%% Bayesian updating %% prior x = linspace(0,10,1000); figure; hold on; axis([0 10 0 0.35]) pm = 5; ps2 = 4; prior = (2*pi*ps2)^(-0.5)*exp(-0.5*(x-pm).^2/ps2); plot(x,prior,'k') legend('prior') %% measurement/observation lm = 6; plot(lm, 0, 'bx', 'MarkerSize', 16) legend('prior', 'measurement') %% likelihood of measurement ls2 = 3; like = (2*pi*ls2)^(-0.5)*exp(-0.5*(x-lm).^2/ls2); plot(x,like) legend('prior', 'measurement', 'likelihood') %% posterior Ps2 = (1/ps2 + 1/ls2)^(-1); Pm = Ps2*(pm/ps2 + lm/ls2); posterior = (2*pi*Ps2)^(-0.5)*exp(-0.5*(x-Pm).^2/Ps2); plot(x,posterior, 'r') legend('prior', 'measurement', 'likelihood', 'posterior')