
  

  

Abstract— We propose an extension to the capabilities of the 

Intelligent Autopilot System (IAS) from our previous work, to be 

able to learn handling emergencies by observing and imitating 

human pilots. The IAS is a potential solution to the current 

problem of Automatic Flight Control Systems of being unable to 

handle flight uncertainties, and the need to construct control 

models manually. A robust Learning by Imitation approach is 

proposed which uses human pilots to demonstrate the task to be 

learned in a flight simulator while training datasets are captured 

from these demonstrations. The datasets are then used by Artificial 

Neural Networks to generate control models automatically. The 

control models imitate the skills of the human pilot when handling 

flight emergencies including engine(s) failure or fire, Rejected 

Take Off (RTO), and emergency landing, while a flight manager 

program decides which ANNs to be fired given the current 

condition. Experiments show that, even after being presented with 

limited examples, the IAS is able to handle such flight emergencies 

with high accuracy.  

I. INTRODUCTION 

Human pilots are trained to handle flight uncertainties or 

emergency situations such as severe weather conditions or 

system failure. For example, pilots are exposed to scenarios of 

forced or emergency landing which is performed by executing 

standard emergency procedures. Usually, the main phase of an 

emergency landing is known as gliding which is the reliance on 

the aerodynamics of the aircraft to glide for a given distance 

while altitude is lost gradually. This happens when the aircraft 

has lost thrust due to full engine failure in relatively high 

altitudes.  

In contrast, Automatic Flight Control Systems 

(AFCS/Autopilot) are highly limited, capable of performing 

minimal piloting tasks in non-emergency conditions. Autopilots 

are not capable of handling flight emergencies such as engine 

failure, fire, performing a Rejected Take Off, or a forced 

(emergency) landing. The limitations of autopilots require 

constant monitoring of the system and the flight status by the 

flight crew to react quickly to any undesired situation or 

emergencies. The reason for such limitations of conventional 

AFCS is that it is not feasible to anticipate everything that could 

go wrong with a flight, and incorporate all of that into the set of 

rules or control models “hardcoded” in an AFCS.  

This work aims to address this problem by expanding the 

capabilities of the Intelligent Autopilot System (IAS) [1] to be 

 
 

able to learn flight emergency procedures from human pilots by 

applying the Learning by Imitation concept with Artificial 

Neural Networks. By using this approach, we aim to extend the 

capabilities of modern autopilots and enable them to 

autonomously adapt their piloting to suit multiple scenarios 

ranging from normal to emergency situations. 

This paper is structured as follows: part (II) reviews related 

literature on fault/failure tolerant systems, and the application of 

multiple ANNs or Artificial Neural Circuits. Part (III) explains 

the Intelligent Autopilot System (IAS). Part (IV) describes the 

experiments, Part (V) describes the results by comparing the 

behaviour of the human pilot with the behaviour of the 

Intelligent Autopilot System, and part (VI) provides an analysis 

of the results. Finally, we provide conclusions and future work. 

II. BACKGROUND 

A review of the Autopilot problem, Artificial Neural 

Networks, and Learning by Imitation for Autonomous Flight 

Control is presented in our previous work [1]. 

A.  Fault/Failure Tolerant Systems for Flight Control 

Current operational autopilots fall under the domain of 

Control Theory. Classic and modern autopilots rely on 

controllers such as the Proportional Integral Derivative (PID) 

controller, and Finite-State automation [2]. Many recent 

research efforts focus on enhancing flight controllers by adding 

fault/failure tolerant capabilities. With respect to flight control 

systems, a fault is “an unpermitted deviation of at least one 

characteristic property of the system from the acceptable, usual, 

standard condition.” [3], while failure is “a permanent 

interruption of a system’s ability to perform a required function 

under specified operating conditions.” [3].  

To handle faults and failures, recent research efforts have been 

focusing on designing Fault Detection and Diagnosis (FDD) 

systems that can either stream information to ground crew 

members especially in the case of UAVs, or feed fault tolerant 

systems that are capable of handling system faults. The first type 

of such systems are known as the Passive Fault Tolerant 

Controllers which can handle moderate faults such as 

parameters deviations by using a robust feedback controller. 

However, if the faults are beyond the capabilities of such 

controllers, another type of fault tolerant systems becomes a 

necessity. This type is known as an Active Fault Tolerant control 
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system which includes a separate FDD system that adds an 

extended and enhanced level of fault tolerance capabilities [4].  

In case of emergency situations, mainly engine failure, engine 

fire, flight instruments failure, or control surface damage or 

failure, continuing to fly becomes either impossible or can poses 

a serious threat to the safety of the flight. In such circumstances, 

a forced or emergency landing on a suitable surface such as a 

flat field becomes a must especially if it is not possible to return 

safely to the runway [5]. In [6], an emergency landing controller 

is proposed for an Unmanned Aerial Vehicle by segmenting the 

emergency landing period into four sub-levels known as 

slipping guiding, straight line down, exponential pulling up, and 

shallow sliding. Each level uses different control strategies 

aimed at insuring the safe execution of the complete emergency 

landing. For example, during the exponential pulling up level, 

the system maintains a certain pitch without causing the UAV 

to stall. Using a simulator, the proposed approach showed its 

ability to handle emergency landing [6].   

B. Multiple ANNs or Artificial Neural Circuits  

The problem of coordinating multiple sensor-motor 

architectures found in complex robotic systems is challenging. 

This is due to the simultaneous and dynamic operation of these 

motors while insuring rapid and adaptive behaviour, and due to 

the need to properly handle the fusion of data from disparate 

sources. In nature, animals manage this problem by the large 

number of neural circuits in the animals’ brains. For example, 

neural circuits which are responsible for motion are connected 

to the muscles (motor systems), and operate simultaneously and 

dynamically while handling changes in the environment [7]. 

This has inspired the field of complex robotics to develop 

multiple neural-based controllers and integrate them together to 

tackle larger problems such as long-endurance locomotion 

under uncertainties. For example, the problem of coordinating 

multiple sensor-motor architectures is addressed in the context 

of walking by developing a neural circuit which generates 

multiple gaits adaptively, and coordinates the process of 

walking with different behavioural-based processes in a 

hexapod robot. The results showed the ability of the biology-

inspired system to detect and stabilize multiple instability 

scenarios, and to determine what needs to be controlled at each 

moment which allows the system to handle changes in the 

environment [7].  

Multiple Artificial Neural Networks were applied to the 

problem of detecting roads visually. In [8], different inputs are 

fed into multiple ANNs to handle multiple segments of the 

image. The proposed approach allows the system to detect and 

classify multiple factors of the environment ahead which leads 

to an enhanced performance compared to other computer-vision 

solutions [8]. In [9], Multiple ANNs were applied to tackle the 

limitations problem of traffic light control systems that are based 

on conventional mathematical methods. In simulation, the 

results showed that the approach of using multiple ANNs to 

address this problem presented an improvement in performance 

compared to other methods [9]. Another proposed system 

inspired by biology; is presented in [10] which is designed to 

handle the challenging problem of gesture recognition. The 

system shares similarities with the human visual system by 

developing multiple spiking ANNs. The outputs of the spiking 

ANNs are used to generate a fusion of multiple data from 

different segments of the gesture. The results proved the 

system’s ability to handle dynamic visual recognition with the 

presence of complex backgrounds [10].  

The approach of segmenting or breaking down the problem, 

and using multiple ANNs to handle multiple segment shows the 

potential to enhance the properties of ANNs as explained in 

[11]. A large ANN is split into parallel circuits that resemble the 

circuits of the human retina. During training, the 

Backpropagation algorithm runs in each circuit separately. This 

approach does not only decrease training time, but it also 

enhances generalization [11].  

III. THE INTELLIGENT AUTOPILOT SYSTEM 

The proposed Intelligent Autopilot System (IAS) in this 

paper can be viewed as an apprentice that observes the 

demonstration of a new task by the experienced teacher, and 

then performs the same task autonomously. A successful 

generalization of Learning by Imitation should take into 

consideration the capturing of low-level models and high-level 

models, which can be viewed as rapid and dynamic sub-actions 

that occur in fractions of a second, and actions governing the 

whole process and how it should be performed strategically. It 

is important to capture and imitate both levels in order to handle 

flight uncertainties successfully. 

The IAS is made of the following components: a flight 

simulator, an interface, a database, a flight manager program, 

and Artificial Neural Networks. The IAS implementation 

method has three steps: A. Pilot Data Collection, B. Training, 

and C. Autonomous Control. In each step, different IAS 

components are used. The following sections describe each step 

and the components used in turn. 

A. Pilot Data Collection 

Fig. 1 illustrates the IAS components used during the pilot 

data collection step. 

1) Flight Simulator 

Before the IAS can be trained or can take control, we must 

collect data from a pilot. This is performed using X-Plane which 

is an advanced flight simulator that has been used as the 

simulator of choice in many research papers such as [12] [13] 

[14]. 

 
 

Fig.  1. Block diagram illustrating the IAS components used during the pilot 

data collection step. 



  

X-Plane is used by multiple organizations and industries 

such as NASA, Boeing, Cirrus, Cessna, Piper, Precession Flight 

Controls Incorporated, Japan Airlines, and the American 

Federal Aviation Administration.1 X-Plane can communicate 

with external applications by sending and receiving flight status 

and control commands data over a network through User 

Datagram Protocol (UDP) packets. For this work, the simulator 

is set up to send and receive packets comprising desired data 

every 0.1 second. In X-Plane, it is possible to simulate a number 

of flight emergencies for the purpose of training pilots. 

Emergencies range from severe weather conditions to system 

failure such as engine failure or fire.   

2) The IAS Interface   

The IAS Interface is responsible for data flow between the 

flight simulator and the system in both directions. The Interface 

contains control command buttons that provide a simplified yet 

sufficient aircraft control interface which can be used to perform 

basic tasks of piloting an aircraft such as take-off and landing in 

the simulator while being able to control other systems such as 

fuel and fire systems. It also displays flight data received from 

the simulator.  

Data collection is started immediately before demonstration, 

then; the pilot uses the Interface to perform the piloting task to 

be learned. The Interface collects flight data from X-Plane over 

the network using UDP packets, and collects the pilot’s actions 

while performing the task, which are also sent back to the 

simulator as manual control commands. The Interface organizes 

the collected flight data received from the simulator (inputs), 

and the pilot’s actions (outputs) into vectors of inputs and 

outputs, which are sent to the database every 1 second. 

3) Database   

An SQL Server database stores all data captured from the 

pilot demonstrator and X-Plane, which are received from the 

Interface. The database contains tables designed to store: 1. 

Flight data as inputs, and 2. Pilot’s actions as outputs. These 

tables are then used as training datasets to train the Artificial 

Neural Networks of the IAS.    

B. Training 

1) Artificial Neural Networks 

After the human pilot data collection step is completed, 

Artificial Neural Networks are used to generate learning models 

from the captured datasets through offline training. Fig. 2 

illustrates the training step.  

 

 
 

Fig.  2. Block diagram illustrating the IAS components used during training. 

 

 
1 "X-Plane 10 Global  

http://www.x-plane.com 

Ten feedforward Artificial Neural Networks comprise the 

core of the IAS. Each ANN is designed and trained to handle 

specific controls and tasks. The ANNs are: Taxi Speed Gain 

ANN, Take Off ANN, Rejected Take Off ANN, Aileron ANN, 

Rudder ANN, Cruise Altitude ANN, Cruise Pitch ANN, Fire 

Situation ANN, Emergency Landing Pitch ANN, and 

Emergency Landing Altitude ANN. The inputs and outputs 

which represent the gathered data and relevant actions, and the 

topologies of the ten ANNs are illustrated in Fig. 3.  

The method for choosing ANN topologies in this work is 

based on a rule-of-thumb [15] which indicates that problems 

requiring more than one hidden layer are rarely encountered.   

This rule follows an approach that tries to avoid under-fitting 

caused by too few neurons in the hidden layer, or over-fitting 

caused by too many neurons, by having the number of hidden 

neurons less than or equal to twice the size of the input layer. 

Before training, the datasets are normalized, and retrieved 

from the database. Then, the datasets are fed to the ANNs. Next, 

Sigmoid (1) [15] and Hyperbolic Tangent (Tanh) (2) [15] 

functions are applied for the neuron activation step, where ���� 

is the activation function for each neuron, and � is the relevant 

input value:        
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Fig.  3. Inputs, outputs, and the topologies of the ten ANNs representing the 

core of the Intelligent Autopilot System. Each ANN is designed and trained to 

handle a specific task. 

 



  

The Sigmoid activation function (1) is used by the Taxi 

Speed Gain ANN, Take Off ANN, Emergency Landing Altitude 

ANN, Rejected Take Off ANN, and the Fire Situation ANN, 

while (2) is used by the rest since their datasets contain negative 

values. 

Next, Backpropagation is applied. Based on the activation 

function, (3) [16], or (4) [16] are applied to calculate the error 

signal (�) where �� is the desired target value and �� is the actual 

activation value:    
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Finally, coefficients of models (weights and biases) are 

updated using (5) [17] where δ��,� is the change in the weight 

between nodes j and k.  
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When training is completed, the learning models are 

generated, and the free parameters or coefficients represented by 

weights and biases of the models are stored in the database.  

C. Autonomous Control  

Once trained, the IAS can now be used for autonomous 

control. Fig. 4 illustrates the components used during the 

autonomous control step.  

1) The IAS Interface 

Here, the Interface retrieves the coefficients of the models 

from the database for each trained ANN, and receives flight data 

from the flight simulator every 0.1 second. The Interface 

organizes the coefficients into sets of weights and biases, and 

organizes data received from the simulator into sets of inputs for 

each ANN. The relevant coefficients, and flight data input sets 

are then fed to the Flight Manager and the ANNs of the IAS to 

produce outputs. The outputs of the ANNs are sent to the 

Interface which sends them to the flight simulator as 

autonomous control commands using UDP packets every 0.1 

second. 

2) The Flight Manager Program 

The Flight Manager is a program which resembles a 

Behaviour Tree [18]. The purpose of the Flight Manager is to 

manage the ten ANNs of the IAS by deciding which ANNs are 

to be used simultaneously at each moment. The Flight Manager 

starts by receiving flight data from the flight simulator through 

the interface of the IAS, then it detects the flight condition and 

phase by examining the received flight data, and decides which 

ANNs are required to be used given the flight condition 

(normal/emergency/fire situation) and phase (taxi speed 

gain/take off/cruise/emergency landing). Fig.  5 illustrates the 

process which the Flight Manager follows.   

3) Artificial Neural Networks 

The relevant set of flight data inputs received through the 

Interface is used by the ANNs’ input neurons along with the 

relevant coefficients to predict control commands given the 

flight status by applying (1) and (2). The values of the output 

layers are sent to the Interface which sends them to the flight 

simulator as autonomous control commands. Taxi Speed Gain 

ANN is used while on the runway just before take off to predict 

the suitable brakes and throttle command values. Take Off ANN 

is used after a certain take off speed is achieved to predict gear, 

elevator, and throttle command values. Rejected Take Off ANN 

is used to abort take off if necessary by predicting brakes, 

throttle, and reverse throttle command values. Aileron ANN is 

used to control the aircraft’s roll immediately after take off. 

Rudder ANN is used to control the aircraft’s heading before take 

off, and yaw when airborne in case one engine fails and creates 

drag. Cruise Altitude ANN is used to control the aircraft’s 

desired cruising altitude by predicting the throttle command 

value. Cruise Pitch ANN controls the pitch while cruising by 

predicting the elevator command value. Fire Situation ANN is 

used in case of fire by predicting fuel valve and fire 

extinguishing control commands. Emergency Landing Pitch 

ANN maintains a certain pitch during emergency landing to lose 

speed without stalling and to prevent a nose first crash. 

Emergency Landing Altitude ANN controls the throttle in case 

of a single engine failure.     

 
 

Fig.  4. Block diagram illustrating the IAS components used during 

autonomous control. 

 

 
 

Fig.  5. A Flowchart illustrating the process which the Flight Manager 

program follows to decided which ANNs are to be used. 



  

IV. EXPERIMENTS 

Our previous work [1] provides detailed explanations of the 

experiments of autonomous taxi speed gain, take off, climb, and 

applying rudder and aileron to correct heading and roll 

deviations under normal and severe weather conditions. The 

new approach in this paper is to segment the training dataset of 

taxi speed gain, take off, and climb into three different sets that 

are handled separately by three ANNs (Taxi Speed Gain ANN, 

Take Off ANN, and Cruise ANN) instead of just one ANN. This 

work also introduces four new ANNs in order to learn flight 

emergency procedures for the first time. 

In order to assess the effectiveness of the proposed approach 

in this paper, the Intelligent Autopilot System was tested in four 

experiments: A. Rejecting take off, B. Emergency landing, C. 

Maintaining a cruising altitude, and D.  Handling single engine 

failure/fire while airborne. Each experiment is composed of 20 

attempts by the IAS to perform autonomously under the given 

conditions. 

The human pilot who provided the demonstrations is the 

first author. The simulated aircraft used for the experiments is a 

Boeing 777 as we want to experiment using a more complex 

model with more than one engine rather than a light single-

engine model. The experiments are as follows:  

A. Rejecting Take Off  

The purpose of this experiment is to assess the behaviour of 

the IAS compared to the behaviour of the human pilot when a 

Rejected Take Off (RTO) is required. 

1) Data Collection  

In this experiment, the human pilot used the IAS Interface to 

perform the following in the flight simulator: reject take off 

when one engine fails or catches fire, and when two engines fail 

or catch fire (one demonstration for each scenario). The flight 

simulator was set to simulate the failure or fire conditions for 

one or two engines immediately after the user presses a hot key 

on the keyboard. Rejecting take off is performed by going to full 

reverse thrust and engaging brakes. In case of fire, the human 

pilot turned off the fuel valve, turned on the fire extinguishing 

system, and went to full throttle to burn the fuel left in the 

engine(s). While the pilot performed the demonstration, the 

Interface collected speed and engine status as inputs, and brakes, 

throttle, and reverse thrust control data as outputs. The Interface 

stored the collected data in the database as the training dataset 

for the Rejected Take Off ANN. The Interface also collected fire 

sensor readings as input, and fire extinguisher, throttle, and fuel 

valve control data as outputs. The Interface stored the collected 

data in the database as the training dataset for the Fire Situation 

ANN. 

2) Training 

For this experiment, the Rejected Takeoff ANN, and the Fire 

Situation ANN were trained until low Mean Squared Error 

(MSE) values were achieved (below 0.001).  

3) Autonomous Control 

After training the ANNs on the relevant training datasets, the 

aircraft was reset to the runway in the flight simulator to test 

autonomous RTO multiple times under different scenarios (one 

and two engine(s) failure and fire), the simulator was set to 

simulate the desired emergency scenario, and the IAS was 

engaged. When the flight manager detects the emergency, it 

stops the Taxi Speed Gain ANN, and runs the Rejected Takeoff 

ANN and the Fire Situation ANN simultaneously to reject take 

off and handle fire autonomously. Through the Interface, ANNs 

receive: 1. Relevant flight data from the flight simulator as 

inputs, and 2. Coefficients of the relevant models from the 

database to predict and output command controls that are sent to 

the flight simulator. This process allows the IAS to 

autonomously perform the learned task: rejecting take off if 

necessary. This was repeated 20 times for each scenario to 

assess performance consistency.    

B. Emergency Landing  

The purpose of this experiment is to assess the behaviour of 

the IAS compared to the behaviour of the human pilot when a 

forced or emergency landing is required. 

1) Data Collection  

 In this experiment, the human pilot used the IAS Interface 

to perform the following in the flight simulator: emergency 

landing when two engines fail or catch fire (one demonstration 

for each scenario). The flight simulator was set to simulate the 

failure or fire conditions for two engines immediately after the 

user presses a hot key on the keyboard. Emergency landing is 

performed by maintaining a controlled glide using the elevators 

to insure a gradual loss of speed and altitude without stalling the 

aircraft, by maintaining a slight positive pitch. If there is any 

power left in the engines, the throttle is used to aid the gliding 

phase. In case of fire, the human pilot turned off the fuel valve, 

and turned on the fire extinguishing system. In this scenario 

going to full throttle to burn the fuel left in the engines is not 

possible since both engines do not have sufficient power. While 

the pilot performed the demonstration, the Interface collected 

pitch as input, and elevator control data as output. The Interface 

stored the collected data in the database as the training dataset 

for the Emergency Landing Pitch ANN. The Interface also 

collected altitude as input, and throttle control data as output. 

The Interface stored the collected data in the database as the 

training dataset for the Emergency Landing Altitude ANN. 

2) Training 

For this experiment, the Emergency Landing Pitch ANN, 

and the Emergency Landing Altitude ANN were trained until 

low Mean Squared Error (MSE) values were achieved (below 

0.001 for the Emergency Landing Pitch ANN and below 0.2 for 

the Emergency Landing Altitude ANN).  

3) Control 

After training the ANNs on the relevant training datasets, the 

aircraft was reset to the runway in the flight simulator to test 

autonomous emergency landing multiple times under different 

scenarios (both engines failure or fire), the simulator was set to 

simulate the desired emergency scenario, and the IAS was 

engaged. After the IAS took the aircraft airborne, and when the 

flight manager detects the emergency, it stops the Take Off 

ANN (during climb), or the cruise ANNs, and runs the 

Emergency Landing Pitch ANN, and the Emergency Landing 

Altitude ANN simultaneously to maintain a controlled glide 

while descending to the ground. Through the Interface, the 



  

ANNs receive: 1. Relevant flight data from the flight simulator 

as inputs, and 2. Coefficients of the relevant models from the 

database to predict and output command controls that are sent to 

the flight simulator. This process allows the IAS to 

autonomously perform learned task: emergency landing by 

maintaining a controlled glide. This was repeated 20 times for 

each scenario to assess performance consistency. 

C. Maintaining a Cruising Altitude  

The purpose of this experiment is to assess the behaviour of 

the IAS compared to the behaviour of the human pilot while 

maintaining a desired cruising altitude. 

1) Data Collection  

In this experiment, the human pilot used the IAS Interface to 

maintain a cruising altitude in the flight simulator by increasing 

and decreasing the throttle, and by using the elevator to maintain 

a fairly leveled pitch (one demonstration). While the pilot 

performed the demonstration, the Interface collected altitude as 

input, and throttle control data as output. The Interface stored 

the collected data in the database as the training dataset for the 

Cruise Altitude ANN. The Interface also collected pitch as 

input, and elevator control data as output. The Interface stored 

the collected data in the database as the training dataset for the 

Cruise Pitch ANN. 

2) Training 

For this experiment, the Cruise Altitude ANN, and the 

Cruise Pitch ANN were trained until low Mean Squared Error 

(MSE) values were achieved (below 0.02 and 0.001 

respectively).  

3) Autonomous Control 

After training the ANNs on the relevant training datasets, the 

aircraft was reset to the runway in the flight simulator to test the 

ability of maintaining a desired cruise altitude autonomously, 

and the IAS was engaged. After the IAS took the aircraft 

airborne, continued to climb, and reached the proximity of the 

desired altitude, the system’s ability to maintain the given 

altitude was observed. Through the Interface, the ANNs receive: 

1. Relevant flight data from the flight simulator as inputs, and 2. 

Coefficients of the relevant models from the database to predict 

and output command controls that are sent to the flight 

simulator. This process allows the IAS to autonomously perform 

learned task: maintain a desired cruising altitude. This was 

repeated 20 times for each scenario to assess performance 

consistency. 

D. Handling Single Engine Failure/Fire while Airborne   

The purpose of this experiment is to assess the behaviour of 

the IAS in case of an engine failure or fire while airborne. 

1) Data Collection  

In this experiment, the human pilot did not provide an 

explicit demonstration for the single engine failure. Instead, it 

was intended to test the already trained ANNs, and determine 

whether their models are able to generalize well in this new 

scenario where the failed engine creates a drag, and forces the 

aircraft to descend, and creates a yaw deviation towards the 

failed engine’s side. 

2) Training 

For this experiment, the previously trained models of the 

Cruise Altitude ANN, the Cruise Pitch ANN, and the rudder 

ANN from our previous work [1] were used. 

3) Autonomous Control 

After setting the simulator to simulate the desired emergency 

scenario (single engine failure or fire), and after the IAS took 

the aircraft airborne, when the flight manager detects the 

emergency, it continues to use the same ANNs (Take Off ANN, 

or cruise ANNs), and runs the Fire Situation ANN if fire is 

detected, to fly autonomously using the power left from the 

engine that operates normally. Through the Interface, the ANNs 

receive: 1. Relevant flight data from the flight simulator as 

inputs, and 2. Coefficients of the relevant models from the 

database to predict and output command controls that are sent to 

the flight simulator. This was repeated 20 times for each 

scenario to assess performance consistency. 

Throughout all the experiments, the Rudder and Aileron 

ANNs from our previous work [1] are used normally during the 

different phases. 

V. RESULTS 

The following section describes the results of the conducted 

tests. The 20 attempts by the IAS to handle each scenario 

autonomously were averaged and compared with the 

performance of the human pilot when applicable. 

A. Rejecting Take Off 

Two models were generated with the MSE values as table I 

shows. Fig.  6 illustrates the behaviour of the IAS when 

controlling the transition of flight modes under normal 

conditions, while Fig.  7 illustrates the behaviour of the IAS 

when engine(s) failure or fire is detected and a Rejected Take 

Off (RTO) is performed. The results of the 20 experiments 

showed strong consistency by following the correct procedure 

in each experiment with a 100% accuracy rate. 

B. Emergency Landing 

Two models were generated with the MSE values as table I 

shows. Fig. 8 and 9 illustrate a comparison between the human 

pilot and the IAS while maintaining a positive pitch during 

emergency landing, and their altitude (sink rate). The pitch 

Mean Absolute Deviation (MAD) results (0.024 for the IAS and 

0.196 for the human pilot) show less deviation and a steady 

behaviour of the IAS due to the good model fit as can be seen in 

Fig.  8. Fig.  10 illustrates the behaviour of the IAS when both 

engines failure or fire is detected and a forced or emergency 

landing is performed. The results of the 20 experiments showed 

strong consistency by following the correct procedure in each 

experiment with a 100% accuracy rate. 

 
TABLE I 

MSE VALUES OF THE MODELS GENERATED FOR THE REJECTED 

TAKE OFF AND THR EMERGENCY LANDING EXPERIMENTS. 

ANN MSE 

Rejected Takeoff ANN 0.000999 

Fire Situation ANN 0.000999 

Emergency Landing Pitch ANN 0.000997 

Emergency Landing Altitude ANN 0.196117 



  

 
Fig.  6. The behaviour of the IAS when controlling the transition of flight 

modes under normal conditions. Different ANNs are used in each flight mode. 

 

 

 

Fig.  8. (Emergency landing experiment) A comparison between the human 

pilot and the Intelligent Autopilot System’s pitch during emergency landing. In 

this case the human pilot struggled to generate perfect training data so our 

training approach was designed to prevent overfitting, instead creating a 

general model (good fit) which provided the desired performance. 

 

 

Fig.  10. (Emergency landing experiment) The behaviour of the IAS when both 

engines failure or fire is detected during either take off or cruise, and an 

emergency landing is performed. The Fire Situation ANN is used only when 

fire is detected. 

 

Fig.  7. (Rejected Take Off experiment) The behaviour of the IAS when 

engine(s) failure or fire is detected and a Rejected Take Off (RTO) is 

performed. The Fire Situation ANN is used only when fire is detected.  

 

 

Fig.  9. (Emergency landing experiment) A comparison between the human 

pilot and the Intelligent Autopilot System’s altitude during emergency landing. 

The results show a significantly close sink rate of about 1500 ftagl per minute. 

 

 

C. Maintaining a Cruise Altitude  

Two models were generated with the MSE values as table II 

shows. Fig.  11 and 12 illustrate a comparison between the 

human pilot and the IAS while maintaining a desired cruising 

altitude. The altitude Mean Absolute Deviation (MAD) results 

(85.8 for the IAS and 204.58 for the human pilot) shows less 

deviation of altitude and a steady behaviour of the IAS due to 

the good model fit as can be seen in Fig.  11. 

 

 
TABLE II 

MSE VALUES OF THE MODELS GENERATED FOR THE CRUISE 

EXPERIMENT. 

ANN MSE 

Cruise Altitude ANN 0.017574 

Cruise Pitch ANN 0.000835 



  

 
Fig.  11. (Maintaining a cruise altitude experiment) A comparison between the 

human pilot and the Intelligent Autopilot System’s altitude during cruising. 

While the human pilot demonstrator struggled to maintain a desired cruise 

altitude of 20,000 ftagl, the IAS performed better due to the good fit of the 

generated learning model. 

 

D. Handling Single Engine Failure/Fire while Airborne 

As mentioned in part (IV) the human pilot did not provide an 

explicit demonstration for the single engine failure scenario. 

Instead, it was intended to test the already trained ANNs, and 

determine whether their models are able to generalize well in 

this new scenario’s experiment. Fig.  13 illustrates the behaviour 

of the IAS when a single engine fails or catches fire during take 

off or cruise. The system was intended to carry on flying, apply 

the rudder ANN from our previous work [1], and run the Fire 

Situation ANN in case of fire. The results of the 20 experiments 

showed strong consistency by following the correct procedure 

in each experiment accurately. Fig. 14 illustrates how the IAS 

continues to fly while losing altitude gradually compared to the 

aircraft’s autopilot under the same situation. 

 

 

 

 
 

 

Fig.  13. (Handling single engine failure/fire experiment) The behaviour of the 

IAS when a single engine failure or fire is detected during either take off or 

cruise. The Fire Situation ANN is used only when fire is detected. The ANNs 

used during Take Off or Cruise perform the same tasks as Fig.  6 shows, while 

the Aileron ANN continues to correct roll. 

 

Fig.  12. (Maintaining a cruise altitude experiment) The IAS manipulation of 

throttle to maintain a desired cruise altitude of 20,000 ftagl compared with the 

human pilot. The IAS manipulated the throttle smoothly compared to the 

human pilot due to the good fit of the generated learning model. 

VI. ANALYSIS 

As can be seen in Fig.  7, the rejected take off experiment 

presented excellent results. The IAS was capable of imitating 

the human pilot’s actions and behaviour with excellent 

accuracy, and strong consistency by following the correct 

procedure in each experiment accurately.  

Fig.  8 to 10 (the emergency landing experiment) show very 

desirable results of the ability of the IAS to imitate the human 

pilot’s demonstration of controlling an emergency landing. 

They show the ability of the IAS to perform the learned sink rate 

which enabled the aircraft to hit the ground smoothly without 

being severely wrecked. The flight simulator measures the G 

force effect on the aircraft’s frame, and informs the user in case 

of an unsurvivable crash. It should be mentioned that selecting 

a suitable landing surface is not within the scope of this work.  

 

 

 
 

 

Fig.  14. (Handling single engine failure/fire experiment) Comparing the 

altitude loss rate of the IAS and the aircraft’s AFCS. Since the AFCS is not 

aware of the single engine failure situation, it compensates by increasing the 

throttle aggressively, which results in a smaller altitude loss rate, but puts 

excessive stress on the single operating engine. 



  

Fig.  11 and 12 (maintaining a cruise altitude experiment) 

show very desirable results of the ability of the IAS to learn how 

to use throttle and elevator to maintain a given altitude. They 

illustrate the ability of the IAS to perform better than the human 

pilot teacher due to the achieved good fit of the learning models. 

This can also be seen in Fig.  8 (the emergency landing 

experiment). 

As can be seen in Fig.  13 and 14, the single engine failure/fire 

experiment presented excellent results. The IAS was capable of 

using the already learned models to continue flying while 

gradually losing altitude. Although the aircraft’s standard 

autopilot maintained a better altitude in the short term, by 

aggressively increasing engine thrust it increases the likelihood 

of engine failure in the remaining engine, with potentially 

catastrophic results. 

The system was able to imitate multiple human pilot’s skills 

and behaviour after being presented with very limited examples. 

This is due to the approach of segmenting the problem of 

autonomous piloting while handling uncertainties into small 

blocks of tasks, and assigning multiple ANNs specially designed 

and trained for each task, which resulted in the generation of 

highly accurate models as tables I, and II show. 

VII. CONCLUSION & FUTURE WORK 

In this work, a robust approach is proposed to “teach” 

autopilots how to handle uncertainties and emergencies with 

minimum effort by exploiting Learning by Imitation also known 

as Learning from Demonstration.  

The experiments were strong indicators towards the ability 

of Supervised Learning with Artificial Neural Networks to 

capture low-level piloting tasks such as the rapid manipulation 

of the elevator and throttle to maintain a certain pitch or a given 

altitude. The experiments showed the ability of the IAS to 

capture high-level tasks such as coordinating the necessary 

actions to reject take off and extinguish fire. 

Breaking down the piloting tasks, and adding more Artificial 

Neural Networks enhanced performance and accuracy, and 

allowed the coverage of a wider spectrum of tasks. 

The aviation industry is currently working on solutions 

which should lead to decreasing the dependence on crew 

members. The reason behind this is to lower workload, human 

error, stress, and emergency situations where the captain or the 

first officer becomes incapable, by developing autopilots 

capable of handling multiple scenarios without human 

intervention. We anticipate that future Autopilot systems which 

make of methods proposed here could improve safety and save 

lives. 

Future effort will focus on giving the IAS the ability to learn 

how to fly a pre-selected course, and land safely in an airport. 

The IAS should be capable of avoiding no-fly zones that are 

either pre-identified, or detected during the flight such as severe 

weather systems detected by the aircraft’s radar. 

The Flight Manager program should be redesigned to utilize 

Artificial Neural Networks to classify the situation (normal or 

emergency), and predict the suitable flight control law or mode 

given the situation.  

The problem of sensor fault and denial should be 

investigated to test the feasibility of teaching the IAS how to 

handle such scenarios.    
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