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Agenda

• Defining simple classes

• Instance variables and methods

• Objects

• Basic UML notation for classes and objects

• Object references
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Reading

• You should be reading:

– Part I chapters 6,9,10

• And browsing:

– Part IV chapter 30
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Classes & Objects

• We want to design programs in terms of classes and 

objects.

• Write the classes using the programming language.

– Define structure and behaviour.

• Use the objects when the program runs.
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Class

• Defines the structure and behaviour of an instance 

object.

– A collection of instance variables to represent the state of the 

object.

– A collection of instance methods, which can be called on the 

object.

• Acts as a template or blueprint.

• An object is an instance of one (and only one) class.

• A class may have many instance objects. 

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Abstraction

• A representation or model that includes the important, 

essential or distinguishing aspects of something while 

suppressing or ignoring less important, immaterial or 

diversionary details. 

• Removing distinctions to emphasise commonality.

• Leaving out of consideration one or more properties of 

a complex object so as to attend to others.

• The process of formulating general concepts by 

abstracting common properties of instances.
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Abstraction and Classes

• Classes represent abstractions. 

• Abstraction is used to separate the essential from the 

full detail. 

• They provide a selective and simplified view of the 

concepts being represented as objects.

• Good OO programming is all about identifying and 

using the right abstractions.
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Class Role

• To Represent

– Entities and things (Person, Account, Date, String, etc.)

– Strategies and behaviours

– Data structures

– Relationships

• To Structure

– Divide code into manageable chunks

– Enforce encapsulation and information hiding
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Notations

• Classes can be represented by:

– Binary code
• produced by the compiler (.class files)

• not human readable

– Source code
• the programming language

– Modelling language
• formal: UML

• informal: notes, diagrams, doodles

• Different levels of abstraction

– Source code embodies all the details

– Modelling language gives a more abstract view
• Allows design to be represented without having all the detail of code

9 © 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

UML - The Unified Modeling Language

• De-facto standard notation

– A small subset introduced in COMP1008, much more in 

COMP2010 next year.

– Maintained by the OMG (Object Management Group), see 

www.uml.org 

• UML provides a complete language for describing 

object-oriented models (like a programming 

language).

• Also provides a visual notation for 

displaying models.

– This is what we are interested in here.
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UML Class Icons
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minimal
 icon

Instance variables 
are often referred 
to as attributes.

Amount of detail in icon can 
be selected depending on 

context.
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UML Class Diagrams

• Show classes and their relationships.
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association
relationship

inheritance
relationship
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Example Java Class
import java.util.ArrayList;

class Person {

  private String firstName;

  private String familyName;   

  private ArrayList<String> emailAddresses;

  public Person(String firstName, String familyName) {

    this.firstName = firstName;

    this.familyName = familyName;

    this.emailAddresses = new ArrayList<String>();

  }                                  

  public String getFullName() {

    return firstName + " " + familyName;

  }                                     

  public void addEmailAddress(String address) {

    emailAddresses.add(address);

  } 

    public ArrayList<String> getEmailAddresses() {

    return new ArrayList<String>(emailAddresses);

  }

}

Instance Variables

Constructor
(to initialise a new instance object)

Instance Methods
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Class Person

• By convention a class name always starts with a 

capital letter.

• Instance objects can be created using:

– Person person = new Person(“Arthur”,”Dent”) ;

• As many objects as you need can be created.

– Each object represents a distinct person.

Create new Person 
object initialised to 

given name.
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• Has three private instance variables.

• And three public instance methods that can be called.

• And a constructor used to initialise the object.
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A Person Object

UML Object Icon

firstName = "Arthur"
familyName = "Dent"
emailAddresses = empty list

arthur : Person

id : Class
used to label icon.
id can be omitted.

Class name underlined.
Can show instance variable 

values.
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• Each object has its own separate set of variables.

• Each object has its own identity.

• Each object is independent.
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Objects

firstName = "Arthur"
familyName = "Dent"
emailAddresses = empty list

arthur : Person

firstName = "Ford"
familyName = "Prefect"
emailAddresses = list size 42

ford : Person

firstName = "Zaphod"
familyName = "Beeblebrox"
emailAddresses = list size infinite

zaphod : Person
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UML Object Diagram

• Shows a snapshot of objects and links during 

execution of program
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firstName = "Arthur"
familyName = "Dent"
emailAddresses = empty list

arthur : Person

firstName = "Ford"
familyName = "Prefect"
emailAddresses = list size 42

ford : Person

firstName = "Zaphod"
familyName = "Beeblebrox"
emailAddresses = list size infinite

zaphod : Person

entries = list size 3

: AddressBook
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Private

• A class defines a scope.

• Declaring a method or variable private means that it 

can be accessed only within the scope of the class.

– This means within a method body or an instance variable 

initialisation expression.

• At runtime objects implement the scope rules.

– Class + compiler + type checking ensures behaviour must 

conform.

• The internal state of an object should be private and 

changed only by the object’s methods.

– The state is represented by the values of the instance 

variables.
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Public

• Methods and variables declared public can be 

accessed by anything that has a reference to an 

object of the class.

– Variables belong to an object.

– Methods are called on an object.

• They form the public interface of objects of the class.

– The services the object can perform.
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Encapsulation

• Public and private are how encapsulation is enforced.

• Good practice states:

– Instance variables should always be private.

– Only a minimal number of methods should be made public.

– Limit a name to the minimum scope.

• Why?

– To enforce design decisions.

– To protect against mistakes.

– Information hiding.

– To avoid misuse of classes and objects.

– Experience demonstrates encapsulation is a very important 

design strategy.
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   “Encapsulation is a technique for minimising 

interdependencies among separately written modules 

by defining strict external interfaces. The external 

interface acts as a contract between a module and its 

clients. If clients only depend on the interface, modules 

can be re-implemented without affecting the client. 

Thus the effects of changes can be confined.” Synder 

1986
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Questions?
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Type Person

• Person is a actually a new type.

• This allows Person to be used for declarations such 

as:

Person person = new Person(“Ford”, “Prefect”);

• In fact, Person is a User Defined Type.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

24

Object References

Person person = new Person(“Ford”, “Prefect”) ;

person:

firstName = "Ford"
familyName = "Prefect"
emailAddresses = empty list

ford : Person

Object Reference
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References

• A variable of a class type holds a reference to an 

object.

– A reference is a pointer (form of memory address).

• Variable doesn’t hold the object itself.

• The variable can go out of scope but the object can 

still exist (providing it is referenced by some other 

variable).

• One object can be referenced by several references 

and, hence, variables.
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Class Type Assignment

• Assignment means storing a reference to a different 

object:

person1:

person2:

firstName = "Ford"
familyName = "Prefect"
emailAddresses = list size 42

ford : Person

firstName = "Arthur"
familyName = "Dent"
emailAddresses = empty list

arthur : Person

person1 = person2
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So,

• When you declare a variable of class type, you get a 

container that holds an object reference.

• Assigning an “object to a variable” means storing a 

reference to the object in the container.
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Null Reference

• null keyword.

• No object is referenced, so no methods can be called.

Person person = null;

• Default value if variable not initialised.

person:
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NullPointerException

• Caused by calling method on a null reference.

• No object, so no method can be called.

• If the error occurs find out why the variable is not 

referencing an object.
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Questions?
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Calling methods

• Given an object reference, a method can be called:

Person person = new Person(“Arthur”, “Dent”);

String name = person.getName();

• Only methods provided by class Person can be 

called.

– Those methods declared by Person,

– and inherited methods (as we will see later).
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Object Reference Parameters

• You can pass an object reference as a parameter to a 

method:

void someMethod(Person aPerson)

{

   … // Use aPerson in method body

}

• A parameter variable is declared as normal.
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Parameters & References

person:
Method call:
someMethod(person);

void someMethod(Person aPerson) 
{ ... }

aPerson:

Two references 
to same object.

firstName = "Ford"
familyName = "Prefect"
emailAddresses = list size 42

ford : Person
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Object Parameters

• The parameter value is an object reference, not an 

object.

• The parameter variable is initialised to hold a copy of 

the reference.

• The object is not copied.

– The reference is copied not the object.
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Consequences

• If an object reference is passed as a parameter then:

– Changing the object inside the method changes the object 

outside the method.

– They are the same object!

• Don’t forget that arrays are objects.

– Changing elements in an array parameter changes the array 

outside the method.
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Remember Primitive Types?

• Values of primitive types (int, char, long, boolean, etc.) 

are stored directly in variables using a binary 

representation.

• They are not objects.

• You can’t have references to values of primitive types.

– But there are classes to represent values of primitive types.

– Class Integer, Double, Character, etc.
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Primitive type parameters

• When a value of a primitive type is passed as a 

parameter, it is always copied.

• The parameter variable is initialised to a copy of the 

argument value.

• The argument value is computed in the method call:

– obj.f(a + b);

• The value is used to initialise the parameter variable 

of the called method:

public void f(int n) { … }
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Call-by-value

• The parameter passing mechanism used by Java is 

called “Call-by-value”.

• This means that the value of a parameter is always 

copied and a parameter variable initialised with the 

copy.

• Objects are not passed as parameters, only 

references to objects.

– The reference is copied.

Don’t confuse references with a mechanism called pass-by-reference. 
Java does not support pass-by-reference.
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“Variable is passed…”

• Beware, this means the value held in the variable is 

passed as a parameter:

int x = 10;

obj.f(x);

• The variable itself is not passed.

• The value of the variable is not changed by the 

method called.

– But an object referenced by a variable of class type can 

change.
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Return-by-value

• Returning a value from a method works in the same 

way as parameter passing.

public Person findPerson(String name)

{

// find

return aPerson;

}

• The value returned is a copy of the value computed in 

the return statement.
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Object lifetime

• An object exists as long as it is accessible.

– A reference to the object is available.
public Person makePerson()

{

   ... // Get person’s name

   Person newPerson = new Person(firstName,familyName);

   ... // Add some email addresses

   return newPerson;

}

• Use the method:

Person myPerson = makePerson();

• Lifetime of reference variable
different from lifetime of object.
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newPerson goes out of scope 
but object reference returned 
and object remains in existence.

Object exists and is 
referenced by myPerson
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Summary

• Seen how to construct a simple class.

• Methods and instance variables.

• Object references.

• References and parameter passing.

• Call-by-value, return-by-value.

• Object lifetime.


