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a b s t r a c t

The Wiener-Hopf factorization of a complex function arises in a variety of fields in applied mathematics such

as probability, finance, insurance, queuing theory, radio engineering and fluid mechanics. The factorization

fully characterizes the distribution of functionals of a random walk or a Lévy process, such as the maxi-

mum, the minimum and hitting times. Here we propose a constructive procedure for the computation of

the Wiener-Hopf factors, valid for both single and double barriers, based on the combined use of the Hilbert

and the z-transform. The numerical implementation can be simply performed via the fast Fourier transform

and the Euler summation. Given that the information in the Wiener-Hopf factors is strictly related to the

distributions of the first passage times, as a concrete application in mathematical finance we consider the

pricing of discretely monitored exotic options, such as lookback and barrier options, when the underlying

price evolves according to an exponential Lévy process. We show that the computational cost of our proce-

dure is independent of the number of monitoring dates and the error decays exponentially with the number

of grid points.

© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

This paper provides a new procedure to determine the finite-time

distribution of the discrete extrema and of the hitting times of one

or two barriers for a process with independent and identically dis-

tributed increments, such as a Lévy process. Spitzer (1956) provided

a closed formula for the z-transform (or moment generating func-

tion or discrete Laplace transform) of the characteristic function of

the extrema of a random walk observed on a set of discrete dates.

Up to now the concrete application of the Spitzer identity has been

difficult because it requires the Wiener-Hopf (WH) factorization of

a function defined in the complex plane, a mathematical problem

that concerns a variety of fields in applied mathematics. Indeed, this

factorization cannot be achieved analytically except in few cases,

or its computation turns out to be very demanding requiring the

numerical evaluation of a multidimensional integral in the complex
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lane. In addition, with regard to a general Lévy process, little is

nown for the two-barriers case.

The key contributions of our paper are the following. First of all,

e provide a constructive procedure for performing the WH factor-

zation. More precisely, we express the WH factors arising in the

pitzer identity in terms of the Plemelj–Sokhotsky relations, which

llow us to compute the WH factors through the Hilbert trans-

orm. The latter is then approximated via a sinc function expansion

Stenger, 1993), which guarantees an exponential decay of the ap-

roximation error on the number of grid points.

Moreover, our methodology can deal with both a single and a

ouble barrier. The solution in the second case is of interest in itself

ecause it solves a long-standing problem related to an efficient

omputation of the WH factors in the presence of two barriers. The

ouble-barrier case did not admit a simple feasible solution up to

ow, except under few special assumptions on the structure of the

évy process. One has to solve two coupled integral equations, which

an be achieved by factorizing a 2 × 2 matrix of functions, but a gen-

ral analytical method for this more difficult problem has not been

ound yet (Jones, 1991). Here, as the second main contribution of the

aper, we constructively propose a fixed-point algorithm based on an

xtension of the single-barrier case that achieves a fast convergence.
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= P[XN ∈ [x, x + dx), mN > l, MN < u]. (8)
As a concrete application, we contribute to the mathematical fi-

ance literature related to the pricing of exotic options, such as bar-

ier and lookback. Pricing derivatives, especially exotic options, is

challenging problem in the operations research literature (to cite

few, see Cai, Chen, & Wan, 2009; Date & Islyaev, 2015; Dingeç &

örmann, 2012; Feng & Linetsky, 2008b; Giesecke & Smelov, 2013;

in, Li, Tan, & Wu, 2013; Sesana, Marazzina, & Fusai, 2014; Wang & Tan,

013). The application of transform techniques in mathematical fi-

ance is rather recent. The first and most important contributions are

robably the articles by Heston (1993) and Carr and Madan (1999),

here the authors show how to price European options with non-

aussian models exploiting the Fourier transform. Similar techniques

ere developed later for path-dependent derivatives (e.g. Cai et al.,

009; Feng & Linetsky, 2008a; Green, Fusai, & Abrahams, 2010). Our

aper provides a unified framework and a fast operational method

or pricing barrier and lookback (or hindsight) options when the un-

erlying asset evolves as an exponential Lévy process. In addition,

he monitoring condition, e.g., the event that the underlying asset

alue falls below a given barrier for a down-and-out barrier option,

s assumed to be controlled at discrete time intervals. Our procedure,

ased on the new WH factorization method, has a computational cost

ndependent of the number of monitoring dates. This is possible be-

ause the inversion of the discrete Laplace transform is performed

ia the Euler acceleration, which bounds from above the number of

H factorizations to be computed. Moreover, at least with regard to

ingle-barrier and lookback options, the method provides exponen-

ial order of convergence due to the fact that the factorization is per-

ormed remaining in the complex plane. The existing pricing meth-

ds are based on the backward recursive formula (e.g. Fusai, Longo,

arena, & Recchioni, 2009; Fusai, Marazzina, Marena, & Ng, 2012; Fu-

ai & Recchioni, 2007; Jackson, Jaimungal, & Surkov, 2008; Lord, Fang,

ervoets, & Oosterlee, 2008), and on exploiting the convolution struc-

ure of the transition density of the Lévy process by performing the

omputations efficiently and fast using the FFT, which leads to a CPU

ime that grows as O(M log M), where M is the number of grid points.

owever, all the above cited methods are characterized by a polyno-

ial decay of the error with M. This order of accuracy is related to the

act that the backward procedure for barrier options involves a con-

olution, that can be computed in the complex plane, and a projec-

ion, which is applied in the real plane, to take into account the pres-

nce of the barrier. A noticeable exception was presented by Feng and

inetsky (2008a, 2009), who reformulated the backward procedure

or barrier and lookback options in terms of the Hilbert transform,

o that all steps are performed in the complex plane. Computing the

ilbert transform with a sinc function expansion, they achieved an

xponential decay of the error. However, the computational cost of

ll these methods, including the one by Feng and Linetsky, increases

inearly with the number of monitoring dates.

Finally, the factorization procedure introduced here is quite gen-

ral and can also be applied, without any additional complication,

o continuously-monitored contracts. Even the best available method

isted above, i.e., that by Feng and Linetsky, does not have this feature.

Even if the Spitzer identity has already been used in option pric-

ng (e.g. Atkinson & Fusai, 2007; Borovkov & Novikov, 2002; Green

t al., 2010; Lewis & Mordecki, 2008) and the present paper is mainly

ocused on this kind of applications, our method goes well beyond

ption pricing and opens up the way to a more extensive use of the

pitzer identity and the WH factorization in a variety of non-financial

elds; for physics, see a recent review by Bray, Majumdar, and Schehr

2013). In this regard we would like to mention the applicability to

ueuing theory due to the strict connection between random walks

nd queues, see Lindley (1952) for pioneering contributions as well

s Cohen (1975), Prabhu (1974) and Asmussen (1987); 1998). Fur-

her applications include insurance (Gerber, Shiu, & Yang, 2013) and

equential testing (Siegmund, 1985). Finally, the WH factorization

rises in many branches of engineering, mathematical physics and
pplied mathematics. This is testified by the thousands of papers

ublished on the subject since its conception. A review of the dif-

erent applications is given by Lawrie and Abrahams (2007).

The structure of the paper is the following. Section 2 introduces

he Spitzer identity and its relationship with the WH factorization,

roposing, via the interpretation of the Plemelj–Sokhotsky relations

s Hilbert transforms, a new operational method to perform the fac-

orization and therefore to compute the distributions of the mini-

um and the maximum of a Lévy process, as well as the joint dis-

ributions of the process at maturity and of its minimum or maxi-

um over the whole time interval. Section 3 shows how the proposed

eneral methodology can be implemented efficiently and accurately

omputing the Hilbert transform via a sinc expansion; we also dis-

uss the inversion of the z-transform and its acceleration through the

uler summation rule to make the computational cost independent

f the number of monitoring dates. Section 4 deals with the pricing

roblem for lookback and barrier options, describing how our pro-

edure is fast as well as accurate. This is validated numerically in

ection 5 with a variety of numerical experiments.

. Spitzer identity and Wiener-Hopf factorization

We consider a Lévy process X(t), i.e., a stochastic process with

(0) = 0 and independent and identically distributed increments.

he Lévy–Khincine formula states that the characteristic function of

he process is given by �(ξ, t) = E[eiξX(t)] = eψ(ξ )t , where ψ is the

haracteristic exponent of the process,

(ξ ) = iaξ − 1

2
σ 2ξ 2 +

∫
R

(eiξη − 1 − iξη1|η|<1)ν(dη). (1)

he Lévy–Khincine triplet (a, σ , ν) fully defines the Lévy process X(t).

In several applications in queueing theory, insurance and finan-

ial mathematics, the key point is the determination of the law of

he extrema of the Lévy process observed on an equally-spaced grid

n = X(n�), n = 0, . . . , N, where � > 0 is the time step, i.e., the dis-

ance between two consecutive monitoring dates, which is assumed

onstant. We define the processes of the maximum MN and of the

inimum mN up to the Nth monitoring date as

N = max
n=0,...,N

Xn and mN = min
n=0,...,N

Xn. (2)

o distinguish the present case, where the above processes, albeit

volving in continuous time, are recorded only at discrete times, the

erminology discrete versus continuous monitoring is used.

In particular, besides the distribution PX(x, N) of the Lévy pro-

ess at maturity T = N�, we will need the distributions Pm(x, N)

f the minimum and PM(x, N) of the maximum over the whole set

n = 0, . . . , N}, as well as the joint distributions PX, m(x, N) or PX, M(x,

) of the process at maturity and of its minimum or maximum over

he interval with respect to a lower (upper) barrier l (u), and the joint

istribution of the triplet (XN, mN, MN), PX, m, M(x, N). These distribu-

ions are defined as

PX (x, N) = pX (x, N)dx = P[XN ∈ [x, x + dx)] (3)

Pm(x, N) = pm(x, N)dx = P[mN ∈ [x, x + dx)] (4)

PM(x, N) = pM(x, N)dx = P[MN ∈ [x, x + dx)] (5)

PX,m(x, N) = pX,m(x, N)dx = P[XN ∈ [x, x + dx), mN > l] (6)

PX,M(x, N) = pX,M(x, N)dx = P[XN ∈ [x, x + dx), MN < u] (7)

PX,m,M(x, N) = pX,m,M(x, N)dx
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We define the Fourier transform of a function g(x) as

g(ξ ) = Fx→ξ [g(x)] :=
∫ +∞

−∞
g(x)eiξxdx

and its inverse with

g(x) = F−1
ξ→x

[ĝ(ξ )] := 1

2π

∫ +∞

−∞
ĝ(ξ )e−ixξ dξ .

In some cases, for compatibility with previous literature, we use an

upper-case letter instead of a lower-case letter with a hat, i.e., G(ξ )

instead of ĝ(ξ ). As an exception to these notations, the above defined

characteristic function � of the Lévy process is the Fourier transform

of the probability density function f of the Lévy process,

�(ξ,�) = Fx→ξ [ f (x,�)],

where the transition probability that X(t + �) = x when X(t) =
x′ has density f (x − x′,�) for any t > 0.1 The convolution form

of the density function is due to the assumption of independent

increments.

Next, we define the z-transform (or generating function) of a dis-

crete set of functions v(x, n), n ∈ N0, as

v(x, q) = Zn→q[v(x, n)] :=
∞∑

n=0

v(x, n)qn,

with q ∈ C (in a more common definition, z−1 is used in place of q).

It is a discrete version of the Laplace transform of a function c(x, t),

which is obtained for � → 0 setting q = e−s�, v(x, n) = �c(x, n�)

and n� = t . The original function v(x, n) can be recovered through

the complex integral

v(x, n) = Z−1
q→n [̃v(x, q)] = 1

2πρn

∫ 2π

0

ṽ(x, ρeiu)e−inudu, (9)

where ρ must be within the radius of convergence (Abate & Whitt,

1992).

Using combinatorial arguments, Spitzer (1956) derived formulas

for the z-transforms of the characteristic functions of the distribu-

tions defined in Eqs. (3)–(8), the celebrated Spitzer identities. We re-

call them here. Let �± be two functions which are analytic in the

overlap of two half planes including the real line such that

�(ξ, q) : = 1 − qE[eiξX(�)]

= 1 − q�(ξ,�) = �+(ξ , q)�−(ξ , q). (10)

�±(ξ , q) are the positive and negative WH factors of 1 − q�(ξ,�).2

The Spitzer identities express the desired characteristic functions

through the inversion of a moment-generating function involving

�, �+ and �−:

p̂X (ξ , q) = Zn→q[p̂X (ξ , n)] = Zn→q[E(eiξXn )] = 1

�(ξ, q)
(11)

p̂m(ξ , q) = Zn→q[p̂m(ξ , n)] = Zn→q[E(eiξmn )]

= 1

�+(0, q)�−(ξ , q)
(12)

p̂M(ξ , q) = Zn→q[p̂M(ξ , n)] = Zn→q[E(eiξMn )]

= 1

�+(ξ , q)�−(0, q)
(13)

p̂X,m(ξ , q) = 1

�(ξ, q)
− eilξ P−(ξ , q)

�+(ξ , q)
= eilξ P+(ξ , q)

�+(ξ , q)
(14)
1 We recall that pX (x, N) = f (x, N�) and thus p̂X (ξ , N) = �(ξ, N�).
2 The WH factors are not uniquely defined: given a factorization �(ξ, q) =

�+(ξ , q)�−(ξ , q), also a�+(ξ , q) and 1
a
�−(ξ , q) are WH factors for any constant a

�= 0.

T

a

p̂X,M(ξ , q) = 1

�(ξ, q)
− eiuξ Q+(ξ , q)

�−(ξ , q)
= eiuξ Q−(ξ , q)

�−(ξ , q)
(15)

p̂X,m,M(ξ , q) = 1

�(ξ, q)
− eilξ J−(ξ , q)

�(ξ , q)
− eiuξ J+(ξ , q)

�(ξ , q)
, (16)

here

(ξ , q) := e−ilξ

�−(ξ , q)
= P+(ξ , q) + P−(ξ , q)

nd

(ξ , q) := e−iuξ

�+(ξ , q)
= Q+(ξ , q) + Q−(ξ , q).

otice that the joint probabilities in Eqs. (14)–(16) are given by the

robability of the process at maturity, Eq. (11), minus the probability

o hit a barrier; the latter vanishes if the barrier moves to ± ∞. Simi-

ar identities exist for the continuous-monitoring case too, where the

uantity to be factorized becomes lim�→0 �(ξ, q)/� = s − ψ(ξ ) =:

(ξ , s); see Section D of the online supplemental material. Full tech-

ical details are given in Greenwood and Pitman (1980), Kyprianou

2006) and Sato (1999).

The double-barrier problem, which is more difficult than the oth-

rs, was not examined by Spitzer himself, but by Kemperman (1963).

nfortunately he did not present a constructive procedure for the

etermination of the quantities J+(ξ , q) and J−(ξ , q) in Eq. (16). The

roblem was later solved in the Gaussian case by Green et al. (2010,

ection 2.4). Here we generalize the latter construction to Lévy pro-

esses. In particular, Green et al. (2010) proved that J+(ξ , q) and

−(ξ , q) are the solution of the coupled integral equations

J−(ξ , q)

�−(ξ , q)
+ 1

2π i

∫ +∞

−∞

ei(u−l)ξ ′
J+(ξ ′, q)

(ξ − ξ ′)�−(ξ ′, q)
dξ ′

= 1

2π i

∫ +∞

−∞

e−ilξ ′

(ξ − ξ ′)�−(ξ ′, q)
dξ ′, (17)

J+(ξ , q)

�+(ξ , q)
+ 1

2π i

∫ +∞

−∞

ei(l−u)ξ ′
J−(ξ ′, q)

(ξ − ξ ′)�+(ξ ′, q)
dξ ′

= 1

2π i

∫ +∞

−∞

e−iuξ ′

(ξ − ξ ′)�+(ξ ′, q)
dξ ′, (18)

here Im ξ ′ > Im ξ in the first equation (smile integral; Im is the

maginary part) and Im ξ ′ < Im ξ in the second (frown integral).

As proved by Krein (1963), the decomposition of a complex func-

ion f̂ (ξ ) = f̂+(ξ ) + f̂−(ξ ) can be computed through the Cauchy-

ype integrals

f̂+(ξ ) = 1

2π i

∫ +∞

−∞

f̂ (ξ ′)
ξ − ξ ′ dξ ′, Im ξ ′ < Im ξ ,

f̂−(ξ ) = 1

2π i

∫ +∞

−∞

f̂ (ξ ′)
ξ − ξ ′ dξ ′, Im ξ ′ > Im ξ .

herefore Eqs. (17) and (18) can be rewritten as

J−(ξ , q)

�−(ξ , q)
+

[
ei(u−l)ξ J+(ξ , q)

�−(ξ , q)

]
−

=
[

e−ilξ

�−(ξ , q)

]
−
,

J+(ξ , q)

�+(ξ , q)
+

[
ei(l−u)ξ J−(ξ , q)

�+(ξ , q)

]
+

=
[

e−iuξ

�+(ξ , q)

]
+
,

r

J−(ξ , q)

�−(ξ , q)
=

[
e−ilξ − ei(u−l)ξ J+(ξ , q)

�−(ξ , q)

]
−
, (19)

J+(ξ , q)

�+(ξ , q)
=

[
e−iuξ − ei(l−u)ξ J−(ξ , q)

�+(ξ , q)

]
+
. (20)

he solution of Eqs. (19) and (20) is related to the difficult problem of

matrix WH factorization; a solution for the kind of matrix arising in
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his case has not been found yet. Therefore, we propose the following

xed-point algorithm that achieves a fast convergence: starting from

guess function J(0)
+ (ξ , q) = 0, for j = 1, . . .

(a) Decompose

P
( j)

(ξ , q) : = e−ilξ

�−(ξ , q)
− ei(u−l)ξ J( j−1)

+ (ξ , q)

�−(ξ , q)

= P
( j)

+ (ξ , q) + P
( j)

− (ξ , q) (21)

and compute J
( j)
− (ξ , q) = P

( j)
− (ξ , q)�−(ξ , q).

(b) Decompose

Q
( j)

(ξ , q) : = e−iuξ

�+(ξ , q)
− ei(l−u)ξ J( j)

− (ξ , q)

�+(ξ , q)

= Q
( j)

+ (ξ , q) + Q
( j)

− (ξ , q) (22)

and compute J
( j)
+ (ξ , q) = Q

( j)
+ (ξ , q)�+(ξ , q).

(c) If the distance between the new and old functions J
( j)
± and

J
( j−1)
± is greater than a given tolerance, increase j and return

to Step (a), otherwise stop and set J− = J
( j)
− , J+ = J

( j)
+ .

The above fixed-point algorithm will be used to price double-

arrier derivatives in Section 4.3.

To make all the above expressions usable, we need to factorize

or decompose) a complex function, defined in a strip containing the

eal axis, into a product (or sum) of two functions which are analytic

n the overlap of two half planes, including the real line, where they

re defined. Once this has been done and the relevant quantities in

qs. (11)–(16) have been obtained, we must compute numerically an

nverse z-transform, followed by an inverse Fourier transform. The

atter is done in a standard way using the FFT. The inversion of the z-

ransform is rather easy too. It has been discussed in detail by Abate

nd Whitt (1992), who showed that it can be well approximated by

(x, n) = Z−1
q→n [̃v(x, q)]

≈ 1

2nρn
[̃v(x, ρ)

+ 2

n−1∑
j=1

(−1) j̃v(x, ρei jπ/n) + (−1)nṽ(x,−ρ)]. (23)

The more challenging part is the factorization of � in Eq. (10), as

ell as the decomposition of P and Q (P
(i)

and Q
(i)

in the double-

arrier case). In general, this problem can be described as follows.

iven a smooth enough function f̂ (ξ ), analytic in a strip around the

eal axis, we need to compute f̂±(ξ ) such that

f̂ (ξ ) = f̂+(ξ ) f̂−(ξ ); (24)

f̂+(ξ ) is such that its inverse Fourier transform f+(x) = 0 for x < 0,

hile f̂−(ξ ) is such that f−(x) = 0 for x > 0. Taking logarithms, this

an be accomplished by the decomposition

og f̂ (ξ ) = log f̂+(ξ ) + log f̂−(ξ ). (25)

he conditions under which the above factorization or logarithmic

ecomposition gives proper results have been given by Krein (1963);

he most important requirement is that f̂ (ξ ) is not zero anywhere.

In general neither the factorization nor the decomposition can be

one analytically. With continuous monitoring, an analytical treat-

ent becomes possible for a Brownian motion or if we impose strong

estrictions on the structure of the considered Lévy process (Le Cour-

ois & Quittard-Pinon, 2008; Rogers, 2000), such as the assumption

hat it is spectrally one-sided, i.e., jumps are either always up or al-

ays down. Another assumption that makes the factorization feasible

s if the jumps are of phase type (Asmussen, Avram, & Pistorius, 2004),

hich includes the Kou double exponential jump model Kou (2002)
s a special case. In these cases the WH factorization is tractable be-

ause φ(ξ , s) = s − ψ(ξ ) is a rational function and its decomposition

n upper/lower factors is quite immediate. For example, Jeannin and

istorius (2009) approximate different Lévy models by the class of

eneralized hyper-exponential models, which have a tractable WH

actorization. A similar idea is pursued by Asmussen, Madan, and

istorius (2007) and Cai (2009). A quasi-analytical WH factorization

as been achieved by Kuznetsov (2010) when the characteristic ex-

onent is a meromorphic function. In this case, WH factors can be

xpressed as infinite products and require the solution of transcen-

ental equations. Unfortunately, with discrete monitoring, even un-

er the above assumptions the factorization is not doable analyti-

ally, because �(ξ, q) = 1 − q�(ξ,�) = 1 − qeψ(ξ )� is not a ratio-

al function. In addition, all the above mentioned methods consider

nly the single-barrier case. An exception was given by Boyarchenko

nd Levendorskii (2002), who obtained exact analytical pricing for-

ulae in terms of WH factors, and, under additional conditions on the

rocess, derived simpler approximate formulae. For the general diffi-

ulty in computing the factors, with reference to the important finan-

ial engineering problem of pricing barrier options, Carr and Crosby

2010) state: “Pricing barrier options for arbitrary Lévy processes is far

rom trivial. There are, in principle, some results ... based on Wiener-Hopf

nalysis although they involve inversion of triple Laplace transforms and

t is open to debate as to whether this could be done efficiently enough

or use in a trading environment.” Similarly, Cont and Tankov (2004), a

opular reference text for applications of Lévy processes in finance,

tates: “The Wiener-Hopf technique is too computationally expensive

nd we recommend Monte Carlo simulation or numerical solution of

artial integro-differential equations.” These remarks are based on the

epresentation of the WH factors for the continuous-monitoring case

s double integrals (Cont and Tankov, 2004, Chapter 11.3). With ref-

rence to financial applications, attempts to compute the WH fac-

ors have been done by Boyarchenko and Levendorskii (2002) and

uznetsov, Kyprianou, Pardo, and van Schaik (2011), among others.

A more convenient representation of the WH factors can be found

sing the Hilbert transform and the Plemelj–Sokhotsky relations

King, 2009). The Hilbert transform of a function f̂ (ξ ) is defined as

ξ [ f̂ (ξ )] = p.v.
1

πξ
∗ f̂ (ξ ) = p.v.

1

π

∫ +∞

−∞

f̂ (ξ ′)
ξ − ξ ′ dξ ′, (26)

here ∗ denotes convolution and p.v. the Cauchy principal value,

.v.
1

π

∫ +∞

−∞

f̂ (ξ ′)
ξ − ξ ′ dξ ′

= lim
ε→0+

1

π

(∫ ξ−ε

ξ−1/ε

f̂ (ξ ′)
ξ − ξ ′ dξ ′ +

∫ ξ+1/ε

ξ+ε

f̂ (ξ ′)
ξ − ξ ′ dξ ′

)
;

he latter assigns a value to an improper integral which would oth-

rwise result in the indefinite form +∞ − ∞. The convolution theo-

em

f̂ (ξ ) ∗ ĝ(ξ ) = Fx→ξ [ f (x)g(x)], (27)

hich maps a convolution to a product via a Fourier transform, to-

ether with the inverse Fourier transform

.v.F−1
ξ→x

[
1

πξ

]
= −i sgn x,

nables to express the Hilbert transform through an inverse Fourier

ransform (from f̂ (ξ ) to f(x)) and a direct Fourier transform,

Hξ [ f̂ (ξ )] = Fx→ξ [sgn x f (x)]. (28)

hus a fast method to compute the Hilbert transform numerically

onsists simply in evaluating Eq. (28) through an inverse and a direct

FT.

Define the projections of a function f(x) on the positive or the neg-

tive half-axis through the multiplication with the indicator function
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of that set,

P+
x [ f (x)] : = 1x>0 f (x) = f+(x), and P−

x [ f (x)] :

= 1x<0 f (x) = f−(x).

Now substitute

sgn x f (x) = (1x>0 − 1x<0) f (x) = f+(x) − f−(x)

into Eq. (28), obtaining the remarkable property

f̂+(ξ ) − f̂−(ξ ) = iHξ [ f̂ (ξ )]. (29)

Together with the identity

f̂+(ξ ) + f̂−(ξ ) = f̂ (ξ ), (30)

this allows to achieve a decomposition of a function f̂ (ξ ), and thus

a factorization of exp f̂ (ξ ), via its Hilbert transform. To this end,

Eqs. (29) and (30) are conveniently rearranged to the Plemelj–

Sokhotsky relations

f̂+(ξ ) = 1

2
( f̂ (ξ ) + iHξ [ f̂ (ξ )]),

f̂−(ξ ) = 1

2
( f̂ (ξ ) − iHξ [ f̂ (ξ )]). (31)

Obtaining the WH factors of exp f̂ (ξ ) through Eq. (31) with the

Hilbert transform computed in a straightforward way by Eq. (28) cor-

responds to performing in sequence an inverse Fourier transform, a

projection on the positive or negative half axis and a Fourier trans-

form,

f̂+(ξ ) = Fx→ξ

[
P+

x F−1
ξ→x

f̂ (ξ )
]
, f̂−(ξ ) = Fx→ξ

[
P−

x F−1
ξ→x

f̂ (ξ )
]
,

i.e., to the scheme

f̂
F−1

−→ f

P+

↗
↘
P−

f+
F−→ f̂+

f−
F−→ f̂−.

This factorization is fast because it can be accomplished numerically

with two FFTs and one projection (Henery 1974 & Rino 1970). On the

other hand, switching back and forth between Fourier and real space,

the application of the projection causes a loss of accuracy; in the end

this procedure turns out to have only quadratic accuracy.

A numerically more accurate approach consists in the computa-

tion of the Hilbert transform, and thus of the Plemelj–Sokhotsky re-

lations, using a sinc expansion approximation to analytic functions.

This approach uses two FFTs too to multiply Toeplitz matrices with

vectors and thus has a computational cost of O(M log M), but it does

not leave Fourier space and its discretization error decreases expo-

nentially with respect to M; see Section 3.1 for details.

We stress here the similarities and differences with the approach

followed by Feng and Linetsky (2008a, 2009). In the mentioned pa-

pers the Hilbert transform is applied in the backward-in-time pric-

ing procedure. In practice, the projection step is performed in Fourier

space using the Hilbert transform; greater details on how this is pos-

sible are given in the online supplementary material. This transform

is computed at a high degree of accuracy via sinc expansion. No di-

rect relationship of their procedure with a WH factorization can be

devised. The analogy is that we are able to express WH factors via

a Hilbert transform and then we can exploit their idea of perform-

ing this transform with a sinc expansion. At the end, we are able to

achieve the same accuracy as their method, but with a significant

saving of computational time, because our procedure has a cost in-

dependent of the number of monitoring dates N, whilst in all existing

methods, including the one by Feng and Linetsky (2008a), the cost

increases linearly with N.

For the sake of truth, an advantage of the Feng and Linetsky

method with respect to our procedure is that, like all backward-in-

time recursive methods, it can easily deal with non-equally spaced
onitoring dates. On the other side, our methodology can cope with

he continuous monitoring case, as shown in the online supple-

entary material, whilst the Feng and Linetsky approach, and other

ourier methods, cannot.

The new approach proposed in the present paper is therefore

ummarized in the following procedure: (1) we perform the WH fac-

orization through the Plemelj–Sokhotsky relations (31), and (2) we

ompute the Hilbert transform in Fourier space using sinc functions

s described in detail in the next section. The inversion of the z-

ransform is performed exploiting the Euler acceleration technique.

he detailed procedure is discussed in Section 3. Applications to dif-

erent exotic options are considered in Section 4.

. Discrete approximation error and efficient implementation

The implementation of the proposed procedure to estimate the

istributions in Eqs. (3)–(8) consists of two steps: an efficient im-

lementation of the WH factorization exploiting sinc functions, and

n inverse z-transform combined with the Euler summation. The nu-

erical implementation is detailed in this section.

.1. Hilbert transform with sinc functions

The Hilbert transform can be efficiently computed using the sinc

xpansion approximation of analytic functions. The use of sinc func-

ions

k(z, h) = sin(π(z − kh)/h)

π(z − kh)/h
, k ∈ Z,

as been deeply studied by Stenger (1993), who showed that a func-

ion f(z) analytic on the whole complex plane and of exponential type

ith parameter π /h, i.e., |f(z)| ≤ Ceπ |z|/h, can be reconstructed exactly

rom the knowledge of its values on an equispaced grid of step h, as

(z) admits the sinc expansion (Stenger, 1993, Theorem 1.10.1)

f (z) =
+∞∑

k=−∞
f (kh)Sk(z, h).

ow, as Fz→ζ [Sk(z, h)] = heikhζ , and (Feng & Linetsky, 2008a, Corol-

ary 6.1)

z[Sk(z, h)] = 1 − cos(π(z − kh)/h)

π(z − kh)/h
,

lso the Fourier and Hilbert transforms of f(z) admit the sinc expan-

ions

f̂ (ζ ) = h

+∞∑
k=−∞

f (kh)eikhζ if |ζ | < π/h,

f̂ (ζ ) = 0 if |ζ | ≥ π /h, as functions analytic on the whole plane and of

xponential type have Fourier transforms that vanish outside of the

nite interval (−π/h, π/h) (Stenger, 1993, Theorem 1.10.1), and

z[ f (z)] =
+∞∑

k=−∞
f (kh)

1 − cos(π(z − kh)/h)

π(z − kh)/h
.

he integrals of f and |f|2 can be written as sinc expansions too,

R

f (x)dx = h

+∞∑
k=−∞

f (kh),

∫
R

| f (x)|2dx = h

+∞∑
k=−∞

| f (kh)|2.

he above results show in particular that the trapezoidal quadrature

ule with step size h is exact.

This holds true for a function f(z) that is analytic in the whole com-

lex plane. However, this can be used also to approximate a function

hat is analytic only in a strip including the real axis, which is the

ase considered in this article. More precisely, Stenger (1993, The-

rems 3.1.3, 3.1.4 and 3.2.1) states that in this case the trapezoidal
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pproximation has an error that decays exponentially with respect

o h.

The computation of the Hilbert transform via a sinc expansion can

e performed using the FFT (Feng & Linetsky, 2008a, Section 6.5). A

iscrete Hilbert transform requires matrix-vector multiplications in-

olving Toeplitz matrices. As is well known, this kind of multiplica-

ions can be performed exploiting the FFT, once those matrices are

mbedded in a circulant matrix (Feng & Linetsky, 2008a, Appendix B)

Fusai et al., 2012). In particular, Feng & Linetsky, with respect to the

omputation of the Hilbert transform (Feng & Linetsky, 2009, Theo-

em 3.3) and of the whole Plemelj–Sokhotsky formulas (31) (Feng &

inetsky, 2008a, Theorem 6.5) (Feng & Linetsky, 2009, Theorem 3.4)

ith sinc functions, proved the following convergence result: if a

unction is analytic in a suitable strip around the real axis, then

he discretization error of its numerical factorization or decomposi-

ion decays exponentially with the number of grid points M. Matlab

ode to perform the Hilbert transform via sinc functions and there-

ore the WH factorization is provided in the online supplementary

aterial.

.2. Acceleration of the inverse z-transform via Euler summation

In order to recover the probabilities in Eqs. (11)–(16) once the WH

quations have been solved, we need an inverse z-transform Z−1
q→n.

he latter is performed according to Eq. (23), where ρ ∈ (0, 1) is a

ree parameter; setting ρ = 10−6 yields a 10−12 accuracy of the option

rice (Abate & Whitt, 1992; Fusai et al., 2012). Moreover, we apply

he Euler summation, which is a convergence-acceleration technique

ell suited to evaluate alternating series (O’Cinneide, 1997). The idea

f the Euler summation is to approximate Z−1
q→n [̃v(ξ , q)] by the bino-

ial average, also called Euler transform, of its partial sums bk from

= nE to k = nE + mE, i.e.,

−1
q→n [̃v(ξ , q)] ≈ 1

2mE nρn

mE∑
j=0

(
mE

j

)
bnE+ j(ξ ), (32)

here

k =
k∑

j=0

(−1) ja j Re ṽ(ξ , ρei jπ/n),

ith a0 = 0.5, a j = 1, j = 1, . . . , nE + mE, and nE and mE are suit-

bly chosen such that nE + mE < n. Thus the number of parame-

ers q = ρei jπ/n to be considered in Eq. (23) drops from n + 1 to

E + mE + 1. Numerical tests suggest to set nE = 12 and mE = 20.

In conclusion, the combined use of the numerical Hilbert trans-

orm and the numerical inverse z-transform has a computational cost

f

((min{n, nE + mE} + 1)M log M),

nd a discretization error which exponentially decays till it reaches

n accuracy of about 10−12. This is confirmed in the numerical ex-

eriments reported in Section 5 to price derivatives. The only excep-

ion is for the double-barrier case, and therefore when we deal with

he probability dPX, m, M, where the error decay turns out to be only

olynomial, due to the use of the fixed-point algorithm. On the other

and, the iterative numerical scheme solves a long-standing problem

elated to an efficient computation of the WH factors in the double-

arrier case.

. Applications to option pricing

In mathematical finance Lévy processes X(t) are used to describe

he evolution of an asset price S(t) according to

(t) = S0eX(t),
0 = S(0) being the initial spot price. The stock price dynamics is di-

ectly specified under the so-called risk-neutral measure, so that in

q. (1) a = r − δ − 1
2 σ 2 − ∫

R

(
eη − 1 − η1|η|<1

)
ν(dη), where r is the

isk-free interest rate and δ the asset dividend rate.

To price path-dependent options such as barrier and lookback op-

ions, the relevant quantities are the maximum MN and the minimum

N registered at discrete times t = n�, n = 0, . . . , N, up to maturity

� = T, � being the constant time interval between two subsequent

onitoring dates. For a fixed-strike lookback option we need the dis-

ribution PM(x, N) of the maximum or Pm(x, N) of the minimum. For

single-barrier option we need the joint distribution PX, M(x, N) or

X, m(x, N) of the Lévy process at T and of its maximum (up-and-out

ase) or minimum (down-and-out case) over all monitoring dates

= 0, . . . , N. For a double-barrier option we need the joint distribu-

ion PX, m, M(x, N) of the triplet (XN, mN, MN).

In pricing the above mentioned contracts, we are interested in the

runcated damped payoff for a call and a put option

(x) = eαxS0(ex − ek)+1x≤u and φ(x) = eαxS0(ek − ex)+1x≥l,

(33)

espectively, where k = log(K/S0) is the rescaled log-strike of the op-

ion, and l = log(L/S0) and u = log(U/S0) are the rescaled lower and

pper log-barriers. The damping factor eαx with a suitable choice of

he parameter α makes the Fourier transform of the payoff well de-

ned.

The option price is obtained discounting the expectation value of

he undamped payoff with respect to the appropriate distribution;

his expectation can conveniently be computed through the Parse-

al/Plancherel relation (Lewis, 2001) by a product in Fourier space

nd an inverse Fourier transform,

[φ(x)e−αx] =
∫ +∞

−∞
φ(x)e−αx p(x)dx

= 1

2π

∫ +∞

−∞
φ̂(ξ )p̂∗(ξ + iα)dξ

= 1

2π

∫ +∞

−∞
φ̂∗(ξ )p̂(ξ + iα)dξ

= F−1
ξ→x

[φ̂∗(ξ )p̂(ξ + iα)](0), (34)

here p(x) = pM(x, N) or pm(x, N) for lookback options (to be syn-

hetic, in the following we will consider only fixed-strike lookback

ptions written on the minimum), p(x) = pX,M(x, N) or pX, m(x, N) for

ingle-barrier options, and p = pX,m,M(x, N) for double-barrier op-

ions. The introduction of a damping factor in the payoff is compen-

ated by a shift of the Fourier transform of the probability density

unction.

While it is known that the Fourier transform of the truncated

amped payoff for a barrier option is

̂(ξ ) = S0

(
eb(1+α+iξ ) − ea(1+α+iξ )

1 + α + iξ
− ek+b(α+iξ ) − ek+a(α+iξ )

α + iξ

)
(35)

ith a = max(l, k), b = u for a call option and a = min(k, u), b = l

or a put option (Green et al., 2010, Eq. (3.26)), the main problem in

valuating path-dependent options is the computation of the char-

cteristic functions of the (joint) probability densities defined in

qs. (5)–(8). Here we exploit the Spitzer identity and the factoriza-

ion procedure previously described. So let us assume for the moment

hat the quantities appearing on the right-hand side of Eqs. (12)–(16)

re known; then if we take their inverse z-transform defined in Eq. (9)

e finally obtain the option price through the double inverse trans-

orm

(x, N) = e−rTF−1
ξ→x

[
φ̂∗(ξ )Z−1

q→N [̃p̂(ξ + iα, q)]
]
, (36)
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evaluated for x = 0.3 A few little improvements, discussed later on,

can be adopted in order to enhance the numerical accuracy of the

final result.

4.1. Lookback options

In this case, without loss of generality we consider only a fixed-

strike lookback put on the minimum, where it is natural to assume K

≤ S0, so that the contract can or cannot be exercised at maturity. The

pricing formula (36) reads

v(x, N) = e−rTF−1
ξ→x

[
φ̂∗(ξ )Z−1

q→N

[
1

�+(0, q)�−(ξ + iα, q)

]]
evaluated for x = 0; however, assuming a number of monitoring dates

N > 1, it is convenient to modify the above pricing formula into

v(x, N) = e−rTF−1
ξ→x

[
φ̂∗(ξ )�(ξ + iα,�)

×Z−1
q→N−1

[
1

�+(0, q)�−(ξ + iα, q)

]]
.

The conjugated Fourier transform of the payoff function is smoothed

by the multiplication by the characteristic function � , giving it the

required regularity to ensure an exponential decay of the error. This

procedure computes the distribution Pm not starting from time 0, but

moving one step forward with a convolution procedure. This corre-

sponds to multiplying by � the Fourier transform of the Dirac delta

function, i.e., the value of the probability at time 0, and then applying

the Spitzer identity. Indeed

Fx→ξ [pm(x, N)] = Z−1
q→N

[
1

�+(0, q)�−(ξ , q)

]
= Z−1

q→N−1

[
�(ξ,�)

�+(0, q)�−(ξ , q)

]
(37)

for any x < 0.4 The algorithm can be summarized by the scheme

φ
F−→ φ̂

δ
F−→ 1

�−→ �

↘
↗

ZS−→ v̂N
F−1

−→ vN

where the operator ZS is defined as

ZS[φ̂(ξ ),�(ξ ,�)] = φ̂∗(ξ )�(ξ + iα,�)

×Z−1
q→N−1

[
1

�+(0, q)�−(ξ + iα, q)

]
.

The conjugate operator applied to φ̂ is due to the Parseval relation.

Therefore, the full procedure consists of the steps:

1. For each q necessary to invert the z-transform, factorize

�(ξ, q) := 1 − q�(ξ,�) = �+(ξ , q)�−(ξ , q)

and compute the Spitzer identity

R(ξ , q) := 1

�+(0, q)�−(ξ , q)
.

We recall that p̂m(ξ , N) = Z−1
q→N

[R(ξ , q)] = �(ξ,�)Z−1
q→N−1

[R(ξ , q)] due to Eq. (37).
3 The Fourier transform and the z-transform, and also their inverses, can be inter-

changed because the z-transform is a power series in q which converges uniformly

in a closed and bounded set given by the radius of convergence ρ (Fusai, Abrahams,

& Sgarra, 2006). In Eq. (36) the inverse z-transform is performed before the inverse

Fourier transform to minimize the computational cost. The reason is that the inversion

operator Z−1
q→N

is well approximated by a sum of N + 1 terms (or nE + mE + 1 if the

Euler acceleration is considered). Therefore, from a computational point of view it is

advantageous to do a single inverse Fourier transform of the sum instead of a separate

transform of each of the addends.
4 The hypothesis K ≤ S0 implies that φ(x) = 0 if x ≥ 0, therefore we are only inter-

ested in the distribution of the minimum for negative values of x.

t

a

s

�

a

2. Apply the inverse z-transform Z−1
q→N−1

to R(ξ + iα, q) and multi-

ply the result by φ̂∗(ξ )�(ξ + iα,�), obtaining v̂(ξ , N).

3. Apply the inverse Fourier transform to v̂(ξ , N) and pick the value

for x = 0, obtaining the option price.

A similar procedure is valid for fixed-strike lookback call options

ritten on the maximum, where ˜̂pM(ξ , q) is used in place of ˜̂pm(ξ , q)

nd the additional hypothesis K ≤ S0 is replaced by K ≥ S0.

.2. Single-barrier options

Without loss of generality, let us consider the case of a down-and-

ut barrier option. The pricing formula (36) reads

(x, N) = e−rTF−1
ξ→x

[
φ̂∗(ξ )Z−1

q→N

[
eilξ P+(ξ + iα, q)

�+(ξ + iα, q)

]]
;

owever, assuming a number of monitoring dates N > 2, it is conve-

ient to modify it into

(x, N) = e−rTF−1
ξ→x

[
φ̂∗(ξ )�(ξ + iα,�)

×Z−1
q→N−2

[
eilξ+iα P+(ξ + iα, q)

�+(ξ + iα, q)

]]
here

(ξ , q) := �(ξ,�)
e−ilξ

�−(ξ , q)
= P+(ξ , q) + P−(ξ , q).

ore precisely, we reduce the number of monitoring dates by one

nd multiply the payoff function by the characteristic function to

mooth it. From a financial point of view, this is equivalent to price an

ption with N − 1 monitoring dates and payoff v1 = v(x, 1), where

(x, n) is the value of the option with log-price x at time (N − n)�.

rom a technical point of view, this corresponds to applying a first

tep of the convolution pricing procedure; see the supplementary

aterial, Section C.1. Then we proceed as for lookback options. Our

lgorithm can be summarized by the scheme

≡ v0
F−→ v̂0

�∗
−→ v̂1

δ
F−→ 1

�−→ �

↘
↗

ZS−→ v̂N
F−1

−→ vN (38)

here in this case we denote with ZS the operator

S[v̂1(ξ ),�(ξ ,�)] = v̂∗
1(ξ )Z−1

q→N−2

[
eilξ P+(ξ + iα, q)

�+(ξ + iα, q)

]
.

he substitution of P with P is again a smoothing procedure necessary

o achieve the regularity required to ensure an exponential decay of

he error. This substitution is related to the procedure sketched in

q. (38): in computing the distribution PX, m we do not start from

ime 0, but we move one step forward via a convolution, which cor-

esponds to multiplying by � the Fourier transform of the Dirac

elta function. Then we apply the Spitzer identity. Moreover, notice

hat the procedures given by Eq. (38) are performed backward and

orward-in-time, as one (starting point: payoff at time T) is related to

he price of the derivative, while the other (starting point: Dirac delta

t time 0) to the probability distribution of the log-price.5

Therefore, for a down-and-out barrier option we perform the

teps:

1. For each q necessary to invert the z-transform, factorize

�(ξ, q) := 1 − q�(ξ,�) = �+(ξ , q)�−(ξ , q),
5 We recall that the Fourier transform of the backward-in-time transition density is
∗(ξ ,�) = Fx→ξ [ f (−x,�)], where f(x, �) is the forward-in-time transition density

nd �(ξ , �) its Fourier transform.
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decompose

P(ξ , q) := �(ξ,�)
e−ilξ

�−(ξ , q)
= P+(ξ , q) + P−(ξ , q),

and compute the Spitzer identity

R(ξ , q) := eilξ P+(ξ , q)

�+(ξ , q)
. (39)

The function R(ξ , q) is related to ˜̂pX,m(ξ , q) in Eq. (12): more pre-

cisely, Z−1
q→N−1

[R(ξ , q)] = Z−1
q→N

[̃p̂X,m(ξ , q)] = p̂X,m(ξ , N).

2. Apply the inverse z-transform Z−1
q→N−2

and then the inverse

Fourier transform, obtaining the option price from

v(x, N) = e−rTF−1
ξ→x

[
φ̂∗(ξ )�(ξ + iα,�)

×Z−1
q→N−2

[
eil(ξ+iα) P+(ξ + iα, q)

�+(ξ + iα, q)

]]
evaluated for x = 0.

.3. Double-barrier options

For the double-barrier option pricing problem the missing piece is

he computation of the factors J+ and J− in Eq. (16). This requires the

olution of a system of two integral equations, and we apply here the

ew fixed-point algorithm presented in Section 2.

Starting from Eqs. (17) and (18), as for the single-barrier case we

ssume a number of monitoring dates N > 2 and we move one step

orward in the computation of the probability dPX, m, M via convolu-

ion. So we replace Eqs. (19) and (20) with

J−(ξ , q)

�−(ξ , q)
=

[
e−ilξ�(ξ ,�) − ei(u−l)ξ J+(ξ , q)

�−(ξ , q)

]
−
, (40)

J+(ξ , q)

�+(ξ , q)
=

[
e−iuξ�(ξ ,�) − ei(l−u)ξ J−(ξ , q)

�+(ξ , q)

]
+
. (41)

o compute J± we consider the iterative procedure presented in

ection 2, dealing with

P
( j)

(ξ , q) := e−ilξ�(ξ ,�)

�−(ξ , q)
− ei(u−l)ξ J( j−1)

+ (ξ , q)

�−(ξ , q)

= P
( j)

+ (ξ , q) + P
( j)

− (ξ , q)

( j)
(ξ , q) := e−iuξ�(ξ ,�)

�+(ξ , q)
− ei(l−u)ξ J( j)

− (ξ , q)

�+(ξ , q)

= Q
( j)

+ (ξ , q) + Q
( j)

− (ξ , q),

nstead of Eqs. (21) and (22), respectively. Once J± are obtained via

he fixed-point algorithm, we compute

(ξ , q) := �(ξ,�)

�(ξ , q)
− eilξ J−(ξ , q)

�(ξ , q)
− eiuξ J+(ξ , q)

�(ξ , q)
. (42)

he function R(ξ , q) is related to ˜̂pX,m,M(ξ , q) in Eq. (16): more pre-

isely, Z−1
q→N−1

[R(ξ , q)] = Z−1
q→N

[̃p̂X,m,M(ξ , q)] = p̂X,m,M(ξ , N).

Therefore the scheme for the computation of the option price is:

1. For each q necessary to invert the z-transform, factorize

�(ξ, q) = 1 − q�(ξ,�) = �+(ξ , q)�−(ξ , q),

and compute R(ξ , q) via the iterative scheme.

2. Apply the inverse z-transform Z−1
q→N−2

to R(ξ + iα, q) and then

the inverse Fourier transform, obtaining the option price in x = 0

from

v(x, N) = e−rTF−1
ξ→x

[̂
φ∗(ξ )�(ξ + iα,�)Z−1

q→N−2[R(ξ + iα, q)]
]
.

(43)
 p
Thus, the methodology to price a double-barrier option is close

o the one proposed for single-barrier contracts and consists of the

ame steps as sketched in Eq. (38), with a different R(ξ , q) inside the

perator ZS[v̂1(ξ ),�(ξ ,�)] = v̂∗
1
(ξ )Z−1

q→N−2
[R(ξ , q)], i.e. the R(ξ , q)

omputed from �(ξ , �) and q via the fixed-point algorithm defined

n Eq. (42) instead of the one in Eq. (39). Even if the factorization is

erformed with a sinc function expansion of the Hilbert transform as

escribed in Section 3.1, our numerical experiments show that, due to

he fixed-point algorithm for R(ξ , q), this pricing algorithm provides

quadratic convergence of the error instead of the exponential one

f single-barrier (and lookback) options.

. Numerical experiments

In this section we compare the proposed pricing techniques with

thers presented in the literature. We consider:

• Z-S, i.e., the new fast method presented in this article.
• CONV, i.e., the convolution method of Lord et al. (2008) described

in the supplementary material, Section C.1.
• HILB, i.e., the recursive method of Feng and Linetsky (2008a)

based on the Hilbert transform and described in the supplemen-

tary material, Section C.1.
• REC-QUAD, i.e., the recursive method based on the trapezoidal

quadrature rule and described in the supplementary material,

Section C.2.
• Z-QUAD, i.e., the method of Fusai et al. (2012) based on the z-

transform and the trapezoidal quadrature rule, described in the

supplementary material, Section C.3.

The Z-QUAD algorithm requires to solve several WH integral equa-

ions via quadrature formulas. Another possibility consists in relating

he Spitzer-WH factorization to the solution of these integral equa-

ions. Indeed, the well-known methodology to solve a WH integral

quation also requires the knowledge of the WH factors. Therefore,

e also consider the following new method

• Z-WH, i.e., a new method which improves Z-QUAD exploiting WH

factorization via the Hilbert transform and sinc functions; see the

supplementary material, Section C.3.

All the numerical experiments have been performed with Matlab

2013b running under Windows 7 on a personal computer equipped

ith an Intel Core i7 Q720 1600 MHz processor and 6 GB of RAM.

e would like to stress that with lookback and single-barrier options

nd with all Fourier-based methods we have unbounded domains.

herefore, we use a domain truncation based on a moments bound

ith tolerance 10−8 (Fusai et al., 2012); thus the truncation error is

onstant, but, according to numerical experiments (Fusai et al., 2009;

usai et al., 2012), it does not affect the first significant decimal digits.

First of all, we consider a down-and-out call barrier option as-

uming that the underlying asset evolves according to a Merton jump

iffusion process with the same parameters as in Feng and Linetsky

2008a), including the procedure to choose the damping parameter

. The lower barrier is L = 0.8, the initial spot price S0 and the strike

rice K are both set to 1, and the time to maturity is T = 1. The under-

ying asset has a dividend rate δ = 0.02 and the risk-free interest rate

s r = 0.05.

In Fig. 1 we consider the case with N = 100 and N = 252 mon-

toring dates: we report in double logarithmic scale the pointwise

bsolute error, computed at the spot price S0 = 1, taking as exact

olution the price computed with the HILB method and a grid of
16 points. The CONV, REC and Z-QUAD methods have a polynomial

onvergence; moreover the REC and the Z-QUAD algorithms show a

imilar polynomial accuracy. Our newly proposed methods, Z-S and

-WH, and the HILB algorithm exhibit an exponential convergence

ue to the use of the sinc expansion and to the fact that all com-

utations are performed in Fourier space, as already described by
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Fig. 1. Down-and-out barrier call option: pointwise absolute error as a function of the number of grid points M for N = 100 (left) and N = 252 (right) monitoring dates.

Fig. 2. Down-and-out barrier call option: pointwise absolute error as a function of CPU time for N = 100 (top left), N = 252 (top right), N = 504 (bottom left) and N = 1260 (bottom

right) monitoring dates.
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Feng and Linetsky (2008a). As expected, both the Z-S and Z-WH

methods rapidly reach the maximum accuracy allowed by the ap-

proximation used to invert the z-transform, i.e., 10−12.

In Fig. 2 we report the pointwise absolute error against the CPU

time necessary for the price computation for different numbers of

monitoring dates. It is clear that the Z-S, the Z-WH and the HILB

methods are the most accurate. Their exponential convergence en-

ables them to be used with a limited number M of grid nodes. The

Z-S and the Z-WH methods are able to compute option prices with

an accuracy of 10−12 in less than a quarter of a second. Notice that

increasing the number of monitoring dates from 252 to 504 or 1260,

the computational costs of the methods based on the z-transform do

not change because of the Euler acceleration technique. From these

experiments it appears that, among the methods proposed in this pa-

per, Z-S and Z-WH are preferable when the number of dates is large.

However, if a greater accuracy is necessary and the number of mon-

itoring dates is not too large, the HILB method by Feng and Linetsky

(2008a) should also be considered.
To complete the numerical tests on single-barrier options, Table 1

hows results for a down-and-out barrier call option, assuming that

he underlying asset evolves according to a NIG process with the same

arameters as in Feng and Linetsky (2008a). All the other parame-

ers are as before. These results confirm the good performance of the

-S and Z-WH algorithms when the number of monitoring dates in-

reases. Moreover, it is not possible to state which method between

-S and Z-WH should be preferred, as they are comparable in accu-

acy and computational cost. This is not surprising, as the two algo-

ithms are made of the same building blocks, even if they have been

eveloped from two different relations, i.e., the Parseval equation for

-S and the recursive approach for Z-WH.

In Fig. 3 we consider a double-barrier option and we plot the

ointwise absolute error for the fixed-point algorithm presented in

ection 4.3. We use the Kou double exponential model Kou (2002),

gain with the same parameters as in Feng and Linetsky (2008a).

he lower (upper) barrier is L = 0.8 (U = 1.2), the initial spot price

s S0 = 1 and the strike price is K = 1.1. A one year daily monitoring
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Table 1

Down-and-out barrier call option: option price and CPU time in seconds; M = 214.

Z-S Z-WH HILB

N Price CPU time Price CPU time Price CPU time

50 0.04775954751 0.604597 0.04775954751 0.615977 0.04775954750 0.411529

100 0.04775180473 0.598856 0.04775180473 0.585755 0.04775180472 0.719666

252 0.04774580616 0.613833 0.04774580616 0.600996 0.04774580615 1.745266

504 0.04774337792 0.601078 0.04774337791 0.591950 0.04774337791 3.468807

Table 2

Fixed-strike lookback call (on the maximum) and put (on the minimum) options: option

price and CPU time in seconds. For the call option, the error is computed with respect to the

benchmark price 0.183264598300 provided by Feng and Linetsky (2009, Table 1).

Call Put

M Price Error CPU time Price CPU time

28 0.183264603755 5.5 × 10−9 0.0097 0.117871584305 0.0087

29 0.183264598264 3.6 × 10−11 0.0169 0.117871585215 0.0114

210 0.183264598276 2.4 × 10−11 0.0214 0.117871585217 0.0175

211 0.183264598268 3.2 × 10−11 0.0361 0.117871585212 0.0371

212 0.183264598273 2.7 × 10−11 0.0722 0.117871585216 0.0964

213 0.183264598262 3.8 × 10−11 0.1933 0.117871585210 0.1753

214 0.183264598287 1.3 × 10−11 0.3211 0.117871585214 0.3052

215 0.183264598282 1.8 × 10−11 0.6192 0.117871585214 0.5601

216 0.183264598276 2.4 × 10−11 1.2780 0.117871585214 1.0442

Fig. 3. Knock-and-out barrier call option: pointwise absolute error with N = 252.
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s assumed, i.e., T = 1 and N = 252. The error is again computed con-

idering as exact the solution computed with the HILB method and

= 216 grid points. The numerical experiments show that the orders

f convergence of the newly proposed algorithms, Z-WH and Z-S, are

o more exponential as in the single-barrier case, but approximately

uadratic. We would like to stress that the average number of fixed-

oint iterations necessary to reach a tolerance of 10−12 is as low as 3.

oreover, the newly proposed methods are still slightly more accu-

ate than the CONV, REC and Z-QUAD ones.

Finally, in Table 2 we price a fixed-strike lookback call option writ-

en on the maximum and a put option written on the minimum, both

ith N = 50 monitoring dates and S0 = K = 1. We assume that the

nderlying asset evolves as a geometric Brownian motion with the

ame parameters as in Feng and Linetsky (2009), i.e., σ = 0.3, r =
.1, T = 0.5. We report the option price and the computational cost

f the Z-S approach for different numbers of grid points M. From this

able we notice the same exponential convergence of the algorithm

s in the single-barrier case.

. Conclusions

In this article we presented a fast and accurate constructive proce-

ure to perform the Wiener-Hopf factorization of a complex function.
s a concrete application we considered the pricing of barrier and

ookback options, when the monitoring is discrete and the underly-

ng evolves according to an exponential Lévy process. Our procedure

s based on the combined use of Hilbert and z-transforms. The nu-

erical implementation exploits the fast Fourier transform and the

uler summation. The computational cost is independent of the num-

er of monitoring dates. In addition, the error decays exponentially

ith the number of grid points. For the double-barrier case we also

ntroduce a new iterative algorithm based on the Wiener-Hopf fac-

orization. Applications to pricing of exotic derivatives confirm the

xponential accuracy of the proposed method. Extensions to other

xotic derivatives, like perpetual Bermudan, occupation time, quan-

ile and step options are straightforward combining our method with

he Wendel-Port-Dassios identity (Dassios, 1995). Applications of the

roposed procedure to other fields such as insurance, queuing theory

nd fluid mechanics are currently under investigation.
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