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Introduction

Permutation methods are finding growing use in neuroimag-

ing data analyses (e.g. randomise in FSL, SnPM in SPM,

XBAMM/BAMM/CAMBA, etc). These methods provide ex-

act control of false positives, make only weak assumptions, and

allow nonstandard types of statistics (e.g. smoothed variance t-

test). With fast and inexpensive computing, there would seem

few reasons not to use nonparametric methods.

A significant limitation of these methods, however, is the lack of

flexibility with respect to the experimental design and nuisance

variables. Each specific design dictates the type of exchange-

ability of null data, and hence how to permute. Nuisance effects

(e.g. age) render data non-exchangeable even when the effect of

interest is null. Hence, even something as simple as ANCOVA

has no exact permutation test.

Recently there has been an active literature on approximate–

but accurate–permutation tests for 2-variable regression, one

effect of interest, one nuisance (see review by Anderson &

Robinson [1]). Here we extend and evaluate these methods

for use with an arbitrary General Linear Model (GLM).

Methods

Smith et al. [2] show that for any contrast, a GLM can be

reformulated in a partitioned form

Y = Xβ + Zγ + ǫ (1)

where X contains solely the effects of interest corresponding to

the contrast, and Z are all remaining (nuisance) effects. Hence

testing H0 : β = 0 in (1) is equivalent to testing the contrast

in the original GLM.

Predictor
Name Response

Interest Nuisance

Exact [1] P ( Y − Z γ ) X Z

Freedman-Lane [1] P RZ Y X Z

ter Braak [1] P RXZ Y X Z

Kennedy [1] P RZ Y RZ X

Smith [3] Y P RZ X Z

Shuffle-X [4] Y P X Z

Table 1: GLM permutation methods summarized by how response and predictors are ad-
justed and permuted. P is a n×n permutation matrix, RZ is the residual-forming matrix
using Z, and RXZ is the residuals-forming matrix for the full model. Each method proceeds
by fitting the response on a design matrix of predictors, repeated with different random
permutation matrices.

We have extended six 2-variable regression permutation meth-

ods [1,3,4] to use an arbitrary GLM (see Table 1). Each method

differs slightly in how they adjust the data for the nuisance

effects, and exactly what quantities they permute. The Ex-

act method cannot be used as it assumes the unknown true

nuisance effect γ, but shows the spirit of most of the methods:

Discount effect of nuisance, permute, then fit full model. While

all of the methods can be re-formulated to avoid data permuta-

tion (an important computational consideration), only Smith

& Shuffle-X allow the raw data to be modeled.

Since “truth” isn’t available for real data we instead use Monte

Carlo simulations. Simulations used 10,000 realizations with

n=6 or 9 (all methods will be accurate with large n), 1 or 2 X

regressors of interest either continuous or categorical, 1 or 2 Z

nuisance regressors, and Gaussian and cubed mono-exponential

errors (to induce extreme skew). Strong correlation is induced

between X and Z to “stress” the methods (X & Z orthogonal

should be accurate with any method.) Null hypothesis P-value

distributions are plotted, and accuracy is measured with (1)

K-S test statistic, (2) Bias (P-value minus nominal α) and (3)

Mean Squared Error (MSE).

Results
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Figure 1: Example simulation results. (a) Cumulative distribution of P-values, showing the
invalid behaviour of Kennedy, Shuffle-X and ter Braak. (b) Three summary measures for
P-value distributions of small P-values (< 0.01, < 0.05, & < 0.1, as indicated), again show-
ing poor performence of Shuffle-X and ter Braak, but similar quality of Freedman-Lane &
Smith. (c) Power comparisons showed very similar performance between Freedman-Lane
& Smith.

For continuous predictor of interest with Gaussian errors (not

shown) all the methods performed quite similarly except for

Kennedy, which had inflated Type I error rates. Under more

challenging settings, i.e. discrete covariate with non-Gaussian

errors, Kennedy remains anticonservative and Shuffle-X & ter

Braak are found to perform erratically (Fig. 1a & 1b). This

leaves Freedman-Lane and Smith, which perform similarly but

Freeman-Lane has slightly better power with Gaussian errors

(Fig. 1c).

Conclusion

We have developed and evaluated permutation methods for the

GLM. Kennedy was found to be the worst method (see Soft-

ware Notes below), and Freedman-Lane & Smith the best in

the settings considered.

References: [1] Anderson & Robinson, Australian and New Zealand Journal of Statistics, 43:75-88, 2001. [2] Smith et al., NeuroImage, 34:127-136, 2007. [3] O’Gorman, Com-

munications in Statistics - Simulation and Computation, 34:895-908, 2005. (Though developed independently, our “Smith” method is attributed to a referee on p. 897.) [4] Kennedy & Cade,
Communications in Statistics - Simulation and Computation, 25:923-936, 1996. (Source of “Shuffle-X” method, renamed from “Shuffle-Z” for consistency with our notation.)

Software Notes: SnPM (http://www.sph.umich.edu/~nichols/SnPM) uses Shuffle-X, while FSL’s randomise (http://www.fmrib.ox.ac.uk/fsl/randomise) used Kennedy up through FSL
4.0, and uses Freedman-Lane as of FSL 4.1.


