
© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

COMP1007
Arrays

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

2

Arrays

• A normal variable holds 1 value:

• An array variable holds a sequence of values:

42

10 22 6 43 19 27

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

3

Naming arrays

• An array has a single name, so the elements are

numbered or indexed.

myArray

 0 1 2 3 4 5

Indexing starts at zero

10 22 6 43 19 27

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

4

Indexing

• An array element is accessed using the name and

index number, like this:

 myArray[0] — 1st element

 myArray[3] — 4th element

• The square brackets are the index operator.

myArray

 0 1 2 3 4 5

10 22 6 43 19 27

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

5

Using indexing

• We can fetch the value of an array element:

int n = myArray[2];

• Or assign to an array element:

myArray[3] = 10;

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

6

Why?

• Arrays allow a sequence of values of the same type to

be stored using one variable.

• We don’t have to name lots of variables.

• The array can be as big as we like (within limits).

• Elements can be accessed using loops.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

7

Example:

• Add up a collection of numbers in array:

int sum = 0;

for (int n = 0 ; n < 6 ; n++)

{

 sum += anArray[n];

}

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Enhanced for

• Can also use the enhanced for loop:

 int sum = 0;

 for (int n : anArray)

 {

 sum += n;

 }

8

int n — declares loop variable
: anArray — array to iterate over

enhanced
for is new
to Java 5

for each element n
in anArray ...

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

9

Declaring an Array

int[] myArray = new int[6];

• Note the two parts:

– Declare the variable

– Create the array

Type array of int Create an array of 6 ints

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

10

Size v. Index

• int[] myArray = new int[6];

• This gives 6 elements indexed from 0 to 5.

myArray

 0 1 2 3 4 5

10 22 6 43 19 27

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

11

More declarations

double[] values = new double[100];

String[] name = new String[50];

boolean[] marks = new boolean[5000];

int n = <some expression>;

long[] numbers = new long[n];

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

12

Initialisation

int[] anArray = new int[10];

• The variable anArray is initialised,

• but what about the array elements?

• They are initialised to default values (e.g., 0,0.0, null)

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

13

Initialising array elements

• Either write a loop and assign to each element,

• or use an array initialisation expression:

 int[] array = {1,2,3,4,5};

or

 int[] array = new int[]{1,2,3,4,5};

(Create an array of size 5, with each element

initialised.)

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

14

Array length

• Arrays are actually objects.

• And they know their own size:

int[] n = new int[10];

…

int size = n.length;

// size == 10

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

15

Safer loops
int sum = 0;

for (int n = 0 ; n < anArray.length ; n++)

{

 sum += anArray[n];

}

• No longer need to have a ‘magic number’.

• Instead ask array for its size.

 int sum = 0;

 for (int n : anArray)

 {

 sum += n;

 }

But in Java 5 can do this:

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

16

2 dimensions

• int[][] twoD = new int[3][7];

• 3 rows by 7 columns

0

1

2

0 1 2 3 4 5 6

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

17

2D indexing

• Assign to row 1 column 3

twoD[1][3] = 10;

• Fetch row 0 column 6

int x = twoD[0][6];

(Don’t forget we index from zero!)

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

18

2D loop (v1)

int sum = 0;

for (int row = 0 ; row < 3 ; row++)

 {

 for (int col = 0 ; col < 7 ; col++)

 {

 sum += twoD[row][col];

 }

 }

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

2D loop (v2)

19

int sum = 0;

for (int row = 0 ; row < twoD.length ; row++)

 {

 for (int col = 0 ; col < twoD[row].length ; col++)

 {

 sum += twoD[row][col];

 }

 }
twoD.length gives number of rows

twoD[row].length gives number of

columns in row

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

2D loop (v3) — enhanced for

 int sum = 0;

 for (int[] row : twoD)

 {

 for (int n : row)

 {

 sum += n;

 }

 }

20

for each row
 for each value in row
 add to sum

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Data Structure

• An array is a data structure.

• A data structure is a collection of values, organised in

a particular way.

– An array is a sequence of values.

– Can be accessed in sequence (loop).

– Or randomly (index any element).

• An array is a basic data structure built into the

language.

– Special syntax.

– But also see library classes Array and Arrays.

21 © 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Questions?

22

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

23

2D Arrays – The Truth!

• A 2D array is really an array of arrays!

0 1 2 3 4 5 6 7

0

1

2

3

4

Rows

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

24

Array Fun…

int[] oned1 = new int[20]; // 1D array

int[][] twod = new int[10][]; // 2D array

twod[0] = oned1; // Add array as row

int i = twod[0][2]; // Can now index

int[] oned2 = new int[50]; // Another 1D array

twod[1] = oned2; // New row different length

twod[1][45] = 10;

int[] n = twod[1]; // Get row from array (slice array)

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Ragged Array

• Different length rows, to avoid wasting space.

25

0 1 2 3 4 5 6 7

0

1

2

3

4

Rows

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

26

N-Dimensional Arrays

• In principle arrays can have as many dimensions as

you want:

double[][][] d = new double[10][20][30];

• In practice, rarely need more than 3 dimensions.

• Large arrays also use lots of memory.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

27

Array Summary

• Arrays allow collections of values to be stored in a

single variable.

• New syntax with square brackets is used.

• Loops are used to work with arrays.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

28

Containers

• Arrays are “built-in” to the Java language and directly

supported by the syntax.

• There are also Container classes, providing data

structure objects.

– Also called Collection classes.

• Containers have different properties, variously

optimised for convenience, speed and memory use.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

29

Containers (2)

• The Java Collections Framework provides various

container classes:

– ArrayList

– HashMap, HashSet

– TreeSet, TreeMap

– LinkedList

– and others

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

30

ArrayList (Generic class)

import java.util.ArrayList; // Note

ArrayList<String> a = new ArrayList<String>();

String s1 = "hello";

a.add(s1);

a.add(“world”);

String s = a.get(1);

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

31

ArrayList v. arrays

• Arrays are “manual”, ArrayList is more automated.

• ArrayList allows elements to be added and deleted

from any position.

• ArrayLists change size automatically.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Non-generic ArrayList

• Can also use ArrayList like this:

import java.util.ArrayList;

ArrayList a = new ArrayList();

String s1 = "hello";

a.add(s1);

a.add(“world”);

String s = (String)a.get(1);

32

Cast expression to
specify type of object

returned.

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Containers, Objects and Primitives

• A container class can store objects only.

– Not primitive types.

• However, this can be done:

ArrayList<Integer> a = new ArrayList<Integer>();

a.add(1); // Adding a primitive value

...

int n = a.get(0); // Getting a primitve value

33 © 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

Auto-boxing/unboxing

• For each primitive type, there is a matching class:

– Integer, Long, Double, Float, Boolean, etc.

– objects of theses classes represent the values.

• Where possible the compiler will automatically add

code to convert representations.

– int -> Integer (boxing)

– Integer -> int (unboxing)

34

© 2005, Graham Roberts

DEPARTMENT OF COMPUTER SCIENCE

35

Summary

• Container classes provide higher level abstractions for

dealing with collections.

• But require more knowledge to be used effectively.

• By the end of 1008 you will know how to construct

your own containers.

