
© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

COMP1008
Classes

and References

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

2

Agenda

• Defining simple classes

• Instance variables and methods

• Objects

• Basic UML notation for classes and objects

• Object references

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

3

Reading

• You should be reading:

– Part I chapters 6,9,10

• And browsing:

– Part IV chapter 30

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

4

Classes & Objects

• We want to design programs in terms of classes and

objects.

• Write the classes using the programming language.

– Define structure and behaviour.

• Use the objects when the program runs.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

5

Class

• Defines the structure and behaviour of an instance

object.

– A collection of instance variables to represent the state of the

object.

– A collection of instance methods, which can be called on the

object.

• Acts as a template or blueprint.

• An object is an instance of one (and only one) class.

• A class may have many instance objects.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Abstraction

• A representation or model that includes the important,

essential or distinguishing aspects of something while

suppressing or ignoring less important, immaterial or

diversionary details.

• Removing distinctions to emphasise commonality.

• Leaving out of consideration one or more properties of

a complex object so as to attend to others.

• The process of formulating general concepts by

abstracting common properties of instances.

6

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Abstraction and Classes

• Classes represent abstractions.

• Abstraction is used to separate the essential from the

full detail.

• They provide a selective and simplified view of the

concepts being represented as objects.

• Good OO programming is all about identifying and

using the right abstractions.

7 © 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Class Role

• To Represent

– Entities and things (Person, Account, Date, String, etc.)

– Strategies and behaviours

– Data structures

– Relationships

• To Structure

– Divide code into manageable chunks

– Enforce encapsulation and information hiding

8

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Notations

• Classes can be represented by:

– Binary code
• produced by the compiler (.class files)

• not human readable

– Source code
• the programming language

– Modelling language
• formal: UML

• informal: notes, diagrams, doodles

• Different levels of abstraction

– Source code embodies all the details

– Modelling language gives a more abstract view
• Allows design to be represented without having all the detail of code

9 © 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

UML - The Unified Modeling Language

• De-facto standard notation

– A small subset introduced in COMP1008, much more in

COMP2010 next year.

– Maintained by the OMG (Object Management Group), see

www.uml.org

• UML provides a complete language for describing

object-oriented models (like a programming

language).

• Also provides a visual notation for

displaying models.

– This is what we are interested in here.

10

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

UML Class Icons

11

minimal
 icon

Instance variables
are often referred
to as attributes.

Amount of detail in icon can
be selected depending on

context.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

UML Class Diagrams

• Show classes and their relationships.

12

association
relationship

inheritance
relationship

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

13

Example Java Class
import java.util.ArrayList;

class Person {

 private String firstName;

 private String familyName;

 private ArrayList<String> emailAddresses;

 public Person(String firstName, String familyName) {

 this.firstName = firstName;

 this.familyName = familyName;

 this.emailAddresses = new ArrayList<String>();

 }

 public String getFullName() {

 return firstName + " " + familyName;

 }

 public void addEmailAddress(String address) {

 emailAddresses.add(address);

 }

 public ArrayList<String> getEmailAddresses() {

 return new ArrayList<String>(emailAddresses);

 }

}

Instance Variables

Constructor
(to initialise a new instance object)

Instance Methods

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

14

Class Person

• By convention a class name always starts with a

capital letter.

• Instance objects can be created using:

– Person person = new Person(“Arthur”,”Dent”) ;

• As many objects as you need can be created.

– Each object represents a distinct person.

Create new Person
object initialised to

given name.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

• Has three private instance variables.

• And three public instance methods that can be called.

• And a constructor used to initialise the object.

15

A Person Object

UML Object Icon

firstName = "Arthur"
familyName = "Dent"
emailAddresses = empty list

arthur : Person

id : Class
used to label icon.
id can be omitted.

Class name underlined.
Can show instance variable

values.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

• Each object has its own separate set of variables.

• Each object has its own identity.

• Each object is independent.

16

Objects

firstName = "Arthur"
familyName = "Dent"
emailAddresses = empty list

arthur : Person

firstName = "Ford"
familyName = "Prefect"
emailAddresses = list size 42

ford : Person

firstName = "Zaphod"
familyName = "Beeblebrox"
emailAddresses = list size infinite

zaphod : Person

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

UML Object Diagram

• Shows a snapshot of objects and links during

execution of program

17

firstName = "Arthur"
familyName = "Dent"
emailAddresses = empty list

arthur : Person

firstName = "Ford"
familyName = "Prefect"
emailAddresses = list size 42

ford : Person

firstName = "Zaphod"
familyName = "Beeblebrox"
emailAddresses = list size infinite

zaphod : Person

entries = list size 3

: AddressBook

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

18

Private

• A class defines a scope.

• Declaring a method or variable private means that it

can be accessed only within the scope of the class.

– This means within a method body or an instance variable

initialisation expression.

• At runtime objects implement the scope rules.

– Class + compiler + type checking ensures behaviour must

conform.

• The internal state of an object should be private and

changed only by the object’s methods.

– The state is represented by the values of the instance

variables.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

19

Public

• Methods and variables declared public can be

accessed by anything that has a reference to an

object of the class.

– Variables belong to an object.

– Methods are called on an object.

• They form the public interface of objects of the class.

– The services the object can perform.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

20

Encapsulation

• Public and private are how encapsulation is enforced.

• Good practice states:

– Instance variables should always be private.

– Only a minimal number of methods should be made public.

– Limit a name to the minimum scope.

• Why?

– To enforce design decisions.

– To protect against mistakes.

– Information hiding.

– To avoid misuse of classes and objects.

– Experience demonstrates encapsulation is a very important

design strategy.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

 “Encapsulation is a technique for minimising

interdependencies among separately written modules

by defining strict external interfaces. The external

interface acts as a contract between a module and its

clients. If clients only depend on the interface, modules

can be re-implemented without affecting the client.

Thus the effects of changes can be confined.” Synder

1986

21 © 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

22

Questions?

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

23

Type Person

• Person is a actually a new type.

• This allows Person to be used for declarations such

as:

Person person = new Person(“Ford”, “Prefect”);

• In fact, Person is a User Defined Type.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

24

Object References

Person person = new Person(“Ford”, “Prefect”) ;

person:

firstName = "Ford"
familyName = "Prefect"
emailAddresses = empty list

ford : Person

Object Reference

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

25

References

• A variable of a class type holds a reference to an

object.

– A reference is a pointer (form of memory address).

• Variable doesn’t hold the object itself.

• The variable can go out of scope but the object can

still exist (providing it is referenced by some other

variable).

• One object can be referenced by several references

and, hence, variables.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

26

Class Type Assignment

• Assignment means storing a reference to a different

object:

person1:

person2:

firstName = "Ford"
familyName = "Prefect"
emailAddresses = list size 42

ford : Person

firstName = "Arthur"
familyName = "Dent"
emailAddresses = empty list

arthur : Person

person1 = person2

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

27

So,

• When you declare a variable of class type, you get a

container that holds an object reference.

• Assigning an “object to a variable” means storing a

reference to the object in the container.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

28

Null Reference

• null keyword.

• No object is referenced, so no methods can be called.

Person person = null;

• Default value if variable not initialised.

person:

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

29

NullPointerException

• Caused by calling method on a null reference.

• No object, so no method can be called.

• If the error occurs find out why the variable is not

referencing an object.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

30

Questions?

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

31

Calling methods

• Given an object reference, a method can be called:

Person person = new Person(“Arthur”, “Dent”);

String name = person.getName();

• Only methods provided by class Person can be

called.

– Those methods declared by Person,

– and inherited methods (as we will see later).

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

32

Object Reference Parameters

• You can pass an object reference as a parameter to a

method:

void someMethod(Person aPerson)

{

 … // Use aPerson in method body

}

• A parameter variable is declared as normal.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

33

Parameters & References

person:
Method call:
someMethod(person);

void someMethod(Person aPerson)
{ ... }

aPerson:

Two references
to same object.

firstName = "Ford"
familyName = "Prefect"
emailAddresses = list size 42

ford : Person

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

34

Object Parameters

• The parameter value is an object reference, not an

object.

• The parameter variable is initialised to hold a copy of

the reference.

• The object is not copied.

– The reference is copied not the object.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

35

Consequences

• If an object reference is passed as a parameter then:

– Changing the object inside the method changes the object

outside the method.

– They are the same object!

• Don’t forget that arrays are objects.

– Changing elements in an array parameter changes the array

outside the method.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

36

Remember Primitive Types?

• Values of primitive types (int, char, long, boolean, etc.)

are stored directly in variables using a binary

representation.

• They are not objects.

• You can’t have references to values of primitive types.

– But there are classes to represent values of primitive types.

– Class Integer, Double, Character, etc.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

37

Primitive type parameters

• When a value of a primitive type is passed as a

parameter, it is always copied.

• The parameter variable is initialised to a copy of the

argument value.

• The argument value is computed in the method call:

– obj.f(a + b);

• The value is used to initialise the parameter variable

of the called method:

public void f(int n) { … }

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

38

Call-by-value

• The parameter passing mechanism used by Java is

called “Call-by-value”.

• This means that the value of a parameter is always

copied and a parameter variable initialised with the

copy.

• Objects are not passed as parameters, only

references to objects.

– The reference is copied.

Don’t confuse references with a mechanism called pass-by-reference.
Java does not support pass-by-reference.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

39

“Variable is passed…”

• Beware, this means the value held in the variable is

passed as a parameter:

int x = 10;

obj.f(x);

• The variable itself is not passed.

• The value of the variable is not changed by the

method called.

– But an object referenced by a variable of class type can

change.

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Return-by-value

• Returning a value from a method works in the same

way as parameter passing.

public Person findPerson(String name)

{

// find

return aPerson;

}

• The value returned is a copy of the value computed in

the return statement.

40

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Object lifetime

• An object exists as long as it is accessible.

– A reference to the object is available.
public Person makePerson()

{

 ... // Get person’s name

 Person newPerson = new Person(firstName,familyName);

 ... // Add some email addresses

 return newPerson;

}

• Use the method:

Person myPerson = makePerson();

• Lifetime of reference variable
different from lifetime of object.

41

newPerson goes out of scope
but object reference returned
and object remains in existence.

Object exists and is
referenced by myPerson

© 2006, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

42

Summary

• Seen how to construct a simple class.

• Methods and instance variables.

• Object references.

• References and parameter passing.

• Call-by-value, return-by-value.

• Object lifetime.

