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Abstract

One of the biggest challenges in non-rigid shape re-
trieval and comparison is the design of a shape descrip-
tor that would maintain invariance under a wide class of
transformations the shape can undergo. Recently, heat ker-
nel signature was introduced as an intrinsic local shape de-
scriptor based on diffusion scale-space analysis. In this pa-
per, we develop a scale-invariant version of the heat ker-
nel descriptor. Our construction is based on a logarith-
mically sampled scale-space in which shape scaling cor-
responds, up to a multiplicative constant, to a transla-
tion. This translation is undone using the magnitude of
the Fourier transform. The proposed scale-invariant lo-
cal descriptors can be used in the bag-of-features frame-
work for shape retrieval in the presence of transformations
such as isometric deformations, missing data, topological
noise, and global and local scaling. We get significant per-
formance improvement over state-of-the-art algorithms on
recently established non-rigid shape retrieval benchmarks.

1. Introduction

Today, only a small fraction of Internet repositories of
visual and geometric data is tagged and accessible through
simple text search. Fast growth of these repositories makes
content-based retrieval one of the next grand challenges in
search and organization of such information. Particularly
difficult is the problem of shape retrieval, as geometric
shapes manifest a vast variability due to different scale, ori-
entation, non-rigid deformations, missing data, and also ap-
pear in a variety of different formats and representations.

In principle, the common denominator of shape retrieval
approaches is the creation of a shape descriptor or signa-

ture which captures the unique properties of the shape that
distinguish it from shapes belonging to other classes on the
one hand, and is invariant to a certain class of transforma-
tions a shape can undergo on the other [40, 39]. In rigid
shape analysis, different types of invariance were addressed.
Rotation and translation invariance can be achieved using
volume and area descriptors [45], spherical harmonics [16],
geometric moments et al. [38], and distribution of pair-wise
Euclidean distances [29].

Dealing with non-rigid shapes requires compensating
for the degrees of freedom resulting from deformations.
Elad and Kimmel [12] and follow-up works [26, 8] pro-
posed modeling shapes as metric spaces with intrinsic (e.g.
geodesic) distances, which are invariant to inelastic defor-
mations. Ling and Jacobs [22] and Bronstein et al. [7] used
this framework with a metric defined by internal distances
in 2D shapes. Reuter et al. [33, 32] used the Laplacian
spectra as intrinsic shape descriptors.

A particular type of intrinsic geometry is generated by
heat diffusion processes on the shape. Coifman and Lafon
[11] popularized the notion of diffusion geometry, which is
closely related to scale-space methods in image processing
[36]. Rustamov [34] was one of the first to use such dis-
tances in shape analysis, applying the method of Osada et
al. [29] to commute time distances (this method is similar
to the recent work of Mahmoudi and Sapiro [24] who used
diffusion distances instead). In [5], shapes were analyzed as
metric spaces equipped with diffusion metrics.

In image analysis, bottom-up approaches have become
popular, notably due to the works of Zisserman et al.
[35, 10] and Schmid et al. [27]. Using these approaches,
an image is described as a collection of local features (“vi-
sual words”) from a given vocabulary, resulting in a repre-
sentation referred to as a bag of features. In shape analy-
sis, such approaches have been introduced more recently by
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Ovsjanikov et al. [6] and Toldo et al. [42] (see [28, 20] for
earlier similar ideas).

The bag of features paradigm relies heavily on the choice
of the local feature descriptor that is used to create the vi-
sual words. In image analysis and 2D shape retrieval, typ-
ical features are blobs [25] and corners [27], and the de-
fault choice for a local descriptor is the scale-invariant fea-
ture transform (SIFT) [23] or one of its varieties [2, 41].
Scale-invariant local descriptors can be constructed in two
ways. First way is to use scale-space analysis of the image
to locally estimate the scale [21, 23]. Descriptors are then
extracted from appropriately scaled image patches. Sec-
ond way is to use a combination of logarithmic sampling
with Fourier analysis to compensate for the scaling effects
[17] (such an approach is also commonly used to compute
a global image rotation and scaling in the context of regis-
tration [9, 46]).

In shape analysis, on the other hand, there is no com-
monly agreed upon feature descriptor similar to SIFT. In
non-rigid shape retrieval applications, an ideal feature de-
scriptor should be first of all intrinsic and thus deformation-
invariant. Second, it should cope with missing parts, and
also be insensitive to topological noise and connectivity
changes. Third, it should work across different shape repre-
sentations and formats (e.g. point clouds and meshes) and
be insensitive to sampling. Finally, the descriptor should
be scale-invariant. The last two properties are especially
important when dealing with shapes coming from Internet
repositories such as Google 3D Warehouse, where shapes
appear in a variety of representations and with arbitrary
scales.

Different approaches such as contour and edge features
[30, 18], spin images [14], local patches [28, 42], confor-
mal factor [4], differential operators [44], and local volume
properties [13] were used as feature descriptors in shape re-
trieval literature. Unfortunately, none of them satisfy all of
the above desired properties (for example, volumetric and
patch-based methods are not intrinsic, and conformal factor
is sensitive to topology).

Recently, a local feature descriptor based on multiscale
heat kernels was proposed [37]. This descriptor satisfies all
of the above properties except for scale invariance. Scale
invariance poses an additional challenge, for a few reasons.
Compared to images, shapes typically contain less features
that would be roughly analogous to blobs or corners, and
there is no clear generalization of such structures to 3D
surfaces. Feature detection based on intrinsic scale-space
analysis such as [37] would find a few reliable points (usu-
ally with high curvature), at which scale estimation can be
done. In flat regions, no scale estimation is possible. For
this reason, Ovsjanikov et al. [6] avoided feature detection
and used a dense feature descriptor computed at every point
of the shape in combination with statistical weighting to re-

duce the influence of trivial points.
Contribution. In this paper, we develop a scale-invariant
version of the heat kernel signature by combining this de-
scriptor with the recent approach of [17] to scale invariance
in images. Our construction is based on a logarithmically
sampled scale-space in which shape scaling corresponds,
up to a multiplicative constant, to a translation. This trans-
lation is then undone using the magnitude of the Fourier
transform. Since our descriptor does not rely on local scale
estimation, it is computable at every point including flat re-
gions, and can be thus used in the shape retrieval framework
of [6], as well as for other applications such as dense corre-
spondence between shapes.

2. Background
In the following discussion, we model shapes as Rie-

mannian manifolds (possibly with boundary) and use the
heat conduction properties as shape descriptors. Heat prop-
agation on non-Euclidean domains is governed by the heat
diffusion equation,

(
∆X +

∂

∂t

)
u = 0, (1)

where, ∆X denotes the positive semi-definite Laplace-
Beltrami operator, a Riemannian equivalent of the the
Laplacian. The solution u(x, t) of the heat equation with the
initial conditions u(x, 0) = u0(x) (and respective boundary
conditions if X has a boundary) describes the amount of
heat on the surface at point x in time t. The solution of (1)
with point heat distribution u0(x) = δ(x−z) as initial con-
ditions is called the heat kernel and denoted by KX,t(x, z).

On compact manifolds, the heat kernel can be presented
as [15]

KX,t(x, z) =
∞∑

i=0

e−λitφi(x)φi(z). (2)

where λ0, λ1, ... ≥ 0 are eigenvalues and φ0, φ1, ... are the
corresponding eigenfunctions of the Laplace-Beltrami op-
erator, satisfying ∆Xφi = λiφi.
Heat kernel signatures. Sun et al. [37] proposed using the
heat kernel signature (HKS)

h(x, t) = KX,t(x, x) =
∞∑

i=0

e−λitφ2
i (x) (3)

as local shape descriptors. The HKS is intrinsic and thus
isometry-invariant (two isometric shapes have equal HKS),
multi-scale and thus capture both local features and global
shape structure, and also informative: under mild condi-
tions, if two shapes have equal heat kernel signatures, they
are isometric [37].
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Figure 1. Construction of a bag of features shape descriptor. Left:
dense HKS local descriptor (shown three components as RGB col-
ors); middle: local descriptor quantized in a geometric vocabulary
of size 48 (each color represents a geometric word); right: bag of
features counting the frequency of appearance of each geometric
word.

Ovsjanikov et al. [6] used the HKS to construct global
shape descriptors following the bag of features paradigm
used in image retrieval applications [35, 10]. First, the HKS
descriptor is computed at every point of the shape (Figure 1,
left). Next, using vector quantization, for each point on the
shape, the HKS is replaced by the index of the most similar
entry in a geometric vocabulary consisting of representative
heat kernel signatures or “geometric words” (Figure 1, mid-
dle). The vocabulary is constructed offline by performing
clustering in the HKS space. Finally, the distribution of ge-
ometric words on the shape is computed, resulting in a bag
of features representation (Figure 1, right).

Sensitivity to scale. A notable disadvantage of the heat
kernel signatures is their sensitivity to scale. Given a shape
X and its scaled version X ′ = βX , the new eigenvalues
and eigenfunctions will satisfy λ′ = β2λ and φ′ = βφ. We
therefore have the following equation:

h′(x, t) =
∞∑

i=0

e−λiβ
2tφ2

i (x)β2 = β2h(x, β2t), (4)

relating the signature h′ at time t for X ′ with the signature
h at time β2t for X .

In some cases, the scaling effect can be undone using
some global pre-normalization of the shape. Possible ways
are normalizing the bounding box of the shape or its covari-
ance (geometric moments), normalize the intrinsic diameter
of the shape, i.e. the longest geodesic distance, or normalize
the Laplace-Beltrami eigenvalues. The first approach will
work only in rigid shapes, as non-rigid deformations change
the bounding box. The second and the third approaches are
insensitive to deformations, but would fail if the shape has
missing parts. In the following, we describe an approach
for local normalization of the heat kernel signature, which
does not suffer from this problem.

3. Scale-invariant heat kernel signatures

In order to achieve scale invariance, we need to remove
the dependence of h from the scale factor β. This is possi-
ble through the following series of transformations applied
to h. First, at each shape point x we sample the heat signa-
ture logarithmically in time (t = ατ ) and form the discrete
function

hτ = h(x, ατ ). (5)

Based on Eq. 4, scaling the shape by β will result in a time-
shift by s = 2 logα β and amplitude-scaling by β2 (Fig-
ure 2, left):

h′τ = β2hτ+s. (6)

Second, we remove the multiplicative constant β2 by
taking the logarithm of h, and then the discrete derivative
w.r.t. to τ (Figure 2, middle). The first step turns the mul-
tiplicative factor into an additive constant, 2 log β, which
then vanishes in differentiation:

ḣ′τ = ḣτ+s, (7)

(here, ḣτ = log hτ+1 − log hτ ).
Finally, taking the discrete-time Fourier transform of ḣτ

turns this shift in time into a complex phase;

H ′(ω) = H(ω)e2πωs, (8)

where H and H ′ denote the Fourier transform of ḣ and ḣ′,
respectively, and ω ∈ [0, 2π]. The phase is in turn elimi-
nated by taking the Fourier transform modulus (FTM):

|H ′(ω)| = |H(ω)|. (9)

We thus have constructed the scale-invariant quantity
|H(ω)| (denoted as SI-HKS and shown in Figure 2, right)
from the HKS at each point x, without performing scale se-
lection. This allows us to compute descriptors at any point
of our shape, where scale selection based on maxima de-
tection could be impossible. Moreover, most of the signal
information is contained in the low-frequency components
of the FT, so we can build a compact descriptor by sampling
|H(ω)| at a small number of low frequencies.

One caveat of our approach could be that scaling the
shape and then resampling the function ḣτ makes the sam-
ples at the boundaries of the range of τ change. This can
have dramatic effects if the signal information is concen-
trated at the boundaries of the scale-space. Fortunately, the
HKS is typically smooth at low- and high- scales and there-
fore its derivative is equal to zero for a broad range of τs at
the beginning and end of ḣ.
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Figure 2. Construction of the scale-invariant heat kernel signature. Left: heat kernel signatures h (red) and h′ (blue) computed at a
corresponding point on a shape and its version scaled by the factor of 11, plotted on a logarithmic scale. h and h′ differ by scale and shift
in τ . Middle: ḣτ and ḣ′τ , where the multiplicative constant is undone and the change in scale corresponds to a shift in τ only. Right: first
10 frequencies of |H(ω)| and |H(ω)| used as scale-invariant HKS; the two descriptors computed at the two different scales are virtually
identical.

4. Numerical computation
Numerical computation of the HKS and the SI-HKS is

done using formula (2), in which a finite number of terms is
taken and the continuous eigenfunctions and eigenvalues of
the Laplace-Beltrami operator are replaced by the discrete
counterparts. The discretization of the Laplace-Beltrami
operator depends on the representation on the shape. For
shapes represented as point clouds, the Laplace-Beltrami
operator can be approximated using [3]. For triangular
meshes, one of the most common discretizations is the
cotangent weight scheme [31], defined for any function f
on the mesh vertices as

(∆X̂f)i =
1
ai

∑

j

wij(fi − fj), (10)

where wij = cot αij + cot βij for j in the 1-ring neigh-
borhood of vertex i and zero otherwise (αij and βij are the
two angles opposite to the edge between vertices i and j
in the two triangles sharing the edge), and ai are normaliza-
tion coefficients proportional to the area of triangles sharing
the vertex xi. This discretization preserves many impor-
tant properties of the continuous Laplace-Beltrami operator,
such as positive semi-definiteness, symmetry, and locality,
and in addition it is numerically consistent [43]. In matrix
notation, Eq. (10) can be written as

∆X̂f = A−1Lf, (11)

where A = diag(ai) and L = diag
(∑

l 6=i wil

)
− (wij).

The eigenvalues and eigenfunctions of the Laplace-
Beltrami operator discretized according to 11 are com-
puted by solving the generalized eigendecomposition prob-
lem [19]

AΦ = ΛLΦ, (12)

where Λ is the (k+1)×(k+1) diagonal matrix of the small-
est eigenvalues λ0, ..., λk, and Φ is an N × (k + 1) matrix
of corresponding eigenfunctions φ0, ..., φk such that φil is
the value of the lth eigenfunction at the point xi. Another
way of approximating Laplace-Beltrami eigenfunctions on

triangular meshes is using finite element methods (FEM)
[32].

The discrete heat kernel signature is approximated by

h(xl, τ) ≈
k∑

l=0

e−λlα
τ

φ2
il = Ψe−TΛ, (13)

where T = diag(ατ ) and Ψ = (φ2
il). Since the heat kernel

depends only on the eigenfunctions and eigenvalues of the
Laplace-Beltrami operator, at least in theory, one can com-
pare shapes in different representations (e.g., point clouds
to meshes). This property of heat kernel signatures is es-
pecially appealing in Internet shape retrieval applications,
where the variety of shape representations and formats is
enormous.

5. Results
We used the ShapeGoogle database [6], consisting of

1061 shapes with simulated transformations. As of today,
this is the largest non-rigid shape retrieval benchmark avail-
able. The database contained shapes from 469 different
classes. For thirteen shape classes, the following transfor-
mations were simulated: 208 isometry, 208 global scale
(varying approximately between 0.7 and 1.35), 128 local
scale (local “swelling” of the shape), and 48 partiality+scale
(missing parts in shapes with different global scaling). Ex-
amples of transformations are shown in Figure 4.

Heat kernel signatures (HKS) and the proposed scale-
invariant heat kernel signatures (SI-HKS), respectively,
were used as local shape descriptors. For the discrete com-
putation of the heat kernels, we used the cotangent weight
approximation of the Laplace-Beltrami operator and k =
200. For HKS, we used the parameters as in [6] (six scales
1024, 1351, 1783, 2353, 3104 and 4096), which were exper-
imentally found to give optimal performance on the Shape-
Google database. In order to construct the SI-HKS, we used
a logarithmic scale-space with base α = 2 and τ ranging
from 1 to 25 with increments of 1/16. After applying the
logarithm, derivative, and Fourier transform, the first 6 dis-
crete lowest frequencies were used as the local descriptor.
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Figure 3. Comparison of HKS (left) and the proposed scale-invariant HKS (right). First and third rows: three components of HKS and
SI-HKS, represented as RGB color and shown for shapes differing by global (first row) and local (third row) transformations. Second and
fourth rows: HKS and SI-HKS at three point on the head (blue), hand (green), and foot (red) of the human shape.

Shape descriptors were constructed using bags of geo-
metric words proposed in [6]. For HKS and SI-HKS, a ge-
ometric vocabulary of size 48 was built using clustering in
the signature space (six-dimensional in both cases). The
HKS and SI-HKS at each point of the shape were replaced
by the closest geometric word from the vocabulary using
soft vector quantization. We used the approximate nearest
neighbor algorithm [1] as implemented in the ANN tool-
box.1 The distribution of geometric words (48-dimensional
bag of features) was used as the shape descriptor. L1 dis-
tance was used to compare the bags of features.

For comparison, we show the results of the ShapeDNA
approach [33], describing shapes by the vector of the first
eigenvalues of the Laplace-Beltrami operator. We used first
15 eigenvalues to construct the ShapeDNA descriptors (this
parameter was empirically selected to achieve optimal per-
formance on the ShapeGoogle database). Eigenvalues were
computed using the same cotangent weight discretization.
L2 distance was used to compare the ShapeDNA descrip-
tors.

Shape retrieval performance was quantified using the
precision-recall (PR) curve (Figure 5), plotting the tradeoff
between precision (ratio of the number of relevant shapes
retrieved and the total number of shapes retrieved) and re-

1Code available from http://www.cs.umd.edu/˜mount/ANN

call (ratio of the number of relevant shapes retrieved and the
total number of existing relevant shapes that could be ide-
ally retrieved). We used the mean average precision (mAP)
as a single number to quantify the retrieval quality (average
precision is computed as the area below the precision-recall
curve for each query, and the mAP is the average of AP over
all queries).

Table 1 shows the performance of shape retrieval using
bags of features built of HKS and SI-HKS. Our approach
shows a dramatic improvement in the presence of varying
scale (99.5% mAP compared to 61.32% with HKS) and
also better performance for local scaling transformations
(92.60% mAP compared to 85.83%). HKS-based bags of
features produce negligibly (by 0.01%) worse results that
SI-HKS on the class of isometric deformations. ShapeDNA
shows similar nearly perfect performance on the class of
isometries, but performs very poorly on scale and local scale
transformations (36.72% and 72.17% mAP, respectively)

Figure 6 shows examples of first five matches retrieved
using HKS and SI-HKS. With HKS, a scaled down centaur
is confused with a dog (row a) and a scaled up horse is con-
fused with an elephant (row c); while SI-HKS produces cor-
rect matches (rows b and d). In the presence of local scaling,
because of the local nature of the descriptor, it remains un-
changed far from the deformed parts. The SI-HKS shows
better robustness to such scaling compared to HKS (e.g., in



Figure 4. Example of transformations used in our shape retrieval
experiment (left to right): null, scale down, scale up, two examples
of local scale, partiality+scale.

Table 1. Shape retrieval performance (mAP in percents) using
HKS and SI-HKS based bags of features and ShapeDNA [33].
Best result is shown in bold.

Transformation Queries HKS SI-HKS ShapeDNA
Isometry 208 99.96% 99.97% 99.52%
Scale 208 61.32% 99.95% 36.72%
Local scale 128 85.83% 92.60% 72.17%
Partiality+scale 48 54.67% 89.95% 27.42%
All 1061 85.30% 97.25% 74.47%

Figure 6 (g) local scaling transformations make HKS con-
fuse between male and female shapes).

6. Conclusions

We presented an extension of the heat kernel signature
allowing to deal with global and local scaling transforma-
tions. The use of Fourier transform magnitude to extract a
scale-invariant quantity out of the heat kernel signature is
advantageous over attempts to perform scale localization,
which works only at prominent feature points. Our ap-
proach allows to create a dense scale-invariant feature de-
scriptor defined at every point of the shape. Besides invari-
ance to global scaling, the scale-invariant HKS shows better
resilience to local scaling transformations. Such transfor-
mations can arise, for example, due to locally-elastic defor-
mations that stretch or shrink the shape surface. In future
work, we intend to explore the proposed method in the con-
text of part-based approaches in which the local descriptor
is confined to a part of a shape and not computed across
parts, and a separate descriptor is computed for each part.
This way, inelastic deformations could be addressed.
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Figure 6. Shape retrieval results. Left: queries, right: first matches using HKS (a,c,e,g) and SI-HKS (b,d,f,h).


