
AndroDialysis: Analysis of Android Intent
Effectiveness in Malware Detection

Ali Feizollah a,*, Nor Badrul Anuar a,*, Rosli Salleh a,
Guillermo Suarez-Tangil b,1, Steven Furnell c

a Department of Computer System and Technology, Faculty of Computer Science and Information Technology,
University of Malaya, 50603 Kuala Lumpur, Malaysia
b Computer Security (COSEC) Lab, Department of Computer Science, Universidad Carlos III de Madrid, 28911
Leganes, Madrid, Spain
c Centre for Security, Communications and Network Research, School of Computing, Electronics and
Mathematics, Plymouth University, Drake Circus, Plymouth PL4 8AA, UK

A R T I C L E I N F O

Article history:

Received 5 May 2016

Received in revised form 7

November 2016

Accepted 12 November 2016

Available online 16 November 2016

A B S T R A C T

The wide popularity of Android systems has been accompanied by increase in the number

of malware targeting these systems. This is largely due to the open nature of the Android

framework that facilitates the incorporation of third-party applications running on top of

any Android device. Inter-process communication is one of the most notable features of the

Android framework as it allows the reuse of components across process boundaries. This

mechanism is used as gateway to access different sensitive services in the Android frame-

work. In the Android platform, this communication system is usually driven by a late runtime

binding messaging object known as Intent. In this paper, we evaluate the effectiveness of

Android Intents (explicit and implicit) as a distinguishing feature for identifying malicious

applications. We show that Intents are semantically rich features that are able to encode

the intentions of malware when compared to other well-studied features such as permis-

sions. We also argue that this type of feature is not the ultimate solution. It should be used

in conjunction with other known features. We conducted experiments using a dataset con-

taining 7406 applications that comprise 1846 clean and 5560 infected applications.The results

show detection rate of 91% using Android Intent against 83% using Android permission. Ad-

ditionally, experiment on combination of both features results in detection rate of 95.5%.

© 2016 Elsevier Ltd. All rights reserved.

Keywords:

Mobile malware

Android

Intent

Smartphone security

Static analysis

1. Introduction

Smartphones have emerged as popular portable devices with
increasingly powerful computing, networking and sensing ca-
pabilities, and they are now far more powerful than early
personal computers (PCs). In addition, their popularity has been

repeatedly corroborated by recent surveys (Gartner, 2015). The
combination of device capability and popularity has served to
make them an attractive target for malware. Accordingly,
malware is quickly permeating most popular Android-based
applications markets. In the case of official applications market
(Google Play), operators are generally more concerned about
the security aspect of the software they distribute. For

* Corresponding authors.
E-mail addresses: ali.feizollah@siswa.um.edu.my (A. Feizollah), badrul@um.edu.my (N.B. Anuar).

1 Currently at Royal Holloway University of London. Email: guillermo.suarez-tangil@rhul.ac.uk.
http://dx.doi.org/10.1016/j.cose.2016.11.007
0167-4048/© 2016 Elsevier Ltd. All rights reserved.

c om pu t e r s & s e cu r i t y 6 5 (2 0 1 7) 1 2 1 – 1 3 4

Available online at www.sciencedirect.com

journal homepage: www.elsevier.com/ locate /cose

ScienceDirect

mailto:ali.feizollah@siswa.um.edu.my
mailto:badrul@um.edu.my
http://www.sciencedirect.com/science/journal/01674048
http://www.elsevier.com/locate/COSE
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2016.11.007&domain=pdf

instance, Google Play employs a review system to vet poten-
tially dangerous applications (Oberheide and Miller, 2012).
Despite all these efforts, commercial surveys still report a large
number of malicious applications attacking the Android
markets. For instance, GData reported nearly half a million new
Android malware in 20151. More recently, new malwares such
as the BrainTest (Polkovnichenko and Boxiner, 2015) have suc-
ceeded in infecting over half a million Android devices, targeting
Google Play in particular. Many recent studies have resulted
in a number of automated approaches to tackle the spread of
malware (Aresu et al., 2015; Feizollah et al., 2013; Narudin et al.,
2016; Tam et al., 2015). Static analysis techniques, which have
traditionally been used for detecting malware targeting desktop
computers, have recently gained popularity as effective mea-
sures for the protection of mobile applications (Desnos, 2012).
In particular, static approaches aim at detecting Android
malware by analyzing their permission usage (Zhang et al.,
2013), mining their code structures (Suarez-Tangil et al., 2014),
understanding the components they used (Arp et al., 2014), and
monitoring the APIs they invoked (Aafer et al., 2013; Arp et al.,
2014; Yang et al., 2014). Inter-process communication is one
of the most notable features of the Android framework as it
allows the reuse of components across process boundaries. It
is used as gateway to access different sensitive services in the
Android framework. In the Android platform, this communi-
cation system is usually driven by a late runtime binding
messaging object known as Intent. Intent objects provide an
abstract definition of the operations an application intends to
perform.

The rich semantics encoded in this type of component in-
dicate that Intent could be used to characterize malware. For
instance, the listing in Table 1 shows an excerpt of Intent actions
used in a legitimate banking application and the actions stipu-
lated in the infected version of the same application. In this
example, it is obvious that the infected version of the appli-
cation is subscribing to a notification service that will be
triggered by the Android OS whenever the BOOT_COMPLETED
event occurs. In addition, SMS_RECEIVED allows the sub-
scriber to access all incoming SMS messages (Fratantonio et al.,
2016).While the former action is used by the malware as a form
of evasion, the latter is used to steal the Transaction Autho-
rization Code (TAC) (Jain, 2015; Jiang and Zhou, 2013).

In this paper, we propose AndroDialysis2, a system that ana-
lyzes two different types of Intent objects, i.e., implicit and
explicit Intents. To evaluate the effectiveness of the proposed
system, we will compare our results with that from a base-
line detection system that uses similar level of granularity, and
we will then analyze the permissions usage. In summary, we
make the following contributions in this paper:

1. We propose the use of Android Intents (implicit and ex-
plicit) for detecting Android malware. The usage of Intents
will be extracted from both clean and infected applica-
tions in a dataset containing 7406 applications.

2. We extract permissions used by each application and evalu-
ate the effectiveness of our approach when compared to
the use of permissions.We also conduct experiment on com-
bination of Android permission and Android Intent to verify
that they are not overlapping.

3. We also compare the time taken to process permissions and
Intents in our experiments, as it is important to deter-
mine which component of the Android file is faster and more
efficient. Furthermore, we calculated power consumption
of AndroDialysis and compared it with three popular
applications.

This paper is organized as follows: Section 2 explains in
detail Android Intent, and presents a snippet code for im-
plicit and explicit Intents, respectively. Section 3 discusses the
method of data collection and analysis of the dataset, analyz-
ing the permission and Intent. Section 4 describes the proposed
system and its various modules and sub-modules. Section 5
presents details of experiments and the results obtained, as
well as evaluation of the proposed system. Section 6 reviews
related works done by other researchers, and highlights their
weaknesses and strengths. Section 7 concludes this paper by
summarizing main findings from this research.

2. Android intent

Intent is a complex messaging system in the Android plat-
form, and is considered as a security mechanism to hinder
applications from gaining access to other applications di-
rectly. Applications must have specific permissions to use
Intents. This is a way of controlling what applications can do
once they are installed in Android. Intent-filter – defined in
AndroidManifest.xml file – announces the type of Intent the
application is capable of receiving.

Applications use Intents for intra-application and inter-
application communications. Intra-application communication
takes place inside an application between activities. An Android
application consists of many activities, each referring to buttons,
labels, and texts available on a single page of the application,
with which the user interacts. When interacting with the ap-
plication, the user moves from activity to activity (i.e. from page
to page). Android Intents assist developers in performing in-
teractions among the activities. Furthermore, Intents are used
in pushing data from one activity to another, carrying the results
at the end of any particular activity (Aftab and Karim, 2014).

Inter-application communication is achieved when appli-
cations send messages or data to other applications through
Intent.The applications should also be able to receive data from
other applications.To receive Intents, applications must define
what type of Intent they accept in the Intent section of
AndroidManifest.xml file, as intent-filter. Many past studies
(Chakradeo et al., 2013; Feng et al., 2014; Luoshi et al., 2013)
referred to this type of Intent. The actual communication
between two applications is done through the Binder, which
handles all inter-process communications. The Binder pro-

1 www.gdata-software.com.
2 Android Deep Intent Analysis.

Table 1 – Intent section of clean and infected versions of
Zurich Cantonal Bank application.

Clean version Infected version

android.intent.
action.MAIN

android.intent.action.MAIN
android.intent.action.BOOT_COMPLETED
android.provider.Telephony.SMS_RECEIVED

122 c om pu t e r s & s e cu r i t y 6 5 (2 0 1 7) 1 2 1 – 1 3 4

http://www.gdata-software.com

vides the features for binding functions and data between one
execution environment and another, as each Android appli-
cation runs in its own Dalvik3 environment. The Intent
mechanism is considered higher than Binder, hence, it is built
on top of Binder.

Fig. 1 shows the architecture of inter-application commu-
nication.The Binder driver manages part of the address space
of each application and makes it as read-only and all writing
is done by the kernel section of Android. When application A
sends a message to application B, the kernel allocates some
space in the destination applications memory, and copies the
message directly from the sending application. It then queues
a short message to the receiving application telling it the lo-
cation of the received message. The recipient can then access
that message directly because it is in its own memory space.
When application B has finished processing the message, it no-
tifies the Binder driver to mark the memory as free (Hellman,
2013).

There are two types of Intent: explicit and implicit. When
developers know exactly what component to use to perform
a specific action, they use explicit Intent. This component can
be any activity, service, or broadcast receiver. Explicit Intent
is used for intra-application and inter-application communi-
cations, and developers use this type of Intent to navigate from
an activity to another activity inside applications, as well as
to exchange messages between applications. For instance, there
are some applications, which are used for browsing, such as
the default browser on the device or Google Chrome. Devel-
opers use explicit Intent to request Android to open a link
specifically using Google Chrome. On the other hand, devel-

opers use implicit Intent and ask Android to open a link, but
they do not specify the exact target application. In response,
Android offers a list of all applications capable of opening a
link to the user. Such a list is populated based on the intent-
filter section of AndroidManifest.xml files. In our study, our aim
is to extract both implicit and explicit Intents and conduct a
comprehensive evaluation of their effectiveness in malware
detection.

Intents have three components – action, category, and data.
The action component describes what kind of action is to be
executed by the Intent such as MAIN, CALL, BATTERY LOW,
SCREEN ON, and EDIT. Intents specify the category they belong
to, such as LAUNCHER, BROWSABLE and GADGET. The data
components provide the necessary data to the action compo-
nent. For instance, CALL action requires phone number, and
EDIT action needs document or HTTP URL to complete the
action. Table 2 shows a sample code of explicit and implicit
Intents.

Table 2 shows that implicit Intent uses Intent.ACTION_VIEW
to open the specified URL. However, explicit Intent states the
exact component name – in this case com.android.chrome –
to open the URL.

3. Data collection and analysis

For our experiment, we used real-world applications that
include both clean and infected applications.We gathered clean
applications from Google Play4 and scanned them with
VirusTotal5 to ensure the cleanness of the applications.The ap-
plications collected include both free and paid types since
ProfileDroid (Wei et al., 2012) mentioned that paid applica-
tions behave differently from free ones, and it is important to
include all such applications. Google Play applications are cat-
egorized into 27 main application categories, and games
category has 17 sub-categories. We gathered samples from 24
main application categories, and 17 games sub-categories to
cover a wide variety of applications, as shown in Table 3.

The clean dataset contains 1846 applications. Addition-
ally, we used DREBIN (Arp et al., 2014) as infected dataset. It
is a collection of 5560 applications from 179 different malware
families. We used our Python code to extract permission and
Intent from applications in our dataset. The top 10 permis-
sions of both clean and infected applications are shown in
Table 4. Google categorizes Android permissions into four groups
– normal, dangerous, signature, and signatureOrSystem (Google,
2014).

3 Each Android application runs in its own Dalvik virtual machine,
which is separate from other applications. An Android device can
run multiple Dalvik virtual machines for each application effi-
ciently. Applications communicate through Android Intent.
Additionally, they can share data using content providers.

4 http://play.google.com.
5 www.virustotal.com.

Table 2 – Sample code snippet of explicit and implicit Intents.

Explicit Intent Implicit Intent

String url = ”www.yahoo.com”;
Intent explicit = new Intent(Intent.ACTION_VIEW);
explicit.setData(Uri.parse(url));
explicit.setPackage(”com.android.chrome”);
startActivity(explicit)

String url = ”www.yahoo.com”;
Intent implicit = new Intent(Intent.ACTION_VIEW);
implicit.setData(Uri.parse(url));
startActivity(implicit);

Fig. 1 – Inter-application communication using Android
Intent and Binder.

123c om pu t e r s & s e cu r i t y 6 5 (2 0 1 7) 1 2 1 – 1 3 4

http://play.google.com
http://www.virustotal.com
http://www.yahoo.com
http://www.yahoo.com

Table 4 also shows that five permissions are common – as
highlighted – between clean and infected applications, such
as INTERNET, WRITE_EXTERNAL_STORAGE, WAKE_LOCK,
ACCESS_COARSE_LOCATION, and READ_PHONE_STATE.
However, these applications have five different permissions
among the top 10 permissions. Infected applications
request SEND_SMS, RECEIVE_SMS and READ SMS permis-
sions, which are categorized as dangerous. In fact, WRITE_SMS,
which is also dangerous, should be in the list of top frequent
permissions. It is ranked 11th in our dataset, and it is
requested by 22% of infected applications. Therefore, it is
evident that infected applications request four SMS-related
permissions to have full access to SMS functionality of the
devices. In our experiment, 30% of infected applications
requested the ACCESS_FINE_LOCATION permission to
access precise location, and 33% of them requested the

ACCESS_COARSE_LOCATION permission, which is a
common permission, to access proximate location. In
general, the viciousness of infected applications can
be gauged through permissions. We also extracted Intent of
applications, as shown in Table 5, which shows top 10
Intents used in clean and infected applications. It is
worth noting that the VIEW Intent was removed from
the top 10 Intents, since it is used in all clean and infected
applications.

Malicious applications wait for BOOT_COMPLETED to start
their malicious activity. CALL and DIAL are used for making
phone calls. CALL requires CALL_PHONE permission, whereas
DIAL does not require such permission. As it is presented in
Table 5, DIAL is used more than CALL, which allows the ma-
licious application to make a premium phone call without user’s
knowledge.

Table 3 – Categories of gathered applications.

Books and references Medical Tools Games – adventure
Business Weather Games – action Games – strategy
Comics Travel Games – card Games – simulation
Communication Photography Games – casino Games – family
Education Productivity Games – casual Games – racing
Entertainment Shopping Games – educational Games – sports
Finance Social Games – music Games – arcade
Health and fitness Sports Games – puzzle
Music and audio Media and video Games – role playing
News and magazines Transportation Games – word
Personalization Live wallpaper Games – board

Table 4 – Top 10 Permissions in clean and infected applications.

Clean applications Infected applications

Permissions Frequency Permissions Frequency

INTERNET 98% INTERNET 98%
ACCESS_NETWORK_STATE 89% READ_PHONE_STATE 89%
WRITE_EXTERNAL_STORAGE 83% WRITE_EXTERNAL_STORAGE 67%
WAKE_LOCK 53% SEND_SMS 54%
READ_PHONE_STATE 52% RECEIVE_SMS 38%
ACCESS_WIFI_STATE 48% WAKE_LOCK 38%
GET_ACCOUNTS 42% READ_SMS 37%
VIBRATE 41% ACCESS_COARSE_LOCATION 32%
BILLING 39% ACCESS_FINE_LOCATION 30%
ACCESS_COARSE_LOCATION 24% READ_CONTACTS 23%

Table 5 – Top 10 Intents in clean and infected applications.

Clean applications Infected applications

Intents Frequency Intents Frequency

SEND_MULTIPLE 45% BOOT_COMPLETED 56%
SCREEN_OFF 23% SENDTO 45%
USER_PRESENT 18% DIAL 42%
SEARCH 17% SCREEN_OFF 37%
PICK 10% TEXT 28%
DIAL 9.5% SEND 27%
GET_CONTENT 9% USER_PRESENT 22%
EDIT 8.7% PACKAGE_ADDED 21%
MEDIA_MOUNTED 8% SCREEN_ON 18%
BATTERY_CHANGED 7% CALL 10%

124 c om pu t e r s & s e cu r i t y 6 5 (2 0 1 7) 1 2 1 – 1 3 4

Fig. 2 shows the percentage of applications that requested
permissions – clean and infected – in two datasets. The graph
shows that infected applications request more permissions as
there are spikes at multiple points in the figure. Further-
more, only 2% of clean applications requested between 35 and
55 permissions, compared to 7% of infected applications. This
is indicative of the vicious intentions of infected applications.

Similarly, Fig. 3 shows the percentage of applications that
requested Intents – implicit and explicit – in two datasets.When
comparing Fig. 2 and Fig. 3, the difference between their X-axis
is obvious. While permissions have maximum number of 55,
number of Intents ends at 250. The wide difference is due to
the fact that developers use Intents much more frequently than
permissions in the code to perform actions.

Intent and permission are potentially useful features for
Android malware detection. However, according to Moonsamy
et al. (2013), there are requested permissions as well as re-
quired permissions. It is possible that actual permissions used

by applications are different from the requested permissions
that are sent to the user for approval. On the other hand, Intent
reflects the actual intentions of applications resulting di-
rectly from activities.This indicates that Intent is more effective
for malware detection.

4. Mobile malware detection system overview

Fig. 4 shows the architecture for our proposed system,
AndroDialysis. The top level of the architecture – Android ap-
plication framework – refers to applications installed on the
device. The detector module performs the main task of detec-
tion. It consists of four sub-modules – decompiler, extractor,
intelligent learner, and decision maker. The system sends the
results to users through the graphical user interface. The fol-
lowing sections describe four sub-modules in more detail.

Fig. 2 – Percent of applications that request specific number of permissions.

Fig. 3 – Percent of applications that request specific number of Intents.

125c om pu t e r s & s e cu r i t y 6 5 (2 0 1 7) 1 2 1 – 1 3 4

4.1. Decompiler

The decompiler sub-module is responsible for dissecting the
apk files and decoding its components. Every apk file has
various components. AndroidManifest.xml is a scrambled file
and needs to be decoded in order to make it readable. Simi-
larly, the dex file is a Java source code compiled in Dalvik format
and needs to be decompiled. After decompilation, the pro-
duced file is not a pure Java code, but it is easy to read.We used
Apktool for decompiling Android files, since it utilizes the latest
Android SDK, which is better in optimizing files (Winsniewski,
2012). Decompiling files result in readable AndroidManifest.xml
file and generate Smali version of Java code.

4.2. Extractor

The extractor sub-module extracts explicit Intent, implicit
Intent, intent-filter, and permission from Java code and
AndroidManifest.xml file for processing in subsequent sub-
modules. The BeautifulSoup package of the Python language
is used to extract intent-filter and permission sections from
the AndroidManifest.xml file (Richardson, 2007). In order to
extract Intents from Java code, we used Androguard to reverse
dex files and get Intents (implicit and explicit) from the code.
The extracted data are stored in a features database for use
in the next process. Furthermore, a copy of data is sent to the
decision maker sub-module for determining maliciousness of
the data, which will be discussed in Section 4.4.

4.3. Intelligent learner

This sub-module takes data from the features database and
uses Bayesian Network algorithm to learn pattern of the data.
It then sends output model to the decision maker sub-module.
The Bayesian Network algorithm (Friedman et al., 1997) was
chosen to evaluate our system because it has been success-
fully used in real-world problems, for example Cohen et al.
(2003) used Bayesian Network in human facial expression rec-
ognition and achieved a good performance. It is a dual-
process algorithm, it first learns network structure, and then
it learns probability tables. Bayesian Network uses local score
metrics to learn the network structure of data. It is consid-

ered an optimization problem in which the quality of the
network is optimized. To calculate the local score, Bayesian
Network employs search algorithms. Once the network struc-
ture of data has been learned, Bayesian Network utilizes
estimators to learn the probability tables (Bielza and Larrañaga,
2014). Two widely used estimators are simple estimator, and
multinomial estimator. The aforementioned two steps are
defined as follows.

Suppose that V x x kk= { } ≥1 1, .., ,…… is a set of variables.
Bayesian Network B over V is a network structure BS that is a
directed acyclic graph known as DAG over the set of vari-
ablesV. It is also a set of probability tables B p v pa v v VP = ()() ∈{ }
where pa v() is the set of parents of v in BS. Finally, a
Bayesian Network represents a probability distribution
P V p v pa vv V() = ∏ ()()∈ .

Compared to other algorithms, the Bayesian Network has
the following advantages:

• It is a fast algorithm with low computational overhead once
trained.

• It has the ability to model both expert and learning systems
with relative ease. It integrates probabilities into the system.
It is also considered as a performance-tuning tool, but
without incurring computational overhead.

• Many outstanding real-world applications have used this
algorithm and have performed comparably well against other
state-of-the-art algorithms (Bielza and Larrañaga, 2014).

As mentioned above, Bayesian Networks are collections of
directed acyclic graphs (DAGs), where the nodes are random
variables, and where the arcs specify the independence as-
sumptions between these variables. It is difficult to search the
Bayesian Network that best reflects the dependence relation-
ship in a database of cases because of the large number of
possible DAG structures, given even a small number of nodes
to connect. As a result, researchers have developed various
search algorithms to overcome this problem. In this paper, we
use four search algorithms for our experiments – K2,
Geneticsearch, HillClimber, and LAGDHillClimber algorithms.

K2 algorithm heuristically searches for the most probable
belief network structure in a given database of cases, which
includes different combinations of values for attributes (Ruiz,
2005). Geneticsearch algorithm uses the genetic algorithm to
find the optimum result in a Bayesian Network. The algo-
rithm is based on the mechanics of natural selection and
natural genetics. Although it is capable of solving complex prob-
lems, it is a time-consuming algorithm for some data (see
Table 9) (Yan and Cercone, 2010). It combines survival of the
fittest among string structures with a structured, yet random-
ized, information exchange to form a search algorithm that
under certain conditions evolves into the optimum with a prob-
ability that is arbitrarily close to one (Larrañaga et al., 1996).

The HillClimber search algorithm starts learning by initial-
izing the structure of Bayesian Network. Unlike previous
algorithms that potentially get stuck in the search process, the
Hill Climber solved that problem (Chickering et al., 1995). Each
possible arc from any node is then evaluated using leave-one-
out cross validation to estimate the accuracy of the network
with that arc added. If no arc shows any improvement in ac-
curacy, the current structure is determined. An arc that has the

Fig. 4 – Overview of AndroDialysis, a mobile malware
detection system.

126 c om pu t e r s & s e cu r i t y 6 5 (2 0 1 7) 1 2 1 – 1 3 4

most improvement is retained, but the node the arc points to
is removed.This process is repeated until there is just one node
remaining, or no arc can further be added to improve the clas-
sification accuracy (Jo et al., 2011).The LAGDHillClimber search
algorithm uses a Look Ahead Hill Climbing algorithm. Unlike
Hill Climber, it does not calculate a best arc (by adding, delet-
ing or reversing an arc), but it considers a sequence of best arcs
instead of considering the best arc at each step. Since it is very
time-consuming to find the best sequence among all the pos-
sible arcs, it must first find a set of good arcs and then find
the best sequence of arcs among them (Salehi and Gras, 2009).
Such improvement over Hill Climber algorithm results in better
performance (see Table 6).

We evaluate the performance of Bayesian Network using
k-fold cross validation. In this method, the dataset is divided
into k subsets, and the holdout method is repeated k times.
Each time, one of the k subsets serves as the test set and the
other k − 1 subsets are compiled to form a training set. Then,
the average error across all k trials is computed. The advan-
tage of this method is that it matters less how the data are
divided. Every data point gets to be in a test set exactly once,
and in a training set k − 1 times. The variance of the resulting
estimate is reduced as k increases (Feizollah et al., 2013). Spe-
cifically, a 10-fold option is used, which is described as applying
the classifier to data 10 times and every time the dataset is
divided into 90:10 groups – 90% of data used for training, and
10% used for testing, which is widely used among research-
ers (Damopoulos et al., 2012). At the end, this sub-module
produces a model – based on available data in the features da-
tabase – that is used for detection purpose. It is worth noting
that the intelligent learner is constantly learning from the data
added to the features database.

4.4. Decision maker

The decision maker sub-module is responsible for determin-
ing whether the data are clean or malicious. It receives two
sets of data from the extractor and the intelligent learner sub-
modules. A set of data from the intelligent learner sub-
module contains a produced model based on the collection of
data in the features database. The model is then used to vet
the data received from extractor sub-module. Another set of
data that is received from the extractor sub-module contains
extracted data of one application. The decision maker sub-
module utilizes the model to determine the maliciousness of
the application. The final decision is passed to the user inter-
face module, which prepares appropriate message for the user
and presents it through the graphical user interface, as shown

in Fig. 5. Such design of the decision maker sub-module ensures
faster detection and higher performance, as it was adopted by
Shabtai et al. (2014).

5. Results and discussion

In this section, we discuss our results and findings. It is im-
portant to restate that the purpose of this paper is to study
the effectiveness of Android Intent (implicit and explicit) in
malware detection, and not malware detection per se. We
present the results from experiments conducted on permis-
sions, Intents, and both in Android malware detection.
Additionally, to get a better assessment of the current devel-
opment of Android Intent, we analyzed our datasets.

5.1. Intent analysis and attacks

We analyze Intents in our datasets from the security stand-
point to assess the current status or importance of Intents. As

Table 6 – Results of Android Permission and Android Intent experiments.

Android permission Android intent

Simple estimator Multinomial Simple estimator Multinomial

TPR FPR TPR FPR TPR FPR TPR FPR

K2 82% 18% 24% 76% 89% 11% 19% 81%
Geneticsearch 83% 17% Null Null 91% 9% Null Null
HillClimber 82% 18% 24% 76% 89% 11% 19% 81%
LAGDHillClimber 83% 17% Null Null 91% 9% Null Null

Fig. 5 – Screenshot of the results presented to the user.

127c om pu t e r s & s e cu r i t y 6 5 (2 0 1 7) 1 2 1 – 1 3 4

mentioned in Section 2, implicit Intent does not specify its des-
tination component. However, it is offered to entities that can
receive specific type of Intent. Therefore, when an applica-
tion sends an implicit Intent, there is no guarantee that the
Intent will be received by the intended recipient. A malicious
application can intercept an implicit Intent simply by declar-
ing an intent-filter – in AndroidManifest.xml file – with all the
actions, data, and categories listed in the Intent. This situa-
tion – unauthorized Intent receipt – causes the malicious
application to gain access to all the data in any matching Intent,
resulting in activity hijacking (Chin et al., 2011).

In our dataset, infected applications declare intent-filter 7.5
times more than clean applications. On an average, each clean
application declares 1.18 intent-filters, whereas each in-
fected application declares 1.61 intent-filters.Thus, it is evident
that infected applications tend to intercept Intents using intent-
filters until they succeed in hijacking the activities.

In view of this threat, it is suggested that developers use
explicit Intent so that the recipient is clearly specified in order
to hinder malicious applications from hijacking the activi-
ties. We have analyzed our dataset with regard to this threat,
and found that 28.78% of Intents used were implicit and 71.22%
were explicit. In general, developers are doing what is appro-
priate; nevertheless, it is essential to stay vigilant, as attackers
are known to change their attack plan frequently.

5.2. Experimental results

This experiment was performed on a Sony Xperia Z3 Compact
device, model D5803. It is running Android Marshmallow, version
6.0.1 with latest updates.The device has 2 GB of RAM and 16 GB
of storage.

We aim to answer the following research questions. A. Is
Intent a plausible feature for Android malware detection? B.
What are best configurations in Bayesian Network that produce
the best results? C. How effective is Android Intent compared
to Android permission?

5.2.1. Effectiveness
We employed Bayesian Network with different configura-
tions for our experiment.As discussed earlier, Bayesian Network

uses a search algorithm for calculating the local score metrics,
and an estimator algorithm for learning the probability table.
In order to achieve the best results, we experimented with dif-
ferent configurations, and the results are presented in Table 6.
The table shows results of permission and Intent with simple
estimator and multinomial estimator algorithms; and K2,
Geneticsearch, HillClimber, and LAGDHillClimber as search
algorithms.

The results of experiments reflect the performance of our
method. Detection rate, also known as a true positive rate (TPR),
is the probability of correctly detecting an instance as a
malware. On the other hand, false positive rate (FPR) is another
measurement that is defined as wrongly detecting normal traffic
as being infected. The higher the TPR, the better is the result.
Conversely, the lower the FPR, the better is the result. The best
results are obtained by combining a simple estimator and
Geneticsearch; and a simple estimator and LAGDHillClimber
– both combinations achieving 83% true positive rate. We con-
ducted our experiment in 30 iterations. As the number of
iterations goes up, the system learns the pattern of the data
more accurately. Fig. 6 shows the true positive rate and the false
positive rate for each iteration of the experiment.

Fig. 6 shows that true positive rate increases from just above
80% to 90% as number of iterations goes up. However, false posi-
tive rate does not follow the same rate of increase as the true
positive rate. It starts from 6% and increases to 9%, which is
considered as a good result, considering that the true posi-
tive rate increases by 10%.

Additionally, we conducted experiments for each malware
family to assess effectiveness of Android Intent for an indi-
vidual family. The results are tabulated in Table 7. The
experiments are conducted on families with highest number
of malware samples in our dataset. Since our previous results
with multinomial algorithm were not encouraging, we use
simple estimator for this experiment.The lowest detection rate
belongs to DroidKungfu family.This malware gains root access
in the device and installs an application called legacy that pre-
tends to be a legitimate Google Search application bearing the
same icon. The DroidKungfu then performs its malicious ac-
tivities through the legacy application (Jiang, 2011). We believe
that such strategy makes it trickier to detect, since malicious

Fig. 6 – True positive rate versus false positive rate for 30 iterations.

128 c om pu t e r s & s e cu r i t y 6 5 (2 0 1 7) 1 2 1 – 1 3 4

activities are performed by an agent application other than the
main one. Other malware families show relatively high to high
detection results.

It is necessary to verify that Android Intent is in fact an ef-
fective feature, and our results are not just a fluke. Therefore,
we conduct experiments using both features – Android per-
missions and Android Intents. This is essential to show that
the features are not overlapping, and Android Intent can really
increase the detection rate. Table 8 represents results of ex-
periments on combination of Android Permissions and Android
Intents. Not only are the results show that Android Intent –
explicit and implicit – is an effective feature, it also boosts other
features – i.e. Android permissions – in malware detection.

It is worth noting that the choice of Android permissions
in this study is based on the fact that this feature has been
widely explored and its importance and effectiveness has been
established. Feizollah et al. (2015) conducted an extensive study

on Android features. Among static features, Android permis-
sion is the most used features. Various approaches have been
taken to analyze Android permissions. Authors of Au et al.
(2012), Grace et al. (2012), Pandita et al. (2013), and Peng et al.
(2012) used permissions to evaluate applications and rank them
based on possible risk. Numerous studies simply extracted per-
missions and utilized machine learning to detect malicious
application (Aung and Zaw, 2013; Samra et al., 2013; Sanz et al.,
2013; Yerima et al., 2014). Researchers in Huang et al. (2013)
and Moonsamy et al. (2013) argue that merely analyzing re-
quested permissions is not sufficient for detecting malicious
applications. They analyzed used permissions in addition to
requested permissions in order to detect malware. AppGuard
(Backes et al., 2013) has gone one step further and has ex-
tended Android’s permission system to alleviate current
vulnerabilities. They claim that their system is a practical ex-
tension for Android permission system as it is possible to use
it on devices without any modification or root access.As a result,
Android permission is a strong candidate for this paper in order
to compare it with Android Intents.

5.2.2. Efficiency
Besides evaluating the effectiveness of our system, we calcu-
lated the time taken by each combination to produce the results,
as shown in Table 9.

Based on Table 9, results in Android permission are pro-
duced faster when the simple estimator and HillClimber are
combined.With regard to Android Intent, combining the simple

Table 7 – The results of Android Intent experiments for each malware family.

K2 Geneticsearch HillClimber LAGD HillClimber Number of malwares

FakeInstaller TPR 85.78% 84.02% 84.91% 84.02% 925
FPR 14.21% 15.97% 15.08% 15.97%

DroidKungFu TPR 76.41% 76.14% 76.41% 76.14% 667
FPR 23.58% 23.85% 23.58% 23.85%

Plankton TPR 79.59% 79.59% 79.34% 79.54% 625
FPR 20.40% 20.40% 20.65% 20.45%

Opfake TPR 93.06% 93.06% 92.76% 93.06% 613
FPR 6.93% 6.93% 7.23% 6.93%

GinMaster TPR 77.35% 77.35% 77.15% 77.58% 339
FPR 22.64% 22.64% 22.84% 22.41%

BaseBridge TPR 81.96% 81% 83% 80.17% 330
FPR 18.03% 19% 17% 19.82%

Iconosys TPR 76.74% 76.87% 76.74% 76.87% 152
FPR 23.25% 23.12% 23.25% 23.12%

FakeDoc TPR 81.89% 81.65% 81.89% 81.65% 132
FPR 18.10% 18.34% 18.10% 18.34%

Geinimi TPR 87.39% 87.39% 79.91% 80.55% 92
FPR 12.60% 12.60% 20.08% 19.44%

Total 3875

Table 8 – Results of experiments using both Permissions
and Intents.

Simple estimator

TPR FPR

K2 95.5% 4.4%
Geneticsearch 95.4% 4.5%
HillClimber 95.5% 4.4%
LAGDHillClimber 95.4% 4.5%

Table 9 – Time taken to produce results (seconds).

Android permission Android intent

Simple estimator Multinomial Simple estimator Multinomial

K2 0.06 0.89 0.01 0.07
Geneticsearch 2.86 Null 0.91 Null
HillClimber 0.02 0.87 0.01 0.07
LAGDHillClimber 0.05 Null 0.05 Null

129c om pu t e r s & s e cu r i t y 6 5 (2 0 1 7) 1 2 1 – 1 3 4

estimator with LAGDHillClimber achieved true positive rate of
91% in less time than Geneticsearch.

In addition, we show the Receiver Operating Characteris-
tic (ROC) curve for the best results of permission and Intent.
The ROC curve is normally used to measure performance in
detecting intrusions. It indicates how the detection rate changes,
as the internal threshold is varied to generate more or fewer
false alarms. It plots intrusion detection accuracy against false
positive probability. ROC curves signify the tradeoff between
false positive and true positive rates, which means that any
increase in the true positive rate is accompanied by a de-
crease in the false positive rate. As the ROC curve line is closer
to the left-hand border and the top border, it indicates that it
produces the best results among other curves.The ROC curves
for Android permission and Android Intent are shown in Fig. 7.

The ROC curves are difficult to compare, as they seem to
be almost similar under some situations, therefore, the area
under the curve (AUC) is used to measure the accuracy of de-
tection. An area of 1 means a perfect result, while an area of
0.5 is a worthless result. The AUC point system is as follows:
0.90–1.00 = excellent (A); 0.80–0.90 = good (B); 0.70–0.80 = fair (C);
0.60–0.70 = poor (D); and 0.50–0.60 = fail (F).The AUC of Android
permissions is 0.7897, and Android Intent is 0.8929.This shows
that Android Intent performed better.

The nature of AndroDialysis raises concerns about battery
consumption of the device. Running our malware detector on
the device does not consume too much battery.To address this
issue, we measured power consumed by our application. Ad-
ditionally, the measurement is performed for three popular
applications. These applications are selected from three cat-
egories of popular activities: games, online social networking,
and multimedia (Suarez-Tangil et al., 2015).

The experiments have been conducted in a Google Nexus
One smartphone. Power consumption has been measured by
applying a battery tests involving mainly computation capa-
bilities.The device was previously instrumented with AppScope
(Yoon et al., 2012), an energy metering framework based on
monitoring kernel activity for Android. AppScope collects usage
information from the monitored device and estimates the con-
sumption of a running application using an energy model given
by DevScope (Jung et al., 2012). AppScope provides the amount
of energy consumed by an app in the form of several time series,
each one associated with a component of the device – CPU,
Wi-Fi, cellular, touchscreen, etc. We restrict our measures to
CPU for computations, as our tests do not have communica-
tions nor a graphical user interface at computation stage. Note
that we do not require user interaction to analyze applica-
tions and, therefore, do not report measurements in any other
component.

Table 10 shows outcomes of the measurement during 10
minutes of usage.The AndroDialysis consumes 23.25 joules for
testing one application on the device. Thus, we assume a
number N = 20 for the average number of applications a user
has on the device and multiply N by 23.25 joules. We have to
mention that this is subject to the size of applications, and that
although there might be larger apps, this measurement still
gives an estimation of the power consumption.

It is necessary to discuss re-running time.The AndroDialysis
should only be executed every time a user installs a new ap-
plication. Thus, if a user installs 20 applications in a period of
one month, our tool would consume 20 × 23.25 = 465 joules after
a month, which is less than running YouTube application during
10 minutes. Fig. 8 shows power consumption of AndroDialysis
in Watt unit. It is worth mentioning that Joules unit is calcu-

Fig. 7 – ROC curve for Android Permission and Android Intent.

Table 10 – Power consumption (in Joules) of three popular applications and AndroDialysis during 10 minutes usage.

Application CPU Communications Display Total

YouTube 30.11 12.59 508.90 551.59
MX Moto 129.24 5.75 509.54 644.52
Facebook 137.76 27.42 471.42 637.27
AndroDialysis 23.25 0 0 465 (23.25 × 20)

130 c om pu t e r s & s e cu r i t y 6 5 (2 0 1 7) 1 2 1 – 1 3 4

lated using E P tj w s() () ()= × equation, where unit of power is Watt
and unit of time is seconds.

6. Related works

Many studies have been conducted to address the problem of
the rapid growth of mobile malware. We discuss recent re-
searches related to this paper.

Barrera et al. (2010) performed permission-based analysis
on 1100 Android applications using self-organizing maps al-
gorithm. From the results, they observed that certain
permissions are used in applications with similar pattern.They
also concluded that there are pairs of permissions requested
by some types of applications. They mentioned, however, that
their analysis does not include any malware, and they had
merely examined available applications in the market. Zhou
et al. (2012) conducted permission-based analysis, and the
results show a high false positive rate of 40%. As a result,
manual analysis was conducted to reduce the false positive
rate. Grace et al. (2012) developed RiskRanker that ranks ap-
plications based on certain defined rules. If an application
satisfies a rule, it is ranked as high, medium, or low, as the case
may be. Similarly, Chakradeo et al. (2013) introduced MAST that
uses multiple correspondence analysis (MCA) to analyze the
applications attributes.They used a questionnaire and poll se-
lection to identify malicious applications. RiskRanker and MAST
employed rules and polls to detect malware.When an unknown
malware appears, they need to add a new rule and poll to detect
it. The rules might not be applicable to all known malware, as
there are too many malwares in existence.

Some researchers integrated Intent as examining features
in their systems. Intent is one of eight feature sets that DREBIN
(Arp et al., 2014) extracts for examination. It used machine-
learning methods on feature sets to detect malicious
applications.A3 (Luoshi et al., 2013) is another system that men-
tioned Intent as one of three extracted features. It utilized
heuristic algorithm for detection. DroidMat (Wu et al., 2012)

includes Intent in the feature sets. It extracts permission, API
calls, Intent, as well as performs deployment of components.
It then employs various machine-learning methods to evalu-
ate applications and identify malicious ones. MAST (Chakradeo
et al., 2013) includes Intent extracted from AndroidManifest.xml
file as its examining feature. As mentioned above, implicit and
explicit Intents are as important as Intent in XML file.

Chin et al. (2011) developed a system that analyzes inter-
application communications (includes explicit and implicit
Intents) in developers’ applications for analyzing and detect-
ing malware. They also guide developers on using Intents
correctly to avoid attacks – application hijacking. Apposcopy
(Feng et al., 2014) is a malware detection tool that integrates
static taint analysis and Intent analysis (explicit and im-
plicit) to generate a signature for applications. However, this
system adopts a signature-based approach that is unable to
detect unknown malware. Octeau et al. (2015) tried to solve the
problem of Multi-Valued Composite (MVC) constant propaga-
tion. They used COAL declarative language to build a solver to
find all the values of complex objects that may have multiple
fields, taking into consideration the correlations between the
fields. This method can be applied to a wide variety of static
program analyses where the range of values of objects needs
to be determined, including Android Intent. However, attack-
ers can simply modify their code and use various methods of
obfuscation to mislead such systems. IccTA (Li et al., 2015) ana-
lyzes inter-component communications in Android applications.
They include explicit and implicit Intents, since they are es-
sential part of Android’s internal communication mechanisms.
They focus on detecting applications with privacy leaks using
data flow analysis. Although this approach outperforms similar
systems, it is unable to analyze the multi-threading part of ap-
plications. It also consumes too much memory for analyzing
some applications. Barros et al. (2015) analyzed data flow of
Intent in Android by using pattern of Android Intent in Java
code as well as the syntax and semantics of Intent types. Since
their work is dependent on data flow analysis, it is not immune
to obfuscation methods. This approach pays little attention to

Fig. 8 – Power consumption of AndroDialysis in our experiment.

131c om pu t e r s & s e cu r i t y 6 5 (2 0 1 7) 1 2 1 – 1 3 4

analyzing explicit and implicit Intents; nevertheless, we believe
that it is very effective for malware detection. In this paper,
we use intelligent learner for detection. In this context, we ex-
tracted and used permission, explicit Intent and implicit Intent
from a large dataset to produce accurate results.

7. Conclusions

In this paper, we explored Android Intent – explicit and im-
plicit – as a feature for malware detection, and experimented
with Android permission for comparison.The results show that
the use of Android Intent in our approach not only achieves
higher detection rate, but it is also faster in completing the de-
tection process. We also verified our results by experimenting
on combination on Android Intent and Android permission,
to show that these features do not overlap. Thus, to answer
the first question, Android Intent is a plausible feature in
malware detection. In addition, combining the simple estima-
tor with LAGDHillClimber is the best configuration for Bayesian
Network algorithm to achieve higher detection rate and faster
detection. In conclusion, we declare that Android Intent is
indeed more effective than Android permission in malware de-
tection. As a result of this work, it behooves researchers to
emphasize on Android Intents (explicit and implicit) for mobile
malware detection. It is beneficial to develop new detection
methods as attackers change their strategy frequently to avoid
the current detection methods.

We are determined to develop comprehensive methods
based on this work in conjunction with dynamic analysis to
tackle mobile malware. In addition, the graphical user inter-
face will be improved to show list of applications that are
considered malware, and why our application considers it ma-
licious. This way, the AndroDialysis learns about applications,
which makes it smarter. Additionally, the user will be pre-
sented with options on how to deal with malicious applications.

Acknowledgments

This work was supported by the Ministry of Science, Technol-
ogy, and Innovation, under Grant eScienceFund 01-01-03-SF0914.

R E F E R E N C E S

Aafer Y, Du W, Yin H. DroidAPIMiner: mining API-level features
for robust malware detection in Android, Proceedings of the
9th international conference on security and privacy in
communication networks, Vol. 127, Sydney, Australia, pp. 86–
103; 2013.

Aftab MUB, Karim W. Learning android intents. Packt Publishing;
2014.

Aresu M, Ariu D, Ahmadi M, Maiorca D, Giacinto G. Clustering
Android malware families by http traffic, Proceedings of the
10th international conference on malicious and unwanted
software, Puerto Rico; 2015.

Arp D, Spreitzenbarth M, Hubner M, Gascon H, Rieck K. DREBIN:
effective and explainable detection of Android malware in

your pocket, Proceedings of the 2014 network and distributed
system security (NDSS) symposium, San Diego, USA; 2014.

Au KWY, Zhou YF, Huang Z, Lie D. Pscout: analyzing the android
permission specification, Proceedings of the 2012 ACM
conference on computer and communications security,
Raleigh, NC, USA, pp. 217–228; 2012.

Aung Z, Zaw W. Permission-based android malware detection.
Int J Sci Technol Res 2013;2(3):228–34.

Backes M, Gerling S, Hammer C, Maffei M, Styp-Rekowsky P.
AppGuard: enforcing user requirements on android apps,
Proceedings of the 19th international conference on tools and
algorithms for the construction and analysis of systems,
Rome, Italy, pp. 543–548; 2013.

Barrera D, Kayacik HG, Oorschot P, Somayaji A. A methodology
for empirical analysis of permission-based security models
and its application to android, Proceedings of the 17th ACM
conference on computer and communications security,
Chicago, Illinois, USA, pp. 73–84; 2010.

Barros P, Just R, Millstein S, Vines P, Dietl W, d’Amorim M, et al.
Static analysis of implicit control flow: Resolving Java
reflection and Android intents (extended version), University
of Washington Department of Computer Science and
Engineering, Seattle, WA, USA, Tech. Rep. UW-CSE-15-08-01;
2015.

Bielza C, Larrañaga P. Discrete Bayesian network classifiers: a
survey. ACM Comput Surv (CSUR) 2014;47(1):5.

Chakradeo S, Reaves B, Traynor P, Enck W. MAST: triage for
market-scale mobile malware analysis, Proceedings of the
sixth ACM conference on security and privacy in wireless and
mobile networks, Budapest, Hungary, pp. 13–24; 2013.

Chickering D, Geiger D, Heckerman D. Learning Bayesian
networks: Search methods and experimental results,
Proceedings of the fifth conference on artificial intelligence
and statistics, Florida, USA, pp. 112–128; 1995.

Chin E, Felt AP, Greenwood K, Wagner D. Analyzing inter-
application communication in Android, Proceedings of
the 9th international conference on mobile systems,
applications, and services, Bethesda, Maryland, USA,
pp. 239–252; 2011.

Cohen I, Sebe N, Gozman FG, Cirelo MC, Huang TS. Learning
Bayesian network classifiers for facial expression recognition
both labeled and unlabeled data, Proceedings of the 2003 IEEE
computer society conference on computer vision and pattern
recognition, Vol. 1, Wisconsin, USA, pp. I-595-I-601 vol.591;
2003.

Damopoulos D, Menesidou SA, Kambourakis G, Papadaki M,
Clarke N, Gritzalis S. Evaluation of anomaly-based IDS for
mobile devices using machine learning classifiers. Secur
Commun Netw 2012;5(1):3–14.

Desnos A. Android: static analysis using similarity distance,
Proceedings of the 2012 45th Hawaii international conference
on system science (HICSS), Maui, USA, pp. 5394–5403; 2012.

Feizollah A, Anuar NB, Salleh R, Amalina F, Ma’arof R,
Shamshirband S. A study of machine learning classifiers for
anomaly-based mobile botnet detection. Malaysian J Comput
Sci 2013;26(4):251–65.

Feizollah A, Anuar NB, Salleh R, Wahab AWA. A review on feature
selection in mobile malware detection. Digit Invest
2015;13(C):22–37.

Feng Y, Anand S, Dillig I, Aiken A. Apposcopy: semantics-based
detection of Android malware through static analysis,
Proceedings of the 22nd ACM SIGSOFT international
symposium on foundations of software engineering, Hong
Kong, China, pp. 576–587; 2014.

Fratantonio Y, Bianchi A, Robertson W, Kirda E, Kruegel C, Vigna
G. TriggerScope: towards detecting logic bombs in android
applications, Proceedings of the IEEE security & privacy, San
Jose, California, USA; 2016.

132 c om pu t e r s & s e cu r i t y 6 5 (2 0 1 7) 1 2 1 – 1 3 4

http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0010
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0010
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0010
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0010
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0010
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0015
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0015
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0020
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0020
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0020
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0020
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0025
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0025
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0025
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0025
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0030
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0030
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0030
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0030
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0035
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0035
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0040
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0040
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0040
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0040
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0040
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0045
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0045
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0045
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0045
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0045
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0050
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0050
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0050
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0050
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0050
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0050
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0055
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0055
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0060
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0060
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0060
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0060
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0065
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0065
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0065
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0065
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0070
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0070
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0070
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0070
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0070
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0075
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0075
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0075
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0075
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0075
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0075
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0080
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0080
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0080
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0080
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0085
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0085
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0085
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0090
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0090
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0090
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0090
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0095
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0095
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0095
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0100
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0100
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0100
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0100
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0100
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0105
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0105
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0105
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0105

Friedman N, Geiger D, Goldszmidt M. Bayesian network
classifiers. Mach Learn 1997;29(2–3):131–63.

Gartner. PC shipments hit by biggest drop in two years; 2015.
Available from: http://www.techradar.com/us/news/
computing/pc/pc-shipments-hit-by-biggest-drop-in-two
-years. [Accessed 1 April 2016].

Google. Permission; 2014. Available from: http://developer
.android.com/guide/topics/manifest/permission
-element.html. [Accessed 1 April 2016].

Grace M, Zhou Y, Zhang Q, Zou S, Jiang X. RiskRanker: scalable
and accurate zero-day android malware detection,
Proceedings of the 10th international conference on mobile
systems, applications, and services, Low Wood Bay, Lake
District, UK, pp. 281–294; 2012.

Hellman E. Android programming: pushing the limits. John Wiley
& Sons; 2013.

Huang C-Y, Tsai Y-T, Hsu C-H. Performance evaluation on
permission-based detection for Android malware,
Proceedings of the international computer symposium ICS,
Hualien, Taiwan, pp. 111–120; 2013.

Jain K. Warning: 18,000 Android apps contains code that spy
on your text messages; 2015. Available from: http://
thehackernews.com/2015/10/android-apps-steal-sms.html.
[Accessed 1 April 2016].

Jiang X. New sophisticated Android malware DroidKungFu found
in alternative Chinese app markets; 2011. Available from:
https://www.csc.ncsu.edu/faculty/jiang/DroidKungFu.html.
[Accessed 1 November 2016].

Jiang X, Zhou Y. Android malware. New York: Springer; 2013.
Jo NY, Lee KC, Park B-W. Exploring the optimal path to online

game loyalty: Bayesian networks versus theory-based
approaches. In: Ubiquitous computing and multimedia
applications. Springer; 2011. p. 428–37.

Jung W, Kang C, Yoon C, Kim D, Cha H. DevScope: a nonintrusive
and online power analysis tool for smartphone hardware
components, Proceedings of the eighth international
conference on hardware/software codesign and system
synthesis (IEEE/ACM/IFIP), Scottsdale, AZ, USA, pp. 353–362;
2012.

Larrañaga P, Poza M, Yurramendi Y, Murga RH, Kuijpers CM.
Structure learning of Bayesian networks by genetic
algorithms: a performance analysis of control parameters.
IEEE Trans Pattern Anal Mach Intell 1996;18(9):912–26.

Li L, Bartel A, Bissyandé TF, Klein J, Le Traon Y, Arzt S, et al.
IccTA: detecting inter-component privacy leaks in Android
apps, Proceedings of the 37th international conference on
software engineering-volume 1, pp. 280–291; 2015.

Luoshi Z, Yan N, Xiao W, Zhaoguo W, Yibo X. A3: automatic
analysis of Android MALWARE, Proceedings of the 1st
international workshop on cloud computing and information
security, Shanghai, China, pp. 89–93; 2013.

Moonsamy V, Rong J, Liu S. Mining permission patterns for
contrasting clean and malicious android applications. Future
Gen Comput Syst 2013;36:122–32. Available from:
http://dx.doi.org/10.1016/j.future.2013.09.014,
http://www.sciencedirect.com/science/article/pii/
S0167739X13001933. [Online].

Narudin FA, Feizollah A, Anuar NB, Gani A. Evaluation of
machine learning classifiers for mobile malware detection.
Soft Comput 2016;20(1):343–57.

Oberheide J, Miller C. Dissecting the android bouncer,
Proceedings of the SummerCon, New York, USA;
2012.

Octeau D, Luchaup D, Dering M, Jha S, McDaniel P. Composite
constant propagation: Application to android inter-
component communication analysis, Proceedings of the 37th
international conference on software engineering-volume 1,
pp. 77–88; 2015.

Pandita R, Xiao X, Yang W, Enck W, Xie T. WHYPER: towards
automating risk assessment of mobile applications,
Proceedings of the 22nd USENIX security symposium,
Washington, D.C, USA, pp. 527–542; 2013.

Peng H, Gates C, Sarma B, Li N, Qi Y, Potharaju R, et al. Using
probabilistic generative models for ranking risks of Android
apps, Proceedings of the 2012 ACM conference on computer
and communications security, Raleigh, North Carolina, USA,
pp. 241–252; 2012.

Polkovnichenko A, Boxiner A. A new level of sophistication in
mobile malware; 2015. Available from: http://blog.checkpoint
.com/2015/09/21/braintest-a-new-level-of-sophistication-in
-mobile-malware. [Accessed 1 April 2016].

Richardson L. Beautiful soup documentation; 2007. Available
from: https://www.crummy.com/software/BeautifulSoup/bs4/
doc/. [Accessed 1 April 2016].

Ruiz C. Illustration of the K2 algorithm for learning Bayes net
structures, Worcester Polytechnic Institute; 2005. Available
from: http://citeseerx.ist.psu.edu/viewdoc/download?doi
=10.1.1.190.7306. [Accessed 1 April 2016].

Salehi E, Gras R. An empirical comparison of the efficiency of
several local search heuristics algorithms for Bayesian
network structure learning, Proceedings of the learning and
intelligent optimization workshop (LION 3), Vol. 72; 2009.

Samra AAA, Yim K, Ghanem OA. Analysis of clustering technique
in Android malware detection, Proceedings of the 2013
seventh international conference on innovative mobile and
internet services in ubiquitous computing (IMIS), Taichung,
Taiwan, pp. 729 - 733; 2013.

Sanz B, Santos I, Laorden C, Ugarte-Pedrero X, Bringas P, Álvarez
G. PUMA: permission usage to detect malware in Android, in
International joint conference CISIS‘12-ICEUTE‘12-SOCO‘12
special sessions, Springer Berlin Heidelberg, pp 289–298;
2013.

Shabtai A, Tenenboim-Chekina L, Mimran D, Rokach L, Shapira B,
Elovici Y. Mobile malware detection through analysis of
deviations in application network behavior. Comput Secur
2014;43(June 2014):1–18.

Suarez-Tangil G, Tapiador JE, Peris-Lopez P, Blasco J. Dendroid: a
text mining approach to analyzing and classifying code
structures in Android malware families. Exp Syst Appl
2014;41(4 Pt 1):1104–17.

Suarez-Tangil G, Tapiador JE, Peris-Lopez P, Pastrana S. Power-
aware anomaly detection in smartphones: an analysis of on-
platform versus externalized operation. Perv Mobile Comput
2015;18(April 2015):137–51.

Tam K, Khan SJ, Fattori A, Cavallaro L. CopperDroid: automatic
reconstruction of android malware behaviors, Proceedings of
the network and distributed system security symposium
(NDSS), San Diego, USA; 2015.

Wei X, Gomez L, Neamtiu I, Faloutsos M. ProfileDroid: multi-layer
profiling of android applications, Proceedings of the 18th
annual international conference on mobile computing and
networking, Istanbul, Turkey, pp. 137–148; 2012.

Winsniewski R. Android–apktool: A tool for reverse engineering
android apk files; 2012. Available from: http://ibotpeaches
.github.io/Apktool/. [Accessed 1 April 2016].

Wu D-J, Mao C-H, Wei T-E, Lee H-M, Wu K-P. DroidMat: Android
Malware Detection through Manifest and API Calls Tracing,
Proceedings of the seventh asia joint conference on
information security (Asia JCIS), Tokyo, Japan, pp. 62–69; 2012.

Yan LJ, Cercone N. Bayesian network modeling for evolutionary
genetic structures. Comput Math Appl 2010;59(8):2541–51.

Yang C, Xu Z, Gu G, Yegneswaran V, Porras P. Droidminer:
Automated mining and characterization of fine-grained
malicious behaviors in android applications, Proceedings of
the 19th European symposium on research in computer
security, Wroclaw, Poland; 2014.

133c om pu t e r s & s e cu r i t y 6 5 (2 0 1 7) 1 2 1 – 1 3 4

http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0110
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0110
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0115
http://www.techradar.com/us/news/computing/pc/pc-shipments-hit-by-biggest-drop-in-two-years
http://www.techradar.com/us/news/computing/pc/pc-shipments-hit-by-biggest-drop-in-two-years
http://www.techradar.com/us/news/computing/pc/pc-shipments-hit-by-biggest-drop-in-two-years
http://developer.android.com/guide/topics/manifest/permission-element.html
http://developer.android.com/guide/topics/manifest/permission-element.html
http://developer.android.com/guide/topics/manifest/permission-element.html
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0125
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0125
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0125
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0125
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0125
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0130
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0130
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0135
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0135
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0135
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0135
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0140
http://thehackernews.com/2015/10/android-apps-steal-sms.html
http://thehackernews.com/2015/10/android-apps-steal-sms.html
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0145
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0145
https://www.csc.ncsu.edu/faculty/jiang/DroidKungFu.html
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0150
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0155
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0155
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0155
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0155
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0160
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0160
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0160
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0160
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0160
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0160
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0165
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0165
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0165
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0165
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0170
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0170
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0170
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0170
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0175
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0175
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0175
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0175
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0180
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0180
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0180
http://dx.doi.org/10.1016/j.future.2013.09.014
http://www.sciencedirect.com/science/article/pii/S0167739X13001933
http://www.sciencedirect.com/science/article/pii/S0167739X13001933
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0185
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0185
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0185
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0190
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0190
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0190
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0195
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0195
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0195
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0195
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0195
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0200
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0200
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0200
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0200
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0205
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0205
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0205
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0205
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0205
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0210
http://blog.checkpoint.com/2015/09/21/braintest-a-new-level-of-sophistication-in-mobile-malware
http://blog.checkpoint.com/2015/09/21/braintest-a-new-level-of-sophistication-in-mobile-malware
http://blog.checkpoint.com/2015/09/21/braintest-a-new-level-of-sophistication-in-mobile-malware
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0215
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0220
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0220
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.190.7306
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.190.7306
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0225
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0225
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0225
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0225
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0230
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0230
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0230
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0230
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0230
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0235
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0235
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0235
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0235
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0235
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0240
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0240
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0240
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0240
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0245
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0245
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0245
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0245
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0250
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0250
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0250
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0250
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0255
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0255
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0255
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0255
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0260
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0260
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0260
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0260
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0265
http://ibotpeaches.github.io/Apktool/
http://ibotpeaches.github.io/Apktool/
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0270
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0270
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0270
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0270
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0275
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0275
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0280
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0280
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0280
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0280
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0280

Yerima SY, Sezer S, McWilliams G. Analysis of Bayesian
classification-based approaches for Android malware
detection. IET Inf Secur 2014;8(1):25–36.

Yoon C, Kim D, Jung W, Kang C, Cha H. Appscope: Application
energy metering framework for android smartphone using
kernel activity monitoring, Proceedings of the 2012 USENIX
annual technical conference (USENIX ATC 12), Boston, USA,
pp. 387–400; 2012.

Zhang Y, Yang M, Xu B, Yang Z, Gu G, Ning P, et al. Vetting
undesirable behaviors in android apps with permission use
analysis, Proceedings of the 2013 ACM SIGSAC conference on
computer & communications security, Berlin, Germany; 2013.

Zhou Y, Wang Z, Zhou W, Jiang X. Hey, you, get off of my market:
Detecting malicious apps in official and alternative android
markets, Proceedings of the 19th annual network and
distributed system security symposium (NDSS), San Diego,
USA, pp. 5–8; 2012.

Ali Feizollah received his Bachelor of Information System (IS) from
the Ajman University of Science and Technology (AUST), Ajman,
UAE in 2010. He started his Master of Computer Science at the Uni-
versity of Malaya, Kuala Lumpur in 2011. He started his Ph.D. in
the same university in 2014. His research interests are mobile
malware, intrusion detection system.

Nor Badrul Anuar obtained his Ph.D. in Information Security from
Centre for Security, Communications and Network Research
(CSCAN), Plymouth University, UK in 2012 and Master of Com-
puter Science from University of Malaya, Malaysia in 2003. He is
an academic staff at the Faculty of Computer Science and Infor-
mation Technology in University of Malaya, Kuala Lumpur. He has
published a number of conference and journal papers locally and
internationally. His research interests include information secu-
rity (i.e. intrusion detection systems), artificial intelligence and library
information systems.

Rosli Bin Salleh received his BS in computer science from the Uni-
versity of Malaya, Malaysia, in 1994, and his MS and Ph.D. from the
University of Salford, United Kingdom, in 1997 and 2001, respec-
tively. From 2001, he worked as a lecturer in the Department of
Computer System and Technology, Faculty of Computer Science and
Information Technology, University of Malaya. He was appointed
as a senior lecturer in 2007 and as an associate professor in 2013.
His research interests include Mobile IPv6 handover and security,
botnet research, and wireless sensor networks.

Guillermo Suarez-Tangil is Research Assistant at the Systems Se-
curity Research Lab(S2Lab) within the world leading Information
Security Group (ISG) at Royal Holloway University of London (RHUL).
Prior to joining RHUL, he was Teaching Assistant at Carlos III Uni-
versity of Madrid, Spain, where he obtained a Ph.D. with distinction
in the Computer Security (COSEC) and a M.Sc and a B.Sc in Com-
puter Sciences at the same university. There, he graduated with
honours and received the Best Student Academic Award. His main
research interests are in computer/network security and his current
research focuses on security in smart devices, intrusion detection,
event correlation, and cyber security. He has participated in various
research projects related to network security and trusted computing.

Steven Furnell received a Ph.D. degree in information system secu-
rity from the University of Plymouth in 1995, and now is the Head
of the Centre for Security, Communications and Network Research
at Plymouth University, U.K., and an Adjunct Professor with Edith
Cowan University, Perth,Australia. Prof. Furnell is the author of over
250 papers in refereed international journals and conference pro-
ceedings, as well as books including Cybercrime: Vandalising the
Information Society (2001) and Computer Insecurity: Risking the
System (2005).His interests include security management and culture,
computer crime, user authentication, and security usability. Further
details can be found at www.plymouth.ac.uk/cscan, with a variety
of security podcasts also available via www.cscan.org/podcasts.

134 c om pu t e r s & s e cu r i t y 6 5 (2 0 1 7) 1 2 1 – 1 3 4

http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0285
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0285
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0285
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0290
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0290
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0290
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0290
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0290
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0295
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0295
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0295
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0295
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0300
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0300
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0300
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0300
http://refhub.elsevier.com/S0167-4048(16)30160-2/sr0300
http://www.plymouth.ac.uk/cscan
http://www.cscan.org/podcasts

	 AndroDialysis: Analysis of Android Intent Effectiveness in Malware Detection
	 Introduction
	 Android intent
	 Data collection and analysis
	 Mobile malware detection system overview
	 Decompiler
	 Extractor
	 Intelligent learner
	 Decision maker

	 Results and discussion
	 Intent analysis and attacks
	 Experimental results
	 Effectiveness
	 Efficiency

	 Related works
	 Conclusions
	 Acknowledgments
	 References

