
Hindering Data Theft with Encrypted Data Trees

Jorge Blascoa,∗, Juan E. Tapiadora, Pedro Peris-Lopeza,
Guillermo Suarez-Tangila

aCOSEC - Computer Security Lab
Department of Computer Science, Universidad Carlos III de Madrid

Avda. Universidad 30, 28911, Leganes (Madrid), Spain

Abstract

Data theft is a major threat for modern organizations with potentially large
economic consequences. Although these attacks may well originate outside an
organization’s information systems, the attacker—or else an insider—must even-
tually make contact with the system where the information resides and extract
it. In this work, we propose a scheme that hinders unauthorized data extraction
by modifying the basic file system primitives used to access files. Intuitively, our
proposal emulates the chains used to protect valuable items in certain clothing
shopping centers, where shoplifting is prevented by forcing the thief to steal the
whole rack of items. We achieve this by encrypting sensitive files using nonces
(i.e., pseudorandom numbers used only once) as keys. Such nonces are available,
also in encrypted form, in other objects of the file system. The system globally
resembles a distributed Merkle hash tree, in such a way that getting access to a
file requires previous access to a number of other files. This forces any potential
attacker to extract not only the targeted sensitive information, but also all the
files chained to it that are necessary to compute the associated key. Further-
more, our scheme incorporates a probabilistic rekeying mechanism to limit the
damage that might be caused by patient extractors. We report experimental
results measuring the time overhead introduced by our proposal and compare it
with the effort an attacker would need to successfully extract information from
the system. Our results show that the scheme increases substantially the effort
required by an insider, while the introduced overhead is feasible for standard
computing platforms.

Keywords: Data Leakage Prevention, Insiders, Information Theft, File
System Protection

1. Introduction

Insider threats are an increasing concern for organizations. One major threat
posed by dishonest employees is the theft of sensitive information, which is
considered as one of the most economically damaging risks since it usually results

∗Corresponding author
Email addresses: jbalis@inf.uc3m.es (Jorge Blasco), jestevez@inf.uc3m.es

(Juan E. Tapiador), pperis@inf.uc3m.es (Pedro Peris-Lopez),
guillermo.suarez.tangil@uc3m.es (Guillermo Suarez-Tangil)

Preprint submitted to Elsevier November 20, 2014

in loss of competitiveness, economic fees imposed by governments, and loss of
reputation [1, 2]. Economic losses produced by data theft related events have
been extensively addressed in several reports and surveys. One of such studies,
conducted over banking and financial institutions in the US, states that 91%
of the organizations victims of data theft experienced financial losses exceeding
half a million USD in 30% of the cases [3].

An insider can be defined as a user with legitimate access to the organiza-
tion’s information systems [4]. Unlike attackers from outside the organization,
malicious insiders usually possess valuable information about the network in-
frastructure, including the way data is stored across it and, more significantly,
its value [5]. Malicious insiders can interfere with the availability of the organi-
zation services or can put at risk the confidentiality of sensitive information such
as personal data or intellectual property. In fact, as stated in [5], the sense of
entitlement to information makes an insider much more prone to stealing data.
Previous research has shown that malicious insiders consider the risk of being
caught and the difficulty of their actions while planning the attack [6]. Even
when data leakage prevention mechanisms are in place, insiders can often rely
on covert channels [7] that are not monitored as vehicles to extract valuable
information. Since these channels usually have a very low bandwidth [8], in-
creasing the required amount of information to transfer can render infeasible the
entire data extraction process. Thus, if the time required to extract information
is high enough, the insider may reconsider his attack, or even get caught in the
process.

In this paper, we address this problem by proposing an encrypted file system
where keys resemble a Merkle tree structure. Instead of using a DRM (Digital
Rights Management) approach, which requires only the extraction of the sen-
sitive file and a very short (but secret) key, our system requires the insider to
extract much larger amounts of information. More specifically, the key used to
encrypt a file is a function of the other files’ contents. Such files are available
in the file system but may be also encrypted, in such a way that other files
need to be accessed, and so on. Overall, this creates a dependency graph over
the file system such that one node (file) is unreadable (undecryptable) unless
other nodes have been read before. Thus, an attacker would need to extract not
only the target file(s), but also all others needed to compute all keys involved in
the decryption process. This will necessarily increase the time required for an
attacker to successfully extract a piece of information and also the probability
of detection. However, this mechanism alone does not suffice. An attacker who
wants to extract a file may access all necessary files, compute the associated key,
and then extract the encrypted file and the key. To thwart this strategy, we
introduce a probabilistic mechanism that automatically re-encrypts a file while
being read, which in turn will trigger a cascade of re-encryptions in dependent
files. While this will force the attacker to start over again, a legitimate user
attempting to read the file will have to do it too. As detailed later, adjusting
this mechanism is essential to achieve an adequate trade-off between security
and file system efficiency.

The rest of this paper is structured as follows. Section 2 provides and
overview of previous work in systems and models to prevent data leakage. Sec-
tion 3 gives a general overview of the proposed system, describes potential ap-
plication scenarios, provides formal definitions and assumptions, and presents
the adversary model. In Section 4, we describe a number of primitive file ac-

2

cess operations upon which the proposed system is built. A detailed complexity
analysis of each operation is provided in Section 5, while Section 6 discusses
the effort required by the attacker to successfully extract data and the trade-off
between security and file system efficiency. Section 7 describes our prototype
implementation, the experimental setting used to assess it, and the obtained re-
sults. Finally, Section 8 concludes the paper by summarizing our contributions
and outlining future research directions.

2. Related Work

The difficulty of extracting sensitive information from an organization may
vary depending on the technical controls implemented to avoid such attacks. In
an organization without any technical measures to prevent it, data theft can be
as simple as copying sensitive files into a portable storage device. If the usage
of portable drives is restricted by any physical or technical means, information
may still be extracted through the network using a number of standard channels.
For example, an insider could upload locally available files to a cloud storage
service, or attach them to an email, or just use a file transfer network protocol,
to mention just a few. In order to avoid such leakages, organizations often
implement prevention mechanisms that monitor devices and network protocols
and restrict the way users may employ applications to extract data. We next
describe some relevant proposals in this direction.

The MITRE Corporation developed a system, named ELICIT, to avoid data
leakage and other insider threats [9]. ELICIT uses network-related events to
detect employees who perform actions inside their privileges but outside their
actual scope, therefore violating the need-to-know policy [10]. The system works
by first translating user-generated network traffic into information-use events.
These events describe operations at the document level, such as reading, writing,
sending, printing, etc. The stream of information-use events is then combined
with a social network based on contextual information. This provides a global
picture upon which a number of suspicion indicators can be derived, mostly
related to dubious transfers of information among employees and devices.

In the commercial arena, the term Data Leakage Protection (DLP) systems—
also known as Data Loss Protection, or Data Leakage Prevention—has gained
some momentum in the last few years [1, 11, 12]. At the architectural level, a
DLP system is often seen as composed of various interconnected components
(sensors, information discovery agents, content filtering agents, etc.) that are
deployed in the organization infrastructure to avoid exfiltration of sensitive in-
formation. DLP systems first identify what information an organization holds,
how sensitive it is, and where it is stored. Once properly configured, the system
constantly monitors potential leakage vectors, such as removable devices or net-
work connections, in order to detect the transmission of data that was previously
identified as sensitive. In the vast majority of the cases, the detection engine is
just a pattern-matching algorithm that analyzes data items placed on a set of
predefined leakage vectors against a database built from sensitive information.
Such a database may include simple keywords or more sophisticated structures,
including data patterns or fingerprints [13, 14, 15]. In general, most DLP sys-
tems include a number of response actions that block transmissions identified
as containing sensitive information. DLP systems are widely deployed in many
organizations and prevent most data leakages, both accidental and malicious.

3

However, as in the case of related technologies such as Intrusion Detection Sys-
tems (IDS), the pattern-matching detection process suffers from a number of
inherent limitations that facilitate evasion, allowing an insider to bypass them
[16, 17].

Encrypted file systems (see, e.g., [18, 19]) constitute a related technology
also intended to prevent data loss. In this case, however, the main purpose
is not to avoid leakages emanating from malicious employees or compromised
accounts, but from the (accidental or not) loss of devices such as laptops, smart-
phones, portable drives, etc. A variety of Digital Rights Management (DRM)
systems rely on similar ideas to mitigate threats related to data theft [20, 21].
Many DRM solutions encrypt sensitive files using randomly generated pass-
words that are “securely” kept by the applications responsible of enforcing a
correct usage [22]. The idea is simple: unauthorized extraction of (encrypted)
files does not lead to a security problem provided that the associated crypto-
graphic keys remain secret. Unfortunately, protecting the keys is often not that
simple, as repeatedly demonstrated by a number of attacks on widely known
commercial DRM systems (see, e.g., [23]). Furthermore, assuming that access
to the encrypted file is available, one weakness of such systems is that the only
information an insider needs to extract is the key, which is generally a very little
amount of information.

A traditional approach to dealing with data leakage problems was formulated
roughly 30 years ago in the so-called multilevel security (MLS) models. Such
systems classify users and data objects into a number of security levels and
provide clear access rules as to whether a data access (i.e., read or write) is
allowed depending on the object level and the user clearance. For example,
the well-known Bell-LaPadula (BLP) [24] model forbids read operations if the
user clearance is lower than the object level, and write operations if the user
clearance is higher than the object level. Overall, both rules provide a working
environment where information flow is restricted. Anderson [25] discusses a
number of practical complications associated with such systems, both in terms
of implementation and operational issues. Nevertheless, MLS systems alone are
not enough to prevent data leakage if the extraction is carried out by an insider
with sufficient privileges to get access to the data.

The scheme presented in this paper bears some resemblances with previous
work on encrypted file systems and DRM approaches. For example, Chang et
al. proposed in [26] a layered watermarking system in which the key to access a
given level is found in a watermark embedded at a previous level. Our system
is more explicit and does not rely on any embedding: in order to decrypt a
file, a potential attacker—and also a legitimate user—must previously access
and decrypt a variable number of other files. Thus, in our approach keys need
not to be protected. Instead, they are freely available in the file system, but
conveniently distributed so as to force any read operation to incur additional
readings. Coupled with an automatic rekeying mechanism, this effectively cre-
ates a number of dependency chains among files that hinders data extraction
both by patient adversaries (i.e., those that choose to extract data over a large
amount of time) and also by those having only a limited amount of bandwidth.
Our scheme does not consider authentication or integrity issues related to ob-
jects in the file system. Both traditional and novel protocols (see, e.g., [27, 28])
can be adapted for this purpose.

4

3. Data Chaining Trees and Adversarial Model

In this section, we describe in detail our proposal. We first provide a general
overview of our system along with some illustrative application scenarios. Next,
we introduce a number of assumptions and definitions, including the adversarial
model.

3.1. Overview

The main goal of the scheme proposed in this paper is not to prevent unau-
thorized data extraction by enforcing restrictions on how data is accessed, but
to difficult it to an extent that the effort required by an attacker to do so is
impractical. Intuitively, the core idea consists of logically linking together a
number of objects (files) in the file system, in a way that access to one of them
requires previous access to others. We achieve this by encrypting all files with
keys that follow a structure similar to a Merkle tree [29]. Specifically, each object
is encrypted using a nonce as a key. Nonces are random numbers that are used
only once, and are widely used in cryptographic protocols to provide “freshness”
to encrypted messages—i.e., to guarantee that two messages are never identical
even if their contents are the same. The key used to encrypt an object is, in
turn, encrypted and stored within a different object. The key used to encrypt
the first key follows the same rule: it is randomly generated, encrypted, and
stored somewhere else. Thus, access to the original file must be done in reverse
order, recovering keys that are used to obtain other keys until the final object
is decrypted. Rather than a linear chain, the process can be easily generalized
to a tree-like structure, in such a way that each key is distributed among more
than one object. We refer to such structures as Data Chaining Trees (DCT).

If the scheme described above is implemented using an appropriate mode of
encryption, accessing each nonce (key) will require decrypting the entire data
object where it is stored. An attacker interested in extracting just one object
would need to extract all linked files and compute the associated keys offline.
This will force the attacker to extract potentially much more information, which
may increase the likelihood of detecting the attack. Alternatively, the attacker
may opt for extracting just the encrypted file, compute the key by accessing
all required files, and then extract it too. As described later in Section 4, this
strategy is partially neutralized by an automatic rekeying mechanism that pe-
riodically generates new nonces, replace them in the appropriate objects and
update the encrypted version of the object. If appropriately configured, this
mechanism frustrates data extraction by forcing the attacker to start over again
with the data extraction. However, this also imposes an overhead on the sys-
tem performance, which makes the scheme rather unsuitable for system-wide
deployment. We next describe a number of scenarios where the scheme could
be successfully deployed.

3.2. Application Scenarios

DCTs are not designed to operate on a system-wide deployment, i.e., applied
to the entire file system. Instead, their use should be limited to those parts of
the data storage requiring higher protection against data leakage. For exam-
ple, many companies organize their work effort around the notion of project,
with several employees participating in a project and, generally, one employee
working in more than one project simultaneously. The level of sensitivity often

5

O13	 O14	 O17	 O16	 O15	 O19	 O18	

O8	 O10	 O9	 O12	 O11	

O1	 O2	 O5	 O4	 O3	 O7	 O6	 Project A

Project B

Project C

Figure 1: Project management scenario example

O1	

O3	

O7	 O8	

O4	

O11	 O10	 O9	

O2	

O5	

O13	 O14	

O6	

O17	 O16	 O15	 O12	

Top Security Objects

Medium Security
Objects

Non sensitive objects

Figure 2: Multi Level Security Scenario Example

varies across projects, and therefore all data associated with a project (e.g.,
code, working documents, etc.) may require a level of protection different from
files belonging to other projects. In some cases, some projects could just require
no protection at all. In such scenarios, DCTs could be applied to each project
separately, with a level of security proportional to the project sensitivity. More-
over, each data object from project should be linked to data objects belonging
to a different project (see Fig. 1). Thus, an attacker who exfiltrates an entire
project does not possess all required information to compute the decryption
keys. Note that, in this case, not all files belonging to a project need to be
encrypted under a DCT. Furthermore, while the DCT associated with some
files may be small (i.e., few additional objects need to be accessed in advance to
compute the key), more sensitive objects may be endorsed with larger DCTs.
As described later in detail, this is a tuneable parameter that can be adjusted for
each file depending on the protection requirements and the tolerable overhead
in accessing it.

The notion of “level of protection” implicit in a DCT can be leveraged to or-
ganize a data repository into various hierarchical levels according to the impact
associated with the loss of each file. Data with little to none impact at all can
be left unprotected, while files belonging to higher levels are encrypted using a
DCT with a level of protection proportional to the level. Such a hierarchy can
be exploited to link together objects in different levels as graphically depicted
in Fig. 2, with root nodes being highly sensitive objects and leaves requiring no
protection at all.

In addition to the two scenarios described above, DCTs can be also used in
a variety of environments where access to a file requires, as a form of implicit
authentication, proof of possession of other data. For example, in a BYOD

6

(Bring Your Own Device) working environment users may be allowed to keep
a local copy of project files in their laptops or tablet computers. However,
such files may be linked through a DCT to a number of other files residing in
the organization servers, which cannot be accessed from outside. This would
effectively render such files unusable unless the employee is in the organization
premises.

3.3. Definitions

In this section, we introduce a formal description of Data Chaining Trees
and other supporting definitions.

Definition 1. A directed acyclic graph (DAG) is a non-cyclic graph G =
(V,ED), where V = {n1, . . . , nk} is the set of nodes and ED ⊆ V × V the
set of directed edges between nodes. A directed edge is represented by a tuple
EDi = {nhead, ntail}, where nhead is the origin node of the edge (head) and
ntail is the destination node (tail).

Definition 2. A directed tree (DT) is a DAG that would become a tree if the
edge direction is ignored. For the purposes of this paper, all trees will be rooted.
A (w, l)−DT is a DT where each node (except leaves) has exactly w children
and the length of the path between the root and any leaf is upper bounded by
l.

Definition 3. Let Mi be some data (e.g., an entire file, a single data block,
etc.) that requires protection against data leakage, and let Ni be a randomly
generated number (nonce) associated to Mi. A Data Chaining Tree DCT =
{O1, . . . , On} for Mi is a regular tree where each node Oj represents the en-
crypted version of a data element Mj (along with its corresponding nonce Nj)
and directed edges specify the dependency relation between different data ele-
ments. For the purpose of this work, the amount of dependent files in each Oj

is up to one, i.e., a node can only be the end of one edge in the whole graph.
Fig. 3 shows a possible DCT configuration.

Definition 4. Let Oi and Oj be two DCT objects. Oj is said to be required
by Oi if previous access to data in Oj is needed to access data in Oi. Oi is said
to be dependent from Oj . The set of all required objects of Oi is named Ri and
the set of all dependent objects is named Di.

Definition 5. Let Ei be the encrypted version of data Mi ‖ Ni belonging to
node Oi, where ‖ represents the concatenation of two pieces of data. Therefore,
Oi = {Ri, Di, Ei}.

Definition 6. If |Ri| > 0 the data in Oi will be encrypted using the nonces
from its required objects. That is, Ei = Ciph(k,Mi ‖ Ni), where k is a key
derived from the concatenation of nonces belonging to required objects Ri and
Ciph is an encryption operation in Propagating Cipher-Block Chaining (PCBC)
mode. If |Ri| = 0 (i.e., it has no required objects), data will not be encrypted
and Ei = Mi ‖ Ni.

Definition 7. The security level s of a DCT object Oi is the number of objects
that must be accessed (i.e., decrypted) in order to compute the key needed to

7

O1	

O2	

O4	 O5	

O3	

O7	 O6	

R1={O2,	 O3}	

E1	

D1={}	

N1	

R7={}	

E7	

D7={E3}	

N7	

R4={}	

E4	

D4={O2}	

N4	

R5={}	

E5	

D5={O2}	

N5	

R6={}	

E6	

D6={E3}	

N6	

R2={O4,	 O5}	

E2	

D2={O1}	

N2	

R3={O6,	 O7}	

E3	

D1={O1}	

N3	

Figure 3: General Overview of Chaining Data System

decrypt the root object. In the case of regular trees, such a security level is
given by

s =
wl − 1

w − 1
− 1, (1)

where w represents the number of children of each node and l the distance,
measured in number of nodes, from Oi to a leaf of the tree (including Oi).

3.4. Adversarial Model

DCTs are effective to thwart attacks from adversaries that pursue the ob-
jectives described next and who possess the following capabilities:

• The adversary’s goal is to extract a particular piece of sensitive informa-
tion, not the maximum amount of data regardless of its value.

• High bandwidth channels that may allow the extraction of massive amounts
of data outside the organization are controlled by some security mecha-
nism, such as for example a DLP solution. However, an insider is left
with the capability of extracting data using a number of covert channels
existing in the infrastructure. Such channels are difficult to detect but
have a low bandwidth.

• The adversary, using the appropriate applications, has access to the un-
encrypted version of all files allowed by his privileges.

• The adversary can read and write objects in the file system using the
appropriate applications, but he cannot extract decrypted information
from these applications. That is, the adversary cannot access the system
memory where decrypted information resides. Obviously, a digital camera
or other devices could be used to copy such information and extract it
from the organization. However, we assume that this would only allow
extraction of a limited amount of information.

8

Primitive Description

PRF(x) Pseudo-Random Function
Encrypt(D,K) Encryption of D using key K
Decrypt(E,K) Decryption of E using key K

KDF(Oi) Key derivation function for object Oi

ReadNonce(Oi) Read nonce from object Oi

ReadData(Oi) Read data from object Oi

WriteData(Oi,Mi) Writes data block Mi into object Oi

UpdateEncryption(Oi, O
′

j , Oj) Updates encryption of object Oi

DeleteObject(Oi) Removes object Oi

InitDCT(Oi) Initializes a DCT rooted at Oi

Table 1: DCT primitives.

• The adversary has access to all raw data that is directly stored in the file
system, including both sensitive objects encrypted with a DCT and files
that do not require protection. Consequently, for each file the adversary
knows the dependency relationships established by the DCT of each file
and, therefore, can identify the files and order required to decrypt it.

4. DCT Primitives

One main advantage of DCTs is that they facilitate the protection of certain
sensitive file system objects while being transparent to the final user. As nonces
encrypted within other objects in the file system are used as keys, there is
no need for the user to remember any secret key, nor even to be aware of
the underlying encryption of some parts of the file system. This makes all
accesses transparent to the end user, as the operating system will be in charge
of managing DCTs and handle encryption and decryption operations. Thus, if
a user requests read access to a file, the system must decrypt the data object
and deliver it to the application used to access that file. Similarly, when a file
is modified, it may be necessary to update the encryption of its dependent files,
since the derived key will change as a consequence of the modifications.

Working with DCTs is carried out through the ten primitives shown in Table
1. In the remaining of this section we describe each one of them.

4.1. Encryption and Decryption

Data (Mi) contained in DCT objects (Oi) that require a minimum level of
protection is stored encrypted (Ei). Our scheme does not assume a specific
algorithm for this, but it is recommended that this operation is implemented by
a fast encryption algorithm, such as for example a block cipher in an appropriate
mode of operation. In particular, we encourage the use of Propagating Cipher-
Block Chaining (PCBC) mode, as this mode of operation requires the previous
block’s plaintext and ciphertext to perform decryption of a given block. Thus, in
order to decrypt the last block of the ciphertext, the rest of the ciphertext needs
to be decrypted. Although this mode of operation is not commonly used, it has
an interesting property that our scheme requires to work: it forces the insider
to extract the entire encrypted object to be able to decrypt the nonces inside

9

E. Thus, we assume the existence of two cryptographically secure algorithms,
Encrypt(D,K) and Decrypt(E,K), such that Decrypt(Encrypt(D,K),K) =
D.

4.2. Key Derivation Function

The key used to encrypt all non-leaf objects in a DCT is derived from the
nonces of their required objects (R). The Key Derivation Function, termed
KDF(Oi), combines all the required nonces Ni of Ri for Oi and produces a con-
stant sized output. In order to generate sufficiently secure keys, KDF(Oi) should
hold some properties.

In this paper, we consider functions that take as input a string composed
of the concatenation of all the nonces extracted from the required objects Ri =
Oj , . . . , Ok for the object Oi. To do this, we use a Pseudo-Random Function
PRF() to derive the key, as specified in Algorithm 1. Note that the algorithm
makes use of the primitive ReadNonce(), which will be described later.

Each time the data inside an object has to be encrypted or decrypted, this
key has to be computed. Additionally, in order to avoid security risks, derived
keys should be erased from memory after each usage. Although preserving
keys in memory may reduce system overheads, it would also make easier for an
attacker to access sensitive files.

Algorithm 1: KDF(Oi)

Data: An object Oi = {Ri, Di, Ei}
Result: The key Ki used to encrypt/decrypt the object
K = “”;
if |Ri| > 0 then

foreach Oj in Oi.Ri do
K = K ‖ ReadNonce(Oj);

end
return PRF(K);

else
return “”;

end

4.3. Read Nonce

Nonces must be decrypted to derive the keys of their dependent object. If
a nonce Ni is located in a non-leaf node of a DCT Oi, a series of ReadNonce()
operations must be recursively executed in order to obtain the nonces required
to decrypt Ei and access the nonce Ni. This algorithm is described in Algorithm
2.

4.4. Read Data

A read operation returns the decrypted data Mi of an object Oi. If an object
has no required objects (i.e., it is a leaf in the DCT), its data is not encrypted
and therefore can be directly read. Nevertheless, if a file has a non-empty set of
required objects, the nonces of those objects will have to be first read to derive
the encryption key. Thus, the read operation recursively accesses all objects in

10

Algorithm 2: ReadNonce(Oi)

Data: An object Oi = {Ri, Di, Ei}
Result: The unencrypted nonce Ni contained in Oi

if |Ri| > 0 then
K = KDF(Oi);
Mi ‖ Ni = Decrypt(Ei,K);
return Ni

else
Mi ‖ Ni = Ei;
return Ni;

end

the DCT until reaching the leaves. Note that such accesses are implicit in the
Key(Oi) call. The operation is described in Algorithm 3.

Algorithm 3: ReadData(Oi)

Data: An object Oi = {Ri, Di, Ei}
Result: The unencrypted data Mi contained in Oi

if |Ri| > 0 then
K = KDF(Oi);
Mi ‖ Ni = Decrypt(Ei,K);
return Mi

else
Mi ‖ Ni = Ei;
return Mi;

end

4.5. Write Data

Algorithm 4 describes the operations required to write a new piece of data
into a data object. In this case, the new piece of data has to be encrypted with
the key currently used for that object, which is obtained from all the nonces in
its required objects.

4.6. Update Encryption

This procedure is called whenever a change in the DCT forces a change in
the key used to encrypt an object. This event is triggered when the nonce of
a required object is modified or when there is a change in the set of required
objects of a node. Algorithm 5 describes this process.

4.7. DCT Initialization

This primitive initializes a DCT from a tree with plaintext data objects.
The procedure operates recursively as described in Algorithm 6, first deriving
the key from all required objects and then encrypting each DCT node. For a
(w, d)-DCT (i.e., a regular tree with width w and depth d), the algorithm visits

all the
∑d−1

n=0 w
n objects, generates the appropriate keys (except for the leaves)

and encrypts the contents.

11

Algorithm 4: WriteData(Oi,Mi)

Data: An object Oi = {Ri, Di, Ei}, the data M ′i to write in the object
Result: The object with the new data O′i = {Ri, Di, E

′
i}

if |Ri| > 0 then
K = KDF(Oi);
Mi ‖ Ni = Decrypt(Ei,K);
E′i = Encrypt(M ′i ,K) ‖ Ni;
O′i = {Oi.Ri, Oi.Di, E

′
i};

return O′i;

else
O′i = {Oi.Ri, Oi.Di,M

′
i ‖ Ni};

return O′i;

end

4.8. Delete Data

If a node belonging to a DCT is deleted from the file system, the DCT must
be updated by using a new object that takes over the position of the one just
deleted. One possibility is to use a free object in the file system, i.e., one that
does not belong to an existing DCT. This operation is almost equivalent to a
WriteData() call, but using the new object as replacement for the deleted one.
In fact, as the nonce is not refreshed, there is no need to update the encryption
of the parent node. The process is described in Algorithm 7.

4.9. Automatic Node Update

A node encryption update is only triggered when a nonce of a required
object is modified. If a nonce is never refreshed, each node’s encrypted data
would remain constant over time, thus facilitating data extraction by an insider.
This risk can be reduced by automatically triggering some encryption updates,
for example by replacing a nonce in the DCT structure. Note that this will
make useless some data objects already extracted by the insider, as they can no
longer be used to derive the decryption key of a certain object. We elaborate
on this later in Section 6 when discussing conditions to impede data extraction.

There are several possible changes to perform during an automatic update
to thwart an ongoing extraction of sensitive information. A simple but effective
solution consists of triggering an automatic node update with probability p
every time a node is read. Such updates work by picking one child node and
replacing all nodes in the branch, including the selected child (see Fig. 4). This
is equivalent to a DCT initialization starting in the node that triggered the
automatic node update with an additional update encryption operation on the
parent node if it is not the root (l < lmax).

Assume an insider who pursues extracting the root node of a regular (w, d)-

DCT. The attacker needs to extract all the wd−1
w−1 nodes. However, if the auto-

matic node update process is triggered and one branch of the DCT has to be

replaced, say one hanging from a node at height l̂ < d, all the additional wl̂−1
w−1

nodes belonging to the new branch must be extracted too. For instance, in the
example shown in Fig. 4, once the data in the node O5 is read, the whole branch
starting in O5 is replaced by other branch. If the attacker uses a bottom-up

12

Algorithm 5: UpdateEncryption(Oi, N
′
j , Oj)

Data: An object whose encryption needs to be updated
Oi = {Ri, Di, Ei}, the modified nonce N ′j and the old required
object Oj = {Rj , Dj , Ej}

Result: The updated object O′i = {Ri, Di, E
′
i}

if |Ri| > 0 then
KE = “”;
KD = “”;
foreach Ok in Oi.Ri do

if Ok = Oj then
KE = KE ‖ N ′j ;

else
KE = KE ‖ ReadNonce(Ok);

end
KD = KD ‖ ReadNonce(Ok);

end
Mi ‖ Ni = Decrypt(Ei, PRF(KD));
E′i = Encrypt(Mi ‖ Ni, PRF(KE));
O′i = {Oi.Ri, Oi.Di, E

′
i};

return O′i;

else
return Oi;

end

Algorithm 6: InitDCT(Oi)

Data: The root node (not initialized) of the DCT Oi = {Ri, Di,Mi ‖ Ni}
Result: The initialized node O′i
if |Ri| > 0 then

Ei = Encrypt(Mi ‖ Ni, KDF(Oi));
O′i = {Ri, Di, Ei};
foreach Oj in Oi.Ri do

InitDCT(Oj);
end
return O′i;

else
return Oi;

end

extraction approach, the entire branch would be invalidated, which will make
necessary to re-read more nodes than by following a top-down approach.

Automatic encryption updates introduce a non-negligible overhead in the
system, which could negatively affect its usability. Fortunately, this can be
conveniently adjusted by defining different values for the update probability p.
Additionally, a significant cost reduction can be achieved by using precomputed
branches, either from randomly picked files or by exchanging branches between
two different DCTs.

13

Algorithm 7: DeleteObject(Oi)

Data: A node to be deleted Oi = {Ri, Di, Ei}
Result: The node replacing the deleted node in the DCT, Oj

Get free data Mj ;
Get new nonce Nj ;
if |Ri| > 0 then

Ej = Encrypt(Mj ‖ Nj , KDF(Oi));
Oj = {Ri, Di, Ej};
return Oj ;

else
Oj = {Ri, Di,Mj ‖ Nj};
return Oj ;

end

O1	

O2	

O4	 O5	

O3	

O7	 O6	

O1	

O8	

O9	 O10	

O3	

O7	 O6	

1. Read(O1)

DCT DCT
’

2. New Branch(O8)

3. Encryption Update(O1)

Figure 4: Automatic Node Update Example

4.10. Concurrent Operations

DCTs allow concurrent operations over the same file as in a standard file sys-
tem for desktop computers, with some restrictions. In addition to the InitDCT,
which is required to initialize DCT trees, other DCT primitives can be executed
concurrently with no restriction provided that the node is not affected by any
other operation being executed simultaneously. If two DCT primitives affect
the same node, some considerations must be taken into account.

The key derivation function (KDF) governs all other DCT primitives, as it
has to be executed to generate the key used to decrypt and encrypt objects.
While this function is being executed for a node Oi, the nonces of all required
objects Ri cannot be modified. For example, this may happen if some of those
objects are being deleted (DeleteObject) at the same time that an automatic
node update in an upper level of the DCT is triggered (AutoUpdate). When a
node is deleted, it is replaced for another one, modifying one of the nonces used
to generate the key. In order to avoid that, two strategies can be implemented.
First, node removal for required nodes can be disabled while a key derivation is
being carried out in the parent node. As an alternative, the file can be logically
deleted (i.e., from the user’s point of view), but not physically until the key
derivation operation finishes. If an automatic update is triggered during the
key derivation of a node, the operation must halt until the encryption of the

14

triggering node has been updated. In other words, automatic updates should
have priority over any other primitive, as their goal is to hinder potential data
extraction taking place. The key derivation function will be executed again
starting in the node that triggered the encryption update.

Fortunately, other DCT primitives do not create conflicts if executed con-
currently. If two ReadData operations are executed at the same time, in the
worst case scenario two reads over the same raw data will be required. The
same applies if a WriteData operation is performed on a node while a ReadData

operation is being performed in a required node. Note that the write operation
only changes the contents of the plaintext data, but does not alter the nonce of
the required object. In fact, a nonce cache could be implemented to avoid du-
plicate readings of raw data when concurrently reading/writing nodes. On the
other hand, during a KDF execution, nonces being read could be stored in this
cache until the operation completes. Thus, if another KDF operation requires
access to a nonce that is found in the cache, it will save a disk access operation
and one decryption. However, we do not encourage the use of such caches since
it introduces a potential weakness by facilitating access to decrypted nonces.

5. Complexity Analysis

In this section, we analyze the overhead introduced by using DCT primitives
to access data objects. To do this, we present and discuss the computational
complexity of the primitives introduced above. Empirical results will be pre-
sented later when discussing our experimental evaluation.

5.1. Encryption, Decryption, and Key Derivation

For simplicity in our analysis, we assume that both encryption and decryp-
tion operations have the same complexity. This is generally true for most ex-
isting stream and block ciphers. Furthermore, in order to keep the notation
simple we denote by CCiph the cost of an encryption or decryption operation.
Note that such a cost varies (often linearly) depending on the size of the en-
crypted/decrypted data. We do not explicitly model this. Instead, our interest
is in the number of cryptographic operations needed, even though the cost of
such operations certainly depends on the input size. In this analysis we consider
that the cost of executing PRF(n) is negligible, as the size of nonces is assumed
to be orders of magnitude smaller than the size of the data to be encrypted.

The key derivation operation requires access to the decrypted versions of
all the children of the object that is accessed, which in turn causes one key
derivation for all of them but the leaves of the DCT. Thus, the cost for an
object at height l in a regular (w, d)-DCT is

CKDF(w, l) =

l−1∑
i=1

wi · CCiph

= −CCiph +

l−1∑
i=0

wi · CCiph

= −CCiph + CCiph ·
l−1∑
i=0

wi

= CCiph

(
wl − 1

w − 1
− 1

)
.

(2)

15

w=2 w=3 w=4 w=5

2 3 4 5

1 1 1 1 1

2 3 4 5 6

3 7 13 21 31

4 15 40 85 156

5 31 121 341 781

Ci
ph

 o
pe

ra
tio

ns

1

10

100

1000

l
1 2 3 4 5

w=2
w=3
w=4
w=5

Figure 5: Cost of a ReadData() operation as a function of w and l

5.2. Read Data

The cost of reading the data contents Mi of an object Oi located at height
l in a regular (w, l)-DCT is simply the cost of obtaining its key plus the cost of
decrypting the object:

CRead(w, l) = CKDF(w, l) + CCiph = CCiph

wl − 1

w − 1
. (3)

As shown in Fig. 5, the computational complexity of a read operation is
exponential in the DCT’s height l, so a careful choice of the parameters (w, l)
must be done. For example, for w = 2 and l = 3, a ReadData() operation
requires 7 decryptions. This number increases to 15 for l = 4. If (3, 3)-DCTs
or (4, 3)-DCTs were to be used, the number of required operations would be 13
and 21, respectively.

Reading a nonce takes exactly the same procedure as reading the object’s
data, but keeping the nonce instead of the data. This implies CRead(w, l) =
CReadNonce(w, l). In the remaining of this paper, we will represent by CRead(w, l)
the cost of reading a nonce.

5.3. Write Data

Writing a new piece of data M ′i first requires a read operation to extract the
nonce Ni, which remains the same. This operation can also be used to extract
the key needed to encrypt the new plaintext data. An additional encryption is
required to encrypt back the new data with the old nonce appended. In the case
of leaves (i.e, l = 0), writing data just requires to replace Mi with the new M ′i ,

16

which has no cost in terms of encryptions. Therefore, the cost of a WriteData()
operation is

CWrite(w, l) =

{
0 l = 0
CRead(w, l) + CCiph l > 0

(4)

5.4. Update Encryption

An encryption update is triggered whenever a nonce in a required object
is modified. This is, modifying the nonce of an object at level l triggers an
encryption update at level l + 1. Updating the encryption of a node requires a
ReadData() operation to obtain the decrypted version of that data object, plus
an encryption with the newly generated key. However, as shown in Algorithm 5,
the nonces obtained during the decryption process can be used for the encryption
process, not requiring another access to obtain the encryption nonces as the new
nonce is already provided. Therefore, an encryption update has the same cost
as a read operation in the node to be updated, CRead(w, l), plus the cost of
encrypting again the contents with the new key, CCiph. Note that this is exactly
the cost of a write operation when l > 0:

CUpdateEnc(w, l) = CWrite(w, l) = CRead(w, l) + CCiph. (5)

5.5. DCT Initialization

When initializing a DCT, all data objects have their contents unencrypted.
Initializing them requires the same effort as writing a data object. However,
instead of performing decryptions to obtain the keys needed to decrypt each
nonce before re-encryption, the system just encrypts each file. Therefore, the
cost in a tree with l > 0 is given by

CInitDCT(w, l) = CWrite(w, l) = CRead(w, l) + CCiph. (6)

5.6. Delete Data

Deletion involves the same operations as a WriteData() call, so

CDelete(w, l) = CWrite(w, l). (7)

5.7. Automatic Node Update

When an automatic node update is triggered in a node at height l, two
processes must be executed: a new branch initialization at height l − 1 and
an encryption update for the parent node. On the one hand, the branch ini-
tialization has cost CInitDCT(w, l − 1) = CRead(w, l − 1) + CCiph. On the other
hand, the encryption update on the parent node of the new branch has a cost
CUpdateEnc(w, l) = CRead(w, l) + CCiph. Consequently

CAutoUpdate(w, l) = CRead(w, l − 1) + CRead(w, l) + 2 · CCiph. (8)

Recall, however, that if the new branch is precomputed (for example, when
the system is idle), only the encryption update cost would be required. In that
case, CAutoUpdate(w, l) = CRead(w, l) + CCiph.

17

(w, l)-DCT primitive No. Cryptographic Operations

KDF CKDF(w, l) = CCiph

(
wl − 1

w − 1
− 1

)
ReadData CRead(w, l) = CCiph

wl − 1

w − 1

WriteData CWrite(w, l) = CCiph

(
wl − 1

w − 1
+ 1

)
UpdateEncryption CUpdateEnc(w, l) = CCiph

(
wl − 1

w − 1
+ 1

)
DeleteObject CDelete(w, l) = CCiph

(
wl − 1

w − 1
+ 1

)
InitDCT CInitDCT(w, l) = CCiph

(
wl − 1

w − 1
+ 1

)
AutoUpdate CAutoUpdate(w, l) = CCiph

(
wl + wl−1 − 2

w − 1
+ 2

)

Table 2: Complexity of DCT primitives.

5.8. Summary

Table 2 summarizes the complexity of all the DCT primitives discussed
above. In general, all operations carried out over a DCT object require a O(wl)
number of encryption/decryption operations. As we will discuss in the next sec-
tion, this puts some limits on the values for w and l that would make efficient
the access to files while significantly hindering the task of an insider interested
in extracting data.

6. Hindering Data Extraction

The time required by an attacker to successfully extract an object depends
on the number of decryptions to be done until obtaining the associated key. As
discussed above, automatic node updates mitigate the risk of a patient insider
who first extract the encrypted file and then computes, and also extracts, the
key required to access it. Thus, random rekeyings will force the attacker to start
over again the key derivation process, which in practice will translate into more
files that need to be exfiltrated. We next analyze how different values of the
probability p of automatic node update relate to the additional effort required
by the adversary, but also on the system efficiency as perceived by a legitimate
user.

As described in Section 3.4, the goal of the attacker is to extract some objects
from the file system. The insider’s only capability consists of reading raw files
from disk and exfiltrating them by some means. Therefore, all information he
is able to read is encrypted (decrypted data is only stored in memory), except
for the case of DCT leaves. The DCT structure forces the insider to extract
the decrypted versions of the child objects in order to compute the key used to
decrypt the file he wants to extract. Thus, for instance, to extract a file that is
at height l = 1, the insider will have to first extract all the nonces stored in the
leaves connected to that object, then extract the encrypted object, and finally
decrypt it. However, if the insider wants to read a file that is at height l = 2, he

18

has two possible strategies. On the one hand, he can first obtain the encrypted
version of the children (l = 1) and then try to obtain the nonces that allow him
to decrypt those nodes. If the automatic node encryption is triggered during
this process, he will only have to read again that node and his parent. Note,
however, that when reading that node again (and his parent), an additional
node update can be triggered too.

On the other hand, the insider can use a bottom-up approach, firstly obtain-
ing the leaves of the DCT (l = 0). In this scenario, if a node update is triggered
while reading one particular node, the insider will have to read again the whole
branch starting at the node that triggered the automatic node update. Thus, to
obtain a successful read the attacker must extract all the nodes required to de-
crypt the node he wants to access before the triggered encryption update ends.
In Section 4.9 we measured the amount of nodes an attacker has to extract in
order to successfully decrypt a node. Taking into account the cost of extracting
one node COneExt (available bandwidth), the total cost required by the insider
will be

CExtract(w, l) = COneExt

wl − 1

w − 1
. (9)

As the size of nonces will generally be orders of magnitude smaller than the
size of data objects, we consider that the cost of extracting the nonces in the
leaves (l = 0) of the DCT is negligible compared to the cost of extracting an
encrypted data node. Moreover, as described in Section 5.7, the cost required
to calculate the new branch and update the parent node is

CAutoUpdate(w, l) = 2 · CCiph

(
wl + wl−1 − 2

w − 1
+ 2

)
, (10)

so from the defender’s perspective, the automatic node update will succeed if
CExtract(w, l) > CAutoUpdate(w, l). Expanding the costs above we get

CExtract(w, l) > CAutoUpdate(w, l)

COneExt
wl−1
w−1 > 2 · CCiph

(
wl + wl−1 − 2

w − 1
+ 2

)
CCiph < COneExt

wl − 1

(wl + wl−1 + 2w − 4)
CCiph + CPRF < ρw,lCOneExt.

(11)

The ratio

ρw,l =
wl − 1

(wl + wl−1 + 2w − 4)
(12)

determines the conditions under which the reading of a node is useful for the
attacker if a node update is triggered while that node is being read, provided
that no other node update is triggered in subsequent node extractions. Therefore,
if the time taken to encrypt/decrypt is less than ρw,l times the time required
to extract an object, the adversary will fail in its attempt and will be forced to
extract again that node. Table 3 shows the required ratio for different values of
(w, l). For instance, in a (2, 3)-DCT an insider will not be able to successfully
extract an object from the DCT if the time required to encrypt the branch is
less than 1.71 (1/ρw,l) times the time required to extract an object. Note how

19

ρw,l l = 2 l = 3 l = 4 l = 5
w = 2 0.5 0.583 0.625 0.646
w = 3 0.571 0.684 0.727 0.742
w = 4 0.625 0.75 0.787 0.797
w = 5 0.666 0.794 0.825 0.831

Table 3: Ratio between the time required by cryptographic operations and time of extraction
required for the automatic encryption update to succeed.

such a ratio increases as DCTs becomes larger. In fact, ρw,l tends to 1.0 when
increasing w and l.

In practical terms, the cost COneExt will be generally upper bounded by the
available network bandwidth. Such information, together with the costs dis-
cussed in Section 7.2, will guide the security administrator in choosing appro-
priate parameters for each DCT.

7. Empirical Evaluation

We next report and discuss experimental results obtained with a prototype
implementation of the DCT scheme presented above. One major goal of our
evaluation is to assess both the effort required by the attacker to succeed in
extracting sensitive data and the practical overhead imposed over legitimate
data access operations.

7.1. Implementation and Experimental Setup

Experiments have been carried out with a Java implementation of the DCT
scheme described in this paper. Our implementation acts as a middleware that
intercepts data access operations and translates them into the appropriate DCT
primitives. Thus, the DCT middleware runs on top of a current file system im-
plementation. Buffer sizes and other parameters are delegated to the file system
layer. This greatly reduces the complexity of our implementation while making
feasible to use such filtered accesses for specific applications. For example, it
is straightforward to configure certain applications (e.g., office suites, software
development environments, etc.) so that file access are only permitted through
the DCT middleware. Additionally, this minimizes interactions with other ap-
plications already installed in the system. Our current DCT prototype uses the
Bouncy Castle1 implementation of AES-128 in PCBC mode. Although this is
not the most efficient implementation, it provides us with a good upper bound
to measure the overhead introduced during read and write operations.

The experiments were executed on a desktop computer with an Intel Core i5
processor at 2.7 GHz with 8 GB of RAM and a 5.400 rpm hard drive. The goal
of these experiments is not to obtain a comparison with state-of-the-art imple-
mentations of current encrypted file systems, but to compare the efficiency of a
DCT based file system against a file system with no encryption in the same ma-
chine. Therefore, our implementation has not been optimized for performance.
As mentioned in Section 3.2, the DCT middleware is not intended for general

1Available at http://bouncycastle.org

20

http://bouncycastle.org

No DCT 2 3 4 5

0

2

4

6

8

10

12

14

x 10
8

w

T
im

e
 i

n
 m

il
li

s
e
c
o
n
d
s

Read

No DCT 2 3 4 5
0

2

4

6

8

10

12

14

x 10
8

w

T
im

e
 i

n
 m

il
li

s
e
c
o
n
d
s

Write

l = 5

l = 4

l = 3

l = 2

l = 5

l = 4

l = 3

l = 2

l = 5

l = 4

l = 3

l = 2

Figure 6: Time overhead per Mb of data required by ReadData() and WriteData() operations
for different DCT configurations. The boxplots have been obtained with 100 executions.

purpose data access, but only for specific portions of the file system that require
protection.

In our experiments, a DCT is built to protect files with different security
levels. We consider the security level of a file to be the pair (w, l). In each
experiment we consider scenarios where a file with security level (w, l) is read
or written by a legitimate user or stolen by a malicious insider. For this, we
create a large number of files with varying size and random contents for each
experiment. File sizes vary from 1 Mb to 5 Mb, which are representative of many
data objects (e.g., source code files, spreadsheets, documents, etc.) present in
many working environments.

7.2. System Overhead

In our first experiment, we compare the time required to access and write
files of 1 Mb using different DCT configurations, including as baseline case the
time required without using a DCT. We have considered all combinations of
security levels with w ∈ {2, 3, 4, 5} and l ∈ {2, 3, 4, 5}. Each read and write
operation has been executed 100 times. Fig. 6 shows the distribution of access
times obtained for each DCT configuration with respect to the baseline case of
not using any DCT.

The experimental results confirm that read and write operations take roughly
the same time. Recall that, according to the formal analysis, the difference
amounts to one additional encryption only, which takes negligible time. In the
simplest DCT configuration (w = 2 and l = 2), read and write operations
require 5 milliseconds (83 more times than a regular file system read and 48
more times than a regular file system write). These values grow exponentially
with l. In fact, reading 1 Mb of data when w = 5 and l = 5 requires up to 1.37
seconds more than a regular read operation.

Applying high protection (e.g., w = 5 and l = 5) to each file in the system
introduces a non-negligible system overhead that would result in a poor system

21

0.1 0.2 0.3 0.4
0

50

100

150

p

N
o
.
re

a
d
 o

p
e
ra

ti
o
n
s

(T
o
p
−

D
o
w

n
)

0.1 0.2 0.3 0.4
p

0.1 0.2 0.3 0.4
p

0.1 0.2 0.3 0.4

10

100

1,000

10000

p

N
o
.
re

a
d
 o

p
e
ra

ti
o
n
s

(B
o
tt
o
m

−
U

p
)

0.1 0.2 0.3 0.4
p

0.1 0.2 0.3 0.4
p

w = 2 w = 3 w = 4

l = 2

l = 3

l = 4

Figure 7: Number read operations required by an attacker (with both approaches) to extract
a node with different configurations of w = 2, 3, 4, l = 2, 3, 4 and p = 0.1, 0.2, 0.3, 0.4.

performance for the final user. However, we believe these are reasonable for a
reduced number of documents, particularly if they are not accessed constantly.

7.3. Adversary Overhead

In order to measure the effort required by an attacker to successfully obtain
a piece of data, several simulations have been conducted. In these, we measure
the amount of data objects the insider needs to extract from a DCT in order
to successfully decrypt a data object with different values of w and l. Although
legitimate operations always perform reads on a bottom-up approach, the at-
tacker can extract files using either a bottom-up or a top-down approach. We
have performed simulations using both approaches for the attacker.

In these experiments, we assume that the system is able to generate new
branches before the insider extracts an entire branch as previously discussed.
Each time an automatic update is triggered, the node being read and its parent
must be read again. If the probability of triggering an encryption update is
higher than 0.5, it may be infeasible for the attacker to extract the information,
as the number of reads will tend to infinity. However, this setting also makes
the system infeasible, as a legitimate read will also trigger an infinite number
of encryption updates. Tests have been performed with all combinations of
w ∈ {2, 3, 4} and l ∈ {2, 3, 4, 5} with probabilities ranging from p = 0.1 up
to p = 0.4. Ten thousand executions were performed for each configuration,
resulting in 48 different experiments. Figure 7 shows the boxplots obtained for
each configuration of w, l, and p. As expected, the number of read operations
increases if the attacker follows the bottom-up approach, which is the same
used by legitimate reads. Note also that l has a much more significant effect on
performance than w, as it appears in the exponent in the associated cost values.

In addition to the previous experiments, we have measured the average
amount of time that an insider would require to successfully extract a piece

22

of sensitive information when the system is being used (Table 4). We consider
a scenario in which DCTs are not being used to protect information and com-
pared it with others where DCTs with different configurations of w, l and p
are used. Furthermore, we consider different extraction speeds available for the
insider, which will always act using a top-down approach (as it requires less
read operations as shown in Fig. 7). First, we consider an scenario where an
insider is able to extract information directly through a link with an average
mobile Internet connection (i.e., 1 Mbps). Secondly, we consider an scenario in
which workstations and devices belonging to the organization are controlled by
a DLP solution [30]. Under this scenario, the insider must extract information
using a covert channel, as other available channels are being monitored. We
have restricted our experiments to two different covert channels that could be
used in scenarios where DCTs may be useful. The first one uses the memory
bus locking mechanism to create a covert channel inside a cloud environment
[31]. In this covert channel, the authors achieved an average transmission rate
of 107 bps with a very low error rate (0.75%). The second scenario considers
a covert channel for Android platforms described in [32]. In particular, by us-
ing file locks of shared files, authors are able to covertly exchange information
between two applications at 685 bps.

Table 4 summarizes the actual time that an attacker would require to extract
files of 1 Mb and 5 Mb for the three extraction vectors described above. For
example, an attacker attempting to extract a file protected with a (4, 4)-DCT
and p = 0.4 would require, on average, 134 times more than the time required
without DCTs. Thus, rather than the 2.12 hours needed to extract a 5 Mb
file, a (4, 4)-DCT would force the attacker to spend almost 12 days to succeed.
These times, together with the overheads shown in Fig. 7, could be used to
determine a good balance between the level of protection for each group of files
and the tolerable overhead.

8. Conclusions

In this paper, we have proposed a scheme to hinder illegal data extraction
of sensitive information by malicious insiders. Our approach is based on link-
ing together a number of data objects by cryptographic means, in a way that
access to one of them requires previous access to others. Overall, this creates
an encrypted file system where each file decryption key is actually distributed
over other files and freely available. Thus, an insider trying to exfiltrate a par-
ticular piece of information will need to extract not only the target files, but
also other files. The system is particularly useful against insiders that rely on
uncontrolled leakage vectors, such as for example covert channels, to silently
extract information.

Our proposal has been empirically evaluated with a prototype implementa-
tion that acts as a middleware sitting on top of the file system layer. We have
analyzed the overheads introduced in legitimate read and write operations due
to encryption operations. Overall, if encryption is faster than the extraction
bandwidth available for the insider, the system can be used to protect a re-
stricted number of sensitive files with a reasonable cost, while greatly hindering
information extraction attacks. In practical terms, DCTs may introduce a non-
negligible overhead in the system operation if too many sensitive objects must

23

Extraction Speed
Block Size 1 Mbps 685 bps[32] 107 bps[31]

no DCT
1 Mb 1 sec 25.51 min 2.72 hours
5 Mb 5 sec 2.12 hours 13.61 hours

(2, 3, 0.1)
1 Mb 6.55 sec 2.78 hours 17.87 hours
5 Mb 32.78 sec 13.93 hours 3.71 days

(2, 3, 0.4)
1 Mb 8.7 sec 3.7 hours 23.71 hours
5 Mb 43.55 sec 18.52 hours 4.93 days

(2, 4, 0.1)
1 Mb 15.41 sec 6.55 hours 1.78 days
5 Mb 1.28 min 1.36 days 8.74 days

(2, 4, 0.4)
1 Mb 21.62 sec 9.19 hours 2.45 days
5 Mb 1.8 min 1.91 days 12.26 days

(3, 3, 0.1)
1 Mb 13.19 sec 5.61 hours 1.49 days
5 Mb 1.1 min 1.17 days 7.48 days

(3, 3, 0.4)
1 Mb 17.93 sec 7.62 hours 2.03 days
5 Mb 1.49 min 1.58 days 10.17 days

(3, 4, 0.1)
1 Mb 43.17 sec 18.36 hours 4.89 days
5 Mb 3.6 min 3.82 days 24.48 days

(3, 4, 0.4)
1 Mb 1.03 min 1.09 days 7.00 days
5 Mb 5.14 min 5.46 days 35 days

(4, 3, 0.1)
1 Mb 22.06 sec 9.38 hours 2.5 days
5 Mb 1.83 min 1.95 days 12.51 days

(4, 3, 0.4)
1 Mb 30.17 sec 12.83 hours 3.42 days
5 Mb 2.51 min 2.67 days 17.11 days

(4, 4, 0.1)
1 Mb 1.55 min 1.65 days 10.57 days
5 Mb 7.76 min 8.25 days 52.85 days

(4, 4, 0.4)
1 Mb 2.23 min 2.37 days 15.21 days
5 Mb 11.18 min 11.88 days 76.06 days

Table 4: Average extraction time required by an insider with different (w, l, p) DCT configu-
rations and extraction speeds using a top-down approach.

be protected or if the DCT parameters (w, l, p) are too high. Such a security-
performance trade-off is inherent to DCTs. However, our current implemen-
tation admits a number of optimizations that would increase its performance
in real-world deployments. For example, rather than sitting on top of the file
system layer, it would be convenient to have an independent implementation
that could access data block natively. This would translate into a considerable
increase in performance.

Acknowledgements

We are very grateful to the anonymous reviewers for constructive feedback
and insightful suggestions that helped to improve the quality of our original
manuscript. This work was supported by the MINECO grant TIN2013-46469-
R (SPINY: Security and Privacy in the Internet of You).

24

References

[1] Simon Liu and Rick Kuhn. Data loss prevention. IT Professional, 12(2):10–
13, 2010.

[2] Ramona R Rantala. Cybercrime Against Businesses. Technical report, U.S.
Department of Justice, July 2004.

[3] Marisa Reddy R., Michelle Keeney, Eileen Kowalsky, Dawn Cappelli, and
Andrew Moore. Insider Threat Study: Illicit Cyber Activity in the Bank-
ing and Finance Sector. Technical Report 7, Carnegie Mellon Software
Engineering Institute, January 2005.

[4] Shari Lawrence Pfleeger, Joel B. Predd, Jeffrey Hunker, and Carla Bulford.
Insiders Behaving Badly: Addressing Bad Actors and Their Actions. IEEE
Transactions on Information Forensics and Security, 5(1):169–179, 2010.

[5] Andrew P Moore, Dawn M Cappelli, Thomas C Caron, Eric Shaw, and
Randall F Trzeciak. Insider Theft of Intellectual Property for Business
Advantage: A Preliminary Model. In 1st International Workshop on Man-
aging Insider Security Threats, pages 1–22, West Lafayett, 2009.

[6] Dawn M Cappelli, Andrew P Moore, and Randall F Trzeciak. The CERT
Guide to Insider Threats: How to Prevent, Detect, and Respond to In-
formation Technology Crimes (Theft, Sabotage, Fraud). Addison-Wesley
Professional, 2012.

[7] Yali Liu, Cherita Corbett, Ken Chiang, Rennie Archibald, Biswanath
Mukherjee, and Dipak Ghosal. Sidd: A framework for detecting sensitive
data exfiltration by an insider attack. In System Sciences, 2009. HICSS’09.
42nd Hawaii International Conference on, pages 1–10. IEEE, 2009.

[8] Annarita Giani, Vincent H Berk, and George V Cybenko. Data exfiltration
and covert channels. In Sensors, and Command, Control, Communications,
and Intelligence (C3I) Technologies for Homeland Security and Homeland
Defense V. Edited by Carapezza, Edward M.. Proceedings of the SPIE, vol-
ume 6201, page 620103, 2006.

[9] Deanna D Caputo, Greg Stephens, Brad Stephenson, Megan Cormier, and
Minna Kim. An empirical approach to identify information misuse by in-
siders. In Recent Advances in Intrusion Detection, pages 402–403. Springer,
2008.

[10] Boanerges Aleman-Meza, Phillip Burns, Matthew Eavenson, Devanand
Palaniswami, and Amit Sheth. An ontological approach to the document
access problem of insider threat. In Intelligence and Security Informatics,
pages 486–491. Springer, 2005.

[11] George Lawton. New technology prevents data leakage. Computer,
41(9):14–17, 2008.

[12] S. Charbonneau. The role of user-driven security in data loss prevention.
Computer Fraud & Security, 2011(11):5 – 8, 2011.

25

[13] Ian H. Witten, Alistair Moffat, and Timothy C. Bell. Managing Gigabytes:
Compressing and Indexing Documents and Images. Morgan Kaufmann,
1999.

[14] S. Schleimer, D.S. Wilkerson, and A. Aiken. Winnowing: Local Algorithms
for Document Fingerprinting. In Proceedings of the 2003 ACM SIGMOD
international conference on Management of data, pages 85–94. ACM, 2003.

[15] J.P. Kumar and P Govindarajulu. Duplicate and Near Duplicate Doc-
uments Detection: A Review. European Journal of Scientific Research,
32(4):514–527, 2009.

[16] Alejandro Hernández. Trend Micro Data Loss Prevention 5.2 Data Leakage
Through Certain HTTP/HTTPS Channels. Technical report, 2010.

[17] Jorge Blasco, Julio Cesar Hernandez-Castro, Juan E. Tapiador, and Ar-
turo Ribagorda. Bypassing Information Leakage Protection with Trusted
Applications. Computers & Security, 31(4):557–568, June 2012.

[18] Matt Blaze. A cryptographic file system for unix. In Proceedings of the 1st
ACM Conference on Computer and Communications Security, pages 9–16.
ACM, 1993.

[19] S. Lee, H.-R. Lee, S. Lee, and J. Kim. Drmfs: A file system layer for
transparent access semantics of drm-protected contents. Journal of Systems
and Software, 85(5):1058 – 1066, 2012.

[20] J.-S. Li, C.-J. Hsieh, and C.-Fu H. A novel {DRM} framework for peer-to-
peer music content delivery. Journal of Systems and Software, 83(10):1689
– 1700, 2010.

[21] A. Lazouski, F. Martinelli, and P. Mori. Usage control in computer security:
A survey. Computer Science Review, 4(2):81 – 99, 2010.

[22] Yang Yu and Tzi-cker Chiueh. Enterprise Digital Rights Management:
Solutions against Information Theft by Insiders. Technical report, Depart-
ment of Computer Science, Stony Brook University, 2004.

[23] Alapan Arnab and Andrew Hutchison. Digital rights management – an
overview of current challenges and solutions. In Proceedings of Information
Security South Africa (ISSA) Conference 2004. Citeseer, 2004.

[24] DE Bell and LJ LaPadula. Secure Computer Systems: Mathematical Foun-
dations and Model. Technical Report ESD-TR-73-278, Mitre Corporation,
1973.

[25] R. Anderson. Security Engineering: A Guide to Building Dependable Dis-
tributed Systems. Wiley, 2001.

[26] F. C. Chang, H. C. Huang, and H. M. Hang. Layered access control schemes
on watermarked scalable media. Journal of VLSI Signal Processing Systems
for Signal, Image, and Video Technology, 49(3):443–455, 2007.

26

[27] Y. H. Huang, K. H. Fan, and W. S. Hsieh. Message authentication scheme
for vehicular ad-hoc wireless networks without rsu. Journal of Information
Hiding and Multimedia Signal Processing, 6(1):113–122, 2015.

[28] H. Zhu. Structured and efficient password-based group key agreement pro-
tocol. Journal of Information Hiding and Multimedia Signal Processing,
5(4):649–665, 2014.

[29] Ralph C Merkle. A certified digital signature. In Advances in Cryptology-
CRYPTO89 Proceedings, pages 218–238. Springer, 1990.

[30] G Lawton. New Technology Prevents Data Leakage. Computer, 41:14–17,
2008.

[31] Z. Wu, Z. Xu, and H. Wang. Whispers in the hyper-space: High-
bandwidth and reliable covert channel attacks inside the cloud. Networking,
IEEE/ACM Transactions on, PP(99):1–1, 2014.

[32] Roman Schlegel, Kehuan Zhang, Xiao-yong Zhou, Mehool Intwala, Apu
Kapadia, and XiaoFeng Wang. Soundcomber: A stealthy and context-
aware sound trojan for smartphones. In NDSS, volume 11, pages 17–33,
2011.

27

	Introduction
	Related Work
	Data Chaining Trees and Adversarial Model
	Overview
	Application Scenarios
	Definitions
	Adversarial Model

	DCT Primitives
	Encryption and Decryption
	Key Derivation Function
	Read Nonce
	Read Data
	Write Data
	Update Encryption
	DCT Initialization
	Delete Data
	Automatic Node Update
	Concurrent Operations

	Complexity Analysis
	Encryption, Decryption, and Key Derivation
	Read Data
	Write Data
	Update Encryption
	DCT Initialization
	Delete Data
	Automatic Node Update
	Summary

	Hindering Data Extraction
	Empirical Evaluation
	Implementation and Experimental Setup
	System Overhead
	Adversary Overhead

	Conclusions

