COMP1008
Classes
and References

©2006, Graham Roberts

Reading

* You should be reading:
— Part | chapters 6,9,10

+ And browsing:
— Part IV chapter 30

©2006, Graham Roberts 3

Class

+ Defines the structure and behaviour of an instance
object.

— A collection of instance variables to represent the state of the
object.

— A collection of instance methods, which can be called on the
object.

« Acts as a template or blueprint.
« An object is an instance of one (and only one) class.
+ Aclass may have many instance objects.

©2006, Graham Roberts 5

Agenda

+ Defining simple classes

« Instance variables and methods

» Objects

» Basic UML notation for classes and objects
» Object references

©2006, Graham Roberts 2

Classes & Objects

» We want to design programs in terms of classes and
objects.

» Write the classes using the programming language.
— Define structure and behaviour.

» Use the objects when the program runs.

- ﬂ

- 5o B

©2006, Graham Roberts 4

Abstraction

» Arepresentation or model that includes the important,
essential or distinguishing aspects of something while
suppressing or ignoring less important, immaterial or
diversionary details.

» Removing distinctions to emphasise commonality.

» Leaving out of consideration one or more properties of
a complex object so as to attend to others.

» The process of formulating general concepts by
abstracting common properties of instances.

© 2006, Graham Roberts 6




Abstraction and Classes

» Classes represent abstractions.

» Abstraction is used to separate the essential from the
full detail.

» They provide a selective and simplified view of the
concepts being represented as objects.

+ Good OO programming is all about identifying and
using the right abstractions.

©2006, Graham Roberts 7

Notations

« Classes can be represented by:
— Binary code
« produced by the compiler (.class files)
 not human readable
— Source code
« the programming language
— Modelling language
« formal: UML
« informal: notes, diagrams, doodles
« Different levels of abstraction
— Source code embodies all the details
— Modelling language gives a more abstract view
« Allows design to be represented without having all the detail of code

©2006, Graham Roberts 9

UML Class Icons

Person

~firstName - String
~familyName : String
ArrayList

class name

<<constructor>>+Persont firstName : String, familyName : String )
instance variables +getFullName() : String

+getEmailAddresses() : ArrayList
instance methods +addEmailaddress( email : String ) : void

Person

<<constructors>+Persont firstName : String, familyName : String )
+getFullNamen) : String

+getEmailAddressest) - ArrayList minimal
+addEmailAddress( email : String ) : void icon
Instance variables Amount of detail in icon can
are often referred be selected depending on
to as attributes. context.

©2006, Graham Roberts 1

Class Role

+ To Represent
— Entities and things (Person, Account, Date, String, etc.)
— Strategies and behaviours
— Data structures
— Relationships
» To Structure
— Divide code into manageable chunks
— Enforce encapsulation and information hiding

©2006, Graham Roberts 8

UML - The Unified Modeling Language

» De-facto standard notation
— A small subset introduced in COMP1008, much more in
COMP2010 next year.
— Maintained by the OMG (Object Management Group), see
www.uml.org
» UML provides a complete language for describing
object-oriented models (like a programming

language).
« Also provides a visual notation for
displaying models. UNIAED o
et B f MODELING
— This is what we are interested in here. cliie I .
02000, Graram Robers 0

UML Class Diagrams
» Show classes and their relationships.

CardCollection Card
“size it 1 1.* |-suit:String
~value :int
P “raddCard() : void
inheritance _| +getCard0) +compare( - int
relationship \ ] “+display( g : Graphics ) : void
Hand | FullDeck. +— association
[ | relationship
+sort()  void vinitialise() : void
o] +shuffle() : void
Player Game
E 5 .
name : string Pt L niialise() - void
+receiveCard() : Card +deal() : void
+play() : void +play() : void
©2006, Graham Roberts 12




Example Java Class

import java.util ArrayList;
class Person {
private String firstName;
private String familyName;

Class Person
» By convention a class name always starts with a
capital letter.

« Instance objects can be created using:
— Person person = new Person(“Arthur”,”Dent”) ;

---> Instance Variables
private ArrayList<String> emailAddresses;

public Person(String firstName, String familyName) {
this.firstName = firstName;
this.familyName = familyName;

---> Constructor
this.emailAddresses = new ArrayList<String>(); (to initialise a new instance object)
}

public String getFullName() {

Create new Person
return firstName +** + familyName;

object initialised to
given name.
}

public void addEmailAddress(String address) { » As many objects as you need can be created.
emailAddresses.add(address); — Each object represents a distinct person.

---> Instance Methods
}

public ArrayList<String> getEmailAddresses() {
return new ArrayList<String>(emailAddresses);
}
}

©2006, Graham Roberts

13 ©2006, Graham Roberts

A Person Object

Objects
« Has three private instance variables.

» And three public instance methods that can be called.
» And a constructor used to initialise the object.

» Each object has its own separate set of variables.
» Each object has its own identity.

UML Object Icon

arthur : Person

id : Class
used to label icon.
id can be omitted.

firstName = "Arthur"
familyName = "Dent"
emailAddresses = empty list

©2006, Graham Roberts

Class name underlined.
Can show instance variable
values.

UML Object Diagram

» Shows a snapshot of objects and links during

execution of program

: AddressBook

entries = st size 3

familyName = "Dent"
emailAddresses = empty list

zaphod : Person
firstName = "Zaphod"
familyName = "Beeblebrox"
emailAddresses = list size infinite

firstName
familyNar

ford : Person

rd'

emailAddresses = st size 42

©2006, Graham Roberts

» Each object is independent.

arthur : Person
firstName = "Arthur"
familyName = "Dent"
emailAddresses = empty list

zaphod : Person
firstName = "Zaphod"
familyName = "Beeblebrox"
emailAddresses = list size infinite

ford : Person
firstName = "Ford"
familyName = "Prefect"
emailAddresses = list size 42

©2006, Graham Roberts

Private

» Aclass defines a scope.

» Declaring a method or variable private means that it
can be accessed only within the scope of the class.
— This means within a method body or an instance variable
initialisation expression.
+ At runtime objects implement the scope rules.

— Class + compiler + type checking ensures behaviour must
conform.

» The internal state of an object should be private and
changed only by the object’'s methods.

— The state is represented by the values of the instance
variables.

© 2006, Graham Roberts



Public

» Methods and variables declared public can be
accessed by anything that has a reference to an
object of the class.

— Variables belong to an object.

— Methods are called on an object.
They form the public interface of objects of the class.
— The services the object can perform.

©2006, Graham Roberts 19

“Encapsulation is a technique for minimising
interdependencies among separately written modules
by defining strict external interfaces. The external
interface acts as a contract between a module and its
clients. If clients only depend on the interface, modules
can be re-implemented without affecting the client.
Thus the effects of changes can be confined.” Synder
1986

©2006, Graham Roberts 2

Type Person

» Person is a actually a new type.
» This allows Person to be used for declarations such
as:
Person person = new Person(“Ford”, “Prefect”);
* In fact, Person is a User Defined Type.

©2006, Graham Roberts 23

Encapsulation

« Public and private are how encapsulation is enforced.

« Good practice states:
— Instance variables should always be private.
— Only a minimal number of methods should be made public.
— Limit a name to the minimum scope.
* Why?
— To enforce design decisions.
— To protect against mistakes.
— Information hiding.
— To avoid misuse of classes and objects.
— Experience demonstrates encapsulation is a very important
design strategy.

©2006, Graham Roberts 20

Questions?

©2006, Graham Roberts 2

Object References

Person person = new Person(“Ford”, “Prefect”) ;

4 N
, N
, N
N

4 .

4
erson:
p E\ ford : Person
s firstName = "Ford"

) familyName = "Prefect"
' emailAddresses = empty list

.

I
1

Object Reference

© 2006, Graham Roberts 24




References

» Avariable of a class type holds a reference to an
object.
— Areference is a pointer (form of memory address).

» Variable doesn’t hold the object itself.

The variable can go out of scope but the object can
still exist (providing it is referenced by some other
variable).

» One object can be referenced by several references
and, hence, variables.

©2006, Graham Roberts 25

So,

» When you declare a variable of class type, you get a
container that holds an object reference.

+ Assigning an “object to a variable” means storing a
reference to the object in the container.

©2006, Graham Roberts 27

NullPointerException

» Caused by calling method on a null reference.
» No object, so no method can be called.

« If the error occurs find out why the variable is not
referencing an object.

©2006, Graham Roberts 29

Class Type Assignment

» Assignment means storing a reference to a different
object:

ford : Person

firstName = "Ford"
familyName = "Prefect"
emailAddresses = list size 42

person2: E\ arthur : Person
firstName = "Arthur"
familyName = "Dent"
person1 = person2

emailAddresses = empty list
©2006, Graham Roberts

persont:

26

Null Reference

* null keyword.

» No object is referenced, so no methods can be called.
Person person = null;

» Default value if variable not initialised.

person:

©2006, Graham Roberts

28

Questions?

© 2006, Graham Roberts 30




Calling methods

» Given an object reference, a method can be called:
Person person = new Person(“Arthur”, “Dent”);
String name = person.getName();
» Only methods provided by class Person can be
called.
— Those methods declared by Person,
— and inherited methods (as we will see later).

©2006, Graham Roberts 3

Parameters & References

person:
Method c:
someMethod(person
ford : Person

firstName = "Ford"
familyName = "Prefect"
emailAddresses = list size 42

Two references
to same ol

©2006, Graham Roberts 3

void someMethod(Person aPerson)

aPerson:

Consequences

« If an object reference is passed as a parameter then:
— Changing the object inside the method changes the object
outside the method.
— They are the same object!
» Don't forget that arrays are objects.

— Changing elements in an array parameter changes the array
outside the method.

©2006, Graham Roberts 35

Object Reference Parameters

» You can pass an object reference as a parameter to a
method:
void someMethod(Person aPerson)

{

... Il Use aPerson in method body

}
» A parameter variable is declared as normal.

©2006, Graham Roberts 32

Object Parameters

» The parameter value is an object reference, not an
object.

» The parameter variable is initialised to hold a copy of
the reference.

» The object is not copied.
— The reference is copied not the object.

©2006, Graham Roberts 3

Remember Primitive Types?

 Values of primitive types (int, char, long, boolean, etc.)
are stored directly in variables using a binary
representation.

» They are not objects.

» You can’t have references to values of primitive types.
— But there are classes to represent values of primitive types.
— Class Integer, Double, Character, etc.

© 2006, Graham Roberts 36




Primitive type parameters

* When a value of a primitive type is passed as a
parameter, it is always copied.

» The parameter variable is initialised to a copy of the
argument value.

» The argument value is computed in the method call:
— obj.f(a + b);

» The value is used to initialise the parameter variable
of the called method:

public void f(intn) { ... }

©2006, Graham Roberts 37

“Variable is passed...”

» Beware, this means the value held in the variable is
passed as a parameter:
intx =10;
obj.f(x);
» The variable itself is not passed.
» The value of the variable is not changed by the
method called.

— But an object referenced by a variable of class type can
change.

©2006, Graham Roberts 39

Object lifetime

« An object exists as long as it is accessible.
— Areference to the object is available.
public Person makePerson()

{
... Il Get person’s name
Person newPerson = new Person(firstName,familyName);
... Il Add some email addresses
newPerson goes out of scope

return newPerson; but object reference returned
} and object remains in existence.

* Use the method:
Person myPerson = makePerson();

e . Object exists and is
« Lifetime of reference variable referenced by myPerson
different from lifetime of object.

©2006, Graham Roberts 41

Call-by-value

» The parameter passing mechanism used by Java is
called “Call-by-value”.

« This means that the value of a parameter is always
copied and a parameter variable initialised with the
copy.

» Objects are not passed as parameters, only
references to objects.

— The reference is copied.

Don’t confuse references with a mechanism called pass-by-reference.
Java does not support pass-by-reference.

©2006, Graham Roberts 38

Return-by-value

» Returning a value from a method works in the same
way as parameter passing.

public Person findPerson(String name)

{

/I find

return aPerson;
}

» The value returned is a copy of the value computed in
the return statement.

©2006, Graham Roberts 40

Summary

» Seen how to construct a simple class.
» Methods and instance variables.

» Object references.

» References and parameter passing.

» Call-by-value, return-by-value.

» Object lifetime.

© 2006, Graham Roberts 2




