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1 Introduction

Spam, or Unsolicited Bulk Email, is a big problem in nowadays internet. Recent studies
report that spam accounts for more than 90% of the worldwide email traffic [40]. Spam is
not only annoying for users, who receive content they did not request, but is also a burden
for the whole email delivery infrastructure, that needs to keep delivering legitimate emails
with a short delays, but also make sure that unsolicited messages are detected and blocked.

Spam can have different goals, from carrying out scams to spread malware with ma-
licious email attachments. However, one of the most common types of spam is the one
that promotes e-commerce sites selling illicit goods, such as pharmaceutical products or
counterfeit watches and accessories. The e-commerce sites selling such products present
the same functionalities of popular legitimate sites (e.g., Amazon), and offer customer ser-
vice, daily deals, and even refunds if the user is not satisfied. The reason of this is that
the cybercriminals behind such sites want to appear as legitimate as possible. Also, unlike
what people commonly think, these sites are not scamming their users, and the purchased
goods are actually delivered to the recipients [30, 36]. Whether the drugs produces by
these companies are equivalent to the branded ones or not is an open question.

Large spam e-commerce sites offer affiliate programs (partnerka in Russian) [51]. People
who join these affiliate programs send spam through their own email delivery infrastruc-
tures, and receive a cut of the revenue in exchange for their services. Past research showed
that spam e-commerce sites are quite profitable, with estimates going from $300,000 to
$1 Million a month for a large affiliate site [29, 30]. The operations of spam e-commerce
involve parties located in most parts of the world, from the domain registrars, to the host-
ing providers, to the banks processing the payments [36]. For this reason, although many
countries have good anti-spam laws, effectively fight them on the law side is hard.

Nowadays, most of worldwide spam is sent by botnets, which are networks of compro-
mised computers that act under the control of a single entity, the so called botmaster.
Recent reports show how botnets are responsible for 85% of worldwide spam [59]. Botnets
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provide a convenient infrastructure for cybercriminals, because they combine the best of
two worlds: Internet worms and IRC bots [45]. First generation botnets worked just like
Internet worms. They would infect a machine by exploiting a known vulnerability, and
start scanning the network for more vulnerable hosts. Also, similarly to IRC bots, infected
machines would join an IRC server where the botmaster could give them orders. Botnets
are also used for a variety of malicious activities, such as stealing personal information,
running denial of service attacks, and solving captchas.

Security researchers have spent a lot of efforts in disrupting botnets and detecting spam.
On the other hand, spammers and botmasters constantly come up with more sophisticated
techniques that allow them to avoid detection. In the rest of this paper, I analyze this arms
race, focusing on the efforts by both communities. I also conclude look at some unexplored
research areas that might give good results on fighting spamming botnets in the future.

2 The evolution of botnets

Since they first became a threat, in the mid-2000s, botnets evolved a lot, to keep up with
the security research being conducted to disrupt them, and make sure their operation could
continue. This evolution happened in two fields: the structure of the botnets, and the way
they propagate their infections.

2.1 The evolution of botnet structures

IRC botnets As mentioned before, the first botnets borrowed characteristics from IRC
bots. Therefore, after being infected, a bot would connect to an IRC server, join a specific
channel, and wait for orders [17, 18, 45].

These botnets did not use a lot of sophistication for hiding their actions. They usually
used a password to protect the IRC channel where the botmaster would give the orders,
but both the server name and the password would be in clear in the malicious binary.
Therefore, researchers could retrieve this information, and join the channel to learn im-
portant information about the botnet. As an alternative, researchers could sinkhole the
DNS traffic asking for the malicious domains, so that the infected machines would connect
to them instead of going to the Command and Control server (C&C from now on) [45].
Another weakness of this model is that the C&C traffic used the IRC protocol, which is
easy to detect and monitor.

Proprietary botnets To avoid using known protocols and make their activity less evi-
dent, botmasters started to use proprietary, encrypted protocols for their C&C traffic [56].
This makes botnet infiltration harder, but researchers can still reverse engineer the proto-
col, create software that implements it, and join the botnet. Also, since the infrastructure
still uses a single domain, sinkholing is still possible.

2



Multiple tier botnets To make their infrastructure more resilient to attacks, botmas-
ters started developing multiple-tier botnets [55]. In this architecture, the bots, instead of
contacting the C&C server directly, contact one of many proxies, that then forward their
request to the C&C server. By doing this cybercriminals make sure that, even if researchers
took control of a limited number of proxies, the botnet would still be operational.

In addition, botmasters developed a new technique that gives them even more reliability
on their C&C infrastructure: Fast Flux [26, 41]. This technique is similar to the ones
involved in Round Robin DNS and the ones used by Content Delivery Networks, and its
goal is to assign a fast-changing number of IP addresses to the domains used by the botnet
C&C infrastructure. By doing this, the botmaster ensures that even if a very small number
of proxies would survive a takedown, the botnet would still be operational.

Even if the C&C infrastructure now uses multiple domains, it is still possible for the
researchers to sinkhole or blacklist them.

Domain Generation Algorithms To mitigate the disadvantages of having a limited
number of domains for the C&C infrastructure, cybercriminals developed algorithms that
allow both the bots and the C&C to generate domains on the fly. These algorithms, called
Domain Generation Algorithms (DGA), are typically time-sensitive, and, at any point in
time, tell bots at which domain to find the C&C server (or one of the proxies associated
to it) [55]. What the botmaster has to do is registering the domains that will be used in
the future, and make sure his infrastructure will respond to the bots at the right time.

Of course, researchers could reverse engineer the domain generation algorithm, and
register the domains before the botmaster does. A countermeasure to this is making
the DGA non-deterministic, for example by using information taken from social network
trending topics.

Peer-to-peer botnets Another evolution is to make the botnet peer-to-peer [33, 54].
In this architecture, another level of relayers is deployed between the bots and the proxies.
Typically, those bots that don’t have a public IP (i.e., are behind a NAT) act as regular
bots, while those that have a public IP act as relayer bots. Regular bots find the nearest
relayer by implementing some sort of Overnet protocol, which is typical of peer-to-peer
networks (e.g., Kademlia. A problem of this approach is that the botmaster gives up the
control on a critical part of his infrastructure (i.e., the relayers). Researchers could reverse
engineer the C&C protocol and infiltrate the botnet by pretending to be a relayer. This
would allow them to collect a wealth of information about the botnet, for example what
spam templates are delivered to the bots.

2.2 The evolution of the botnet infection model

Not only the botnet structure changed over time, but also the infection model the botmaster
uses to gain control of more machines evolved.
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At the beginning, bots were behaving like Internet worms [22]. This means that an
infected machine would scan for more vulnerable hosts in her network, and try to propagate.
This approach became less and less used over time, with Conficker being the last large
botnet using it in 2008.

The next step has been to use bots that did not propagate on their own anymore. In
this phase, the main channels of infections were two:

• Sending malicious binaries through spam emails, and luring victims into clicking on
them

• Setting up malicious web pages that tried to exploit vulnerabilities in the victim’s
browser and download the malicious binary (i.e., a drive-by-download attack).

Nowadays, the trend botmasters follow to deploy their bots is to use third party services.
These services typically use pre-existing botnets to download additional components (i.e.,
bots) on the infected machines, for a fee [7].

3 The evolution of Botnet and Spam mitigation

After studying how botnets evolved to avoid detection, let’s have a look at what techniques
researchers developed to detect infected machines and malicious servers, and mitigate their
effects.

There are a number of vantage points researchers can leverage to make their analysis,
each one providing different information, and each one allowing to take different counter-
measures. We analyze each one of them in the following paragraphs.

Host based detection A vantage point researchers can leverage is the victim host. By
looking at the binaries that get installed, one can try to infer whether they are malicious
or not.

Traditional anti-viruses build signatures (i.e., regular expressions) from known mal-
ware, and look for the presence of those signatures in the binaries the user downloads.
This technique is not very robust, and previous work showed how the detection can be
fooled by simple obfuscations such as inserting NOP instructions and performing code
transpositions [11, 13].

Remaining in the field of static analysis, a better approach is to extract semantic infor-
mation from malware, and look for the same semantics in new samples while performing
detection [11, 12]. The problem here is that program equivalence is an undecidable prob-
lem. Therefore, even if the proposed systems can cover a number of variations that model
the same behavior, it is not guaranteed that this will work for any possible sample. In
addition, modern malware comes packed and decrypts itself at runtime, and this makes
static analysis difficult.

Dynamic analysis makes this kind of analysis easier, because one can look at the pro-
gram once the decryption has happened. The techniques that have been proposed include

4



modelling the behavior of a program based on the system calls it executes [32], moni-
toring programs accessing sensitive information while they should not [67], or looking at
the buffers allocated by a malware sample to reconstruct the C&C protocol it uses [8].
The problem of dynamic analysis are, again, that program equivalence is an undecidable
problem. In addition, running large amounts of malware samples takes time and resources.

Malicious web pages detection Another approach researchers used is looking at ma-
licious web pages that try to compromise the victim’s browser and download a piece of
malware. These attacks are typically performed by malicious Javascript scripts. To detect
such scripts, various approaches have been used:

• Using machine learning to detect legitimate and malicious pages. The features
researchers used include how many redirections the web page uses, or how much
Javascript code is obfuscated. Detection can be done either offline, by visiting the
page with an emulated browser [15], or online, by instrumenting the victim browser,
and stopping executing a script once one detects it’s malicious [16, 25].

• Another approach is to look at the changes in the victim’s system when she visits a
malicious page. The creation of files or the changes of registry keys are indicators of
a compromise [43].

• The last possibility is to look at typical attack patterns and flag as malicious any
script that shows those patterns [49].

The problem with these techniques is mostly that they rely on a static model to detect
malicious scripts. Therefore, they could miss newer attacks cybercriminals might come up
with.

Command and Control based detection Other work operated at the Command and
Control level. The goal is typically to learn important information about the botnet, or to
attempt a takedown.

For older botnets, that were using IRC, infiltration was easy. All that researchers had to
do was joining the IRC server and a particular channel, and look for the commands being
issued by the botmaster [45]. Nowadays, this is not possible anymore, and researchers need
to reverse engineer the C&C protocol first. A way of doing that is by active probing [10].
This type of techniques enable botnet infiltration, which means that researchers can create
a piece of software that behaves exactly like a bot, but does not execute any malicious
activity[9, 33, 54] .

Another possibility, for those botnets that use it, is to reverse engineer the DGA used by
the botnet. By doing this, researchers can register the C&C domains before the botmasters
do, and impersonate the Command and Control server [55].

Another possible way of interacting with the C&C infrastructure is by setting up hon-
eypots. Honeypots are virtualized environments where it is possible to run malware, and
monitor its activity [28]. Monitoring the activity of the bots can give insights on what the
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Command and Control IP addresses and domains are. This information can be used for
blacklisting them [57] or for performing botnet takedowns [56].

Honeypots, however, come with some problems. First of all, malware might detect that
it is running in a virtualized environment, and do perform any malicious activity [4]. On the
other hand, while running malware, researchers need to make sure that their environment
is constrained enough that they cannot damage anybody.

DNS based detection As most Internet services, botnets use the DNS infrastructure
to easily connect the different components of their infrastructure (i.e., the bots and the
Command and Control server). Therefore, by looking at the interaction between bots
and DNS servers one can learn important information about the botnet, such as what IP
addresses are associated to infected machines. This can be done by sinkholing the domains
used by a botnet’s C&C infrastructure. By doing this, the infected machines will contact
the researchers instead of the botmaster, and it will be possible to enumerate them [18].
Another option is to look in local DNS servers for the presence of cached results associated
to malicious domains [45]. If such records are found, that is an indicator of the presence
of infected machines in the network.

DNS activity can also be used to detect domains that use Fast Flux. Such domains
present very different features than legitimate ones. For example, the IP addresses returned
for a query to a Fast Flux domain will belong to very different networks in various parts
of the world, the TTL will be low, and two subsequent queries will return different results.
Previous work focused on building classifiers to detect such domains [26, 27, 41]. Once
a Fast Flux domain is detected, network administrators can blacklist it to avoid their
machines to connect to the C&C infrastructure.

Another approach is to detect malicious domains by observing patterns in which do-
mains are queried. Proposed systems use local data from Recursive DNS servers [2, 6], or
a more comprehensive view by looking at the Top Level Domain (TLD) level [3].

SMTP based detection Another vantage point researchers can operate at are SMTP
servers. Once spamming bots sent their emails, various techniques can be used on the
SMTP server to figure out whether that email is spam or not.

The first way of detecting spam is by looking at the content of the emails. Traditional
spam detection relies on rules. Similarly to what happens for anti-viruses, these rules
are not robust enough, since the nature of spam changes often. Also, having a binary
decision value (i.e., spam or ham) does not help in many cases. The reason is that having
a misclassified ham email affects the user way more than having a misclassified spam
email. For this reason, introducing a confidence level, instead of a binary decision, allows
the server administrator to set how sensitive one wants to be while doing spam detection.
Method based on a confidence measure include Bayesian filtering [1, 50] and using Support
Vector Machines (SVM) [19]. These approaches consider an email as spam if it contains
words that are highly discriminative of spam content. The problem of these techniques is
that attackers can include words that are typical of good email in their spam messages,
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and bypass the filters [31, 38].
Other content analysis techniques include building reputation systems according to

features in the received emails [24], building templates from bot-generated spam and use
them for spam detection [42], or studying the URLs contained in spam emails [65, 39, 61].
The problem with all these approaches is that content analysis is expensive, and mailservers
cannot afford to run these techniques on every email they receive. For this reason, several
approaches that try to prioritize email, and apply content analysis only when it is strictly
necessary, have been proposed [60, 62, 63].

A more lightweight spam detection technique is IP blacklisting. The most common type
of services providing this functionality are DNS-based blacklists. Mail servers can query
these services over DNS to know whether an individual IP is a know spammer or not. The
problem with these services is mainly their low coverage. Previous work showed that the
coverage of DNS-based blacklists spans from 20% to 90% [46, 52]. One of the reasons, is
that most bot machines have dynamic IPs and, therefore, blacklisting them is ineffective as
soon as the bots obtain a new IP. Better approaches looked at assigning an IP reputation
to networks based on how many blacklisted IPs are in a certain network [47, 53, 44], or
learning the behavior of blacklisted IPs to flag other IPs behaving in a similar way [48].

Another type techniques that can be employed on the SMTP server side is based on
policies. Greylisting is a popular technique that relies on the fact that bots will not retry
sending an email when they receive a non-critical error from the server, while legitimate
clients will [37]. Other approaches bring digital signatures to email headers, to make sure
that the address that sent an email is really who it claims to be [35].

Social network based detection As social networks became more popular, malicious
users started using them to spread spam. A common trend on social networking sites is to
see fake accounts that are used by bots to post malicious content. Previous work focused
on detecting these fake profiles by looking at typical features such as how many friends a
certain profile has, or how similar the content it posts is [5, 34, 58, 66].

A new trend for botmasters, however, is to compromise legitimate accounts and use
them to spread malicious content. Recent work shows how this trend is growing [20], and
this will be the next field to be tackled by researchers for sure.

Network edge based detection The last vantage point that can be leveraged by re-
searchers is the network edge. By observing the communication between infected machines
inside the network and Command and Control servers outside the network, it is possible
to learn important information about botnets, and develop effective countermeasures.

A direction researchers looked at is detecting successful infections by monitoring net-
work traffic [22]. In this research work, infections are modeled as a set of flows that picture
the different steps of the infection. Although interesting, this model cannot be applied
anymore today. The reason is that years ago botnet infections followed a well defined,
worm-like behavior (i.e., scanning for victims, exploitation, download of an egg, connec-
tion to the command and control), which is not widely used anymore.
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More recent research proposed to look at the correlation between Command and Control
messages and malicious activity. The idea is that any time a bot will receive a command,
it will perform a malicious activity. By looking at this correlation, it is possible to detect
bots without any previous knowledge of the botnet [21]. The problem is how to identify
Command and Control traffic. Older approaches were looking for commonly-misused, well
known protocols (e.g., IRC) [23]. However, this type of techniques are not applicable any-
more. More recent work looks for malicious activity first, and then looks for the interaction
that came before to find the actual commands [64].

Another proposed techniques is to look at what servers are contacted by machines the
network administrator knows are infected, and looking for more machines contacting the
same servers to have a broader knowledge of the bot population in the network [14].

4 Conclusions

In this writeup, I talked about the arms race between cybercriminals and security re-
searchers. In the future, this arms race will continue. Future botnets will likely be more
sophisticated than the current ones, and detecting the hosts involved in malicious activ-
ity will be harder. However, a functional botnet has to interact with legitimate services
(e.g., DNS or SMTP). Botmasters cannot obfuscate this communication, since it has to be
understood by a legitimate third party. In addition, bots interact with legitimate services
in an automated fashion. Therefore, it is likely possible to distinguish between bots and
legitimate users using a service, and leverage this information for botnet detection and
mitigation.
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