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Abstract. Malware for current smartphone platforms is becoming in-
creasingly sophisticated. The presence of advanced networking and sens-
ing functions in the device is giving rise to a new generation of targeted
malware characterized by a more situational awareness, in which deci-
sions are made on the basis of factors such as the device location, the
user profile, or the presence of other apps. This complicates behavioral
detection, as the analyst must reproduce very specific activation condi-
tions in order to trigger malicious payloads. In this paper, we propose
a system that addresses this problem by relying on stochastic models of
usage and context events derived from real user traces. By incorporat-
ing the behavioral particularities of a given user, our scheme provides a
solution for detecting malware targeting such a specific user. Our results
show that the properties of these models follow a power-law distribu-
tion: a fact that facilitates an efficient generation of automatic testing
patterns tailored for individual users, when done in conjunction with a
cloud infrastructure supporting device cloning and parallel testing. We
report empirical results with various representative case studies, demon-
strating the effectiveness of this approach to detect complex activation
patterns.
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1 Introduction

Malware for smartphones is a problem that has rocketed in the last few years [1].
The presence of increasingly powerful computing, networking, and sensing func-
tions in smartphones has empowered malicious apps with a variety of advanced
capabilities [2], including the possibility to determine the physical location of
the smartphone, spy on the user’s behavioral patterns, or compromise the data
and services accessed through the device. These capabilities are rapidly giving
rise to a new generation of targeted malware that makes decisions on the basis
of factors such as the device location, the user’s profile, or the presence of other
apps (e.g., see [3–6]).
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The idea of behaving differently under certain circumstances was also
successfully applied in the past. For instance, Stuxnet [7] remained dormant
until a particular app was installed and used at certain location, having as a
target Iranian nuclear plants. Other malware has targeted governments and pri-
vate corporations—mostly in the financial and pharmaceutical sectors [8]. An-
other representative example of targeted malware is Eurograbber [9], a “smart”
Trojan targeting online banking users. The situational awareness provided by
smartphone platforms makes this type of attacks substantially easier and po-
tentially more dangerous. More recently, other examples of targeted malware
include FinSpy Mobile [10], a general surveillance software for mobile devices,
and Dendroid Remote Access Toolkit (RAT) [11], which offers capabilities to
target specific users.

A similar problem is the emergence of the so-called grayware [3], i.e., apps
that cannot be completely considered malicious but whose behavior may entail
security and/or privacy risks of which the user is not fully aware. For exam-
ple, many apps using targeted advertisements are particularly aggressive in the
amount of personal data they gather, including sensitive contextual information
acquired through the device sensors. The purpose of such data gathering activ-
ities is in many cases questionable, and many users might well disapprove of it,
either entirely or in certain contexts1.

Both targeted malware and grayware share a common feature that com-
plicates their identification: the behavior and the potential repercussions of ex-
ecuting an app might depend quite strongly on the context where it takes place
[12] and the way the user interacts with the app and the device [13]. We stress
that this problem is not addressed by current detection mechanisms implemented
in app markets, as operators are overwhelmed by the number of apps submitted
for revision every day and cannot afford an exhaustive analysis over each one
of them [14]. A possible solution to tackle this problem could be to implement
detection techniques based on dynamic analysis (e.g., Taintdroid [15]) directly
in the device. However, this is simply too demanding for battery-powered plat-
forms. Several recent works [16–19] have proposed to keep a synchronized replica
(clone) of the device virtualized in the cloud. This would facilitate offloading
resource-intensive security analysis to the cloud, but still does not solve one fun-
damental problem: grayware and targeted malware instances must be provided
with the user’s particular context and behavior, so the only option left would
be to install the app, use it, and expect that the analysis conducted over the
clone—hopefully in real time—detects undesirable behaviors. This is a serious
limitation that prevents users from learning in advance what an app would do
in certain situations, without the need of actually reproducing such a situation.

Related Work. Recent works such as PyTrigger [20] have approached the prob-
lem of detecting targeted malware in Personal Computers (PC). To do so, it

1 Classical examples include two popular games, Aurora Feint and Storm8, which
were removed from the Apple Store for harvesting data and phone numbers from
the user’s contact list and sending them to unknown destinations [2].
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is sought to trigger specific malware behaviors by injecting activities collected
from users (e.g., mouse clicks and keyword inputs) and their context. This ap-
proach cannot be adopted to platforms such as smartphones because the notion
of sensed context is radically different here. Other schemes, including the work
presented in [21–23, 13], do focus on smartphones but concentrate exclusively
on interactions with the Graphical User Interface (GUI) and are vulnerable to
context-based targeted attacks. Two works closer to our proposal are Context
Virtualizer [24] and Dynodroid [25], where a technique called context fuzzing
is introduced in the former and used in the latter. The main aim in [24, 25] is
to automatically test apps with real-world conditions, including user-based con-
texts. These tools, however, are intended for developers who want to learn how
their apps will behave when used in a real setting. Contrarily, our focus is on
final users who want to find out if they will be targeted by malicious or privacy-
compromising behaviors. Finally, other works such as CopperDroid [26] focus on
malware detection as we do, but with a static approach based on information
extracted from the manifest that, besides, does not consider the user context.

Contribution. In this paper, we address the problem of identifying targeted
grayware and malware and propose a more flexible approach compared to other
proposals to determining whether the behavior of an app is compliant with a
particular set of security and privacy preferences associated with a user. Our
solution is based on the idea of obtaining an actionable model of user behavior
that can be leveraged to test how an app would behave should the user execute it
in some context. Such a testing takes place over a clone of the device kept in the
cloud. This approach removes the need of actually exposing the device (e.g., we
let the device access only to fake data and not real one). More importantly, the
analysis is tailored to a given user, either generally or for a particular situation.
For example, a user might want to explore the consequences of using an app in
the locations visited during working days from 9 to 5, or during a planned trip.

Organization. Section 2 introduces the theoretical framework used to model
triggering patterns and app behavior. In Section 3, we describe the architecture
of our proposal and a proof-of-concept prototype, and discuss the experimen-
tal results obtained in terms of testing coverage and efficiency. In Section 4, we
discuss the detection performance with two representative case studies of gray-
ware and targeted malware instances. Finally, Section 5 concludes the paper by
summarizing our main contributions and describing future research directions.

2 Behavioral Models

This section introduces the theoretical framework used in our proposal (pre-
sented later in Section 4) to trigger particular app behaviors and determining
whether they entail security risks to the user. More precisely, we next present
models for the user-provided inputs, the resulting app behavior, and the mech-
anism used to assess potential risks.
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2.1 Triggering Patterns

Inputs provided by the user to his device constitute a major source of stimuli for
triggering certain app behaviors. We group such inputs into two broad classes
of patterns, depending on whether they refer to inputs resulting from the user
directly interacting with the app and/or the device (e.g., through the touch-
screen), or else indirectly by the context (e.g., location, time, presence of other
devices in the surroundings, etc.).

Usage Patterns Usage patterns model sequences of events resulting from the
actions of the user during his interaction with an app. Such events are internal
messages passed on to the app by the device, such as starting an activity or
clicking a button. We stress that our focus is on the events and not on the
actions that generate them, as the same event can be triggered through different
input interfaces (e.g., touchscreen and voice).

Let the following be a set of all possible events for all apps:

E = {e1, e2, . . . , en}. (1)

Thus, the interaction of a user with an app can be represented as an ordered
sequence:

u = 〈ε1, ε2, . . . , εk〉, εi ∈ E . (2)

We will refer to such sequences as usage traces. Interactions with an app at
different times and/or with different apps will result in different usage traces.

Context Patterns Apps may behave differently depending on conditions not
directly provided by the user, such as the device location, the time and date,
the presence of other apps or devices, etc. We model this using the widely ac-
cepted notion of context [27]. Assume that v1, . . . , vm are variables representing
contextual elements of interest, with vi ∈ Vi. Let the following be the set of all
possible contexts:

C = V1 × · · · × Vm. (3)

As above, monitoring a user during some time interval will result in a sequence:

t = 〈c1, c2, . . . , cl〉, ci ∈ C. (4)

We will refer to such sequences as context traces.

2.2 Stochastic Triggering Model

Usage and context traces are used to derive a model that captures how the user
interacts with an app or a set of apps. For this purpose, we rely on a discrete-time
first-order Markov process (i.e., a Markov chain [28]) M = (S,A,Π) where:
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– The set of states S is given by:

S = E × C = {s1, . . . , sN}. (5)

We will denote by q(t) ∈ S the state of the model at time t = 1, 2, . . . ,
representing one particular input event executed in a given context.

– The transition matrix is given by:

A = [aij ] = P [q(t+ 1) = sj |q(t) = si], (6)

where aij ∈ [0, 1] and
∑N
j=1 aij = 1.

– The vector of initial probabilities is given by:

Π = (πi) = P [q(1) = si], (7)

with πi ∈ [0, 1] and
∑N
i=1 πi = 1.

The model above is simple yet powerful enough to model user-dependant
behavioral patterns when interacting with an app. The model parameters can
be easily estimated from a number of usage and context traces. Assume that
O = {o1, o2, . . . , oT } is a sequence of observed states (i.e., event-context pairs)
obtained by monitoring the user during a representative amount of time. The
transition matrix can be estimated as:

aij =

∑T
t=2 P [q(t) = sj |q(t− 1) = si]∑T

t=2 P [q(t− 1) = sj ]
=

∑T
t=2 P [ot = sj |ot−1 = si]∑T

t=2 P [ot−1 = sj ]
, (8)

where both probability terms are obtained by simply counting occurrences from
O. The process can be trivially extended when several traces are available.

The model above should be viewed as a general modeling technique that
can be applied at different levels. Therefore, if one is interested in modeling
input events irrespective of their context, the set of states—and, therefore, the
chain—can be reduced to E . The same applies to the context, i.e., states could
be composed exclusively of time-location pairs.

Markov chains are often represented as a directed graph where vertices
represent states and edges between them are labeled with the associated tran-
sition probability. We will call the degree of a state, denoted by deg(si), to the
number of states reachable from s in just one transition with non-null probabil-
ity:

deg(si) = #{pij |pij > 0}. (9)

The degree distribution of a chain is given by

P(k) = P [deg(s) = k]. (10)
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2.3 App Behavior and Risk Assessment

An app interacts with the device by requesting services through a number of
available system calls. These define an interface for apps that need to read/write
files, send/receive data through the network, make a phone call, etc. Rather
than focusing on low-level system calls, in this paper we will describe an app
behavior through the sequence of activities it executes (see also [29]). Activities
represent high-level behaviors, such as for example reading from or writing into
a file, opening a network connection, sending/receiving data, etc. In some cases,
there will be a one-to-one correspondence between an activity and a system call,
while in others an activity may encompass a sequence of system calls executed
in a given order. In what follows, we assume that:

A = {a1, a2, . . . , ar} (11)

is the set of all relevant activities observable from an app execution.
The execution flow of an app may follow different paths depending on

the input events provided by the user and the context. Let σ = 〈σ1, . . . , σk〉 be
a sequence of states as defined above. We model the behavior of an app when
executed with σ as input as the sequence:

β(σ) = 〈αi, . . . , α〉, αi ∈ A, (12)

which we will refer to as the behavioral signature induced by σ.
Behavioral signatures constitute dynamic execution traces generated with

usage and context patterns specific to one particular user. Analysis of such traces
will be instrumental in determining whether there is evidence of security and/or
privacy risks for that particular user. The specific mechanism used for that anal-
ysis is beyond the scope of our current work. In general, we assume the existence
of a Risk Assessment Function (RAF) implementing such an analysis. For ex-
ample, general malware detection tools based on dynamic analysis could be a
natural option here. The case of grayware is considerably more challenging, as
the user’s privacy preferences must be factored in to resolve whether a behavior
is safe or not.

3 Targeted Testing in the Cloud

In this section, we first describe the architecture and the prototype implemen-
tation of a cloud-based testing system for targeted malware and grayware based
on the models discussed in the previous section. We then provide a detailed de-
scription of various experimental results obtained in two key tasks in our system:
obtaining triggering models and using them to test a cloned device.

3.1 Architecture and Prototype Implementation

A high level architectural view of our system is shown in Fig. 1. There are two
differentiated major blocks: (i) the evidence generation subsystem, and (ii) the
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Fig. 1: System architecture and main building blocks.

behavioral modeling and risk assessment subsystem. The first one extracts us-
age and context traces from the device and generates the stochastic triggering
model. This process is carried out by first cloning the user device in the cloud
and then injecting the triggering patterns over the clone. The second block ex-
tracts the behavioral signatures from the clone(s) and applies the RAF over
the evidences collected. We next provide a detailed description of our current
prototype implementation.

The experiments have been conducted using a smartphone and a virtual
mobile device in the cloud, both running Android OS 2.3. In particular, a Google
Nexus One is used for the physical device and an Android emulator [30] for the
clones. The device is instrumented with various monitoring tools that collect
user events, the context, and the device configuration and transmits them to the
cloud. For this purpose, we used a combination of logcat and getevent tools
from the Android Debug Bridge (ADB) [30].

Our proof-of-concept implementation builds on a number of previous
works for cloud cloning smartphone platforms [16–19] and for performing behav-
ioral analysis [31, 15]. In the cloud end, a middleware implemented in Python

processes all inputs received, generates the associated models, and runs the sim-
ulation. We inject events and contexts into apps with a combination of a testing
tool called Monkeyrunner [30] and the Android emulator console [30].

As for the behavioral signatures obtained in the virtual device, we have
used an open source dynamic analysis tool called Droidbox [31] to monitor var-
ious activities that can be used to characterize app behavior and tell apart
benign from suspicious behavior [2]. Droidbox is based on TaintDroid [15]
and provides a variety of data about how an app is behaving. We chose 20
relevant activities to characterize app behavior (see Table 1), which include
information about calls to the crypto API (cryptousage), I/O network and
file activity (opennet, sendnet, accessedfiles, etc.), phone and SMS activity
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(phonecalls, sendsms), data exfiltration through the network (dataleak), and
dynamic code injection (dexclass), among others.

Activities

• sendsms • servicestart • phonecalls • udpConn • cryptousage
• permissions • netbuffer • activities • dexclass • activityaction
• dataleak • enfperm • opennet • packageNames • sendnet
• recvs • recvnet • recvsaction • fdaccess • accessedfiles

Table 1: Set of activities (A) monitored from an app execution and used to
characterize its behavior.

Finally, we implemented a simple yet powerful RAF (Risk Assessment
Function) for analyzing behavioral signatures. Due to space reasons, we only
provide a high-level description of this mechanism. In essence, the scheme is
based on a pattern-matching process driven by a user-specified set of rules that
identify behaviors of interest according to his security and privacy preferences.
Such rules are first-order predicates over the set of activities A, allowing the user
to specify relatively complex patterns relating possible activities in a signature
through logical connectives. Regardless of this particular RAF, our prototype
supports the inclusion of standard security tools such as antivirus packages or
other security monitoring components. These can be easily uploaded to the clone
and run while the testing carries on.

3.2 Experiment I: The Structure of a Triggering Model

In this first experiment, we monitored all events triggered by a user executing
several apps on his device during a representative amount of time. More precisely,
we collected traces from the user while interacting with the OS and several apps
such as Facebook, YouTube, and Google Maps. We assumed that the events col-
lected were representative enough, as user behavior is generally very redundant.
The resulting event set contained about |S| =8K states, distributed over various
observations traces of around |O| = 37K states. We then used such traces to
estimate the transition matrix using Eq. (8). The obtained Markov chain turned
out to have various interesting features. For example, its degree distribution fol-
lows a power-law of the form P(k) = k−α (see Fig. 2) with α = 2.28 for k ≥ 2.
This suggests that events and contexts follow a scale-free network [32], which is
not surprising. Recall that an edge between two nodes (events) indicates that
the destination event occurs after the source event.

A power-law distribution such as the one shown in Fig. 2 reveals that
most events have an extremely low number of “neighbors”; i.e., once an event
has happened, the most likely ones coming next reduce to about 100 out of the
8K possible. Only a small fraction of all events are highly connected, meaning
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that almost any other event is possible to occur after them. For instance, in our
traces we found that over half of the states were only connected to just one state.
In contrast, one state was found to be connected to more than 4K other states.

Degree
D
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bu
tio
n

101 102 103100 103.810
−4

10
−3

10
−2

10
−1

10
0

(a) (b)

Fig. 2: (a) Markov model representing contextual and kernel input events for a
user interacting with an Android platform; (b) Degree distribution, in log-log
scale, of the model in (a) as defined in Section 2.2.

These results make sense due to a simple reason: input and context events
do depend quite strongly on those issued immediately before. For example, the
probability of moving from one place to another nearby is much higher than to
a remote place. The same applies to sequences of events, where the probability
distribution of the next likely event reflects the way we interact with the app.
As we will next see, this structure makes testing extremely efficient.

3.3 Experiment II: Speed of Testing

We performed a number of experiments to measure how fast input events can
be injected into an Android application sandbox. Such events include not only
input events, but also a variety of context traces comprising phone calls, SMS
messages, and GPS locations. We recorded and analyzed the time taken by both
the sandbox and the operating system to process each injected event. Our results
suggest that the time required to process injected states (input or context events)
varies quite strongly depending on the type of state (see Table 2). For instance,
it takes around 0.35 seconds, on average, to inject an SMS and process it trough
the operating system. In contrast, geolocation events can be injected almost 100
times faster. We also observed a significant difference between the capabilities of
the sandbox and the OS running on top of it. For instance, while the sandbox is
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able to process about 2800 geolocation states per second, the OS can only absorb
around 100 each second. We suspect that this throughput might be improved by
using more efficient virtual frameworks, such as for example Qemu for Android
x862 or ARM-based hardware for the cloud3.

Automatic Injection

Injected Event Emulator Layer App Layer

Sensor event 7407.66 events/s 1.26 events/s

Power event 361.77 events/s 19.16 events/s

Geolocation event 2810.15 events/s 111.87 events/s

SMS event 451.27 events/s 0.35 events/s

GSM call/cancel event 1726.91 events/s 0.71 events/s

Human Generated

Event Type Average Peak

Usage patterns 5 events/s 10 events/s

Context patterns 10 events/s 25 events/s

Table 2: Event injection rates for different types of events over a virtualized
Android device (top), and rates generated by real users based on profiling 67
apps [33] (bottom).

For comparison purposes, the lower rows in Table 2 show the average and
peak number of events generated by human users, both for usage (e.g., touch
events) and context events, as reported in previous works [33].

3.4 Experiment III: Coverage and Efficiency

We finally carried out various experiments to evaluate the performance of our
proposal. Our main aim here was measuring the time required to reach an accu-
rate decision by means of simulation. More precisely, we simulated an injection
system configured with randomly generated u and t patterns and with different
number of states: |S| = 100, 1000, and 4000.

The configuration of each experiment was based on the findings discussed
in previous sections, as detailed bellow. First, we generated two types of Markov
model chains: (i) one random scale-free network of events using a preferential
attachment mechanism as defined by Barabási-Albert (BA) [34], and (ii) another
random network following the well-known Erdős-Rényi (ER) model [35]. Then,
we simulated a user providing inputs to a device together with its context at a
rate of 10 events per second. We chose this throughput as it is a realistic injection
rate (see Table 2).

2 www.android-x86.org/
3 http://armservers.com/
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In each experiment, we generated a number of random Markov chains and
calculated the cumulative transition probability covered when traversing from
one state to another of the chain for the first time. Formally, let:

w = 〈si1 , si2 , . . . , sin〉, sij ∈ S, (13)

be a random walk over the chain, with aijij+1
> 0 ∀ij , and let:

T (w) = {(sij , sij+1
) | sij ∈ S \ {sin}}, (14)

be the set of all transitions made during the random walk. We define the cov-
erage of w as the amount of transitions seen by w, weighted by their respective
probabilities and normalized to add up to one, i.e.:

Coverage(w) =
1

N

∑
(p,q)∈T (w)

apq. (15)

The coverage is used to evaluate both the efficiency and the accuracy of
our system. On the one hand, it can be used to measure the amount of a user’s
common actions triggered given a limited period of testing time. Additionally,
it also shows how fast the system tests the most common actions. Results for
sets of events of various sizes are shown in Fig. 3, where the curves have been
averaged over 10 simulations. The results show that the coverage reached when
testing networks of sizes |S| = 100, 1000, and 4000 states is very satisfactory.
Such a good performance is related to the scale-free distribution of states through
time, since this property allows to test the most common actions performed by
the user very rapidly. Thus, a coverage above 80% is reached in less than two
minutes for 100 states, and in approximately 1 hour for 4000 states.

It is important to emphasize that the coverage reported in Fig. 3 corre-
sponds to one test sequence randomly drawn according to the user behavioral
model. If the process is repeated or carried out in parallel over various clones,
other test sequences may well explore behaviors not covered by the first one. This
is illustrated in Table 3, where we show the total testing coverage as a function
of the number of clones tested in parallel, each one provided with a different
input sequence. Thus, two hours of testing just one clone results in a coverage
slightly above 84%. However, if five clones are independently tested in parallel,
the overall result is a coverage of around 93% of the total user behavior. This
time-memory trade-off is a nice property, allowing to increase the coverage by
just testing multiple clones simultaneously rather than by performing multiple
test over the same clone.

Reaching a 100% coverage is, in general, difficult due to the stochastic
nature of the models. This is not critical, as those behavioral patterns that are
left unexplored correspond to actions extremely unlikely to be executed by the
user. In practical terms this is certainly a risk, but one relatively unimportant
as the presumably uncovered malware instance would not activate for this user
except with very low probability.
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Fig. 3: Efficiency and accuracy of the decision for a Barabási-Albert and Erdős-
Rényi network model.

Number of parallel clones
1 2 3 4 5 6 7 8 9 10

10 min. 42.2% 60.6% 68.8% 73.8% 76.9% 79.2% 81.9% 81.8% 82.5% 83.4%

60 min. 79.3% 86.6% 89.1% 90.2% 90.5% 91.1% 91.3% 91.5% 91.7% 95.0%

120 min. 84.3% 87.2% 88.1% 88.5% 93.3% 93.4% 93.6% 93.8% 93.8% 93.9%

Table 3: Testing coverage when running multiple parallel clones given a limited
testing time for a network of |S| = 4000 states.

4 Case Studies

In this section, we present two case studies illustrating how the injection of user-
specific behavioral patterns can contribute to revealing malware with targeted
activation mechanisms. We cover dormant and anti-analysis malware, as these
scenarios constitute representative cases of targeted behaviors in current smart
devices [2]. For each case, we first provide a brief description of the rationale
behind the malware activation condition and then discuss the results obtained
after applying the injection strategy presented in this paper. In all cases, the
evaluation has been conducted by adapting an open source malware called An-
drorat (Android Remote Access Tool, or RAT) [36] and incorporating the specific
triggering conditions.
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4.1 Case 1: Dormant Malware/Grayware

Piggybacked malware [37] is sometimes programmed to remain dormant until a
specific situation of interest presents itself [38]. This type of malware is eventually
activated to sense if the user context is relevant for the malware. If so, then some
other malicious actions are executed. For instance, a malware aiming at spying a
very specific industrial system, such as the case of Stuxnet, will remain dormant
until the malware hits the target system. Similarly, in a Bring-Your-Own-Device
(BYOD) context, malware targeting a specific office building can remain dormant
until the device is near a certain location.

Typically, malicious apps are activated when the BOOT COMPLETED event
is triggered regardless of the context of the infected device. A recent study on
Android malware [38] suggests that the tendency is shifting towards more so-
phisticated activation triggers so as to better align with the malware incentives
and the pursued goals. This results in a variety of more complex activation con-
ditions, such as those shown in Table 4.

Wake-up conditions

User presence USB connected, screen-on action, accelerator changed, etc.

Location Location change event, near an address, leaving an area, etc.

Time A given day and time, after a certain period of time, etc.

Hardware Power and LED status, KEY action, LOCK event, etc.

Configuration Apps installed, a given contact/phone number in the agenda, etc.

Table 4: Typical wake-up conditions for malware activation.

We instrumented Androrat to activate the RAT component only when the
device is in a certain location. We use a mock location near the Bushehr nuclear
plant, simulating a possible behavior for a Stuxnet-like malware. Specifically, the
RAT is only activated when the device is near the location: 28.82781 ◦ (latitude)
and 50.89114 ◦ (longitude). Once the RAT is activated, we send the appropri-
ate commands to exfiltrate ambient and call recordings captured through the
microphone, the camera, and the camcorder.

For testing purposes, we built a symbolic model representing the abstract
geographic areas of a given user working at the Bushehr plant. Fig. 4 represents
the Markov Model chain for the different areas and the transitions between them.
For instance, the model represents a user traveling from HOME (cH) to WORK
(cW ) with a probability of P (cH |cW ) = 0.7.

Given the above model, we then injected testing traces drawn from the
chain into the sandbox instrumented with Androrat. The sandbox was configured
with a generic RAF aiming at identifying when operations involving personal
information occur together with network activity. The results show how the
malware is not activated until we start injecting mock locations. A few seconds



14 G. Suarez-Tangil, M. Conti, J.E. Tapiador, P. Peris-Lopez

Fig. 4: Markov chain for the location.

after the first injection, the behavioral signature collected reported, as expected,
both data leakage (dataleak) and network activity (sendnet).

We next defined an alternative scenario in which an app accesses the user
location and sends an SMS to one of his contacts whenever he is leaving a certain
region, such as for instance WORK (cW ). To this end, we implemented an app
and tested it against three users with different contexts and concerns about their
privacy. The first user has strict privacy policies and visits very frequently the
location cW . The second user has the same policy as the first one but has never
visited such a location. Finally, the last user visits cW as well but has a more
flexible privacy policy. For the sake of simplicity, we used the same triggering
model described in the previous example for users one and three (see Fig. 4),
while the second user has a different Markov chain. Results show that:

– For the first user, the behavioral signature reported data leakage activity
(dataleak) as well as SMS activity (sendsms). As both are in conflict with
this user’s privacy preferences, this is marked as undesirable behavior.

– In the case of the second user, the model injects locations other than those
triggering the grayware component. Consequently, no significant behavioral
signature is produced.

– Finally, the events injected for the third user do trigger the grayware com-
ponent, resulting in data leakage and SMS activity. However, as these are
not in conflict with his privacy preferences, no alert is issued.

This example reinforces the view that not only malware activation can be
user specific, but that the consequences of such a malware may also be perceived
very differently by each user.

4.2 Case 2: Anti-analysis Malware

Malware analysis is typically performed in a virtual sandbox rather than in a
physical device due to economic and efficiency factors [2]. These sandboxes of-
ten have a particular hardware configuration that can be leveraged by malware
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instances to detect that they are being analyzed and deploy evasion counter-
measures [11], for example by simply not executing the malicious payload if
the environment matches a particular configuration. Sandboxes for smartphone
platforms have such artifacts. For instance, the IMEI, the phone number, or
the IP address are generally configured by default. Furthermore, other hardware
features such as the battery level are typically emulated and kept indefinitely at
the same status: e.g., AC on and Charging 50%. Table 5 summarizes some of
these features in most Android emulators along with their default value.

HW feature Default value

IMEI 000000000000000

IMSI 012345678912345

SIM 012345678912345

Phone Number 1-555-521-PORT (5554)

Model Number sdk

Network Android

Battery Status AC on Charging 50%

IP Address 10.0.2.X

Table 5: Default hardware configuration for Android emulator.

Hardware features such as those described above can be set prior to
launching the sandbox. This will prevent basic fingerprinting analysis, for ex-
ample by setting random values for each execution. However, smarter malware
instances might implement more sophisticated approaches, such as waiting for
a triggering condition based on a combination of hardware changes. Motivated
by this, we modified Androrat to activate the RAT component only after AC
is off and the battery status is different from 50%. Once the RAT is activated,
we send appropriate commands to exfiltrate some personal information from the
device such as SMSs, call history, etc.

In principle, there are as many triggering conditions as combinations of
possible hardware events. Although our framework support injection of all pos-
sible hardware events via the Android emulator console [30], for simplicity we
restricted our experimentation to the subset of power-related events described
in Table 6.

Based on the different power states, we built a model of the battery usage
extracted from an actual device when used by a real user. The resulting model
is shown in Fig. 5. We then tested Androrat against this model generated using
the same RAF configuration used in previous cases. The results show that the
behavioral signature not only reported dataleak and sendnet, but also file
activity (accessedfiles), thus confirming that the malware activated as it failed
to recognize its presence in a sandbox.
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status health present AC capacity

unknown
charging
discharging
not-charging
full

unknown

0− 100%

good
overheat false off
dead true on
overvoltage
failure

Table 6: Different hardware states for power status of the device.

Fig. 5: Markov chain for the battery status.

5 Conclusions

The problem of detecting targeted malware via behavioral analysis requires the
ability to reproduce an appropriate set of conditions that will trigger the mali-
cious behavior. Determining those triggering conditions by exhaustively search-
ing through all possible states is a hard problem. In this paper, we have proposed
a novel system for mining the behavior of apps in different user-specific contexts
and usage scenarios. One of our system’s main aims is providing the testing en-
vironment (replicas in the cloud) with the same conditions than those the actual
device is exposed to. Our experimental results show that modeling such con-
ditions as Markov chains reduces the complexity of the search space while still
offering an effective representation of the usage and context patterns. In essence,
our system is able to trigger a targeted malware as long as: (i) it also activates
in the device; and (ii) the user behavior is appropriately modeled. However, we
also anticipate that a more sophisticated adversary could exploit some features
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of our model to evade detection. This weakness will be further explored and
addressed in future work.

Our approach represents a robust building block for thwarting targeted
malware, as it allows the analyst to automatically generate patterns of input
events to stimulate apps. As the focus of this paper has been on the design of
such a component, we have relied on ad hoc replication and risk assessment com-
ponents to discuss the quality of our proposal. We are currently extending our
system to support: (a) a replication system to automatically generate and test
clones of the device under inspection; and (b) a general framework to specify risk
assessment functions and analyze behavioral signatures obtained in each clone.
Finally, in this paper we have not discussed the potential privacy implications
associated with obtaining user behavioral models. Even if such profiles are just
used for testing purposes, they do contain sensitive information and must be
handled with caution. This and other related privacy aspects of targeted testing
will be tackled in future work.
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