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Abstract—In this work we formulate the interaction between systems [6], [15], [21], [24], [25], [27], [32], [45], [51], [52],
image segmentation and object recognition in the framework pursuing the exploitation of this idea.
of the Expectation Maximization (EM) algorithm. We consider ~ geayerg) of these works have been inspired from the analysis-

segmentation as the assignment of image observations to object .
hypotheses and phrase it as the E-step, while the M-step amountsPY-Synthesis framework of Pattern Theory [17], [34], [45].

to fitting the object models to the observations. These two tasks IN this setting a set of probabilistic, generative models are
are performed iteratively, thereby simultaneously segmenting an used to synthesize the observed image and the analysis task

image and reconstructing it in terms of objects. amounts to estimating the model parameters. This approach
We model objects using Active Appearance Models (AAMS) as o gimyltaneously regularize low-level tasks using model-

they capture both shape and appearance variation. During the . - . .
E-step the fidelity of the AAM predictions to the image is used based information and validate object hypotheses based on

to decide about assigning observations to the object. For this we how well they predict the image.
propose two top-down segmentation algorithms. The first starts  In our work we use Active Appearance Models (AAMs) as

with an oversegmentation of the image and then softly assigns generative models and address the problem of jointly detecting
image segments to objects as in the common setting of EM. The gng segmenting objects in images. Our main contribution,
second uses curve evolution to minimize a criterion derived from Lo - . . . .
the variational interpretation of EM and introduces AAMs as preliminarily presented in ,[Zl]' IS .ph.raSI'ng this task In the
shape priors. For the M-step we derive AAM fitting equations framework of the Expectation Maximization (EM) algorithm
that accommodate segmentation information, thereby allowing [13]. Specifically, we view image segmentation as the E-
for the automated treatment of occlusions. _ step, where image observations are assigned to the object
Apart from top-down segmentation results we provide system- ynotheses. Model fitting is seen as the M-step, where the
atic experiments on object detection that validate the merits of - - .
our joint segmentation and recognition approach. parameters r.elated to egch ob!ect hypothesus.are estl'mated
so as to optimally explain the image observations assigned
to it. Segmentation and fitting proceed iteratively; since we
are working in the framework of EM, this is guaranteed to
converge to a locally optimal solution.
To make the combination of different approaches tractable
. INTRODUCTION we build on the variational interpretation of EM; this phrases
HE bottom-up approach to vision [28] has considerédM as the iterative maximization of a criterion that is a
the interaction between image segmentation and objéewer bound on the observation likelihood. Specifically, we
detection in the scenario where segmentation groups coheregnsider two alternative approaches for the implementation
image areas that are then used to assemble and detect objetthe E-step; the first uses initially an off-the-shelf overseg-
Due to its simplicity this approach has been widely adoptegiientation algorithm and then assigns the formed segments to
but there is a growing understanding that the cooperatiohjects. The second uses a curve evolution-based E-step that
(synergy of these two processes can enhance performancezombines AAMs with variational image segmentation. Both
Models that integrate the bottom-up and top-down strear@gproaches can be seen as optimizing the criterion used in the
of information were proposed during the previous decad@riational interpretation of EM. Further, we combine AAM
by researchers in cognitive psychology, biological vision arfiiting and image segmentation based on this criterion. We
neural networks [12], [31], [33], [41], [48] where the primaryderive modified fitting equations that incorporate segmentation
concerns have been at the architectural and functional leveformation, thereby automatically dealing with occlusions.
In this decade the first concrete computer vision approacheg-inally, we provide systematic object detection results for
to the problem [7], [54] have inspired a host of more receffdces and cars, demonstrating the merit of this joint segmen-
tation and recognition approach.
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System Pseudocode

[O4,...,0k] = DETECT OBJECTS(I)
for i=1to K do

A; = INITIALIZE(O))

repeat

SEG; = ESTEP(Ap, B, 1)
Ao, = M_STEP(SEG;, I)
untii CONVERGENCE
VERIFY (0;, SEG;, Ap,)
end for

Bottom-Up Detection

Background Synthesis Object Segmentation Model Synthesis

Front-End System Expectation Maximization Loop

Fig. 1: Overview and pseudocode for our approach: a front-end object detection system provides a set of candidate object locations. T
location of each object hypothesi®; is used to initialize the parametert; of a generative model, that then enters enters an EM-loop. In
the E-step the object obtains the image areas it explains better than the background and in the M-step the model parameters are upd
After convergence, the model parameters and the object segmentation are used to verify object hypotheses and prune false positives.

VI, while SecVII! places our work in the context of existingcorresponds to the-th observation, and its unique non-zero

approaches; technical issues are addressed in IApp. element indicates the component used to gendratBy sum-
ming over the unknown hidden variabl& = {z,...,z,}
II. EM APPROACH TOSYNERGY we can express the likelihood of the observations given the

Our work builds on the approach of generative modeRarameter set:
to simultaneously address the segmentation and recognition N N
problems. For the purpose of segmentation we use the fidelitiog P(I].A) = Z log P(I,|A) = Z logZP(In, zp|A)
of the generative model predictions to the image in order n=1 n=1 Zn
to decide of the image a model should occupy. Regarding 1)
.recognition, eac_h object hypothgsis is validated based on Wa can write the last summand as:
image area assigned to the object, as well as the estimated X
;npopdee;rgi::aerbeters, which indicate the familiarity of the Obje%(LuZnVl) Pl [z, A)P (2] A) = H [ P(L | 00)]

This yields however an intertwined problem: on the one =l )
hand knowing the area occupied by an object is needed for
the estimation of the model parameters and on the other fHgding the optimal estimatgl* is intractable, since the sum-
model synthesis is used to assign observations to the mod@@tion overz,, appears inside the logarithm ii)( However,
Since neither is known in advance, we cannot address e&ehgivenZ, one can write théull observation log likelihood
problem separately. We view this problem as an instance of the
broader problem of parameter estimation with missing data: in log P(I,Z|A) = Z Z Zn 1 10g (M P (In|0k)) - (3)
our case the missing data are the assignments of observations nok
to models. A well-known tool for addressing such problemEhe parameters in this expression can be directly estimated
is the EM algorithm [13], which we now briefly describe forsince the summation appears outside the logarithm.
the problem of parameter estimation for a mixture distribution The EM algorithm exploits this by introducing the expec-
[5] before presenting how it applies to our approach. tation of (3) with respect to the posterior distribution of .
Denoting byz, ;, the vectorz,, that assigns observationto
the k-th mixture, i.e. has,, , = 1, we write the EM algorithm
as iterating the following steps:

Consider generating an observatidp by first choosing o £ _gten- derive the posterior afconditioned on the previous
one out of K parar_netrlc distributions, with prior .pro.bab|l|ty parameter estimates}* and the observations:
m, and then drawing a sample from that distribution with

- T FP(I,|05
probability P(I,|0;). EM addresses the task of estimating Epp = P(2nplln, AY) = Tk *( | k)* ’ (4)
the parameter setl = {Ay,..., A}, Ap = (0, m), that > T P(1n07)

optimally explains a set of observatiods= {I,..., In} and form the expected value of the log-likelihood under this

generated this way. bability mass function:
The missing data are the identities of the distributions us8f° y '

to generate each observation; these are represented with th@o P(I.7Z|A* - E:E:E 1 P(L.16
g ) n,k 10g (7 n (5)
binary hidden variablevectorsz,, = [2,1,...,2nk]". Zn L2 A iy e log (mi P (1n|6%))

A. EM algorithm and Variational Interpretation
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seeing the object models as the mixture components and the
e M-step: maximize the expected log-likelihood with respedtidden variables as providing the image segmentation.
to the distribution parameters: We apply the EM algorithm to our problem by treating
S B segmentation as the E-step and model fitting as the M-
T = "T"’k, 0 = argmaXZEmklogP(Inwk) (6) step as shown in Figl. In the E-step we determine the
n responsibility of the object model for image observations and
in the M-step we estimate the model parameters so as to
Intuitively, in the E-step the unobserved binary variables3n (optimally explain the data that it has occupied. Intuitively we
are replaced with an estimate of each mixture’s ‘responsibilit¢onsider segmentation as determining a window through which
for the observations, which is then used to decouple parafie object is seen, with binary hidden variables determining
eter estimation in the M-step. This consistently increases th@ether the object is visible or not. Top-down segmentation
likelihood [13] and converges to a local maximum @§.( decides where it is best to open this window, while model
EM can also be seen as a variational inference algorithting focuses on the object parts seen through it.
[18] along the lines of [35]. There it is shown to iteratively
maximize a lower bound on the observation likelihood:

log P(I|A) > LB(I,Q, A)

P(I|Z,A)P Z.A

The boundLB is expressed in terms of), an unknown
distribution on the hidden variabl&s and the parameter set
The form in [7) is derived from Jensen’s inequality. Typically
Q is chosen from a manageable family of distributions; for ex
ample by choosing a factorizable distributigh=[] Q. (zx)
computations become tractable since the summation3)in |
break overn.

The individual distribution@,,(z,) determines the prob-
ability of assigning then-th observation to one of théd(
components. To make the relation wit) Clear, we use),,
to denote the probability aof,, .. By breaking the product in
the logarithm we can thus writ&)( as:

Input Image

)

E-step, iteration 1 E-step, iteration 5 E-step iteration 40

M-step, iteration 1

M-step, iteration 5 M-step, iteration 40

Fig. 2: Improvement of the segmentation and parameter estimates at
increasing iterations of EM: The middle row shows the evolution of

_ the face hypothesis region (E-step) and the bottom row shows object
B(1,QA) = Z Qn,k[log P(In]Ak) fitting results, using the above region (M-step).
n,k
+  log P(zn k| Ar) —log Qni]-  (8) lllustrating this idea, Fig2 shows the result of iterating the

E- and M-steps for a toy example: Starting from a location
in the image proposed by a front-end detection system, the
So, the variational approach to EM interprets the E-step a@é[m}ets's atnhd tsegnéerlltatlon gradua}!lyf[hlmprove con\t/erglng tfo
maximization with respect to Q. a solution that models a region of the image in terms o
an object. The assignment of observations to a model and

Apart from providing a common criterion for the two timati f th del N di dual
segmentation algorithms used subsequently, this l‘ormulatl%ﬁe estimation of the mode! parameters proceed in a gradual,
gxatlon-type fashion until convergence.

makes several expressions easier. For example, b breakin L .
P P y part from providing a top-down segmentation of the

the product inf) and keeping the terfh_, Q(Z) log P(Z|A), . . L
we have a quantity that captures prior information aboilpage. this idea can be useful for two more reasons: first,

assignments. For mixture modeling this simply amounts to
the expression ", >, Q. logm, that favors assignments
to clusters with larger mixing weights. In image segmentatio
however there are other forms of priors, such as small leng
of the boundaries between regions, or object-specific prior;
capturing the shape properties of the object. We will expre
all of these in terms o)(Z) log P(Z|A).

Maximizing the bound inl§) with respect toQ subject to
the constraint thad ", @, » = 1,Vn leads toQ,, , = E, .

B. Applicati S (a) Input (b) Plain AAM (c) EM-based AAM(d) E-step results
. ication to Syner
PP ynergy Fig. 3: Dealing with occlusion: the sunglasses in (a) lead to erroneous

In the mixture modeling problem the hidden variable vegAM fits, as shown in (b). The EM approach leads to the more robust
tors provide an assignment of each observation to a specffidn (c) since the E-step results in (d) do not assign the sunglass
mixture component. The analogy with our problem comes B§9ion to the object.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, MAY 2008 4

A. Object Model: AAMs

For Fig. 2 a PCA basis for faces [47] was used as a
generative model, resulting in ‘ghosting artifacts’ e.g. around
the hair. This is due to the absence of a registration step in
typical PCA models that perplexes both the modeling and the
‘ segmentation of deformable objects.

(a) Detections (b) Syntheses (c) Segmentations We therefore use Morphable- Active Appearance Models
Fig. 4: Top-down information helps prune false positives: BackAAMS) [9], [20], [30] as models that explicitly account
ground clutter leads to a false positive, shown with a red-dashé@r shape variability and can drive both the analysis and
box in (a); this is pruned due to both the unlikely AAM parametesegmentation tasks. Since we want our approach to be broadly
estimates, witnessed as a non-typical face in (b) anql the lower Va"éﬁfplicable to object detection, we use AAMs learned with
of the E-step results, shown by a lower gray value in (c). the approach of [23]. The only information used there is
the bounding box of the object, which is used also by most
unsupervised learning algorithms for object detection.

we use segmentation information to deal with occlusion. TheAAM i
. ) s model separately shape and appearance variation
E-step can decide to assign occluded parts to the backgrowng P y p PP

. . e hg linear expressions, and combine them in a nonlinear
thereby freeing the object from explaining these areas. T nner. Specifically, a deformation fief
fitting can therefore focus on the areas that actually belong '
to the object, as shown in Fi: based on our approach the Ns
synthesis captures more accurately the intensity pattern of the  S(x;s) = (Sx(x;s), Sy (x;8)) = Y :8i(x) )
face and gives reasonable predictions in the part that has been i=1
occluded. We address this aspect in further detail in Sec. s synthesized to bring the image pixed, (x; s), S, (x;s)) in
Second, we can use the E-step results as well as Hgjstration with the template pixel= (z, y). The appearance

AAM parameters to prune false positives, as shown in Fig: js synthesized on the deformation-free template grid as
4. The likelihood of the AAM parameters under the model's

prior distribution indicates how close the observed image is N7

to the object category, which helps discard false positives. T(x;t) = To(x) +Ztﬂ;(x)' (10)

Further, the E-step results quantify the fidelity of the model to =1

the image data in terms of the extent of the area assigned’he model parameters are the shape and texture coefficients

to it. Object hypotheses generated from detections due 0= (sy,...,sn5), t = (t1,...,tn,), While S, 7 are

background clutter have a low chance of explaining a largkee corresponding basis elements afg(x) is the mean

part of the image and thereby obtain a smaller area. \3ppearance.

systematically evaluate the merit of these ideas in Séc. Given an observed imagk AAM fitting iteratively mini-
Both of these uses could, in principle, be pursued witihizes w.r.t.s andt a criterion defined on the template grid:

different approaches like the stochastic search over models

and segmentations of [45]. However our work makes broadly E(s,t) =Y H(x)(I(S(x;s)) - T(x;t))*,  (11)

accessible the use of a bottom-up/top-down loop by using a x

determini;tic and well-studied inference algorithm. Both “\ﬁrhereH(x) is the indicator function of the object's support.
EM algorithm and the system components are widely used @fhservations at locations that do not get warped to the interior
current research, and can be incorporated with little additiong! this support cannot be modeled by the AAM and therefore

effort in existing systems. do not contribute to the error.
Under a white Gaussian noise error assumption the log-
I1l. GENERATIVE MODELS AND EM CRITERION likelihood of I(x) writes:
A basic ingredient of our approach is the use of generative (I(x) — T(S™(x; S);t))Q log 2702
models; such models are popular in computer vision as théyg P(I(x)[s, t) = — 552 ——
can be used to formulate in a principled manner problems like (12)

detection, tracking and in our case top-down segmentation. FtereS—! fetches from the template coordinate system the pre-
object detection such models are used extensively in the settitigtion 7'(S~!(x;s); t) corresponding to the observed value
of part-based object models. In our work we are interested iix) and as above, this equation holds onlyfifS—!(x;s)) =
modeling the whole area occupied by an object instead oflanamely ifx can be explained by the AAM.
few interest-points or features. We therefore consider globallf the magnification or shrinking of the template poiatis
generative models for image intensity. negligible we haveP(I[s,t) o exp(—E(s,t)/(20?)), which

We now introduce the models we use for our object cateterprets AAM fitting as providing a Maximum Likelihood
gories and the alternative, background hypothesis. At the goarameter estimate. Further, we can perform Maximum-A-
of this section we combine them in an EM criterion used iRosterior estimation by introducing a quadratic penalty on
the rest of the paper. This is then maximized by the E- amdodel parameters irl(), which equals the log-likelihood of
M- steps of our approach. the parameters under a Gaussian prior distribution.
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B. Background Model: Piecewise Constant Image observation to the object if it falls within its support. Using

To determine the assignment of observations to the objéla?se we write the related part of the bound as:

we need a background model as an alternative to COMPgIB (1 0y, Ao) = ZQ’%O llog P(I,|Ao) + log P(zy.0|A0)] .
with. There are several ways to build a background model, —
depending on the accuracy required from it. At the simplicity (14)
extreme, for FiglZ we use a nonparametric distribution foHere P(I,,|Ao) = P(I(x,)[s,t) is the observation likelihood
the image intensity that is estimated using the whole imageder the appearance model 42f and z,, » is the hidden
domain. However, for images with complex background thigriable vector that assigns the observaticio hypothesig).
distribution becomes loose, and the object model may be betteirhe termP(z,, 0| Ao) equals the prior probability of,, o
even around false positives. The more complex, full-blowswnder the AAM model and constrains the AAM to only model
generative approach of [45], [46] pursues the interpretation @servations in the template interior. Specifically, we have:
the whole image so there is no generic background model. _
Practically, for the joint segmentation and detection task this P(an,0lAo) = H(S™ (xn,8))70. (15)
could be superfluous: as we show in the experimental resyfiswords, hypothesi€ can take hold of observation only if
a simple background model can both discard false positives! prings it inside the object's interior. In that case, the prior
and exclude occluded areas from model fitting. probability of obtaining it iste. This brings shape information
The approach we take lies between these two cases. Miectly in segmentation without introducing additional terms
consider that the background model is built by a set of regiong, a segmentation criterion as is done e.g. in [11], [43]. We
within which the image has constant intensity; this is th@erefore see AAMs as providing a natural means to introduce
broadly used piecewise-constant image model. We assusi@pe-related information in segmentation.
that within each region- the constant value is corrupted by For the background model we adopt the mixture modeling

white Gaussian noise, and estimate the paramejerss.) approach described in the previous subsection and write:
from the mean and standard deviation of the region’s image

intensities. These, together with the prior probability of LB(I,Qp, Az) = ZQn,Br [log P(I,,|Ap,)
assigning an observation to the region form the parameter set n,r
for background region rdg, = (u,, 0., 735,). +log P(zn, 5, |AB, )] (16)

We can combine all sub-models in a single background

hypothesis3, under which the likelihood of (x) writes: As in (14), Qp are the columns of), ; related to the

background hypotheses anti are the corresponding param-

R eters. The first summand is the likelihood of the observations

P(I(x)|Ap) = H[P(I(X)|AB,,.)]HT(X) under ther-th background sub-model. The second summand
r=1 is a prior distribution over the assignments that we use to

= N(pi—I(x),04) (13) balance the complexity of the fore- and background models.

) . Specifically, the AAM has often larger reconstruction error
where Ap = (451’ . ’_ABR)’_HT(X) Is the support |nd|cat9r than the background model, since it explains an heterogenous
for_ther-th region and IS t_he index of the region that contaiNSget of gpservations with a varying set of intensities. Instead,
@, i.e. Hi(x) = 1. Implicitly, fgr. (13 we assume thatrs, the background regions are determined using bottom-up cues
does not depend on and condition orf(x) belonging to the_ and have almost constant intensity, thereby making it easier to

background; otherwise &, term would be necessary. This iSy,ye| their interiors. We therefore assign observations to the
an expression we will use in the following when convenlem'oIOjeCt model more easily by setting(z. 5, |As,) = 75, to

a low value; this gives rise later to ‘MDL’ or ‘balloon’ terms.

C. EM criterion for Object vs Background Segmentation Ve combine these two terms with a scaled version of the
] o ] entropy-related term of/j and obtain the following lower
We now build a lower bound on the likelihood of the imag@ound on the log-likelihood of the data:

observations under the mixture of the object and background
models..F_or the sake _of simplicity we formglate it f_or the LB(I,Q,A) = Z Z th[logP(InAh)
case of jointly segmenting and analyzing a single object; the . hel{O Bro Bl
generalization to multiple objects is straightforward. 1

We split the bound inl§) into object- and background- re- +log P(zy,1|An) — — log QM} a7
lated terms. Since our models are formulated in the continuous @
domain but EM considers a discrete set of observations, where Q = {Qo,Qp} and A = {Ap,Ap}. The last
denote below withx,, the image coordinate corresponding tgummand favors high-entropy distributions and leads to soft
observation index. assignments. Since Zn’h QnplogQnp >0, foralla>1

We first consider the part of the EM bound iB) (that we have a lower bound on the log-likelihood: far= 1 we
involves the object hypothesig). This can be expressed inhave the original EM bound of7f, while in the winner-take-
terms of the column of),, ; that relates ta0, Qo and the all version of EM described in [35] we set — oo, so the
object parametersdo = (s,t,7mp) that include the AAM entropy term vanishes and all assignments become hard. This
parameters, t and the prior probabilityr» of assigning an is also the common choice for image segmentation.
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Second, since these regions are highly cohesive, we treat

them as ‘bundled’ observations - or ‘atomic regions’ in [2]
) and ‘superpixels’ in [32]. We thus use a fragment-based E-
I(x;t,s) M N (i, 07) N(un,on) . . . .
> A LA step that uniformly assigns an image fragment to either the
|

object or the background hypothesis. This reduces the number
of assignment variables considered from the number of pixels
to the number of fragments.
We now consider the part of the EM criterion involving

observations in regio®,., by limiting the summation in(7)
to n € R,.. We can simplify its expression by noting first
that only the background sub-mod8) built within regionr
is active, and second by using a common valde, for the
related assignment variabl€k, ,,,n € R,. Further, since only

(b) Background Synthesis the object and a single background hypothesis are entailed, we
Fig. 5: Fragment-based E-step: We break the image into fragmeS@tdr = @r.0 = 1 — @y 5, for simplicity. We can thus rewrite
using the watershed algorithm as shown in (a). The background mothi considered part ofL{) as:

uses a Gaussian distribution within each fragment and its prediction,
shown in (b), is constant within each fragment. During the E-step tHeB (I, ¢, A) = Z q¢r [log P(I,,|Ao) + log P(z,, 0|Ao)]

L N, 01)
(a) Watershed Segmentation | A_

(c) Fragment-based E-step

occupation of fragments is determined based on whether the object nER,.
synthesis/(x; s, t) reconstructs the image better than the background 1— log P(I log P
model. The gray value indicates the degree to which a fragment is +(1 ar) log PInlAs, ) + 108 P(2n,5. Az,
assigned to the object. —=lgrlogq, + (1 — ¢,)log(1 — q)]
«

o Substituting from [15) and maximizing with respect tq,
We can now proceed to the description of the E- and Myives:

steps; they are both derived so as to minimiké) (vith respect .

to Q and A respectively. 1 og 9 - 1 3 log P(I,|A0)H (S (x,, s))7
o 1—gq, |R,| o P(1,|As,)

IV. E-STEP. OBJECTFBASED SEGMENTATION " (18)

In what follows we present two alternatives to implementi

n . ) . :
the E-step; each constitutes a different approach to finding I\%{Qere,@ = log m; f’md |5, is the cardinality of regiorr. .
background regions and minimizing the EM criterion i We treats as a design parameter that allows us to determine

Our initial approach of [21], described in S&&A], utilizes oW easily we A fragments to the object. Finally, we use
an initial oversegmentation to both determine the backgrouHtf Notationlog sy for the right hand side of1f) so the
model and implement the E-step. This is efficient and modul@Ptimal ¢, is given by a sigmoidal function:
since any image segmentation algorithm can be used at the . 1
front-end. Still, it does not fully couple the segmentation T — P(I]|0)
and analysis tasks, since the initial segmentation boundaries L+ exp(-a [IOg Prie) + 8]
cannot be modified. We therefore subsequently propose arFor all experiments we use the values= 10,3 = 1,
alternative in SedlV-B!that utilizes curve evolution for the E- estimated by tuning the system’s performance on a few images_
step, incorporating smoothness priors and edge informatige note that a different front-end segmentation algorithm
This yields superior segmentations but comes at the costmight require different values fax and 3. For example if the
increased computation demands; these can be overcome ugit§ments returned were significantly smaller, a lower value for

(19)

efficient algorithms such as [38]. 5 would be needed: as argued in Sec. III-C, in that case the
background model would generally be more accurate, so we
A. Fragment-based E-step would need to make it even easier for the foreground model

As suggested in [2], [32] an initial oversegmentation d acquire a part. To avoid manual tuning, one can therefore
the image can efficiently recover most object boundariesse the simple learning-based approach we had initially used
Adopting this approach, in our work we use the morphologicéd [21] to estimaten: and 8 from ground truth data.
watershed algorithm [4]. Specifcially, we use the Brightness- On the left of each column pair in Figl we demonstrate
Gradient boundary strength function of [29] to obtain bottop-down segmentation results for faces and cars that validate
edges and markers; we extract the latter from the local minimar system’s ability to segment objects of varying shape
of the boundary strength function. As shown in Fij.this and appearance. We show the border of the region that is
gives us a small set of image fragments that we use in twbtained by thresholding the results of the E-step for the object
complementary ways. corresponding to the strongest bottom-up hypothesis.

First, we define a background distribution by modeling the The segmentations are generally appealing, correctly cap-
image intensities within each fragment with a normal distriuring the pose of the object categories considered, while
bution. We thereby build our piecewise-constant backgrouescluding unpredictable locations like beards for faces or
model with a set of fixed regions. pedestrians for cars. However, jagged boundaries can occur,
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curvature andV\ its outward normal unit vector. A region
boundary moving according t21) assigns observations to the
region that predicts them better while maintaining the borders
smooth, as it minimizes the functiondd).

There is an intuitive link between Region Competition
and EM: the E-step is similar to curve evolution, where
observations are assigned to region hypotheses and the M-
step to updating the parameters of the region distributions. The
difference is that instead of a generic EM clustering scheme
that treats an image as an unordered set of pixels, Region Com-
petition brings in useful geometric information and considers
only hard assignments of observations to hypotheses.

Fig. 6: Curve evolution-based E-step: we represent the object regionThe formal link we build relies on using the variational
as the interior of an evolving contour. To occupy image observatiopisterpretation of EM to restrict the distributions considered
the object region changes its boundary by competing with a Setd’tﬁring the minimization of17) with respect taQ,, ». Specif-
deformable background hypotheses. . . . . r s
ically, we consider only binary, winner-take-all [35] distribu-
tions over assignments. Denoting the set of observations that

due to the E-values of some fragment falling below threshol%re assigned to hypothedisas . = {n : Qn,x = 1} the first

: ; : rm of (17) writes:
Further, inaccuracies of front-end segmentation propagate L0

0
the top-down segmentation as is more prominent for the ca an i log P(I,|Ay) = Z Z log P(I|Ax)  (22)
images where the low-level cues are unreliable; these problem % ’ % neRy

led us to consider the segmentation scheme presented next. . . ) L i
which is a discretization of the area integral 20}

Further, we can introduce the arclength penaltyad) (nto
B. Curve Evolution-based E-step our EM criterion by appropriately constructing the prior on
In this second approach to implementing the E-step a sméile hidden variables, i.e. the second term&h Eor this we
set of deformable regions constitute our background model,iagoduce a boolean functiob(z,;, ) whose argument is the
shown in Figl6. Their boundaries evolve so that each regiowindow of assignment vectors in the neighborhat@ of
occupies a homogeneous portion of the image while at theb indicates whether observations aroumdre assigned to
same time the boundary of the object region evolves to occugijferent hypotheses, i.e. if. is on a boundary; we usk to
the parts explained by it. This is the common curve evolutiosrite the length-based prior
approach to image segmentation [8], [53] that is typically 1
driven by the the minimization of variational criteria. These P(Z) = 7 HeXp(—b(an)), (23)
criteria can incorporate smoothness and edge-based terms, n
thereby addressing the problems of the previous method. where Z is a normalizing constant. We could also consider
Our contributions consist in using the variational interpreshject specific terms, but we assuniZ|.A) = P(Z) for

tation of EM to justify the use of such methods in our settingimplicity. SinceQ is factorizable and", Q.. = 1, we have
and introducing AAMs as shape priors for segmentation. '

1) Region Competition and EM InterpretationRegion =Y Q(Z)log P(Z|A) =Y > Quib(zn,) + ¢
Competition is a variational algorithm that optimizes a prob- Z n k
abilistic criterion of segmentation quality. Usinfj regions — zb(zm) +e,
R, and assuming the observations within regiorollow a - '

distribution P(-|.A ), the likelihood of the observations for the . hi ‘ th tant — loe 7 a discretized
current segmentation is considered as a term to be maximiz\élgl.IC IS, apart from the constamt = log 2 a discretize

- ST . . i f the arc-length penalty used in Region Competition.
Combining the observation likelihood with a prior term thaY€rson o
penalizes the length of the region bordefs- {T,..., I}  Finally, the entropy term—3_, Q(Z)log Q(Z) of (17)

gives rise to the Region Competition functional [53]: gen.erally favors smooth aSS|gnment§ of observg'qons to the
available hypotheses; since the Region Competition scheme

K M by design assigns in a hard manner image observations to
J(I,A) = Z 5/ ds — // log P(I(x)|Ay)dx, (20) regions this term always equals zero and does not affect the
k=1 Tk ik EM bound. We note that we would end up with the same result

where p controls the prior's weight. Calculus of variationsf we seta = oo in (17) from the start; then the entropy term

yields the evolution law: would vanish and the optimal distributions would be binary.
or P(I(x)]Ay) Summing up we can see Region Competition as minimizing
o= kN +log NN (21) a version ofL7) that utilizes specific expressions fBY(Z|.A)

ot PI(x)|Am) and Q(Z). Even though mostly technical, this link allows us
where P(I(x)|A,,) is the log-likelihood ofI(x) under the to use well studied segmentation algorithms in our system
competing neighboring hypothesis, « is the k-th border without straying from the original EM-based formulation.
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Fig. 7: Top-down segmentations of car and face images using fragment-based (left) and curve evolution-based (right) segmentation.
display, all background hypotheses are merged in a single region; For the fragment-based segmentation we threshold the E-step result:
fixed value. We observe that the curve evolution-based results provide smoother segmentations, that accurately localize object borders.

2) AAMs as Shape PriorsComing to our case, the databackground.

fidelity terms for both the object and background hypotheseswe also use terms that result in improved segmentations,
break into sums over the image grid, so they directly féven if they do not stem from a probabilistic treatment.
the setting of Region Competition. A variation stems frorgpecifically, as in [39], an edge-based term is utilized that

the P(z,,0|Ao) and P(z, 5| Ag) terms that enforce prior pushes the segment borders towards strong intensity variations:
information on the assignment probabilities. As mentioned in

the previous sectionP(z, 0|Ap) prevents the object from 1

obtaining observations that do not fall within the template 88_1; = |—ukK + log (I )]LS ;)H(j (x.5))
support; P(z, 0| Ag) can be a small constant, that acts as (I(x)As)

a penalty on the background model and helps the foreground +8—=VG(VI|) -N|N, (24)

model obtain observations more easily.

By taking into account the’(z, 0| Ao) and P(z, z|Az)
terms we have the following evolution law for the frdnthat whereG(|VI|) is a decreasing function of edge strentiy|.
separates the the obje€?, and the backgrouns hypotheses:  curve evolution is implemented using level-set methods

or P(I(x)|A0) P (2 x),0]A40) [37], [44] which are particularly well-suited for our problem;
—pusN + log : their topological flexibility allows holes to appear in the
ot P(I(x)|AB) P(2n(x),5|AB) e . _ :
) AVH(S1 interior of regions, thereby excluding occluded object areas.
D |k +1og PI(x)|Ao) H (5™ (x,5)) 18N Two competing background fronts are introduced, which form
two large clusters for bright and dark regions. Initialization is
PI)Ms) large clusters for bright and dark regions. Initialization i
Above 3 = log =<, x is an image location through which therandom for all but the object fronts that are centered around

front passes anda( ) the corresponding observation indexthe bottom-up detection results. Finally, we smoéthwith a
The termH (S~ (x,s)) gates the motion due to the observaGaussian kernel of = 2 for stability.
tion likelihood ratio term,og %m Specifically, it lets  In Fig. [/ where we compare the top-down segmentations
the object compete only for observations that fall within iteffered by the two approaches, we observe that curve evolution
support, i.e. ifH(S~!(x,s)) = 1. Otherwise the observationyields superior results. The curvature term results in smooth
is assigned to the background. boundaries, the edge force accurately localizes object borders,
This constrains the object region to respect the shafi® shape of the objects is correctly captured, while occluded
properties of the corresponding category and introduces shapeas are discarded. Some partial failures, as e.g. the bottom-
knowledge in the segmentation. Contrary to other works, sulgift car image can be attributed to the limited expressive ability
as [11], [43], this does not require additional shape prior term$ the AAM, that could not capture the specific illumination
but comes naturally from the AAM modelling assumptions. pattern. In that respect the modularity offered by the EM
Further, as in the previous subsection, we use a posit@gorithm is an advantage, since any better generative model
balloon force 5 which favors the object region over thecan be incorporated in the system once available.
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V. M-STEP- PARAMETER ESTIMATION where T is the object-based synthesis, amdis the image
[ﬁ.ﬁonstruction using the background model. The multiplicative

for the observations assigned to the object during the EACtor from the standard deviation of the noise process is
step. The generative models we use assume a Gaussian rigisiited. since it does not affect the final parameter estimate.
process so that parameter estimation amounts to weighted leadf'e Standard, least squares, AAM criterion [bfi)(can be
squares minimization, where the weights are provided by tH@nscribed using this notation as:
E-step: higher weights are given to observations assigned with C 2

. ! . : s.t) = S H(x) (I(xae) — T(x,1))2 . 29
high confidence to the object and vice versa. rs(s:t) zx: () (1(xs) (x,t)) (29)

This approach faces occlusions by discounting them durin . _ L
model fitting. The typical AAM approach, e.g. [40] eithelﬁ,gomparmg P8) to (29) we observe three main deficiencies

considers occluded areas are known or utilizes a robust no?fie latter: First, the segmentation information f6fx) is
to reduce their effect on fitting. Instead, viewing AAMs in th&liscarded, forcing the model to explain potentially occluded
generative model/EM setting tackles this problem by allowir@€aS- Second, the fidelity of the foreground and background

alternative hypotheses to explain the observations, withdl}Pdels to the data are not compared; in the absence of
modifying the AAM error norm. strong edges this leads to mismatches of the image and model

boundaries. Third, the magnification or shrinking of template
points due to the deformation is ignored, while it is formally
A. EM-based AAM fitting Criterion required by the generative model approach.
In order to derive the update equations for the object
parametersdo = (s,t) we ignore the entropy-related term
of the EM criterion [L7) since it does not affect the final ) _ .
update. Further, the support-related tefiS ! (x, s)) of (11) I'n the following we provide updatg rules for AAM fitting
is hard to deal with inside the logarithm: it can equal zero arf#ping from £9) to (28), by gradually introducing more elab-
introduce infinite values in the optimized criterion. To avoi@rate terms. As in [30] we derive the optimal update based on
this we notice that any observation falling outside the suppdttduadratic approximation to the cost; we provide details in
cannot be assigned to the object, by default. Therefore, wep- I
multiply the object weights delivered by the E-step with the Perturbing the shape parameters/by we have:
indicator function which has the desired effect of taking the

Ns
object support into account. The quantity maximized is thus: 1(S(x;s + As)) ~ I(S(x;s)) + E (37] (x;s)As;  (30)
Si
i=1

Cru(s,t) = > B)H(S™" (x;5)) log P(I(x) | Ao) dI DI(S(x;s)) S,  OI(S(x;s)) S,
x %i(X;S) - oz Os; Oy Os;

where Ns the number of shape basis elements. To wi@ (

where E(x) = Qn(x),0 are the results of the previous E-stepyoncisely we consider raster scanning the image whereby
obtained according to one of the two schemes in the previopspecomes aN x 1 vector. whereN is the number of

section. Introducing the constant= 3, log P(I(x)|A5) and - gpservations,’. becomes aV x Ns matrix, while As is
gathering terms we rewrit&2f) as treated as aVs x 1 vector. We can thus writé3() as:

In the M-step the model parameters are updated to acco

B. Shape fitting equations

(31)
+(1- E(x)H(S™(x; s))) log P(I(x)|Ag) (25)

Conrls.t) = S EGIH (S (x:3) low 1950 + ¢ 15+ 29) = 1(5) + Us, @)

. S Lo (26) where I(s) denotes the vector formed by raster scanning
Ignoring ¢, which is unaffected by the optimization of the S . . i
: . S(x;s)); this is a notation we use in the following for all
foreground model and working on the template coordlna{ 2 o - ) 2
. S o guantities appearing inside the criteria being optimized. For
system this criterion writes: L .
simplicity we also omit thes argument froml(s).
To write the quadratic approximation to the perturbed cost
Crs(s+ As,t) we introduce€ = I — T and denote by the

Hadamard producta;;) o (b;;) = (ai;bi;). We thereby write:

Conr(s.) = 3 Er) H(x)D(xi5) og 37 50

where we introduce the notatioty = S(x;s). Since the de-
formationx — S(x) locally rescales the template domain, the Crs(s+ As,t) = Crs(s,t) + JAs + lAsTHAs,
determinant of its Jacobiar)(x;s), commeasures26),(27) 2

which are viewed as discretizations of area integrals. Finally,
modeling both the fore- and background reconstruction errors
as a white Gaussian noise process we wifé) @s:

» (27)

o dI

jZQ[HOS] IS’

ds disv (33)

where J is the Jacobian of the cost function, ard its
; : dI ; dI
C s,t) = E(x)H(x)D(x:8) | (I(xs) — T(x,t))? — Hessian. For terms likél o 5o whereH is N x 1 and g
Em(s,t) zx: () H () D( ){( (xs) (. £)) is N x Ng, H is replicated Ns times horizontally. From
(33) we get the update of the forward additive method [30]:
As* = —[TH]".

T

(1) = B(xs))*] (28)
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(a) Input (b) Plain LS Fit (c) EM-based Fit (d) E-step (@) Input  (b) Plain LS Fit (c) EM-based Fit  (d) E-step

Fig. 8: Differences in AAM fitting using the EM algorithm: (a) Input image, (b) plain least squares (LS) fit, (c) EM-based fit and (d) E-step
results. The EM-based fit outperforms the typical LS fit as the E-results robustify the AAM parameter estimation. This is accomplished |
discounting occlusions or areas with unprecedented appearance variations, such as the third window and the hair fringe in the bottom r

Further, introducing the E-step results yields the criterionC. Appearance fitting equations

) . The appearance parameters are estimated by considering the
> E(xs)H(x) (I(xs) — T(x,t))* = [EcHo £]" £ (34) part of the EM criterion that depends on the model prediction:

2

for which the Jacobian and Hessian matrices become: ~ Cem (s, t) ZW [ o= Tox) =Y tTi(x)| (39)

T =2(H o0& dr L er (dE oHo 5) (35) Wwhere Ny is the number of appearance basis ele-

ds d ments andW (x) combines all scaling factorstV(x) =
dI dE dI D(x;s)H(x)E(S(x;s)). This yields the weighted least
H=2 [H/ ds 2(T oHo 5] ds (36) squares error solution:
_ _ T T -1
whereH’ = E o H. Multiplication with E forces the fitting n [[W o (I=To)] T] [T (Wo T)] (40)

scheme to lock onto the areas assigned to the object and resyfigreT is the N x Ny array formed by the appearance basis
in the new terms€”(4E o Ho £), 2(€oHo €)' (U). elements.
These account for the change caused&syln the probability Finally, a prior distribution learned during model construc-
of assigning observations to template points. tion is introduced in the updates of both thandt parameters.

A more elaborate expression results from incorporating th@r an independent Gaussian distribution the Jacobian and
deformation’s Jacobian in the update; as it does not criticalyessian matrices are modified as:
affect performance we only report it in Apf. , i , 1

Finally, we consider the reconstruction error of the back- Ji=Ji+ AUTZ’ Hii=Hii+ )\072’ (41)
ground modelép = I — B, whereB is the matrix formed
by raster-scanning the background synthd3ixs). We thus
obtain the cost function and Jacobian and Hessian matngé
for the original EM criterion 28):

wherei ranges over the number of parameter vector elements,
is thei-th element of the parameter estimate at the previous
ration, o; its standard deviation on the training set akd
controls the tradeoff between prior knowledge and data fidelity.
T T The improvements in fitting quality attained with the EM-
Cpm(s,t) = [(HoE)o ] [€] ~ [(HoE)o &p]" (€] based scheme are shown in Fij. These examples either
@37) have actual occlusions, or locally have appearances that cannot
J =T —TJep, H="He — Hep, (38) be extrapolated from the training set. The plain least squares
criterion of 29) is forcing the model to explain the whole of
where Jg, He are as in [85),(36) and J¢,,Hs, are their its interior, and therefore results in a suboptimal fit.
background model counterparts. Since the minimized term islnstead, in the EM-based setting, even though the AAM
no longer convex instabilities may occur. An optimal scalingredicts the appearance for the whole object domain, certain
of the update vector is therefore chosen with bisection searobgions may not get assigned to the model if its prediction
starting from one. there does not match the image observations. As the lower
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values of the E-step results reveal, the model is thereby freed
from explaining occluded regions. :

The price to pay for this increased flexibility is that infc >
mative areas like nostrils, teeth, etc. may be discounted i o -
modeled adequately well. Still, as the following section shcz °% ¢

8
S os.

E-Step Comparison for cars E-Step Comparison for faces

the robustness of the estimated parameters is in practice % o4 SEG-FE
important for the detection task. * ‘ |AAM-FE
02 02 1:SEG-CE
ORI Ry |**AAM-CE O %y N |+::AAM-CE
Vl SYNERGET|C OBJECTCATEGORY DETECT|ON 0 0102 03 04 0506 07 08 09 1 CO 01 02 03 04 05 06 07 08 09 1
1 - Precision 1 - Precision

Our goal in this section is to explore how the syner
betweeg segmentation and reco nir'sion improves d)étec?'Xilg' 9: Comparison of the Curve Evolution-based E-step (CE) and
9 o 9 . p . Fragment-based E-step (FE) based on the detection of faces [14]
performance. This is a less explored side of the bottom-up/tafy cars [1]. For both categories the classifiers using segmentation
down idea compared to top-down segmentation and as W&EG') and AAM parameter (‘AAM’) information perform better if

show with the object categories of faces and cars, it is equaliyg Fragment-based E-step is used.
practical and useful.

A. Detection Strategy The summation is over the whole image domain, and
H(S7'(x)) indicates whethex can belong to the object.

1) Bottom-Up Detection:We use a front-end object de-, . . . -
‘ . . ) Using the E-step results in this way prunes false positives,
tection system to provide us with all object hypotheses b&/ g b y P b

o I . round which the AAM cannot explain a large part of the
setting its rejection threshold to a conservative value. As i} ge, thereby resulting in a low value 6f s

[45], we treat these detections as proposals that are prune e combine the three classifiers using the supra-Bayesian

via the bottom-up/top-down loop. We rely on the point-ofg ;. setting [19]. The outputC, of classifier k is
interest based system of [22], which represents objects ,n : : Co
treated as a random variable, following the distributions

terms of a codebook of primal sketch features. This syste .
builds object models by clustering blobs, ridges and edges" *©)» £(CkIB) under the object and background hypothe
7 ; SEs, respectively. Considering the set of classifier outputs as
extracted from the training set and then forming a codeboQ . .
) . . a vector of independent random variabl€s= (C1, ..., Cy)
representation. During detection the extracted features propose L o o TR
X : : : e use their individual distributions for classifier combination:
object locations based on their correspondences with the

codeb_ook entries._Since any other bottom-up system co_uld be P(O|C) _ cP(C|O) _, ﬁ P(C|0) (44)
used instead of th|s_ one, we refer_to [2_2] for further _detal_ls as P(B|C) P(C|B) L 7P(C;€|B)

well as to related literature on this quickly developing field, k=1

e.g. [1], [7], [14], [25], [50]. wherec = P(0)/P(B).

2) Top-Down & Bottom-Up combinationfFor object de-
tection we complement the bottom-up detection results with
information obtained by the parameters of the fited AANB- Experimental Results
models and the segmentation obtained during the E-step, ag) performance Evaluation and Experimental Settingée
illustrated in Fig.4. We thus have three different cues fo;se Receiver Operating Characteristic (ROC) and Precision
detection: first, the bottom-up detection tefixy quantifies Recall (PR) curves to evaluate a detector: ROC curves consider
the likelihood of interest point features given the hypothesizegciding whether an image contains an object, irrespective of
object location [22]. its location. PR curves evaluate object localization, comparing
Second, the AAM parameters are used to indicate how clagg ratioR of retrieved objects (recall) to the rati of correct
the observed image is to the object category. We model thgtections (precision); both curves can be summarized using
AAM parameter distributions as Gaussian density functiongeir Equal Error Rate, namely the point where the probability
estimated separately on foreground and background locatigis false hit equals the probability of a missed positive.

during training. We thereby obtain a simple classifier: In order to compare our results with prior work, we have
P(s,t|0) used the setup of [14] for faces and that of [1] for cars. Cars
Caam =log P(s,t|B)’ (42)  are rescaled by a factor of 2.5, and flipped to have the same

_ . djrection during training, while faces are normalized so that
tha_t decides about the presence of the object based on t‘beeeye distance is 50 pixels;58 x 30 box is used to label a
estimated AAM parameters.

detected face a true hit. Further, nonmaximum suppression is

th Th|rd, wg q{uant]fy ?r?WEwet" the Otjljte(:tthh%/ppthfﬁ's prebd'g%s})lied on the car results as in [1], allowing only the strongest
€ Image data using Ihe L-step results that give th€ probani pothesis to be active in B00 x 200 box.

E(x) of assigning observatior to the object. We build the . . !

. o . egarding system tuning, we determine the parameters that

segmentation-based classifier by computing the average. . o . .
influence segmentation and model fitting using a few images

E(x) over the area that can be occupied by the object: . ) ; _
from the training set of each category; during testing we use
o Y H(STHx)E(x) the same parameter choices for both categories, on all of the
SEGT TS H(S (%) subsequent detection tasks.

(43)
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ROC Curves for faces PR Curves for faces ROC Curves for cars PR Curves for cars
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Fig. 10: Performance of the individual and combined classifiers on the face [14] and car [1] daRisate note the ranges of the axes;
preferably see in coloiThe individual classifiers use bottom-up (‘BU’), AAM parameter (AAM’) and segmentation (‘'SEG’) cues. The others
combine different cues usingd4): the ‘AAM+BU’ classifier uses AAM and bottom-up information while the ‘FUSED’ classifier combines
the AAM, BU and segmentation cues. From both PR and ROC curves we see that the ‘FUSED’ classifier outperforms the rest.

2) Comparison of Alternative E-Step Implementations: Equal Error Rates
We initially compare the Fragment-based E-step (FE) and Method | Cars| Faces
Curve Evolution-based E-step (CE) approaches in terms|of Ours 55 | 47

their appropriateness for object detection. Specifically, we havEergus [14]| 11.6 | 8.3
applied the EM approach to both object categories considered€ibe [25] | 3.0 -
using identical settings for the detection front-end, the EMOpelt [36] | 17.0| 6.5
system components and the classifier combination. TABLE I: EER of our system compared to that of other researchers
In Fig. 9 we provide the Precision Recall curves of the inen the same datasets; for cars we report the Precision-Recall EER
dividual Csge andC 44y classifiers for the two approachesmeasurement, as the other references.
We observe that the CE approach is outperformed by the
FE approach on the detection task. In our understanding this
is because the CE approach makes a hard assignment usiagher, our top-down validation stage takes approximately 2
local information while the FE approach takes soft decisiosec. per hypothesis, which is approximately two orders of
and uses the information within a whole image fragment. Waagnitude less than that of [25]. We should note here that
note that the CE approach uses a balloon force2#) that flipping the car images during training and fixing the scale
largely influences the performance of the segmentation-bass#dhe faces may have introduced some small positive bias in
classifier; we therefore experimented with different values afavor of our method. We consider it however more important
present the best results we obtained. that systematic improvement in performance is obtained by
Since the FE approach performs systematically better oambining top-down and bottom-up information via the EM
the detection task we use it for the subsequent, more detai&dorithm.
detection experiments. The CE approach could be used after after validating the usefulness of top-down information we
decision has been made about the presence of an object agldress the question whether the joint treatment of the two
provides more appealing top-down segmentations by enforcitagks is really necessary. One particular concern has been
smoothness and drawing boundaries close to image edgelsether this improvement is exclusively due to the AAM
In this setting, the thresholded FE results could serve forassifier; if this is so, this would render the EM approach
initialization. superfluous for detection. The first answer comes from com-
3) Joint Bottom-Up and Top-Down Object Detectiom paring the results obtained by combining all cues (‘Fused’)
Fig. 10 we provide PR and ROC curves for the differentith the ones using only the AAM and Bottom-Up classifiers.
detectors operating in isolation and their combinations accoffébr both cases considered we observe an improvement both
ing to the combination rule4d). Even though the bottom-upin the ROC and PR curves, which is due to the additional
detector is already performing well, the individual detectoigformation provided by the Segmentation-based classifier.
behave in a complementary manner in different areas and tHgiill, what we consider more important and now demonstrate
combinations yield systematically improved results. In specifis that EM allows for the use of generative models in hard
we note that the car dataset is harder than the face datasetnages, by discounting image variation that was not observed
least for bottom-up detection; still, the final classifier fusinin the training set.
bottom-up and top-down cues performs equally well for both 4) Occluded Object DetectioniVe argue here that segmen-
categories. tation helps obtain robust estimates of the model parameters,
Comparing our results to those reported by others in Tatded thereby supports the performance of the AAM classifier
[ we observe that our system is outperformed only by that of images where the objects are occluded. Since all objects
[25] on the car dataset. However, our bottom-up system [2&]e fully observed in the dataset of [14], this point cannot be
uses 80 codebook clusters and is significantly simpler thalearly made for faces; we therefore repeat the previous classi-
that of [25], where more than 500 codebook entries are uséidr combination experiment after artificially adding sunglasses
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Fig. 11: Influence of using the EM algorithm on detection performance: Segmentation helps exclude occluded areas from AAM fitting ar
results in more robust parameter estimates. This is reflected in improved performance of both the individual AAM and the FUSED classif
that combines the bottom-up, segmentation and AAM classifiers.

to the faces as in Fi@. To deconvolve evaluation, we assumavailable, and low-level cues to bring the rest of the object
the bottom-up detection system is insensitive to occlusion, atudjether [24], [52].
use the results it furnishes with the fully observed images. ForAt a more detailed level, the approach of [45], [54] performs
cars there are substantial occlusions in the test set, so we aisochastic search in the space of regions and hypotheses, by
the original images. extending the Data-Driven MCMC scheme of [46] to include
The top-down classifiers are evaluated in two distinct scgtobal generative models for object categories. During search
narios, by (a) ignoring segmentation and setting the segbject and generic region hypotheses are generated, merged,
mentation weightst(x) to one everywhere and (b) usingsplit or discarded while their borders are localized by curve
results furnished by EM. The input to the segmentation-basegblution using Region Competition [53]. Even though this
classifier in the first case is obtained by fitting the AAMapproach is elegant, in a practical object detection application
with E(x) = 1, and using after convergence the fitted AAMone typically only needs the probability of an object being
parameters to estimai€(x) anew. It is thisE(x) that is then present, which as we show here can be efficiently and reliably
used in ¢3). estimated using the observation window containing the object
As shown in Fig/ll, the parameter estimates derived imnd EM instead of stochastic search.
scenario (a) yield significantly worse performance, since thefrollowing a non-generative approach, codebook representa-
occluded region affects AAM fitting, while in scenario (b)}jons are used for joint detection and segmentation in [6], [7]
performance degrades gracefully. This behavior is propagatgeli [25]. Figure-ground maps associated with the codebook
to the fused classifier performance, where in scenario (@tries are stored during training and used during detection
consistently better performance is observed. to assemble a segmentation of the object. Even though good
These results indicate the importance of a joint treatment@érformance is demonstrated in [6], [25], the segmentation
the segmentation and detection tasks in the practical situatipfhends on the ability to cover a large area of the object
where faces are occluded by glasses, scarfs, beards or gaffg overlapping patches, necessitating complex models. In
are occluded by pedestrians, boxes, etc. The gain is R@fother approach using a part-based representation in [52] an
only due to the validation information offered by a top-dowgpject-sensitive affinity measure is introduced, and pairwise
segmentation, but also due to the robust model fitting th@lstering methods are used to find a global minimum of the
sustains the performance of the classifier that uses the AAdta partitioning cost. The affinity measure used leads to a
parameters. grouping of pixels based on both low-level cues (absence of
edges, similarity) and high-level knowledge. However, the lack
VII. SURVEY AND DISCUSSION of a probabilistic interpretation impedes the cooperation with

Herein we briefly discuss and compare related work on th(?gher processes while the detection task is not considered.

relatively new problem, to place our contributions in a broader €OMing to work involving the EM algorithm, we note first
context. that the use of the EM algorithm for image segmentation

problems is certainly not novel; it has been used previously for
) o ) ) low-level problems such as feature-based image segmentation
A. Previous work on joint detection and segmentation [3] or layered motion estimation [49]. Further, in [24] a
We can classify most of the existing works on joint segpart-based object representation is combined with the graph-
mentation and detection based on whether they use globat algorithm to derive a top-down segmentation, yielding
or part-based object representations. Global approaches [2Efurate results for articulated object segmentation. The EM
[45], [51] assume that a monolithic object model can accoualgorithm is used there as well, but in an optimization rather
for the shape and appearance variation of the object categtingn a generative model fitting task: the shape parameters
and thereby take hold of all the image observations. Part-based treated as hidden variables and the E-step constructs a
models such as [7], [24], [25], [27], [52] offer a modulamonparametric shape distribution. The M-step then amounts
representation that is used to build the top-down segmentationthe maximization via graph cuts of a segmentation quality
in a hybrid fashion, using high-level information wherevecost that entails the distribution constructed in the E-step. This
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Fig. 12: Sample detection results on the datasets of [1], [14]. The locations proposed by a bottom-up detection system are used to initial
an EM-loop which brings in additional information from segmentation and the AAM parameters. Based on these, the initial hypotheses ¢
either pruned (red dashed boxes) or validated (green boxes).

deviates from the use of EM in the generative model settinfpe one hand this can be seen as an advantage, since less
where parameter estimation is accomplished in the M-stefemanding object models are used, on the other we believe
As we show here, the generative model approach allows tirat they do not provide a complete solution to the bottom-
principled combination of different methodologies, like curveip/top-down combination problem.
evolution and AAMs, while minimizing the choices that a Specifically, part of the object may be occluded so the
generic optimization approach requires. boundaries of the object and the region assigned to it do
Further, in the work of [16], [51] the EM algorithm is usednot have to be related. For example, if we consider a person
to perform an object-specific segmentation of an image usingaring a hat, or sunglasses, a shape prior-driven segmentation
the ‘sprites & layers’ model where the E-step assigns obsevil force the curve corresponding to the object hypothesis
vations to objects (‘sprites’) and the M-step updates the objeot include the occluded parts of the head, as most heads
parameters. Intuitively this approach is similar to ours, but ttege roughly ellipsoidal. Even though one can argue that this
interaction of the two processes is not explored: The badkdicates robustness to occlusion, in our understanding, a top-
ground model is estimated from a fixed set of images, therebgwn segmentation should indicate the image regions occupied
introducing strong prior knowledge that is not available fdoy an object. This can be accomplished with our approach,
the general segmentation problem, while it is not actuallyhere a generative model like an AAM can still fit the shape
determined whether an object is present in the image, basedbrthe object, but in the E-step the occluded parts are not
either bottom-up or top-down cues. Further, the deformatioassigned to the object.
used do not model the object category shape variation, sinc&Ve should mention that the shape prior-based technology
they are either restricted to affine transformations [16] or ubas made advances in a broader range of problems, like
an MRF prior on a piecewise constant deformation field [S14rticulated object tracking and tracking under severe occlusion
using limited appearance information, cf. e.g. [10], so this
B. Previous Work on Shape Prior segmentation added functionality of our system can be seen as being
Complementary to research on top-down/bottom-up inté0mplementary. However, the EM/generative model approach
gration, progress has been made during the last yearsh@$ no fundamental limitation in addressing these problems
the use of object-specific shape prior knowledge for imagé Well. Part-based deformation models can be used for artic-
segmentation e.g. in [10], [11], [26], [42], [43]. By focusing!lated objects, while temporal coherence for tracking can be
on the object boundaries these approaches efficiently expRfiforced by using a dynamical model for the generative model
shape knowledge to overcome noise and partial occlusiong?@rameters. Having proved the merit of the EM approach on
Most shape prior methods rely on the implicit representatiéhmore constrained problem, we would like to explore these
of level-set methods, where a curve is represented in terfi§re challenging directions in future research.
of an embedding function, such as the distance transform.
This allows for a convenient combination with curve evolution VIII. CONCLUSIONS- FUTURE WORK
methods: the variational criterion driving the segmentation isIn this paper we have addressed the problem of the joint
augmented with a shape-related penalty term that is expressegmentation and analysis of objects, casting it in the frame-
in terms of the embedding function of the evolving curve. Thigork of the Expectation-Maximization algorithm. Apart from
allows for the combination of shape-based and image-basedoncise formulation of bottom-up/top-down interaction, this
cues in a common curve evolution framework. has facilitated the principled combination of different com-
Even though such methods do not model object aspeptster vision techniques. Based on the EM algorithm we have
like appearance or deformation statistics, they have beuilt a system that can segment in a top-down manner images
proven particularly effective in tasks such as medical imagé objects belonging to highly variable categories, while also
segmentation [42] or tracking a detected person [10]. Giignificantly improving detection performance. Summing up,
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the EM framework offers a probabilistic formulation for an matrix notation,D(s) = [sS7] o [sSY] — [sSy] o [sSY]. We
recently opened problem and deals with its multifaceted naturen write the following linear approximation (s + As):

in a principled manner.
An essential direction for rendering this approach applicable
to a broader set of problems is the automated construction

D(s + As) = D(s) + %As +0(As?), (46)

of models for generic objects; recent advances [7], [14¥here S = S¥osSY + SYosS2 + 52 0sSY 4+ SYosSy.
[50] have initiated a surge of activity on simple part-baseﬁl The perturbed cost and the Jacobian and Hessian obtained

representations, e.g. [1], [22], [25] but little work has bee

done for global generative models [23], [51]. Further, a poiT}F
[©)
€

that deserves deeper inspection is the combination of low-le
cues with part-based and global generative models for joint

object segmentation, which has only partially been tackl%;i_

[22], [24], [52]. In future work we intend to address thesée
issues in the framework of generative models with the broader
goal of integrating different computer vision problems in a
unified and practical approach.
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APPENDIX |
DERIVATION OF THE EM/AAM UPDATE RULES 4]

Using the notation introduced in Se¢, the Jacobian and
Hessian in the typical update are obtained by approximatin@]

the perturbed cost functioi29) as:
(6]
Crs(s+ As,t) = > H(x)(I(x;s + As) — T(x, t))?
de Trooar "
~ {Ho(I—kdsAs—T)} {I—FdSAS—T} 8]
B T o dl - dr)” dr [9]
=[Ho&]" £E+2Ho¢] £A5+As {Hods} @As,

where in the third line we us€ = I — T. We thereby get (ol

the expressions ir3@). The criterion[H o E o £]” [£] in (34)
incorporates segmentation information and its perturbation[jré]

written as:
dE d€ r de

Keeping the first and second order product terms we have:[1

(12]

(13]

4]

j:2[HoEo€]Td—g+5T [HodEog]
S ds [15]

de dE 17 d¢
H—Q[HoEods—}—QHodsoé} @ 6]

These are identical to the expressions3a/%6), as 9t = 4L
To incorporate the determinant of the deformation’s Jacﬁ-g

bian we express it using the shape synthesis relatio®)of (

L 0S8k 2 0S8y
D(x,s)—zk:sk o %:S] Dy

S, 051, S, 08y,
- ko - Yoy [20]

(45)

H=2 [H'ODO— +2HODo£o€+2H/o—o€

y retaining first- and second- order terms then become:

dD dE de T dé
<D+EAS)O<E+£AS)O<S+EAS):| <S+EAS)
47

2 [H oDog]" % %05]

+ ETHoDo dE o +&TH o
ds ds
dD ]TdS

de dE

ds ds ds
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