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a b s t r a c t

Continuous-time random walks, or compound renewal processes, are pure-jump stochastic
processes with several applications in insurance, finance, economics and physics. Based on
heuristic considerations, a definition is given for stochastic integrals driven by continuous-
time random walks, which includes the Itô and Stratonovich cases. It is then shown how
the definition can be used to compute these two stochastic integrals by means of Monte
Carlo simulations. Our example is based on the normal compound Poisson process, which
in the diffusive limit converges to the Wiener process.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

1.1. The continuous-time random walk

The continuous-time random walk (CTRW) is a pure-jump stochastic process. It has been introduced by Montroll and
Weiss in physics as a model for standard and anomalous diffusion when the residence time in a site is much greater than
the jump time [1]. Shlesinger wrote a review paper that greatly contributed to popularize CTRWs [2]. More recently,
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theoretical and empirical studies on CTRWs have been discussed by Metzler and Klafter [3,4] and by a co-author of the present
paper [5]. In a CTRW, if xðtÞ denotes the position of a diffusing particle at time t; ni denotes a random jump occurring at a
random time ti and si ¼ ti � ti�1 is the inter-jump waiting time (also known as duration, interarrival interval or sojourn time),
one has
Fig
xðtÞ ¼
XnðtÞ
i¼1

ni; ð1Þ
where t0 ¼ 0; xð0Þ ¼ 0 and nðtÞ is a counting random process giving the number of jumps occurred up to time t. Throughout
this paper, jumps, ni, and waiting times, si, are independent and identically distributed (i.i.d.) random variables; moreover,
they are mutually independent random variables, so that the joint probability density uðn; sÞ can be factorized in terms of
the marginal probability densities for jumps wðnÞ and waiting times wðsÞ : uðn; sÞ ¼ wðnÞwðsÞ; this is called the uncoupled
case. Depending on their interpretation, jumps may be positive random variables or may assume any real value. They can
also be vectors. On the other side, waiting times are positive random variables. Eq. (1) means that a CTRW is a random
sum of independent random variables. The time process
tn ¼
Xn

i¼1

si; t0 ¼ 0; ð2Þ
is a renewal point process. Therefore, CTRWs can be seen as compound renewal processes [6–8]. The existence of uncoupled
CTRWs can be proved, based on the corresponding theorems of existence for renewal processes and discrete-time random
walks. Càdlàg (right-continuous with left limit) realizations of CTRWs can be easily and exactly generated by Monte Carlo
simulations and drawn. This is illustrated in Fig. 1. Uncoupled CTRWs are Markovian if and only if the waiting time distri-
bution is exponential, meaning that wðsÞ ¼ k expð�ksÞ [9,10]. General uncoupled CTRWs belong to the class of semi-Markov
processes [10,11]. For semi-Markov processes, it is possible to write an integral equation for the probability density pðx; tÞ of
finding the diffusing particle in position x at time t – the so-called Montroll–Weiss equation; this is done in terms of the
marginal probability densities of waiting times wðsÞ and of jumps wðnÞ:
pðx; tÞ ¼ WðtÞdðxÞ þ
Z þ1

�1
wðx� x0Þ

Z t

0
wðt � t0Þpðx0; t0Þdt0 dx0; ð3Þ
where WðtÞ ¼ 1�
R t

0 wðuÞdu is known as survival function or complementary cumulative distribution function for waiting
times. The solution of Eq. (3) can be written in terms of Pðn; tÞ, the probability distribution function of the counting process
nðtÞ, and w�nðxÞ, the n-fold convolution of wðnÞ, as
pðx; tÞ ¼
X1
n¼0

Pðn; tÞw�nðxÞ: ð4Þ
This result can be derived from Eq. (3) using the Fourier and Laplace transforms, a method described in several papers,
including the original one by Montroll and Weiss [1]. However, Eq. (4) can also be derived by direct probabilistic consider-
ations. Indeed, Eq. (1) is a random sum of random i.i.d. variables. Position x can be reached at time t with either 0 or 1 or more
jumps. The probability of reaching position x at time t in exactly n jumps is Pðn; tÞw�nðxÞ. Eq. (4) follows given that these
events are mutually exclusive. Note that Pð0; tÞw�0ðxÞ coincides with the singular term WðtÞdðxÞ, meaning that the distribu-
tion function for x has a jump at position x ¼ 0 of width WðtÞ.

CTRWs with exponential waiting times (also called compound Poisson processes, as in this case Pðn; tÞ ¼ expð�ktÞðktÞn=n!)
are not only Markovian, but they are also Lévy processes. This means that they have independent and time-homogeneous
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. 1. Realization of a CTRW with exponentially distributed waiting times ðk ¼ 1Þ and standard normally distributed jumps (l ¼ 0 and r ¼ 1).
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(stationary) increments. In this case, as a consequence of infinite divisibility and Kolmogorov’s representation theorem,
pðx; tÞ (actually, pðx;1Þ) fully characterizes the stochastic process defined by Eq. (1) [12–14]. In general, without further dy-
namic specifications, the solution of Eq. (3) is not enough to fully characterize a stochastic process.

1.2. CTRWs in insurance, finance and economics

CTRWs have natural interpretations in insurance and finance theory. They can also be used in the theory of economic
growth.

In ruin theory for insurance companies, the jumps ni are interpreted as claims and they are positive random variables; ti is
the instant at which the ith claim is paid [15].

In finance theory, if SðtÞ is the price of an asset at time t and S0 is the price of the same asset at a previous reference time
t0 ¼ 0, then xðtÞ ¼ logðSðtÞ=S0Þ represents the log-return (or log-price) at time t. In regulated markets using a continuous dou-
ble-auction trading mechanism, such as stock markets, prices vary at random times ti, when a trade takes place, and
ni ¼ xðtiÞ � xðti�1Þ ¼ logðSðtiÞ=Sðti�1ÞÞ is the tick-by-tick log-return, whereas si ¼ ti � ti�1 is the intertrade duration; for more
details, see Ref. [5, and references therein].

In the theory of economic growth, ni represents a growth shock, xðtÞ is the logarithm of the size for a firm or of the wealth
for an individual and si is the time interval between two consecutive growth shocks; again, see [5, and references therein].

1.3. Motivation for the study of stochastic integrals driven by CTRWs

Given the wide range of applications of CTRWs [3–5,16–18], it becomes important to study diffusive stochastic differen-
tial equations where noise is defined in terms of CTRWs:
dz ¼ aðz; tÞdt þ bðz; tÞdx; ð5Þ

where zðx; tÞ is the unknown random function, aðz; tÞ and bðz; tÞ are known functions of z and time t, and xðtÞ represents the
CTRW with respect to which stochastic integrals are defined. In order to give a rigorous meaning to such an expression, some
constraints on the properties of CTRWs are necessary. In a recent paper, the theory has been discussed for stochastic inte-
gration on time-homogeneous (stationary) CTRWs: the so-called compound Poisson processes (CPPs) [19]. Although the the-
ory reported in Ref. [19] was already well known by mathematicians and has been used in finance for option pricing [20]
since 1976, that paper contains useful material and is written in a way clear and appealing for physicists. The theory has
been further discussed in Ref. [21]. Here we present a summary of that theory.

2. Stochastic integrals

In Ref. [19], the stochastic integral is not defined explicitly for a CTRW. However, starting from the fact that sample paths
of a CTRW can be represented by step functions, it is possible to give an explicit formula.

2.1. Definition

For the definition of the stochastic integral
JðtÞ ¼
Z t

0
GðxðsÞÞdxðsÞ; ð6Þ
where xðtÞ is defined by Eq. (1) and GðxÞ is a function defined in a suitable space, some heuristic manipulations are useful. Eq.
(1) can be written in terms of Heaviside’s function hðtÞ, which is 0 for t < 0 and 1 for t P 0:
xðtÞ ¼
XnðtÞ
i¼1

nihðt � tiÞ: ð7Þ
Using the fact that the ‘‘derivative” of Heaviside’s h function hðt � tiÞ is Dirac’s d function dðt � tiÞ, one can write
dxðtÞ ¼
XnðtÞ
i¼1

nidðt � tiÞdt: ð8Þ
Note that dðtÞ is not a function, but rather a distribution in the sense of Sobolev and Schwartz [22]. Replacing Eq. (8) in Eq. (6)
and using the properties of Dirac’s d function, one gets
JðtÞ :¼
XnðtÞ
i¼1

GðxðtiÞÞni: ð9Þ
However, in order to define an integral à la Itô, it is necessary to make the integrand GðxÞ statistically independent of the
increment ni and replace GðxðtiÞÞ in Eq. (9) with Gðxðt�i ÞÞ ¼ Gðxðti�1ÞÞ. This leads to the definition
IðtÞ :¼
Z t

0
Gðxðs�ÞÞdxðsÞ ¼

XnðtÞ
i¼1

Gðxðt�i ÞÞni ¼
XnðtÞ
i¼1

Gðxðti�1ÞÞni; ð10Þ
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with such a choice, the integrand becomes non-anticipating. An elementary introduction to the concept of a non-anticipating
function can be found in Ref. [23]. A great advantage of Eq. (10) is that it can be easily implemented by means of Monte Carlo
simulations, as will be shown in the next section. However, before that, it is useful to remark that one can similarly define the
so-called Stratonovich integral
Fig. 2.
r ¼ 1)
SðtÞ :¼
Z t

0
Gðxðs1=2ÞÞdxðsÞ ¼

XnðtÞ
i¼1

G
xðt�i Þ þ xðtiÞ

2

� �
ni ¼

XnðtÞ
i¼1

G
xðti�1Þ þ xðtiÞ

2

� �
ni; ð11Þ
and, indeed, a full class of stochastic integrals,
JaðtÞ :¼
Z t

0
GðxðsaÞÞdxðsÞ ¼

XnðtÞ
i¼1

Gðð1� aÞxðt�i Þ þ axðtiÞÞni ¼
XnðtÞ
i¼1

Gðð1� aÞxðti�1Þ þ axðtiÞÞni; ð12Þ
where a 2 ½0;1�, so that IðtÞ ¼ J0ðtÞ; SðtÞ ¼ J1=2ðtÞ, and JðtÞ ¼ J1ðtÞ.

3. Simulations

Suppose one desires to compute the value xðtÞ; it is then sufficient to generate a sequence of nðtÞ þ 1 i.i.d. waiting times si

until their sum is greater than t. Then the last waiting time can be discarded and nðtÞ i.i.d. jumps ni can be generated. Their
sum is the desired value of xðtÞ. Based on Eqs. (1) and (2), this algorithm was used to generate Fig. 1.

Similarly, an algorithm based on Eqs. (10), (11) or (12) can be implemented by generating a sequence of nðtÞ þ 1 i.i.d.
waiting times si until their sum is greater than t. Then after generating nðtÞ i.i.d. distributed jumps ni their values can be mul-
tiplied by Gðxðti�1ÞÞ; Gððxðti�1Þ þ xðtiÞÞ=2Þ, or Gðð1� aÞxðti�1Þ þ axðtiÞÞ, respectively, and the results of these multiplications
can be summed to obtain IðtÞ; SðtÞ, or JaðtÞ. In Fig. 2, a Monte Carlo generated histogram for IðtÞ ¼

R t
0 xðs�ÞdxðsÞ (with

GðxÞ ¼ x) is given, where t ¼ 100 and xðtÞ is a normal compound Poisson process (NCPP). The simulated NCPP has exponen-
tially distributed waiting times with k ¼ 1 and normally distributed jumps wðnÞ ¼ exp½�ðn� lÞ2=ð2rÞ�=

ffiffiffiffiffiffiffiffiffiffi
2pr
p

with l ¼ 0
and r ¼ 1. For a general NCPP, the probability density of finding the value x at time t is given by
pðx; tÞ ¼ expð�ktÞ
X1
n¼0

ðktÞn

n!

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2pnr
p exp �ðx� nlÞ2

2nr

" #
: ð13Þ
The NCPP approximates the Bachelier–Wiener process WðtÞ for k!1 and r! 0 with kr2 ¼ r2
W [19]; therefore, if xðtÞ is

an NCPP, the integral in Eq. (10) is an approximation of the usual Itô integral driven by a Wiener process, IWðtÞ. This point is
illustrated in Fig. 3, where the histogram of 50,000 values of Ið1Þ ¼

R 1
0 xðs�ÞdxðsÞ when k ¼ 10;000 and r ¼ 1=100 is com-

pared to the analytic expression of the probability density for rW ¼ 1 when IWðtÞ ¼
R t

0 Wðs�ÞdWðsÞ ¼ ðW2ðtÞ � tÞ=2 and
t ¼ 1. Under the same hypotheses, the integral in Eq. (11) converges to the usual Stratonovich integral. This is shown in
Fig. 4, where the histogram of 50,000 values of Sð1Þ ¼

R 1
0 xðs1=2ÞdxðsÞwhen k ¼ 10;000 and r ¼ 1=100 is compared to the ana-

lytic expression of the probability density for rW ¼ 1 when SWðtÞ ¼
R t

0 Wðs1=2ÞdWðsÞ ¼W2ðtÞ=2 and for t ¼ 1.
The agreement between the Monte Carlo histogram and the analytic formula is excellent. Even if a detailed study of con-

vergence properties and bounds is beyond the scope of the present paper, the results of these Monte Carlo simulations lead
to conjecture that the integrals JaðtÞweakly converge to the corresponding integrals driven by the Bachelier–Wiener process,
WðtÞ, when the pure-jump process xðtÞ converges to WðtÞ.
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Fig. 3. Comparison between the empirical probability density from Monte Carlo calculation (circles) of IðtÞ ¼
R t

0 xðs�ÞdxðsÞ and the analytic probability
density for the Itô integral (solid line) IW ðtÞ ¼

R t
0 Wðs�ÞdWðsÞ ¼ ðW2ðtÞ � tÞ=2, where WðtÞ is the Bachelier–Wiener process and xðtÞ is a NCPP with

k ¼ 10; 000; l ¼ 0; r ¼ 1=100, yielding rW ¼ 1 for the limiting Bachelier–Wiener process. In this plot t ¼ 1 and IW has the probability density
pðIW Þ ¼ 2 exp½�ð2IW þ 1Þ=2�=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð2IW þ 1Þ

p
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Fig. 4. Comparison between the empirical probability density from Monte Carlo calculation (circles) of SðtÞ ¼
R t

0 xðs1=2ÞdxðsÞ and the analytic probability
density for the Stratonovich integral (solid line) SW ðtÞ ¼

R t
0 Wðs1=2ÞdWðsÞ ¼W2ðtÞ=2, where WðtÞ is the Bachelier–Wiener process and xðtÞ is a NCPP with

k ¼ 10; 000; l ¼ 0; r ¼ 1=100, yielding rW ¼ 1 for the limiting Bachelier–Wiener process. In this plot t ¼ 1 and SW has the probability density
pðSW Þ ¼ 2 expð�SW Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4pSW
p

.
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4. Conclusions

This paper gives a mathematically rigorous definition of stochastic integrals driven by CTRWs, see Eqs. (10)–(12). These
relations are easily used in Monte Carlo calculations of stochastic integrals. In Section 3 it is shown how to use Monte Carlo
simulations of the NCPP to effectively approximate the usual Itô integral based on the Bachelier–Wiener process.

While the NCPP is both a Markov and a Lévy process, general uncoupled CTRWs do not share these two properties, but
they belong to the class of semi-Markov processes. It is known that by adding a new random operational time it is often pos-
sible to generate a bivariate Markov process ðsð:Þ; xð:ÞÞ, but this line of research has not yet been followed-up in the literature
in the context of semi-Markov stochastic integrals. Typically, sð:Þ is the random time span between the present time t and the
time of the next jump; in this case semi-martingale methods should be applicable. Another possibility to justify semi-mar-
tingale techniques is to consider the case where the jumps of a CTRW have zero mean, since in this particular case a CTRW is
a martingale; as a consequence, the Itô integral is also a martingale [21].

Future work will focus on more general uncoupled and coupled CTRWs where jumps and waiting times follow fat-tailed
distributions [5,21,24–27]. If xðtÞ is a suitable uncoupled CTRW, in the diffusive limit its probability density function pðx; tÞ
converges to the solution of the space-time fractional diffusion equation; the corresponding stochastic differential equation
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is given by Eq. (5) with a ¼ 0 and b ¼ D. Methods from the theory of semi-martingales might be used in order to prove the
convergence of the stochastic integral in the presence of infinitely many jumps in compact time intervals [28].
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