

Abstract— We propose an extension to the capabilities of the

Intelligent Autopilot System (IAS) from our previous work, to be

able to learn handling emergencies by observing and imitating

human pilots. The IAS is a potential solution to the current

problem of Automatic Flight Control Systems of being unable to

handle flight uncertainties, and the need to construct control

models manually. A robust Learning by Imitation approach is

proposed which uses human pilots to demonstrate the task to be

learned in a flight simulator while training datasets are captured

from these demonstrations. The datasets are then used by Artificial

Neural Networks to generate control models automatically. The

control models imitate the skills of the human pilot when handling

flight emergencies including engine(s) failure or fire, Rejected

Take Off (RTO), and emergency landing, while a flight manager

program decides which ANNs to be fired given the current

condition. Experiments show that, even after being presented with

limited examples, the IAS is able to handle such flight emergencies

with high accuracy.

I. INTRODUCTION

Human pilots are trained to handle flight uncertainties or

emergency situations such as severe weather conditions or

system failure. For example, pilots are exposed to scenarios of

forced or emergency landing which is performed by executing

standard emergency procedures. Usually, the main phase of an

emergency landing is known as gliding which is the reliance on

the aerodynamics of the aircraft to glide for a given distance

while altitude is lost gradually. This happens when the aircraft

has lost thrust due to full engine failure in relatively high

altitudes.

In contrast, Automatic Flight Control Systems

(AFCS/Autopilot) are highly limited, capable of performing

minimal piloting tasks in non-emergency conditions. Autopilots

are not capable of handling flight emergencies such as engine

failure, fire, performing a Rejected Take Off, or a forced

(emergency) landing. The limitations of autopilots require

constant monitoring of the system and the flight status by the

flight crew to react quickly to any undesired situation or

emergencies. The reason for such limitations of conventional

AFCS is that it is not feasible to anticipate everything that could

go wrong with a flight, and incorporate all of that into the set of

rules or control models “hardcoded” in an AFCS.

This work aims to address this problem by expanding the

capabilities of the Intelligent Autopilot System (IAS) [1] to be

able to learn flight emergency procedures from human pilots by

applying the Learning by Imitation concept with Artificial

Neural Networks. By using this approach, we aim to extend the

capabilities of modern autopilots and enable them to

autonomously adapt their piloting to suit multiple scenarios

ranging from normal to emergency situations.

This paper is structured as follows: part (II) reviews related

literature on fault/failure tolerant systems, and the application of

multiple ANNs or Artificial Neural Circuits. Part (III) explains

the Intelligent Autopilot System (IAS). Part (IV) describes the

experiments, Part (V) describes the results by comparing the

behaviour of the human pilot with the behaviour of the

Intelligent Autopilot System, and part (VI) provides an analysis

of the results. Finally, we provide conclusions and future work.

II. BACKGROUND

A review of the Autopilot problem, Artificial Neural

Networks, and Learning by Imitation for Autonomous Flight

Control is presented in our previous work [1].

A. Fault/Failure Tolerant Systems for Flight Control

Current operational autopilots fall under the domain of

Control Theory. Classic and modern autopilots rely on

controllers such as the Proportional Integral Derivative (PID)

controller, and Finite-State automation [2]. Many recent

research efforts focus on enhancing flight controllers by adding

fault/failure tolerant capabilities. With respect to flight control

systems, a fault is “an unpermitted deviation of at least one

characteristic property of the system from the acceptable, usual,

standard condition.” [3], while failure is “a permanent

interruption of a system’s ability to perform a required function

under specified operating conditions.” [3].

To handle faults and failures, recent research efforts have been

focusing on designing Fault Detection and Diagnosis (FDD)

systems that can either stream information to ground crew

members especially in the case of UAVs, or feed fault tolerant

systems that are capable of handling system faults. The first type

of such systems are known as the Passive Fault Tolerant

Controllers which can handle moderate faults such as

parameters deviations by using a robust feedback controller.

However, if the faults are beyond the capabilities of such

controllers, another type of fault tolerant systems becomes a

necessity. This type is known as an Active Fault Tolerant control

An Intelligent Autopilot System that Learns Flight Emergency

Procedures by Imitating Human Pilots

Haitham Baomar, Peter J. Bentley

Dept. of Computer Science, University College London, Gower Street, London, WClE 6BT, U.K.

Email: {h.baomar, p.bentley} @ cs.ucl.ac.uk

system which includes a separate FDD system that adds an

extended and enhanced level of fault tolerance capabilities [4].

In case of emergency situations, mainly engine failure, engine

fire, flight instruments failure, or control surface damage or

failure, continuing to fly becomes either impossible or can poses

a serious threat to the safety of the flight. In such circumstances,

a forced or emergency landing on a suitable surface such as a

flat field becomes a must especially if it is not possible to return

safely to the runway [5]. In [6], an emergency landing controller

is proposed for an Unmanned Aerial Vehicle by segmenting the

emergency landing period into four sub-levels known as

slipping guiding, straight line down, exponential pulling up, and

shallow sliding. Each level uses different control strategies

aimed at insuring the safe execution of the complete emergency

landing. For example, during the exponential pulling up level,

the system maintains a certain pitch without causing the UAV

to stall. Using a simulator, the proposed approach showed its

ability to handle emergency landing [6].

B. Multiple ANNs or Artificial Neural Circuits

The problem of coordinating multiple sensor-motor

architectures found in complex robotic systems is challenging.

This is due to the simultaneous and dynamic operation of these

motors while insuring rapid and adaptive behaviour, and due to

the need to properly handle the fusion of data from disparate

sources. In nature, animals manage this problem by the large

number of neural circuits in the animals’ brains. For example,

neural circuits which are responsible for motion are connected

to the muscles (motor systems), and operate simultaneously and

dynamically while handling changes in the environment [7].

This has inspired the field of complex robotics to develop

multiple neural-based controllers and integrate them together to

tackle larger problems such as long-endurance locomotion

under uncertainties. For example, the problem of coordinating

multiple sensor-motor architectures is addressed in the context

of walking by developing a neural circuit which generates

multiple gaits adaptively, and coordinates the process of

walking with different behavioural-based processes in a

hexapod robot. The results showed the ability of the biology-

inspired system to detect and stabilize multiple instability

scenarios, and to determine what needs to be controlled at each

moment which allows the system to handle changes in the

environment [7].

Multiple Artificial Neural Networks were applied to the

problem of detecting roads visually. In [8], different inputs are

fed into multiple ANNs to handle multiple segments of the

image. The proposed approach allows the system to detect and

classify multiple factors of the environment ahead which leads

to an enhanced performance compared to other computer-vision

solutions [8]. In [9], Multiple ANNs were applied to tackle the

limitations problem of traffic light control systems that are based

on conventional mathematical methods. In simulation, the

results showed that the approach of using multiple ANNs to

address this problem presented an improvement in performance

compared to other methods [9]. Another proposed system

inspired by biology; is presented in [10] which is designed to

handle the challenging problem of gesture recognition. The

system shares similarities with the human visual system by

developing multiple spiking ANNs. The outputs of the spiking

ANNs are used to generate a fusion of multiple data from

different segments of the gesture. The results proved the

system’s ability to handle dynamic visual recognition with the

presence of complex backgrounds [10].

The approach of segmenting or breaking down the problem,

and using multiple ANNs to handle multiple segment shows the

potential to enhance the properties of ANNs as explained in

[11]. A large ANN is split into parallel circuits that resemble the

circuits of the human retina. During training, the

Backpropagation algorithm runs in each circuit separately. This

approach does not only decrease training time, but it also

enhances generalization [11].

III. THE INTELLIGENT AUTOPILOT SYSTEM

The proposed Intelligent Autopilot System (IAS) in this

paper can be viewed as an apprentice that observes the

demonstration of a new task by the experienced teacher, and

then performs the same task autonomously. A successful

generalization of Learning by Imitation should take into

consideration the capturing of low-level models and high-level

models, which can be viewed as rapid and dynamic sub-actions

that occur in fractions of a second, and actions governing the

whole process and how it should be performed strategically. It

is important to capture and imitate both levels in order to handle

flight uncertainties successfully.

The IAS is made of the following components: a flight

simulator, an interface, a database, a flight manager program,

and Artificial Neural Networks. The IAS implementation

method has three steps: A. Pilot Data Collection, B. Training,

and C. Autonomous Control. In each step, different IAS

components are used. The following sections describe each step

and the components used in turn.

A. Pilot Data Collection

Fig. 1 illustrates the IAS components used during the pilot

data collection step.

1) Flight Simulator

Before the IAS can be trained or can take control, we must

collect data from a pilot. This is performed using X-Plane which

is an advanced flight simulator that has been used as the

simulator of choice in many research papers such as [12] [13]

[14].

Fig. 1. Block diagram illustrating the IAS components used during the pilot

data collection step.

X-Plane is used by multiple organizations and industries

such as NASA, Boeing, Cirrus, Cessna, Piper, Precession Flight

Controls Incorporated, Japan Airlines, and the American

Federal Aviation Administration.1 X-Plane can communicate

with external applications by sending and receiving flight status

and control commands data over a network through User

Datagram Protocol (UDP) packets. For this work, the simulator

is set up to send and receive packets comprising desired data

every 0.1 second. In X-Plane, it is possible to simulate a number

of flight emergencies for the purpose of training pilots.

Emergencies range from severe weather conditions to system

failure such as engine failure or fire.

2) The IAS Interface

The IAS Interface is responsible for data flow between the

flight simulator and the system in both directions. The Interface

contains control command buttons that provide a simplified yet

sufficient aircraft control interface which can be used to perform

basic tasks of piloting an aircraft such as take-off and landing in

the simulator while being able to control other systems such as

fuel and fire systems. It also displays flight data received from

the simulator.

Data collection is started immediately before demonstration,

then; the pilot uses the Interface to perform the piloting task to

be learned. The Interface collects flight data from X-Plane over

the network using UDP packets, and collects the pilot’s actions

while performing the task, which are also sent back to the

simulator as manual control commands. The Interface organizes

the collected flight data received from the simulator (inputs),

and the pilot’s actions (outputs) into vectors of inputs and

outputs, which are sent to the database every 1 second.

3) Database

An SQL Server database stores all data captured from the

pilot demonstrator and X-Plane, which are received from the

Interface. The database contains tables designed to store: 1.

Flight data as inputs, and 2. Pilot’s actions as outputs. These

tables are then used as training datasets to train the Artificial

Neural Networks of the IAS.

B. Training

1) Artificial Neural Networks

After the human pilot data collection step is completed,

Artificial Neural Networks are used to generate learning models

from the captured datasets through offline training. Fig. 2

illustrates the training step.

Fig. 2. Block diagram illustrating the IAS components used during training.

1 "X-Plane 10 Global

http://www.x-plane.com

Ten feedforward Artificial Neural Networks comprise the

core of the IAS. Each ANN is designed and trained to handle

specific controls and tasks. The ANNs are: Taxi Speed Gain

ANN, Take Off ANN, Rejected Take Off ANN, Aileron ANN,

Rudder ANN, Cruise Altitude ANN, Cruise Pitch ANN, Fire

Situation ANN, Emergency Landing Pitch ANN, and

Emergency Landing Altitude ANN. The inputs and outputs

which represent the gathered data and relevant actions, and the

topologies of the ten ANNs are illustrated in Fig. 3.

The method for choosing ANN topologies in this work is

based on a rule-of-thumb [15] which indicates that problems

requiring more than one hidden layer are rarely encountered.

This rule follows an approach that tries to avoid under-fitting

caused by too few neurons in the hidden layer, or over-fitting

caused by too many neurons, by having the number of hidden

neurons less than or equal to twice the size of the input layer.

Before training, the datasets are normalized, and retrieved

from the database. Then, the datasets are fed to the ANNs. Next,

Sigmoid (1) [15] and Hyperbolic Tangent (Tanh) (2) [15]

functions are applied for the neuron activation step, where ����

is the activation function for each neuron, and � is the relevant

input value:

 ���� � 	
�

��		
�
 (1)

 ���� � 	
	��	
	�

	��	�	�
		 (2)

Fig. 3. Inputs, outputs, and the topologies of the ten ANNs representing the

core of the Intelligent Autopilot System. Each ANN is designed and trained to

handle a specific task.

The Sigmoid activation function (1) is used by the Taxi

Speed Gain ANN, Take Off ANN, Emergency Landing Altitude

ANN, Rejected Take Off ANN, and the Fire Situation ANN,

while (2) is used by the rest since their datasets contain negative

values.

Next, Backpropagation is applied. Based on the activation

function, (3) [16], or (4) [16] are applied to calculate the error

signal (�) where �� is the desired target value and �� is the actual

activation value:

 δ� � ��� �	������1 �	��� (3)

 δ� � ��� �	����1 �	����1 �	��� (4)

Finally, coefficients of models (weights and biases) are

updated using (5) [17] where δ��,� is the change in the weight

between nodes j and k.

 														��,� � 	��,� � 	δ��,� (5)

When training is completed, the learning models are

generated, and the free parameters or coefficients represented by

weights and biases of the models are stored in the database.

C. Autonomous Control

Once trained, the IAS can now be used for autonomous

control. Fig. 4 illustrates the components used during the

autonomous control step.

1) The IAS Interface

Here, the Interface retrieves the coefficients of the models

from the database for each trained ANN, and receives flight data

from the flight simulator every 0.1 second. The Interface

organizes the coefficients into sets of weights and biases, and

organizes data received from the simulator into sets of inputs for

each ANN. The relevant coefficients, and flight data input sets

are then fed to the Flight Manager and the ANNs of the IAS to

produce outputs. The outputs of the ANNs are sent to the

Interface which sends them to the flight simulator as

autonomous control commands using UDP packets every 0.1

second.

2) The Flight Manager Program

The Flight Manager is a program which resembles a

Behaviour Tree [18]. The purpose of the Flight Manager is to

manage the ten ANNs of the IAS by deciding which ANNs are

to be used simultaneously at each moment. The Flight Manager

starts by receiving flight data from the flight simulator through

the interface of the IAS, then it detects the flight condition and

phase by examining the received flight data, and decides which

ANNs are required to be used given the flight condition

(normal/emergency/fire situation) and phase (taxi speed

gain/take off/cruise/emergency landing). Fig. 5 illustrates the

process which the Flight Manager follows.

3) Artificial Neural Networks

The relevant set of flight data inputs received through the

Interface is used by the ANNs’ input neurons along with the

relevant coefficients to predict control commands given the

flight status by applying (1) and (2). The values of the output

layers are sent to the Interface which sends them to the flight

simulator as autonomous control commands. Taxi Speed Gain

ANN is used while on the runway just before take off to predict

the suitable brakes and throttle command values. Take Off ANN

is used after a certain take off speed is achieved to predict gear,

elevator, and throttle command values. Rejected Take Off ANN

is used to abort take off if necessary by predicting brakes,

throttle, and reverse throttle command values. Aileron ANN is

used to control the aircraft’s roll immediately after take off.

Rudder ANN is used to control the aircraft’s heading before take

off, and yaw when airborne in case one engine fails and creates

drag. Cruise Altitude ANN is used to control the aircraft’s

desired cruising altitude by predicting the throttle command

value. Cruise Pitch ANN controls the pitch while cruising by

predicting the elevator command value. Fire Situation ANN is

used in case of fire by predicting fuel valve and fire

extinguishing control commands. Emergency Landing Pitch

ANN maintains a certain pitch during emergency landing to lose

speed without stalling and to prevent a nose first crash.

Emergency Landing Altitude ANN controls the throttle in case

of a single engine failure.

Fig. 4. Block diagram illustrating the IAS components used during

autonomous control.

Fig. 5. A Flowchart illustrating the process which the Flight Manager

program follows to decided which ANNs are to be used.

IV. EXPERIMENTS

Our previous work [1] provides detailed explanations of the

experiments of autonomous taxi speed gain, take off, climb, and

applying rudder and aileron to correct heading and roll

deviations under normal and severe weather conditions. The

new approach in this paper is to segment the training dataset of

taxi speed gain, take off, and climb into three different sets that

are handled separately by three ANNs (Taxi Speed Gain ANN,

Take Off ANN, and Cruise ANN) instead of just one ANN. This

work also introduces four new ANNs in order to learn flight

emergency procedures for the first time.

In order to assess the effectiveness of the proposed approach

in this paper, the Intelligent Autopilot System was tested in four

experiments: A. Rejecting take off, B. Emergency landing, C.

Maintaining a cruising altitude, and D. Handling single engine

failure/fire while airborne. Each experiment is composed of 20

attempts by the IAS to perform autonomously under the given

conditions.

The human pilot who provided the demonstrations is the

first author. The simulated aircraft used for the experiments is a

Boeing 777 as we want to experiment using a more complex

model with more than one engine rather than a light single-

engine model. The experiments are as follows:

A. Rejecting Take Off

The purpose of this experiment is to assess the behaviour of

the IAS compared to the behaviour of the human pilot when a

Rejected Take Off (RTO) is required.

1) Data Collection

In this experiment, the human pilot used the IAS Interface to

perform the following in the flight simulator: reject take off

when one engine fails or catches fire, and when two engines fail

or catch fire (one demonstration for each scenario). The flight

simulator was set to simulate the failure or fire conditions for

one or two engines immediately after the user presses a hot key

on the keyboard. Rejecting take off is performed by going to full

reverse thrust and engaging brakes. In case of fire, the human

pilot turned off the fuel valve, turned on the fire extinguishing

system, and went to full throttle to burn the fuel left in the

engine(s). While the pilot performed the demonstration, the

Interface collected speed and engine status as inputs, and brakes,

throttle, and reverse thrust control data as outputs. The Interface

stored the collected data in the database as the training dataset

for the Rejected Take Off ANN. The Interface also collected fire

sensor readings as input, and fire extinguisher, throttle, and fuel

valve control data as outputs. The Interface stored the collected

data in the database as the training dataset for the Fire Situation

ANN.

2) Training

For this experiment, the Rejected Takeoff ANN, and the Fire

Situation ANN were trained until low Mean Squared Error

(MSE) values were achieved (below 0.001).

3) Autonomous Control

After training the ANNs on the relevant training datasets, the

aircraft was reset to the runway in the flight simulator to test

autonomous RTO multiple times under different scenarios (one

and two engine(s) failure and fire), the simulator was set to

simulate the desired emergency scenario, and the IAS was

engaged. When the flight manager detects the emergency, it

stops the Taxi Speed Gain ANN, and runs the Rejected Takeoff

ANN and the Fire Situation ANN simultaneously to reject take

off and handle fire autonomously. Through the Interface, ANNs

receive: 1. Relevant flight data from the flight simulator as

inputs, and 2. Coefficients of the relevant models from the

database to predict and output command controls that are sent to

the flight simulator. This process allows the IAS to

autonomously perform the learned task: rejecting take off if

necessary. This was repeated 20 times for each scenario to

assess performance consistency.

B. Emergency Landing

The purpose of this experiment is to assess the behaviour of

the IAS compared to the behaviour of the human pilot when a

forced or emergency landing is required.

1) Data Collection

 In this experiment, the human pilot used the IAS Interface

to perform the following in the flight simulator: emergency

landing when two engines fail or catch fire (one demonstration

for each scenario). The flight simulator was set to simulate the

failure or fire conditions for two engines immediately after the

user presses a hot key on the keyboard. Emergency landing is

performed by maintaining a controlled glide using the elevators

to insure a gradual loss of speed and altitude without stalling the

aircraft, by maintaining a slight positive pitch. If there is any

power left in the engines, the throttle is used to aid the gliding

phase. In case of fire, the human pilot turned off the fuel valve,

and turned on the fire extinguishing system. In this scenario

going to full throttle to burn the fuel left in the engines is not

possible since both engines do not have sufficient power. While

the pilot performed the demonstration, the Interface collected

pitch as input, and elevator control data as output. The Interface

stored the collected data in the database as the training dataset

for the Emergency Landing Pitch ANN. The Interface also

collected altitude as input, and throttle control data as output.

The Interface stored the collected data in the database as the

training dataset for the Emergency Landing Altitude ANN.

2) Training

For this experiment, the Emergency Landing Pitch ANN,

and the Emergency Landing Altitude ANN were trained until

low Mean Squared Error (MSE) values were achieved (below

0.001 for the Emergency Landing Pitch ANN and below 0.2 for

the Emergency Landing Altitude ANN).

3) Control

After training the ANNs on the relevant training datasets, the

aircraft was reset to the runway in the flight simulator to test

autonomous emergency landing multiple times under different

scenarios (both engines failure or fire), the simulator was set to

simulate the desired emergency scenario, and the IAS was

engaged. After the IAS took the aircraft airborne, and when the

flight manager detects the emergency, it stops the Take Off

ANN (during climb), or the cruise ANNs, and runs the

Emergency Landing Pitch ANN, and the Emergency Landing

Altitude ANN simultaneously to maintain a controlled glide

while descending to the ground. Through the Interface, the

ANNs receive: 1. Relevant flight data from the flight simulator

as inputs, and 2. Coefficients of the relevant models from the

database to predict and output command controls that are sent to

the flight simulator. This process allows the IAS to

autonomously perform learned task: emergency landing by

maintaining a controlled glide. This was repeated 20 times for

each scenario to assess performance consistency.

C. Maintaining a Cruising Altitude

The purpose of this experiment is to assess the behaviour of

the IAS compared to the behaviour of the human pilot while

maintaining a desired cruising altitude.

1) Data Collection

In this experiment, the human pilot used the IAS Interface to

maintain a cruising altitude in the flight simulator by increasing

and decreasing the throttle, and by using the elevator to maintain

a fairly leveled pitch (one demonstration). While the pilot

performed the demonstration, the Interface collected altitude as

input, and throttle control data as output. The Interface stored

the collected data in the database as the training dataset for the

Cruise Altitude ANN. The Interface also collected pitch as

input, and elevator control data as output. The Interface stored

the collected data in the database as the training dataset for the

Cruise Pitch ANN.

2) Training

For this experiment, the Cruise Altitude ANN, and the

Cruise Pitch ANN were trained until low Mean Squared Error

(MSE) values were achieved (below 0.02 and 0.001

respectively).

3) Autonomous Control

After training the ANNs on the relevant training datasets, the

aircraft was reset to the runway in the flight simulator to test the

ability of maintaining a desired cruise altitude autonomously,

and the IAS was engaged. After the IAS took the aircraft

airborne, continued to climb, and reached the proximity of the

desired altitude, the system’s ability to maintain the given

altitude was observed. Through the Interface, the ANNs receive:

1. Relevant flight data from the flight simulator as inputs, and 2.

Coefficients of the relevant models from the database to predict

and output command controls that are sent to the flight

simulator. This process allows the IAS to autonomously perform

learned task: maintain a desired cruising altitude. This was

repeated 20 times for each scenario to assess performance

consistency.

D. Handling Single Engine Failure/Fire while Airborne

The purpose of this experiment is to assess the behaviour of

the IAS in case of an engine failure or fire while airborne.

1) Data Collection

In this experiment, the human pilot did not provide an

explicit demonstration for the single engine failure. Instead, it

was intended to test the already trained ANNs, and determine

whether their models are able to generalize well in this new

scenario where the failed engine creates a drag, and forces the

aircraft to descend, and creates a yaw deviation towards the

failed engine’s side.

2) Training

For this experiment, the previously trained models of the

Cruise Altitude ANN, the Cruise Pitch ANN, and the rudder

ANN from our previous work [1] were used.

3) Autonomous Control

After setting the simulator to simulate the desired emergency

scenario (single engine failure or fire), and after the IAS took

the aircraft airborne, when the flight manager detects the

emergency, it continues to use the same ANNs (Take Off ANN,

or cruise ANNs), and runs the Fire Situation ANN if fire is

detected, to fly autonomously using the power left from the

engine that operates normally. Through the Interface, the ANNs

receive: 1. Relevant flight data from the flight simulator as

inputs, and 2. Coefficients of the relevant models from the

database to predict and output command controls that are sent to

the flight simulator. This was repeated 20 times for each

scenario to assess performance consistency.

Throughout all the experiments, the Rudder and Aileron

ANNs from our previous work [1] are used normally during the

different phases.

V. RESULTS

The following section describes the results of the conducted

tests. The 20 attempts by the IAS to handle each scenario

autonomously were averaged and compared with the

performance of the human pilot when applicable.

A. Rejecting Take Off

Two models were generated with the MSE values as table I

shows. Fig. 6 illustrates the behaviour of the IAS when

controlling the transition of flight modes under normal

conditions, while Fig. 7 illustrates the behaviour of the IAS

when engine(s) failure or fire is detected and a Rejected Take

Off (RTO) is performed. The results of the 20 experiments

showed strong consistency by following the correct procedure

in each experiment with a 100% accuracy rate.

B. Emergency Landing

Two models were generated with the MSE values as table I

shows. Fig. 8 and 9 illustrate a comparison between the human

pilot and the IAS while maintaining a positive pitch during

emergency landing, and their altitude (sink rate). The pitch

Mean Absolute Deviation (MAD) results (0.024 for the IAS and

0.196 for the human pilot) show less deviation and a steady

behaviour of the IAS due to the good model fit as can be seen in

Fig. 8. Fig. 10 illustrates the behaviour of the IAS when both

engines failure or fire is detected and a forced or emergency

landing is performed. The results of the 20 experiments showed

strong consistency by following the correct procedure in each

experiment with a 100% accuracy rate.

TABLE I

MSE VALUES OF THE MODELS GENERATED FOR THE REJECTED

TAKE OFF AND THR EMERGENCY LANDING EXPERIMENTS.

ANN MSE

Rejected Takeoff ANN 0.000999

Fire Situation ANN 0.000999

Emergency Landing Pitch ANN 0.000997

Emergency Landing Altitude ANN 0.196117

Fig. 6. The behaviour of the IAS when controlling the transition of flight

modes under normal conditions. Different ANNs are used in each flight mode.

Fig. 8. (Emergency landing experiment) A comparison between the human

pilot and the Intelligent Autopilot System’s pitch during emergency landing. In

this case the human pilot struggled to generate perfect training data so our

training approach was designed to prevent overfitting, instead creating a

general model (good fit) which provided the desired performance.

Fig. 10. (Emergency landing experiment) The behaviour of the IAS when both

engines failure or fire is detected during either take off or cruise, and an

emergency landing is performed. The Fire Situation ANN is used only when

fire is detected.

Fig. 7. (Rejected Take Off experiment) The behaviour of the IAS when

engine(s) failure or fire is detected and a Rejected Take Off (RTO) is

performed. The Fire Situation ANN is used only when fire is detected.

Fig. 9. (Emergency landing experiment) A comparison between the human

pilot and the Intelligent Autopilot System’s altitude during emergency landing.

The results show a significantly close sink rate of about 1500 ftagl per minute.

C. Maintaining a Cruise Altitude

Two models were generated with the MSE values as table II

shows. Fig. 11 and 12 illustrate a comparison between the

human pilot and the IAS while maintaining a desired cruising

altitude. The altitude Mean Absolute Deviation (MAD) results

(85.8 for the IAS and 204.58 for the human pilot) shows less

deviation of altitude and a steady behaviour of the IAS due to

the good model fit as can be seen in Fig. 11.

TABLE II

MSE VALUES OF THE MODELS GENERATED FOR THE CRUISE

EXPERIMENT.

ANN MSE

Cruise Altitude ANN 0.017574

Cruise Pitch ANN 0.000835

Fig. 11. (Maintaining a cruise altitude experiment) A comparison between the

human pilot and the Intelligent Autopilot System’s altitude during cruising.

While the human pilot demonstrator struggled to maintain a desired cruise

altitude of 20,000 ftagl, the IAS performed better due to the good fit of the

generated learning model.

D. Handling Single Engine Failure/Fire while Airborne

As mentioned in part (IV) the human pilot did not provide an

explicit demonstration for the single engine failure scenario.

Instead, it was intended to test the already trained ANNs, and

determine whether their models are able to generalize well in

this new scenario’s experiment. Fig. 13 illustrates the behaviour

of the IAS when a single engine fails or catches fire during take

off or cruise. The system was intended to carry on flying, apply

the rudder ANN from our previous work [1], and run the Fire

Situation ANN in case of fire. The results of the 20 experiments

showed strong consistency by following the correct procedure

in each experiment accurately. Fig. 14 illustrates how the IAS

continues to fly while losing altitude gradually compared to the

aircraft’s autopilot under the same situation.

Fig. 13. (Handling single engine failure/fire experiment) The behaviour of the

IAS when a single engine failure or fire is detected during either take off or

cruise. The Fire Situation ANN is used only when fire is detected. The ANNs

used during Take Off or Cruise perform the same tasks as Fig. 6 shows, while

the Aileron ANN continues to correct roll.

Fig. 12. (Maintaining a cruise altitude experiment) The IAS manipulation of

throttle to maintain a desired cruise altitude of 20,000 ftagl compared with the

human pilot. The IAS manipulated the throttle smoothly compared to the

human pilot due to the good fit of the generated learning model.

VI. ANALYSIS

As can be seen in Fig. 7, the rejected take off experiment

presented excellent results. The IAS was capable of imitating

the human pilot’s actions and behaviour with excellent

accuracy, and strong consistency by following the correct

procedure in each experiment accurately.

Fig. 8 to 10 (the emergency landing experiment) show very

desirable results of the ability of the IAS to imitate the human

pilot’s demonstration of controlling an emergency landing.

They show the ability of the IAS to perform the learned sink rate

which enabled the aircraft to hit the ground smoothly without

being severely wrecked. The flight simulator measures the G

force effect on the aircraft’s frame, and informs the user in case

of an unsurvivable crash. It should be mentioned that selecting

a suitable landing surface is not within the scope of this work.

Fig. 14. (Handling single engine failure/fire experiment) Comparing the

altitude loss rate of the IAS and the aircraft’s AFCS. Since the AFCS is not

aware of the single engine failure situation, it compensates by increasing the

throttle aggressively, which results in a smaller altitude loss rate, but puts

excessive stress on the single operating engine.

Fig. 11 and 12 (maintaining a cruise altitude experiment)

show very desirable results of the ability of the IAS to learn how

to use throttle and elevator to maintain a given altitude. They

illustrate the ability of the IAS to perform better than the human

pilot teacher due to the achieved good fit of the learning models.

This can also be seen in Fig. 8 (the emergency landing

experiment).

As can be seen in Fig. 13 and 14, the single engine failure/fire

experiment presented excellent results. The IAS was capable of

using the already learned models to continue flying while

gradually losing altitude. Although the aircraft’s standard

autopilot maintained a better altitude in the short term, by

aggressively increasing engine thrust it increases the likelihood

of engine failure in the remaining engine, with potentially

catastrophic results.

The system was able to imitate multiple human pilot’s skills

and behaviour after being presented with very limited examples.

This is due to the approach of segmenting the problem of

autonomous piloting while handling uncertainties into small

blocks of tasks, and assigning multiple ANNs specially designed

and trained for each task, which resulted in the generation of

highly accurate models as tables I, and II show.

VII. CONCLUSION & FUTURE WORK

In this work, a robust approach is proposed to “teach”

autopilots how to handle uncertainties and emergencies with

minimum effort by exploiting Learning by Imitation also known

as Learning from Demonstration.

The experiments were strong indicators towards the ability

of Supervised Learning with Artificial Neural Networks to

capture low-level piloting tasks such as the rapid manipulation

of the elevator and throttle to maintain a certain pitch or a given

altitude. The experiments showed the ability of the IAS to

capture high-level tasks such as coordinating the necessary

actions to reject take off and extinguish fire.

Breaking down the piloting tasks, and adding more Artificial

Neural Networks enhanced performance and accuracy, and

allowed the coverage of a wider spectrum of tasks.

The aviation industry is currently working on solutions

which should lead to decreasing the dependence on crew

members. The reason behind this is to lower workload, human

error, stress, and emergency situations where the captain or the

first officer becomes incapable, by developing autopilots

capable of handling multiple scenarios without human

intervention. We anticipate that future Autopilot systems which

make of methods proposed here could improve safety and save

lives.

Future effort will focus on giving the IAS the ability to learn

how to fly a pre-selected course, and land safely in an airport.

The IAS should be capable of avoiding no-fly zones that are

either pre-identified, or detected during the flight such as severe

weather systems detected by the aircraft’s radar.

The Flight Manager program should be redesigned to utilize

Artificial Neural Networks to classify the situation (normal or

emergency), and predict the suitable flight control law or mode

given the situation.

The problem of sensor fault and denial should be

investigated to test the feasibility of teaching the IAS how to

handle such scenarios.

REFERENCES

[1] H. Baomar and P. J. Bentley, "An Intelligent Autopilot System that learns

piloting skills from human pilots by imitation," 2016 International

Conference on Unmanned Aircraft Systems (ICUAS), Arlington, VA,

USA, 2016, pp. 1023-1031.

doi: 10.1109/ICUAS.2016.7502578

[2] Nelson, Robert C. Flight stability and automatic control. Vol. 2.

WCB/McGraw Hill, 1998.

[3] G. J. J. Ducard, “Fault-Tolerant Flight Control and Guidance Systems:

Practical Methods for Unmanned Aerial Vehicles,” Springer, 2009.

[4] Sadeghzadeh, I. & Zhang, Y. (2011). A Review on Fault-Tolerant Control

for Unmanned Aerial Vehicles (UAVs). St. Louis, Missouri, USA: The

American Institute of Aeronautics and Astronautics.

[5] Rao, Faheem Muhammad et al. "UAV Emergency Landing Site Selection

System Using Machine Vision". J MACH INTELL 1.1 (2016): n. pag.

Web.

[6] P. Li, X. Chen and C. Li, "Emergency landing control technology for

UAV," Guidance, Navigation and Control Conference (CGNCC), 2014

IEEE Chinese, Yantai, 2014, pp. 2359-2362.

[7] Steingrube, Silke et al. "Self-Organized Adaptation Of A Simple Neural

Circuit Enables Complex Robot Behaviour". Nat Phys 6.3 (2010): 224-

230. Web.

[8] P. Y. Shinzato, V. Grassi, F. S. Osorio and D. F. Wolf, "Fast visual road

recognition and horizon detection using multiple artificial neural

networks," Intelligent Vehicles Symposium (IV), 2012 IEEE, Alcala de

Henares, 2012, pp. 1090-1095.

[9] M. B. W. D. Oliveira and A. D. A. Neto, "Optimization of Traffic Lights

Timing Based on Multiple Neural Networks," 2013 IEEE 25th

International Conference on Tools with Artificial Intelligence, Herndon,

VA, 2013, pp. 825-832.

[10] L. Huang, Q. Wu, Y. Chen, S. Hong and X. Huang, "Gesture Recognition

Based on Fusion Features from Multiple Spiking Neural

Networks," Communication Systems and Network Technologies (CSNT),

2015 Fifth International Conference on, Gwalior, 2015, pp. 1167-1171.

[11] Kien Tuong Phan, T. H. Maul and Tuong Thuy Vu, "A parallel circuit

approach for improving the speed and generalization properties of neural

networks," Natural Computation (ICNC), 2015 11th International

Conference on, Zhangjiajie, 2015, pp. 1-7.

[12] Wei, F., Amaya-Bower, L., Gates, A., Rose, D. and Vasko, T. (2016). The

Full-Scale Helicopter Flight Simulator Design and Fabrication at CCSU.

57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and

Materials Conference.

[13] Jirgl, M., Boril, J., Jalovecky, R. (2015). The identification possibilities of

the measured parameters of an aircraft model and pilot behavior model on

the flight simulator. International Conference on Military Technologies

(ICMT), vol., no., pp.1-5.

[14] Kaviyarasu, A. and Senthil Kumar, K. (2014). Simulation of Flapping-

wing Unmanned Aerial Vehicle using X-plane and Matlab/Simulink.

Defence Science Journal, 64(4), pp.327-331.

[15] Heaton, J. (2005). Introduction to neural networks with Java. St. Louis:

Heaton Research.

[16] McClelland, J. (2015). Explorations in Parallel Distributed Processing: A

Handbook of Models, Programs, and Exercises (2nd ed.). Stanford.

[17] Tveter, D. (1995). Chapter 2, The Backprop Algorithm.

[18] K. Winter, I. J. Hayes and R. Colvin, "Integrating Requirements: The

Behavior Tree Philosophy," 2010 8th IEEE International Conference on

Software Engineering and Formal Methods, Pisa, 2010, pp. 41-50.

