation of EM to justify the use of such methods in our setting,
and introducing AAMs as shape priors for segmentation.

1) Region Competition and EM Interpretation:Region
Competition is a variational algorithm that optimizes a prob-
abilistic criterion of segmentation quality. UsingK regions
Rk and assuming the observations within regionk follow a
distributionP (·|Ak), the likelihood of the observations for the
current segmentation is considered as a term to be maximized.
Combining the observation likelihood with a prior term that
penalizes the length of the region borders,Γ = {Γ1, . . . , ΓK}
gives rise to the Region Competition functional [53]:

J(Γ,A) =
K∑

k=1

µ

2

∫

Γk

ds−
∫∫

Rk

log P (I(x)|Ak)dx, (20)

where µ controls the prior’s weight. Calculus of variations
yields the evolution law:

∂Γk

∂t
= −µκN + log

P (I(x)|Ak)
P (I(x)|Am)

N (21)

where P (I(x)|Am) is the log-likelihood ofI(x) under the
competing neighboring hypothesism, κ is the k-th border

curvature andN its outward normal unit vector. A region
boundary moving according to (21) assigns observations to the
region that predicts them better while maintaining the borders
smooth, as it minimizes the functional (20).

There is an intuitive link between Region Competition
and EM: the E-step is similar to curve evolution, where
observations are assigned to region hypotheses and the M-
step to updating the parameters of the region distributions. The
difference is that instead of a generic EM clustering scheme
that treats an image as an unordered set of pixels, Region Com-
petition brings in useful geometric information and considers
only hard assignments of observations to hypotheses.

The formal link we build relies on using the variational
interpretation of EM to restrict the distributions considered
during the minimization of (17) with respect toQn,k. Specif-
ically, we consider only binary, winner-take-all [35] distribu-
tions over assignments. Denoting the set of observations that
are assigned to hypothesisk asRk = {n : Qn,k = 1} the first
term of (17) writes:

∑
n

∑

k

Qn,k log P (In|Ak) =
∑

k

∑

n∈Rk

log P (In|Ak) (22)

which is a discretization of the area integral in (20).
Further, we can introduce the arclength penalty of (20) into

our EM criterion by appropriately constructing the prior on
the hidden variables, i.e. the second term in (8). For this we
introduce a boolean functionb(zNn) whose argument is the
window of assignment vectors in the neighborhoodNn of
n. b indicates whether observations aroundn are assigned to
different hypotheses, i.e. ifn is on a boundary; we useb to
write the length-based prior

P (Z) =
1
Z

∏
n

exp(−b(zNn)), (23)

where Z is a normalizing constant. We could also consider
object specific terms, but we assumeP (Z|A) = P (Z) for
simplicity. SinceQ is factorizable and

∑
k Qn,k = 1, we have

−
∑

Z

Q(Z) log P (Z|A) =
∑

n

∑

k

Qn,kb(zNn) + c

=
∑

n

b(zNn) + c,

which is, apart from the constantc = log Z a discretized
version of the arc-length penalty used in Region Competition.

Finally, the entropy term−∑
Z Q(Z) log Q(Z) of (17)

generally favors smooth assignments of observations to the
available hypotheses; since the Region Competition scheme
by design assigns in a hard manner image observations to
regions this term always equals zero and does not affect the
EM bound. We note that we would end up with the same result
if we setα = ∞ in (17) from the start; then the entropy term
would vanish and the optimal distributions would be binary.

Summing up we can see Region Competition as minimizing
a version of (17) that utilizes specific expressions forP (Z|A)
andQ(Z). Even though mostly technical, this link allows us
to use well studied segmentation algorithms in our system
without straying from the original EM-based formulation.
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Fig. 7: Top-down segmentations of car and face images using fragment-based (left) and curve evolution-based (right) segmentation. For
display, all background hypotheses are merged in a single region; For the fragment-based segmentation we threshold the E-step results at a
fixed value. We observe that the curve evolution-based results provide smoother segmentations, that accurately localize object borders.

2) AAMs as Shape Priors:Coming to our case, the data
fidelity terms for both the object and background hypotheses
break into sums over the image grid, so they directly fit
the setting of Region Competition. A variation stems from
the P (zn,O|AO) and P (zn,B|AB) terms that enforce prior
information on the assignment probabilities. As mentioned in
the previous section,P (zn,O|AO) prevents the object from
obtaining observations that do not fall within the template
support;P (zn,O|AB) can be a small constant, that acts as
a penalty on the background model and helps the foreground
model obtain observations more easily.

By taking into account theP (zn,O|AO) and P (zn,B|AB)
terms we have the following evolution law for the frontΓ that
separates the the object,O and the backgroundB hypotheses:

∂Γ
∂t

= −µκN + log
P (I(x)|AO)P (zn(x),O|AO)
P (I(x)|AB)P (zn(x),B|AB)

N

(15)
=

[
−µκ + log

P (I(x)|AO)H(S−1(x, s))
P (I(x)|AB)

+ β

]
N .

Aboveβ = log πO
πBr

, x is an image location through which the
front passes andn(x) the corresponding observation index.
The termH(S−1(x, s)) gates the motion due to the observa-
tion likelihood ratio term,log P (I(x)|AO)

P (I(x)|AB) . Specifically, it lets
the object compete only for observations that fall within its
support, i.e. ifH(S−1(x, s)) = 1. Otherwise the observation
is assigned to the background.

This constrains the object region to respect the shape
properties of the corresponding category and introduces shape
knowledge in the segmentation. Contrary to other works, such
as [11], [43], this does not require additional shape prior terms
but comes naturally from the AAM modelling assumptions.

Further, as in the previous subsection, we use a positive
balloon force β which favors the object region over the

background.

We also use terms that result in improved segmentations,
even if they do not stem from a probabilistic treatment.
Specifically, as in [39], an edge-based term is utilized that
pushes the segment borders towards strong intensity variations:

∂Γ
∂t

=
[
−µκ + log

P (I(x)|s, t)H(S−1(x, s))
P (I(x)|AB)

+β −∇G(|∇I|) · N
]
N , (24)

whereG(|∇I|) is a decreasing function of edge strength|∇I|.
Curve evolution is implemented using level-set methods

[37], [44] which are particularly well-suited for our problem;
their topological flexibility allows holes to appear in the
interior of regions, thereby excluding occluded object areas.
Two competing background fronts are introduced, which form
two large clusters for bright and dark regions. Initialization is
random for all but the object fronts that are centered around
the bottom-up detection results. Finally, we smoothH with a
Gaussian kernel ofσ = 2 for stability.

In Fig. 7 where we compare the top-down segmentations
offered by the two approaches, we observe that curve evolution
yields superior results. The curvature term results in smooth
boundaries, the edge force accurately localizes object borders,
the shape of the objects is correctly captured, while occluded
areas are discarded. Some partial failures, as e.g. the bottom-
left car image can be attributed to the limited expressive ability
of the AAM, that could not capture the specific illumination
pattern. In that respect the modularity offered by the EM
algorithm is an advantage, since any better generative model
can be incorporated in the system once available.
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V. M- STEP- PARAMETER ESTIMATION

In the M-step the model parameters are updated to account
for the observations assigned to the object during the E-
step. The generative models we use assume a Gaussian noise
process so that parameter estimation amounts to weighted least
squares minimization, where the weights are provided by the
E-step: higher weights are given to observations assigned with
high confidence to the object and vice versa.

This approach faces occlusions by discounting them during
model fitting. The typical AAM approach, e.g. [40] either
considers occluded areas are known or utilizes a robust norm
to reduce their effect on fitting. Instead, viewing AAMs in the
generative model/EM setting tackles this problem by allowing
alternative hypotheses to explain the observations, without
modifying the AAM error norm.

A. EM-based AAM fitting Criterion

In order to derive the update equations for the object
parametersAO = (s, t) we ignore the entropy-related term
of the EM criterion (17) since it does not affect the final
update. Further, the support-related termH(S−1(x, s)) of (11)
is hard to deal with inside the logarithm: it can equal zero and
introduce infinite values in the optimized criterion. To avoid
this we notice that any observation falling outside the support
cannot be assigned to the object, by default. Therefore, we
multiply the object weights delivered by the E-step with the
indicator function which has the desired effect of taking the
object support into account. The quantity maximized is thus:

CEM (s, t) =
∑
x

E(x)H(S−1(x; s)) log P (I(x)|AO)

+
(
1− E(x)H(S−1(x; s))

)
log P (I(x)|AB) (25)

whereE(x) = Qn(x),O are the results of the previous E-step,
obtained according to one of the two schemes in the previous
section. Introducing the constantc =

∑
x log P (I(x)|AB) and

gathering terms we rewrite (25) as

CEM (s, t) =
∑
x

E(x)H(S−1(x; s)) log
P (I(x)|AO)
P (I(x)|AB)

+ c.

(26)
Ignoring c, which is unaffected by the optimization of the

foreground model and working on the template coordinate
system this criterion writes:

CEM (s, t) =
∑
x

E(xs)H(x)D(x; s) log
P (I(xs)|AO)
P (I(xs)|AB)

, (27)

where we introduce the notationxs = S(x; s). Since the de-
formationx → S(x) locally rescales the template domain, the
determinant of its Jacobian,D(x; s), commeasures (26),(27)
which are viewed as discretizations of area integrals. Finally,
modeling both the fore- and background reconstruction errors
as a white Gaussian noise process we write (27) as:

CEM (s, t) =
∑
x

E(xs)H(x)D(x; s)
[
(I(xs)− T (x, t))2−

(I(xs)−B(xs))
2
]
, (28)

where T is the object-based synthesis, andB is the image
reconstruction using the background model. The multiplicative
factor from the standard deviation of the noise process is
omitted, since it does not affect the final parameter estimate.

The standard, least squares, AAM criterion of (11) can be
transcribed using this notation as:

CLS(s, t) =
∑
x

H(x) (I(xs)− T (x, t))2 . (29)

Comparing (28) to (29) we observe three main deficiencies
of the latter: First, the segmentation information ofE(xs) is
discarded, forcing the model to explain potentially occluded
areas. Second, the fidelity of the foreground and background
models to the data are not compared; in the absence of
strong edges this leads to mismatches of the image and model
boundaries. Third, the magnification or shrinking of template
points due to the deformation is ignored, while it is formally
required by the generative model approach.

B. Shape fitting equations

In the following we provide update rules for AAM fitting
going from (29) to (28), by gradually introducing more elab-
orate terms. As in [30] we derive the optimal update based on
a quadratic approximation to the cost; we provide details in
App. I.

Perturbing the shape parameters by∆s we have:

I(S(x; s + ∆s)) ' I(S(x; s)) +
NS∑

i=1

dI

ds i
(x; s)∆si (30)

dI

ds i
(x; s) =

∂I(S(x; s))
∂x

∂Sx

∂si
+

∂I(S(x; s))
∂y

∂Sy

∂si
, (31)

whereNS the number of shape basis elements. To write (30)
concisely we consider raster scanning the image whereby
I becomes aN × 1 vector, whereN is the number of
observations,dI

ds becomes aN × NS matrix, while ∆s is
treated as aNS × 1 vector. We can thus write (30) as:

I(s + ∆s) = I(s) +
dI
ds

∆s, (32)

where I(s) denotes the vector formed by raster scanning
I(S(x; s)); this is a notation we use in the following for all
quantities appearing inside the criteria being optimized. For
simplicity we also omit thes argument fromI(s).

To write the quadratic approximation to the perturbed cost
CLS(s + ∆s, t) we introduceE = I−T and denote by◦ the
Hadamard product,(aij) ◦ (bij) = (aijbij). We thereby write:

CLS(s + ∆s, t) = CLS(s, t) + J∆s +
1
2
∆sTH∆s,

J = 2 [H ◦ E ]T
dI
ds

, H = 2
(
H ◦ dI

ds

)T dI
ds

, (33)

where J is the Jacobian of the cost function, andH its
Hessian. For terms likeH ◦ dI

ds whereH is N × 1 and dI
ds

is N × NS , H is replicatedNS times horizontally. From
(33) we get the update of the forward additive method [30]:
∆s∗ = − [JH−1

]T
.
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(a) Input (b) Plain LS Fit (c) EM-based Fit (d) E-step (a) Input (b) Plain LS Fit (c) EM-based Fit (d) E-step

Fig. 8: Differences in AAM fitting using the EM algorithm: (a) Input image, (b) plain least squares (LS) fit, (c) EM-based fit and (d) E-step
results. The EM-based fit outperforms the typical LS fit as the E-results robustify the AAM parameter estimation. This is accomplished by
discounting occlusions or areas with unprecedented appearance variations, such as the third window and the hair fringe in the bottom row.

Further, introducing the E-step results yields the criterion:

∑
x

E(xs)H(x) (I(xs)− T (x, t))2 = [E ◦H ◦ E ]T E (34)

for which the Jacobian and Hessian matrices become:

J = 2 (H′ ◦ E)T dI
ds

+ ET

(
dE
ds

◦H ◦ E
)

(35)

H = 2
[
H′ ◦ dI

ds
+ 2

dE
ds

◦H ◦ E
]T dI

ds
(36)

whereH′ = E ◦H. Multiplication with E forces the fitting
scheme to lock onto the areas assigned to the object and results
in the new termsET (dE

ds ◦ H ◦ E), 2
(
dE
ds ◦H ◦ E)T (

dI
ds

)
.

These account for the change caused by∆s in the probability
of assigning observations to template points.

A more elaborate expression results from incorporating the
deformation’s Jacobian in the update; as it does not critically
affect performance we only report it in App.I.

Finally, we consider the reconstruction error of the back-
ground model,EB = I − B, whereB is the matrix formed
by raster-scanning the background synthesisB(xs). We thus
obtain the cost function and Jacobian and Hessian matrices
for the original EM criterion (28):

CEM (s, t) = [(H ◦E) ◦ E ]T [E ]− [(H ◦E) ◦ EB ]T [EB ]
(37)

J = JE − JEB ,H = HE −HEB , (38)

where JE ,HE are as in (35),(36) and JEB
,HEB

are their
background model counterparts. Since the minimized term is
no longer convex instabilities may occur. An optimal scaling
of the update vector is therefore chosen with bisection search,
starting from one.

C. Appearance fitting equations

The appearance parameters are estimated by considering the
part of the EM criterion that depends on the model prediction:

CEM (s, t) =
∑
x

W (x)

[
I(xs)− T0(x)−

NT∑

i=1

tiTi(x)

]2

(39)

where NT is the number of appearance basis ele-
ments andW (x) combines all scaling factors:W (x) =
D(x; s)H(x)E(S(x; s)). This yields the weighted least
squares error solution:

t∗ =
[
[W ◦ (I−T0)]T T

] [
TT (W ◦T)

]−1
(40)

whereT is theN ×NT array formed by the appearance basis
elements.

Finally, a prior distribution learned during model construc-
tion is introduced in the updates of both thes andt parameters.
For an independent Gaussian distribution the Jacobian and
Hessian matrices are modified as:

J ′i = Ji + λ
pi

σ2
i

, H′i,i = Hi,i + λ
1
σ2

i

, (41)

wherei ranges over the number of parameter vector elements,
pi is thei-th element of the parameter estimate at the previous
iteration, σi its standard deviation on the training set andλ
controls the tradeoff between prior knowledge and data fidelity.

The improvements in fitting quality attained with the EM-
based scheme are shown in Fig.8. These examples either
have actual occlusions, or locally have appearances that cannot
be extrapolated from the training set. The plain least squares
criterion of (29) is forcing the model to explain the whole of
its interior, and therefore results in a suboptimal fit.

Instead, in the EM-based setting, even though the AAM
predicts the appearance for the whole object domain, certain
regions may not get assigned to the model if its prediction
there does not match the image observations. As the lower
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values of the E-step results reveal, the model is thereby freed
from explaining occluded regions.

The price to pay for this increased flexibility is that infor-
mative areas like nostrils, teeth, etc. may be discounted if not
modeled adequately well. Still, as the following section shows,
the robustness of the estimated parameters is in practice more
important for the detection task.

VI. SYNERGETIC OBJECTCATEGORY DETECTION

Our goal in this section is to explore how the synergy
between segmentation and recognition improves detection
performance. This is a less explored side of the bottom-up/top-
down idea compared to top-down segmentation and as we
show with the object categories of faces and cars, it is equally
practical and useful.

A. Detection Strategy

1) Bottom-Up Detection:We use a front-end object de-
tection system to provide us with all object hypotheses by
setting its rejection threshold to a conservative value. As in
[45], we treat these detections as proposals that are pruned
via the bottom-up/top-down loop. We rely on the point-of-
interest based system of [22], which represents objects in
terms of a codebook of primal sketch features. This system
builds object models by clustering blobs, ridges and edges
extracted from the training set and then forming a codebook
representation. During detection the extracted features propose
object locations based on their correspondences with the
codebook entries. Since any other bottom-up system could be
used instead of this one, we refer to [22] for further details as
well as to related literature on this quickly developing field,
e.g. [1], [7], [14], [25], [50].

2) Top-Down & Bottom-Up combination:For object de-
tection we complement the bottom-up detection results with
information obtained by the parameters of the fitted AAM
models and the segmentation obtained during the E-step, as
illustrated in Fig.4. We thus have three different cues for
detection: first, the bottom-up detection termCBU quantifies
the likelihood of interest point features given the hypothesized
object location [22].

Second, the AAM parameters are used to indicate how close
the observed image is to the object category. We model the
AAM parameter distributions as Gaussian density functions,
estimated separately on foreground and background locations
during training. We thereby obtain a simple classifier:

CAAM = log
P (s, t|O)
P (s, t|B)

, (42)

that decides about the presence of the object based on the
estimated AAM parameters.

Third, we quantify how well the object hypothesis predicts
the image data using the E-step results that give the probability
E(x) of assigning observationx to the object. We build the
segmentation-based classifier by computing the average of
E(x) over the area that can be occupied by the object:

CSEG =
∑

x H(S−1(x))E(x)∑
x H(S−1(x))

. (43)
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Fig. 9: Comparison of the Curve Evolution-based E-step (CE) and
the Fragment-based E-step (FE) based on the detection of faces [14]
and cars [1]. For both categories the classifiers using segmentation
(‘SEG’) and AAM parameter (‘AAM’) information perform better if
the Fragment-based E-step is used.

The summation is over the whole image domain, and
H(S−1(x)) indicates whetherx can belong to the object.
Using the E-step results in this way prunes false positives,
around which the AAM cannot explain a large part of the
image, thereby resulting in a low value ofCSEG.

We combine the three classifiers using the supra-Bayesian
fusion setting [19]. The outputCk of classifier k is
treated as a random variable, following the distributions
P (Ck|O), P (Ck|B) under the object and background hypothe-
ses, respectively. Considering the set of classifier outputs as
a vector of independent random variables,C = (C1, . . . , Ck)
we use their individual distributions for classifier combination:

P (O|C)
P (B|C)

= c
P (C|O)
P (C|B)

= c

K∏

k=1

P (Ck|O)
P (Ck|B)

(44)

wherec = P (O)/P (B).

B. Experimental Results

1) Performance Evaluation and Experimental Settings:We
use Receiver Operating Characteristic (ROC) and Precision
Recall (PR) curves to evaluate a detector: ROC curves consider
deciding whether an image contains an object, irrespective of
its location. PR curves evaluate object localization, comparing
the ratioR of retrieved objects (recall) to the ratioP of correct
detections (precision); both curves can be summarized using
their Equal Error Rate, namely the point where the probability
of a false hit equals the probability of a missed positive.

In order to compare our results with prior work, we have
used the setup of [14] for faces and that of [1] for cars. Cars
are rescaled by a factor of 2.5, and flipped to have the same
direction during training, while faces are normalized so that
the eye distance is 50 pixels; a50× 30 box is used to label a
detected face a true hit. Further, nonmaximum suppression is
applied on the car results as in [1], allowing only the strongest
hypothesis to be active in a100× 200 box.

Regarding system tuning, we determine the parameters that
influence segmentation and model fitting using a few images
from the training set of each category; during testing we use
the same parameter choices for both categories, on all of the
subsequent detection tasks.
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Fig. 10: Performance of the individual and combined classifiers on the face [14] and car [1] datasets.Please note the ranges of the axes;
preferably see in color.The individual classifiers use bottom-up (‘BU’), AAM parameter (‘AAM’) and segmentation (‘SEG’) cues. The others
combine different cues using (44): the ‘AAM+BU’ classifier uses AAM and bottom-up information while the ‘FUSED’ classifier combines
the AAM, BU and segmentation cues. From both PR and ROC curves we see that the ‘FUSED’ classifier outperforms the rest.

2) Comparison of Alternative E-Step Implementations:
We initially compare the Fragment-based E-step (FE) and
Curve Evolution-based E-step (CE) approaches in terms of
their appropriateness for object detection. Specifically, we have
applied the EM approach to both object categories considered,
using identical settings for the detection front-end, the EM
system components and the classifier combination.

In Fig. 9 we provide the Precision Recall curves of the in-
dividual CSEG andCAAM classifiers for the two approaches.
We observe that the CE approach is outperformed by the
FE approach on the detection task. In our understanding this
is because the CE approach makes a hard assignment using
local information while the FE approach takes soft decisions
and uses the information within a whole image fragment. We
note that the CE approach uses a balloon force in (24) that
largely influences the performance of the segmentation-based
classifier; we therefore experimented with different values and
present the best results we obtained.

Since the FE approach performs systematically better on
the detection task we use it for the subsequent, more detailed
detection experiments. The CE approach could be used after a
decision has been made about the presence of an object as it
provides more appealing top-down segmentations by enforcing
smoothness and drawing boundaries close to image edges.
In this setting, the thresholded FE results could serve for
initialization.

3) Joint Bottom-Up and Top-Down Object Detection:In
Fig. 10 we provide PR and ROC curves for the different
detectors operating in isolation and their combinations accord-
ing to the combination rule (44). Even though the bottom-up
detector is already performing well, the individual detectors
behave in a complementary manner in different areas and their
combinations yield systematically improved results. In specific
we note that the car dataset is harder than the face dataset, at
least for bottom-up detection; still, the final classifier fusing
bottom-up and top-down cues performs equally well for both
categories.

Comparing our results to those reported by others in Table
I we observe that our system is outperformed only by that of
[25] on the car dataset. However, our bottom-up system [22]
uses 80 codebook clusters and is significantly simpler than
that of [25], where more than 500 codebook entries are used.

Equal Error Rates
Method Cars Faces

Ours 5.5 4.7
Fergus [14] 11.6 8.3
Leibe [25] 3.0 -
Opelt [36] 17.0 6.5

TABLE I: EER of our system compared to that of other researchers
on the same datasets; for cars we report the Precision-Recall EER
measurement, as the other references.

Further, our top-down validation stage takes approximately 2
sec. per hypothesis, which is approximately two orders of
magnitude less than that of [25]. We should note here that
flipping the car images during training and fixing the scale
of the faces may have introduced some small positive bias in
favor of our method. We consider it however more important
that systematic improvement in performance is obtained by
combining top-down and bottom-up information via the EM
algorithm.

After validating the usefulness of top-down information we
address the question whether the joint treatment of the two
tasks is really necessary. One particular concern has been
whether this improvement is exclusively due to the AAM
classifier; if this is so, this would render the EM approach
superfluous for detection. The first answer comes from com-
paring the results obtained by combining all cues (‘Fused’)
with the ones using only the AAM and Bottom-Up classifiers.
For both cases considered we observe an improvement both
in the ROC and PR curves, which is due to the additional
information provided by the Segmentation-based classifier.
Still, what we consider more important and now demonstrate
is that EM allows for the use of generative models in hard
images, by discounting image variation that was not observed
in the training set.

4) Occluded Object Detection:We argue here that segmen-
tation helps obtain robust estimates of the model parameters,
and thereby supports the performance of the AAM classifier
in images where the objects are occluded. Since all objects
are fully observed in the dataset of [14], this point cannot be
clearly made for faces; we therefore repeat the previous classi-
fier combination experiment after artificially adding sunglasses
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Fig. 11: Influence of using the EM algorithm on detection performance: Segmentation helps exclude occluded areas from AAM fitting and
results in more robust parameter estimates. This is reflected in improved performance of both the individual AAM and the FUSED classifier
that combines the bottom-up, segmentation and AAM classifiers.

to the faces as in Fig.8. To deconvolve evaluation, we assume
the bottom-up detection system is insensitive to occlusion, and
use the results it furnishes with the fully observed images. For
cars there are substantial occlusions in the test set, so we use
the original images.

The top-down classifiers are evaluated in two distinct sce-
narios, by (a) ignoring segmentation and setting the seg-
mentation weightsE(x) to one everywhere and (b) using
results furnished by EM. The input to the segmentation-based
classifier in the first case is obtained by fitting the AAM
with E(x) = 1, and using after convergence the fitted AAM
parameters to estimateE(x) anew. It is thisE(x) that is then
used in (43).

As shown in Fig.11, the parameter estimates derived in
scenario (a) yield significantly worse performance, since the
occluded region affects AAM fitting, while in scenario (b)
performance degrades gracefully. This behavior is propagated
to the fused classifier performance, where in scenario (b)
consistently better performance is observed.

These results indicate the importance of a joint treatment of
the segmentation and detection tasks in the practical situation
where faces are occluded by glasses, scarfs, beards or cars
are occluded by pedestrians, boxes, etc. The gain is not
only due to the validation information offered by a top-down
segmentation, but also due to the robust model fitting that
sustains the performance of the classifier that uses the AAM
parameters.

VII. SURVEY AND DISCUSSION

Herein we briefly discuss and compare related work on this
relatively new problem, to place our contributions in a broader
context.

A. Previous work on joint detection and segmentation

We can classify most of the existing works on joint seg-
mentation and detection based on whether they use global
or part-based object representations. Global approaches [21],
[45], [51] assume that a monolithic object model can account
for the shape and appearance variation of the object category,
and thereby take hold of all the image observations. Part-based
models such as [7], [24], [25], [27], [52] offer a modular
representation that is used to build the top-down segmentation
in a hybrid fashion, using high-level information wherever

available, and low-level cues to bring the rest of the object
together [24], [52].

At a more detailed level, the approach of [45], [54] performs
a stochastic search in the space of regions and hypotheses, by
extending the Data-Driven MCMC scheme of [46] to include
global generative models for object categories. During search
object and generic region hypotheses are generated, merged,
split or discarded while their borders are localized by curve
evolution using Region Competition [53]. Even though this
approach is elegant, in a practical object detection application
one typically only needs the probability of an object being
present, which as we show here can be efficiently and reliably
estimated using the observation window containing the object
and EM instead of stochastic search.

Following a non-generative approach, codebook representa-
tions are used for joint detection and segmentation in [6], [7]
and [25]. Figure-ground maps associated with the codebook
entries are stored during training and used during detection
to assemble a segmentation of the object. Even though good
performance is demonstrated in [6], [25], the segmentation
depends on the ability to cover a large area of the object
using overlapping patches, necessitating complex models. In
another approach using a part-based representation in [52] an
object-sensitive affinity measure is introduced, and pairwise
clustering methods are used to find a global minimum of the
data partitioning cost. The affinity measure used leads to a
grouping of pixels based on both low-level cues (absence of
edges, similarity) and high-level knowledge. However, the lack
of a probabilistic interpretation impedes the cooperation with
other processes while the detection task is not considered.

Coming to work involving the EM algorithm, we note first
that the use of the EM algorithm for image segmentation
problems is certainly not novel; it has been used previously for
low-level problems such as feature-based image segmentation
[3] or layered motion estimation [49]. Further, in [24] a
part-based object representation is combined with the graph-
cut algorithm to derive a top-down segmentation, yielding
accurate results for articulated object segmentation. The EM
algorithm is used there as well, but in an optimization rather
than a generative model fitting task: the shape parameters
are treated as hidden variables and the E-step constructs a
nonparametric shape distribution. The M-step then amounts
to the maximization via graph cuts of a segmentation quality
cost that entails the distribution constructed in the E-step. This
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Fig. 12: Sample detection results on the datasets of [1], [14]. The locations proposed by a bottom-up detection system are used to initialize
an EM-loop which brings in additional information from segmentation and the AAM parameters. Based on these, the initial hypotheses are
either pruned (red dashed boxes) or validated (green boxes).

deviates from the use of EM in the generative model setting,
where parameter estimation is accomplished in the M-step.
As we show here, the generative model approach allows the
principled combination of different methodologies, like curve
evolution and AAMs, while minimizing the choices that a
generic optimization approach requires.

Further, in the work of [16], [51] the EM algorithm is used
to perform an object-specific segmentation of an image using
the ‘sprites & layers’ model where the E-step assigns obser-
vations to objects (‘sprites’) and the M-step updates the object
parameters. Intuitively this approach is similar to ours, but the
interaction of the two processes is not explored: The back-
ground model is estimated from a fixed set of images, thereby
introducing strong prior knowledge that is not available for
the general segmentation problem, while it is not actually
determined whether an object is present in the image, based on
either bottom-up or top-down cues. Further, the deformations
used do not model the object category shape variation, since
they are either restricted to affine transformations [16] or use
an MRF prior on a piecewise constant deformation field [51].

B. Previous Work on Shape Prior segmentation

Complementary to research on top-down/bottom-up inte-
gration, progress has been made during the last years in
the use of object-specific shape prior knowledge for image
segmentation e.g. in [10], [11], [26], [42], [43]. By focusing
on the object boundaries these approaches efficiently exploit
shape knowledge to overcome noise and partial occlusions.

Most shape prior methods rely on the implicit representation
of level-set methods, where a curve is represented in terms
of an embedding function, such as the distance transform.
This allows for a convenient combination with curve evolution
methods: the variational criterion driving the segmentation is
augmented with a shape-related penalty term that is expressed
in terms of the embedding function of the evolving curve. This
allows for the combination of shape-based and image-based
cues in a common curve evolution framework.

Even though such methods do not model object aspects
like appearance or deformation statistics, they have been
proven particularly effective in tasks such as medical image
segmentation [42] or tracking a detected person [10]. On

the one hand this can be seen as an advantage, since less
demanding object models are used, on the other we believe
that they do not provide a complete solution to the bottom-
up/top-down combination problem.

Specifically, part of the object may be occluded so the
boundaries of the object and the region assigned to it do
not have to be related. For example, if we consider a person
wearing a hat, or sunglasses, a shape prior-driven segmentation
will force the curve corresponding to the object hypothesis
to include the occluded parts of the head, as most heads
are roughly ellipsoidal. Even though one can argue that this
indicates robustness to occlusion, in our understanding, a top-
down segmentation should indicate the image regions occupied
by an object. This can be accomplished with our approach,
where a generative model like an AAM can still fit the shape
of the object, but in the E-step the occluded parts are not
assigned to the object.

We should mention that the shape prior-based technology
has made advances in a broader range of problems, like
articulated object tracking and tracking under severe occlusion
using limited appearance information, cf. e.g. [10], so this
added functionality of our system can be seen as being
complementary. However, the EM/generative model approach
has no fundamental limitation in addressing these problems
as well. Part-based deformation models can be used for artic-
ulated objects, while temporal coherence for tracking can be
enforced by using a dynamical model for the generative model
parameters. Having proved the merit of the EM approach on
a more constrained problem, we would like to explore these
more challenging directions in future research.

VIII. C ONCLUSIONS- FUTURE WORK

In this paper we have addressed the problem of the joint
segmentation and analysis of objects, casting it in the frame-
work of the Expectation-Maximization algorithm. Apart from
a concise formulation of bottom-up/top-down interaction, this
has facilitated the principled combination of different com-
puter vision techniques. Based on the EM algorithm we have
built a system that can segment in a top-down manner images
of objects belonging to highly variable categories, while also
significantly improving detection performance. Summing up,
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the EM framework offers a probabilistic formulation for a
recently opened problem and deals with its multifaceted nature
in a principled manner.

An essential direction for rendering this approach applicable
to a broader set of problems is the automated construction
of models for generic objects; recent advances [7], [14],
[50] have initiated a surge of activity on simple part-based
representations, e.g. [1], [22], [25] but little work has been
done for global generative models [23], [51]. Further, a point
that deserves deeper inspection is the combination of low-level
cues with part-based and global generative models for joint
object segmentation, which has only partially been tackled
[22], [24], [52]. In future work we intend to address these
issues in the framework of generative models with the broader
goal of integrating different computer vision problems in a
unified and practical approach.
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APPENDIX I
DERIVATION OF THE EM/AAM UPDATE RULES

Using the notation introduced in Sec.V, the Jacobian and
Hessian in the typical update are obtained by approximating
the perturbed cost function (29) as:

CLS(s + ∆s, t) =
∑
x

H(x)(I(x; s + ∆s)− T (x, t))2

'
[
H ◦

(
I +

dI
ds

∆s−T
)]T [

I +
dI
ds

∆s−T
]

= [H ◦ E ]T E + 2 [H ◦ E ]T
dI
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∆s + ∆sT
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H ◦ dI

ds

]T dI
ds

∆s,

where in the third line we useE = I − T. We thereby get
the expressions in (33). The criterion[H ◦E ◦ E ]T [E ] in (34)
incorporates segmentation information and its perturbation is
written as:
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.

Keeping the first and second order product terms we have:
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+ ET
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◦ E

]T dE
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.

These are identical to the expressions in (35,36), as dE
ds = dI

ds .
To incorporate the determinant of the deformation’s Jaco-

bian we express it using the shape synthesis relation of (9):

D(x; s) =
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(45)

In matrix notation,D(s) = [sSx
x ] ◦ [sSy

y ]− [sSx
y ] ◦ [sSy

x ]. We
can write the following linear approximation toD(s + ∆s):

D(s + ∆s) = D(s) +
dD
ds

∆s + O(∆s2), (46)

where dD
ds = Sx
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y + Sy
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y .

The perturbed cost and the Jacobian and Hessian obtained
by retaining first- and second- order terms then become:�
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