
Better Anonymous Communications

George Danezis

University of Cambridge

Computer Laboratory

Queens’ College

January 2004

This dissertation is submitted for

the degree of Doctor of Philosophy

Declaration

This dissertation is the result of my own work and includes nothing which

is the outcome of work done in collaboration except where specifically indi-

cated in the text and summarised in section 1.3.

This dissertation does not exceed the regulation length of 600001 words,

including tables and footnotes.

1using detex thesis.tex | wc

Acknowledgements

“No man is an island, entire of itself; every man is a piece

of the continent, a part of the main.”

Meditation 17, Devotions Upon Emergent Occasions —

John Donne

I am deeply indebted to my supervisor and teacher Ross Anderson, for al-

lowing me to join his research group, and helping me at key points during

the last three years. I hope this document shows that his trust in me was

justified. I am also grateful to Robin Walker, my director of studies, for his

support during the last six years and for giving me the opportunity to study

in Cambridge.

These years of research would have been considerably less productive

without the local scientific community, my colleagues in the computer secu-

rity group of the Computer Laboratory, but also my colleagues from around

the world. I would like to specially thank my co-authors, Richard Clayton,

Markus Kuhn, Andrei Serjantov, Roger Dingledine, Nick Mathewson and

Len Sassaman.

This research would not have been possible without my parents. At every

stage of my academic life they acted as role models, provided moral and

financial support. The special value they attach to education has marked me

for life.

I am grateful to cafes, social centres and autonomous zones around Europe

for having me as a guest; it is fitting that some ideas developed in this thesis

were first conceived there. Similarly I am indebted to my friends, house-

mates and companions, that have shared with me everything, at times when

none of us had much. Without them, all this would be meaningless.

This research was partly supported by the Cambridge University Euro-

pean Union Trust, Queens’ College, and The Cambridge-MIT Institute.

Better Anonymous Communications

George Danezis

Summary

This thesis contributes to the field of anonymous communications over

widely deployed communication networks. It describes novel schemes to

protect anonymity; it also presents powerful new attacks and new ways of

analysing and understanding anonymity properties.

We present Mixminion, a new generation anonymous remailer, and exam-

ine its security against all known passive and active cryptographic attacks.

We use the secure anonymous replies it provides, to describe a pseudonym

server, as an example of the anonymous protocols that mixminion can sup-

port. The security of mix systems is then assessed against a compulsion

threat model, in which an adversary can request the decryption of material

from honest nodes. A new construction, the fs-mix, is presented that makes

tracing messages by such an adversary extremely expensive.

Moving beyond the static security of anonymous communication proto-

cols, we define a metric based on information theory that can be used to

measure anonymity. The analysis of the pool mix serves as an example of its

use. We then create a framework within which we compare the traffic analy-

sis resistance provided by different mix network topologies. A new topology,

based on expander graphs, proves to be efficient and secure. The rgb-mix is

also presented; this implements a strategy to detect flooding attacks against

honest mix nodes and neutralise them by the use of cover traffic.

Finally a set of generic attacks are studied. Statistical disclosure attacks

model the whole anonymous system as a black box, and are able to uncover

the relationships between long-term correspondents. Stream attacks trace

streams of data travelling through anonymizing networks, and uncover the

communicating parties very quickly. They both use statistical methods to

drastically reduce the anonymity of users. Other minor attacks are described

against peer discovery and route reconstruction in anonymous networks, as

well as the näıve use of anonymous replies.

6

Contents

1 Introduction 13

1.1 Scope and purpose . 14

1.2 Schedule of work . 16

1.3 Work done in collaboration . 18

2 Defining anonymity 19

2.1 Anonymity as a security property 19

2.1.1 Traditional threat model 21

2.1.2 Compulsion threat model 22

2.1.3 Assessing real-world capabilities 23

2.2 Technical definitions and measures 24

2.3 An information theoretic definition 26

2.3.1 Application: the pool mix 27

2.3.2 Application: composing mixes 31

2.3.3 A framework for analysing mix networks 32

2.4 Summary . 34

3 Primitives and building blocks 37

3.1 Symmetric cryptographic primitives 37

3.1.1 Hash functions . 38

3.1.2 Pseudo-random functions: stream ciphers 39

3.1.3 Random permutations: block ciphers 39

3.2 Cryptographic constructions 40

3.2.1 Block cipher modes . 40

3.2.2 Large block ciphers: BEAR 41

3.2.3 Message authentication codes for integrity 43

7

8 CONTENTS

3.3 Asymmetric cryptographic primitives 44

3.3.1 Diffie-Hellman exchange 44

3.3.2 The El Gamal encryption system 45

3.3.3 The Rivest-Shamir-Adelman crypto-system 46

3.3.4 Strengthening the primitives 47

3.4 Plausible deniability . 48

3.4.1 Deniable encryption 48

3.5 Forward security . 50

3.6 Summary . 51

4 Related work 53

4.1 Trusted and semi-trusted relays 54

4.1.1 anon.penet.fi . 54

4.1.2 Anonymizer & SafeWeb 55

4.1.3 Type I “Cypherpunk” remailers 57

4.1.4 Crowds . 58

4.1.5 Nym servers . 59

4.2 Mix systems . 60

4.2.1 Chaum’s original mix 60

4.2.2 ISDN mixes, Real Time mixes and Web mixes 63

4.2.3 Babel and Mixmaster 66

4.2.4 Stop-and-go mixes . 68

4.2.5 Onion routing . 69

4.2.6 Peer-to-peer mix networks 71

4.2.7 Attacks against the ‘young’ Tarzan 72

4.2.8 Robust & verifiable mix constructions 76

4.2.9 Mix building blocks, attacks and analysis 79

4.3 Other systems . 83

4.4 Summary . 84

5 Mixminion 85

5.1 Models and requirements . 86

5.1.1 The system view . 87

5.1.2 Requirements . 88

CONTENTS 9

5.1.3 Orthogonal issues . 91

5.2 The anatomy of the Mixminion format 93

5.2.1 The sub-header structure 94

5.2.2 The header structure 95

5.2.3 The whole packet . 96

5.2.4 Decoding messages . 98

5.3 Security analysis of Mixminion 102

5.3.1 Bitwise unlinkability 102

5.3.2 Route position and length leakage 102

5.3.3 Tagging attacks . 103

5.4 Protocols with reply blocks . 106

5.4.1 Protocol notation . 107

5.4.2 The Who Am I? attack 108

5.4.3 Nym servers . 110

5.5 Beyond Mixminion . 113

5.5.1 Lowering the overheads of Mixminion 113

5.5.2 Simplifying the swap operation 114

5.6 Summary . 116

6 Forward secure mixing 117

6.1 How to trace a mixed message 118

6.2 Defining forward anonymity 120

6.3 The fs-mix . 120

6.3.1 The cost of an fs-mix 122

6.4 Security analysis . 123

6.4.1 Protection against compulsion 123

6.4.2 Traffic analysis . 124

6.4.3 Robustness . 125

6.5 Additional features . 126

6.6 Other forward security mechanisms 127

6.6.1 Forward secure link encryption 127

6.6.2 Tamper-proof secure hardware 128

6.7 Summary . 128

10 CONTENTS

7 Sparse mix networks 129

7.1 Previous work . 130

7.2 Mix networks and expander graphs 131

7.3 The anonymity of expander topologies 133

7.3.1 Protection against intersection attacks 135

7.3.2 Subverted nodes . 138

7.4 Comparing topologies . 139

7.4.1 Mix cascades . 140

7.4.2 Mix networks . 140

7.5 An example network . 142

7.5.1 Selecting a good topology 142

7.5.2 Mixing speed . 143

7.5.3 Resisting intersection and traffic analysis attacks 143

7.6 Summary . 145

8 Red-green-black mixes 147

8.1 Related work . 148

8.2 Design principles, assumptions and constraints 149

8.3 Red-green-black mixes . 150

8.4 The security of rgb-mixes . 152

8.5 A cautionary note . 155

8.6 Summary . 156

9 Statistical disclosure attacks 157

9.1 The disclosure attack revisited 158

9.2 The statistical disclosure attack 159

9.2.1 Applicability and efficiency 160

9.3 Statistical attacks against a pool mix 162

9.3.1 Approximating the model 163

9.3.2 Estimating ~v . 165

9.4 Evaluation of the attack . 167

9.5 Summary . 169

CONTENTS 11

10 Continuous stream analysis 171

10.1 The delay characteristic of a mix 172

10.1.1 Effective sender anonymity sets 173

10.1.2 The exponential mix 174

10.1.3 The timed mix . 177

10.1.4 The latency of a mix strategy 178

10.1.5 Optimal mixing strategies 178

10.2 Traffic analysis of continuous mixes 179

10.2.1 Concrete traffic analysis techniques 180

10.2.2 Observations . 181

10.2.3 Performance of the traffic analysis attack 183

10.3 Further considerations and future work 185

10.3.1 Traffic analysis of streams 185

10.4 Summary . 186

11 Conclusions and future work 187

12 CONTENTS

Chapter 1

Introduction

“The issues that divide or unite people in society are settled

not only in the institutions and practises of politics proper,

but also, and less obviously, in tangible arrangements of steel

and concrete, wires and transistors, nuts and bolts.”

Do artefacts have politics? — Langdon Winner

Conventionally, computer and communications security deals with prop-

erties such as confidentiality, integrity and availability. Aside from these a

number of techniques were developed to achieve covertness of communica-

tions and decrease the likelihood that the conversing parties have their com-

munications jammed, intercepted or located. Such techniques often involve a

modification of the transport layer such as direct sequence spread-spectrum

modulation, frequency hopping or bursty communications.

Usually it is not possible to modify the transmission technology and or-

ganisations or individuals are forced to use widely deployed packet-switched

networks to communicate. Under these circumstances, technologies provid-

ing covertness have to be implemented on top of these networks. The subject

of this thesis is the study of how to implement some of these properties, and

in particular allow conversing parties to remain untraceable or anonymous to

third parties and to each other.

Anonymous communications can be deployed in high-risk environments,

for example in a military context. Such technology could mask the roles

13

14 CHAPTER 1. INTRODUCTION

of different communicating units, their network location or their position in

the chain of command. It would then be much harder for an adversary to

perform target selection through signal and communications intelligence.

At the other end of the spectrum, anonymous communications can be

used to protect individuals’ privacy. They could be used as primitives in

security policies for managing patient health records, or on-line support

groups. Widespread use of anonymous communications could even be used

in e-commerce to mitigate some of the price discrimination tactics described

by Odlyzko [Odl03].

Some non-military uses of these technologies still take place in an environ-

ment of conflict. Anonymous communications can be used to protect political

speech, in the face of censorship or personal threats. Similarly, anonymous

communications could be used to improve the resilience of peer-to-peer net-

works against legal attacks. In both cases powerful adversaries are motivated

to trace the participants, and anonymous communications systems can stand

in their way.

1.1 Scope and purpose

The scope of the research presented is anonymous communications over

widely deployed information networks. The relevance of anonymous com-

munications to common tasks, such as web browsing and transmitting email,

will be considered in some depth. Other aspects of anonymity such as loca-

tion privacy, credentials and elections are outside the scope of this work. Our

major contribution consists of methods to measure anonymity, the design of

new anonymous communication mechanisms, and a set of generic attacks

that can be used to test the limits of anonymity.

As a pre-requisite for our research, a definition of anonymity was pro-

posed. This has since been widely accepted in the anonymity research com-

munity [SK03, MNCM03, MNS]. Chapter 2 will present the requirements

for anonymous communications, the threat models, our technical definition

of anonymity and some applications.

Our contributions have been related to the field of mix systems [Cha81].

Mixes are special nodes in a network that relay messages while hiding the

1.1. SCOPE AND PURPOSE 15

correspondence between their input and their output. Several of them can

be chained to relay a message anonymously. These systems provide the most

promising compromise between security and efficiency in terms of bandwidth,

latency and overheads. A careful explanation of mix systems is presented in

chapter 4. This thesis then analyses the major components necessary for

mixed anonymous communications: bitwise unlinkability which ensures that

input and output messages ‘look’ different, and dynamic aspects which make

sure that many messages are mixed together at any time.

Our contribution to bitwise unlinkability is Mixminion, presented in chap-

ter 5. It has since been adopted as the official successor of the Mixmaster

remailer, the standard for anonymous remailers. In chapter 6 techniques

will be presented that allow for forward secure mixing, which makes it ex-

tremely expensive for an attacker with compulsion powers to trace back a

communication.

Our main contribution to the dynamic aspects of mix systems is an anal-

ysis of restricted mix network topologies in chapter 7. Such networks of mix

nodes are sparse, but ensure that after a small number of hops all messages

are mixed together. Techniques are devised to fine-tune the parameters of

these systems to provide maximal anonymity.

Decoy messages, often called dummy traffic, can be used in anonymity

systems to confuse the adversary. The dummy traffic policy presented in

chapter 8 protects the network against active attacks and yet is economical

during normal operation. It uses the honest nodes’ knowledge about the

network to detect and neutralise flooding attacks.

In chapter 9 we present an efficient method of performing intersection

attacks, using only trivial vector operations, and analyse its performance.

Finally, in chapter 10, we will apply our anonymity metric to delaying anony-

mous networks, and use pattern matching techniques to trace streams of traf-

fic within an anonymity system. Our attacks help define limits of persistent

anonymous communications and the caveats of circuit-based anonymizing

systems.

Additionally, novel attacks against the Tarzan peer-to-peer anonymizing

system are presented in section 4.2.7 and the Who am I? attack against

anonymous reply mechanisms is described in chapter 5.

16 CHAPTER 1. INTRODUCTION

1.2 Schedule of work

As part of this work a series of papers were published [CDK01, SD02, CD02,

Dan02, Dan03a, DDM03a, Dan03b, DS03a], some in collaboration with other

researchers, in peer reviewed academic conferences and workshops.

• Richard Clayton, George Danezis, and Markus G. Kuhn. Real world

patterns of failure in anonymity systems. In Ira S. Moskowitz, editor,

Information Hiding workshop (IH 2001), volume 2137 of LNCS, pages

230–244, Pittsburgh, PA, USA, January 2001. Springer-Verlag

• Andrei Serjantov and George Danezis. Towards an information theo-

retic metric for anonymity. In Roger Dingledine and Paul Syverson,

editors, Privacy Enhancing Technologies workshop (PET 2002), vol-

ume 2482 of LNCS, pages 41–53, San Francisco, CA, USA, 14-15 April

2002. Springer-Verlag

• Richard Clayton and George Danezis. Chaffinch: Confidentiality in the

face of legal threats. In Fabien A. P. Petitcolas, editor, Information

Hiding workshop (IH 2002), volume 2578 of LNCS, pages 70–86, No-

ordwijkerhout, The Netherlands, 7-9 October 2002. Springer-Verlag

• George Danezis. Forward secure mixes. In Jonsson Fisher-Hubner,

editor, Nordic workshop on Secure IT Systems (Norsec 2002), pages

195–207, Karlstad, Sweden, November 2002

• George Danezis. Mix-networks with restricted routes. In Roger Dingle-

dine, editor, Privacy Enhancing Technologies workshop (PET 2003),

volume 2760 of LNCS, pages 1–17, Dresden, Germany, March 2003.

Springer-Verlag

• George Danezis, Roger Dingledine, and Nick Mathewson. Mixminion:

Design of a Type III Anonymous Remailer Protocol. In IEEE Sympo-

sium on Security and Privacy, Berkeley, CA, 11-14 May 2003

• George Danezis. Statistical disclosure attacks. In Gritzalis, Vimercati,

Samarati, and Katsikas, editors, Security and Privacy in the Age of Un-

1.2. SCHEDULE OF WORK 17

Anonymity bibliography

Chaffinch

TLS traffic analysis

Anonymity metric

Mixminion design

Mixminion specifications

Forward secure mixes

Restricted routes

Meteor mixing

Disclosure attacks

Continuous attacks

RGB-mixes

Web anonymity survey

Ph.D Thesis

2001 2002 2003

Figure 1.1: Schedule of work extracted from CVS logs

certainty, (SEC2003), pages 421–426, Athens, May 2003. IFIP TC11,

Kluwer

• George Danezis and Len Sassaman. Heartbeat traffic to counter (n −
1) attacks. In workshop on Privacy in the Electronic Society (WPES

2003), Washington, DC, USA, November 2003

The first year of our research was spent reading background material and

getting a solid foundation in the techniques required to design, analyse and

build secure systems. During this year a survey paper with practical attacks

against anonymous system was published [CDK01] and most of the research

for Chaffinch, a communication channel providing plausible deniability, was

done [CD02].

In the summer of 2001 all our work was incorporated into a CVS reposi-

tory. Figure 1.1 shows a calendar of the main projects over time. The thin

black lines show when projects were active, and the thick ones show the

months in which work was committed.

18 CHAPTER 1. INTRODUCTION

1.3 Work done in collaboration

The work described in chapter 2 was published in conjunction with Andrei

Serjantov. While the idea of using entropy as the metric was mine, using

the pool mix to illustrate it was Andrei’s. We both derived the anonymity

provided by pool mixes independently.

The two attacks against Tarzan presented in section 4.2.7 greatly bene-

fited from collaborating with Richard Clayton, and discussions with Tarzan’s

‘father’ Michael Freedman.

Mixminion described in chapter 5 has been the product of a wide col-

laboration and intensive work with Roger Dingledine and Nick Mathewson

in particular. Resistance to tagging attacks was engineered by myself, as a

result of previous schemes being successfully attacked by Roger and Nick. A

parallel proposal was also put forward by Bryce “Zooko” Wilcox-O’Hearn.

The work on rgb-mixes presented in chapter 8 was done in collaboration

with Len Sassaman. He independently came to the conclusion that cover

traffic should be destined back to the node that generated it, and was kind

enough to correct and present the paper.

Chapter 2

Defining anonymity

“The violence of identification is by no means merely concep-

tual. The scientific method of identitarian thought is the ex-

ercise of power-over. Power is exercised over people through

their effective identification.”

Change the world without taking power — John Holloway

2.1 Anonymity as a security property

Anonymity allows actors to hide their relation to particular actions and out-

comes. Since anonymous communication is the main subject of this work,

our objective will be to hide correspondences between senders and the mes-

sages they sent, a property we will call sender anonymity, or receivers and

the messages they receive, namely recipient anonymity. It is possible for a

channel to offer full bidirectional anonymity to allow anonymous senders to

converse with anonymous receivers.

Anonymous communications are studied in the context of computer se-

curity because they are taking place in an adversarial context. The actor

attempts to protect their anonymity vis-a-vis some other parties that try to

uncover the hidden links. This information has some value for those per-

forming surveillance and would entail some cost for the subject if it was

revealed.

19

20 CHAPTER 2. DEFINING ANONYMITY

An example from the commercial world where identification is desirable

to a seller of goods is described by Odlyzko [Odl03]. By linking together

all the previous purchases of a buyer they can infer how willing they are to

pay for particular products and price discriminate by charging as much as

possible. In this case the value of performing surveillance can be defined in

monetary terms.

Another example, not involving monetary value and cost, is surveillance

against a suspected terrorist cell. By uncovering the identities of the partici-

pants, investigators can map their social network through drawing ‘friendship

trees’. As a result, they are able to evaluate the level of threat by measur-

ing the size of the network, they could get warning of an imminent action

by analysing the intensity of the traffic and are able to extract information

about the command structure by examining the centrality of different partic-

ipants. In this case, value is extracted by reducing uncertainty and reducing

the cost of neutralising the organisation if necessary.

As well as the value and cost of the information extracted there are costs

associated with performing surveillance. An extensive network of CCTV

cameras is expensive and so are the schemes proposed for blanket traffic data

retention. Additionally the cost of analysis and dissemination of intelligence

might actually be dominant [Her96].

Similarly, counter-surveillance and anonymity also have costs. These costs

are associated with designing, operating, maintaining and assessing these

systems. Furthermore, counter-surveillance technologies impose a huge op-

portunity cost. They inhibit parties under surveillance using conventional,

efficient, but usually unprotected technologies. They might even prevent

parties from communicating if appropriate countermeasures are not available

against the perceived surveillance threats. The element of perceived threat is

important, since the capabilities of adversaries are often not directly observ-

able. This uncertainty pushes up the cost of counter-surveillance measures,

such as anonymous communication technologies. In other words, paranoia

by itself entails significant costs.

It is important to note that anonymity of communications is a security

property orthogonal to the secrecy of communications. A typical example

illustrating this is an anonymous sent letter to a newspaper. In this case

2.1. ANONYMITY AS A SECURITY PROPERTY 21

the identity of the sender of the letter is not revealed although the content

is public. One can use conventional encryption techniques, in addition to

anonymous communications, to protect the confidentiality of messages’ con-

tents.

2.1.1 Traditional threat model

In the context of anonymous communication protocols, the primary goal of

an adversary is to establish a reliable correspondence between the action

of sending or receiving a particular message and an actor. A further goal

might be to disrupt the system, by making it unreliable. Such attacks fall

in the category of denial-of-service, and they are called selective denial-of-

service if only one user or a particular group is targeted. An attacker might

also attempt to mount reputation attacks against anonymity systems, in the

hope that fewer people will use them. If so then the overall anonymity would

be reduced, a particular target would not trust it and would use a less secure

means of communicating, or abstain from communicating altogether.

From the computer security point of view, threats to anonymity can be

categorised (following the established cryptological tradition) according to

the capabilities of the adversary. An adversary Eve is called passive if she only

observes the data transiting on the communication links. Passive adversaries

are called global if they can observe all network links. The global passive

adversary is the main threat model against which mix systems (see chapter

4) are required to be secure and have been thoroughly analysed against.

An attacker Mallory is said to be active if he can also insert, delete

or modify messages on the network. A combination of these can be used

to delay messages in an anonymous communication network, or flood the

network with messages.

Besides their interaction with the network links, attackers can have con-

trol of a number of subverted nodes in the network. The inner workings of

those nodes is transparent to the attacker, who can also modify the messages

going through them. Usually such attackers are described by the percentage

of subverted nodes they control in the system. Which nodes are subverted

is not known to other users and identifying them might be a sub-goal of a

22 CHAPTER 2. DEFINING ANONYMITY

security protocol.

2.1.2 Compulsion threat model

The traditional threat model presented above has been used in the context of

cryptological research for some time, and can indeed express a wide spectrum

of threats. On the other hand it suffers some biases from its military origins,

that do not allow it to define some very important threats to anonymous

communication systems.

Anonymous communication systems are often deployed in environments

with a very strong imbalance of power. That makes each of the participants

in a network, user or intermediary, individually vulnerable to compulsion

attacks. These compulsion attacks are usually expensive for all parties and

cannot be too wide or too numerous.

A typical example of a compulsion attack would be a court order to keep

and hand over activity logs to an attacker. This can be targeted at particular

intermediaries or can take the form of a blanket requirement to retain and

make accessible certain types of data. Another example of a compulsion

attack could be requesting the decryption of a particular ciphertext, or even

requesting the secrets necessary to decrypt it. Both these could equally well

be performed without legal authority by just using the threat of force.

Parties under compulsion could be asked to perform some particular task,

which bears some similarity with subverted nodes discussed previously. For

example, this is an issue for electronic election protocols where participants

might be coerced into voting in a particular way.

Note that compulsion and coercion cannot be appropriately modelled

using the concept of subverted nodes from the traditional threat model. The

party under compulsion is fundamentally honest but forced to perform certain

operations that have an effect which the adversary can observe either directly

or by requesting the information from the node under compulsion. The

information or actions that are collected or performed under coercion are not

as trustworthy, from the point of view of an adversary, as those performed

by a subverted node. The coerced party can lie and deceive in an attempt

not to comply. Election protocols are specifically designed to allow voters to

2.1. ANONYMITY AS A SECURITY PROPERTY 23

freely lie about how they voted, and receipt-freeness guarantees that there is

no evidence to contradict them.

2.1.3 Assessing real-world capabilities

Both models aim to codify the abilities of our adversaries in such a way

that we can use them to assess the security of the technical mechanisms

presented in this thesis. An entirely different body of work is necessary to

build a “realistic” threat model, namely the set of capabilities that real world

opponents have.

National entities are the most powerful adversaries in the real world be-

cause of the funding they are able to commit but also because of their legal

authority over a jurisdiction. Many national entities could be considered to

be global passive adversaries. The interception of communication could hap-

pen through signal intelligence gathering networks [Cam99], or through the

lawful interception capabilities implemented in network and routing equip-

ment [YM]. Furthermore, some national entities have provisions that allow

them to legally request the decryption of material or the handing over of

cryptographic keys (such provisions are included in the UK RIP Act, but are

not yet active [RIP00]). This could be seen as approximating the compulsion

model. Often these powers are restricted to a particular geographical area

and their resources are plenty, but still limited.

Large corporations have resources that are comparable to national entities

but lack the legal authority to eavesdrop on communications or compel nodes

to reveal secrets. On the other hand they are able to run subverted nodes that

collect information about users, and launch active attacks. In the case of the

music industry fighting what it sees as copyright infringement, nodes have

been run within peer-to-peer systems that collected information about files

requested and offered, and served files with bad content. The information

collected was used to launch a large number of lawsuits [Smi03].

In a military context often the threat model is slightly different from

the one presented above, or studied in this work. It is assumed that all

participants, senders receivers and relays, are trusted, and their anonymity

must be preserved against third parties, that can monitor the network or

24 CHAPTER 2. DEFINING ANONYMITY

even modify communications. This property is called third party anonymity

and systems that provide it Traffic Analysis Prevention (TAP) systems.

2.2 Technical definitions and measures

From a technical point of view anonymity has been defined in a variety of

ways. Some of the definitions are closely tied to proposed systems, while

others are more generic. Technical definitions often try to provide a way to

measure anonymity, since it is widely recognised that it can be provided in

different degrees.

In Crowds [RR98] a scale of degrees of anonymity is provided. The scale

ranges from absolute privacy, beyond suspicion, probable innocence to possible

innocence, exposed, provably exposed. While this definition and measure of

anonymity is only qualitative, it helps clarify quite a few issues.

An important feature is the fact that there are different categories for ex-

posed and provably exposed. This should serve as a critique to those designing

protocols that claim to be anonymous if they don’t include any mechanisms

allowing parties to prove information about links to the identities of actors.

The scale presented makes it clear that not being able to prove something

about an identity is very far from providing effective anonymity.

It also draws attention to the different ways in which breaking anonymity

could have consequences. While a degree of anonymity guaranteeing possi-

ble innocence might be sufficient to avoid condemnation in a criminal court,

probable innocence might still be judged insufficient in a civil court. Further-

more an anonymity degree of beyond suspicion would be required in order

not to be the subject of further investigations in many cases. Therefore this

scale highlights very effectively the existence of a continuum of anonymity

that can be provided.

In [Cha88] Chaum presents the dining cryptographers(DC) network, a

construction that provides perfect (information theoretic) anonymity. A DC

network is a multi-party computation amongst a set of participants, some

pairs of which share secret keys. It can be shown that as long as the graph

representing key sharing is not split by the subverted nodes, an adversary

cannot tell which participants sent the message with probability better than

2.2. TECHNICAL DEFINITIONS AND MEASURES 25

uniformly random. Therefore Chaum defines the anonymity set of each mes-

sage to be the set of all participants in the network. Its cardinality is referred

to as the anonymity set size, and has been used as a measure of anonymity.

Some attacks relying on subverted nodes can partition the anonymity

sets in DC networks, and allow an attacker to find out from which of the two

partitions a message originated. The worst case is when an attacker manages

to partition the sets in such a way that only the actual sender is left in one of

them. In these cases the sender anonymity set of the message he sends has

cardinality one, and we say that the system does not provide any anonymity.

The notion of anonymity set has been widely accepted and used far be-

yond the scope in which it was originally introduced. Others have used it

to describe properties of mix networks, and other anonymous channels and

systems. Mix networks are a composed of special relays, named mixes, that

forward messages while hiding the correspondence between their inputs and

outputs.

For example the analysis of stop-and-go mixes [KEB98] crucially depends

on a particular definition of anonymity sets. In this case the anonymity set

is made up of users with a non-zero probability of having a particular role

R, such as being senders or receivers of a message. While DC networks give

all participants a role with equal probability, this new definition explicitly

recognises that different users might be more or less likely to have taken a

particular role. Despite this, the cardinality of this set is still used to measure

the degree of anonymity provided.

If different participants accounted in the anonymity set are not equally

likely to be the senders or receivers, a designer might be tempted to distribute

amongst many participants some possibility that they were the senders or

receivers while allowing the real sender or receiver to have an abnormally high

probability. The cardinality of the anonymity set is in this case a misleading

measure of anonymity.

In [PK00] an effort is made to standardise the terminology surrounding

anonymity research. Anonymity is defined as the state of being not identifi-

able within a set of subjects, the anonymity set. The ‘quality’ of an anonymity

set is not just measured by its cardinality but also anonymity is the stronger,

the larger the respective set is and the more evenly distributed the sending or

26 CHAPTER 2. DEFINING ANONYMITY

receiving, respectively, of the subjects within that set is.

So if different potential senders or receivers can have different probabilities

associated with them, anonymity is maximal when the probabilities are equal.

This is not captured when the cardinality of the anonymity set is used as a

metric for anonymity.

2.3 An information theoretic definition

The limitations of expressing the quality of anonymity provided by a system

simply based on qualitative categories, or cardinality of sets, prompted us to

formulate an alternative definition. The principal insight behind the metric

is that the goal of an attacker is the unique identification of an actor, while at

the same time the goal of the defender is to increase the attacker’s workload

to achieve this. Therefore we chose to define the anonymity provided by

a system as the amount of information the attacker is missing to uniquely

identify an actor’s link to an action.

The term information is used in a technical sense in the context of Shan-

non’s information theory [Sha48, Sha49]. Therefore we define a probability

distribution over all actors αi, describing the probability they performed a

particular action. As one would expect, the sum of these must be one.

∑

i

Pr[αi] = 1 (2.1)

It is clear that this probability distribution will be dependent on the

information available to an attacker and therefore intimately linked to the

threat model. Therefore anonymity is defined vis-a-vis a particular threat

model, and it is indeed a mistake to simply use the metric without reference

to the threat model it is defined against.

As soon as the probability distribution above is known, one can calcu-

late the anonymity provided by the system as a measure of uncertainty that

the probability distribution represents. In information theoretic terms this

is represented by the entropy of the discrete probability distribution. There-

fore we call the effective anonymity set size of a system, the entropy of the

probability distribution attributing a role to actors given a threat model. It

2.3. AN INFORMATION THEORETIC DEFINITION 27

can be calculated as:

A = E [αi] =
∑

i

Pr[αi] log2 Pr[αi] (2.2)

This metric provides a negative quantity representing the number of bits

of information an adversary is missing before they can uniquely identify the

target.

A similar metric based on information theory was proposed by Diaz

et al. [DSCP02]. Instead of directly using the entropy as a measure of

anonymity, it is normalised by the maximum amount of anonymity that the

system could provide. This has the disadvantage that it is more a measure of

fulfilled potential than anonymity. An anonymity size of 1 means that one is

as anonymous as possible, even though one might not be anonymous at all.1

The non-normalised entropy based metric we propose, intuitively provides

an indication of the size of the group within which one is hidden. It is also is

a good indication of the effort necessary for an adversary to uniquely identify

a sender or receiver.

2.3.1 Application: the pool mix

The information theoretic metric allows us to express subtle variations in

anonymity and compare systems. To a limited extent it also allows us to

understand properties of larger systems by understanding the anonymity

provided by their components.

A typical example where the conventional, possibilistic and set theoretic

definitions fail, is measuring the anonymity provided by a pool mix. A pool

mix works in rounds. In each round it accepts a number of messages N

and puts them in the same pool as n messages previously stored. Then

N messages are uniformly and randomly selected out of the pool of N + n

messages and sent to their respective destinations. The remaining n messages

stay in the pool.

1A similar metric applied to block ciphers would be to divide the actual entropy of

the cipher, given all the attacks known, by the key size, which represents the maximum

security potentially provided. Such a metric would indicate how invulnerable the block

cipher is to attacks, but would not differentiate between the security of a block cipher with

key sizes of 40 bits or 128 bits.

28 CHAPTER 2. DEFINING ANONYMITY

N messages in N messages out

n messages in the "pool"

Pool Mix

Figure 2.1: The pool mix

The question we will try to address is how, given a message coming out

of the mix, we can determine the sender anonymity set for it. It is clear that

if we follow the approach based on set cardinality, including all potential

senders, the anonymity would grow without limit and would include all the

senders that have ever sent a message in the past. Therefore it is crucial to

use a metric that takes into account the differences between the probabilities

of different senders.

We assume that at each round a different set of N senders each send

a message to the pool mix. We also assume that, at the very first round,

the pool is filled with cover messages from the mix itself. We are going

to calculate the probability associated with each sender being the sender of

some message coming out at round k. By convention we assume that dummy

messages inserted in the message pool at round 0 are sent by the mix itself.

Figure 2.2 shows the tree used to derive the probability associated with each

user, depending on the round in which they sent their message.

Given a message received at round k, the probability that it was sent by

a particular sender at round x (where x ≤ k) is:

Pr[User at round x, where x > 0] =
1

N + n

(
n

N + n

)k−x

(2.3)

Pr[Introduced by the Mix at round x = 0] =
n

N + n

(
n

N + n

)k−1

(2.4)

One can check that the above probability distribution always sums to one

2.3. AN INFORMATION THEORETIC DEFINITION 29

Mix introduces dummies
in the pool at round 0

n
N+n

N
N+n

1
N

N users at round k

n
N+n

N
N+n

1
N

n
N+n

N
N+n

1
N

N users at round k-1

N users at round k-2

n
N+n

N
N+n

1
N

N users at round 1

Figure 2.2: Tree representing the pool mix probability distribution

(for clarity we set p = n
N+n

).

∀k > 0,

[
k∑

x=1

N
p

n
pk−x

]

+ pk (2.5)

= (1 − p)
k−1∑

j=0

pj + pk (2.6)

= (1 − p)
1 − pk

1 − p
+ pk = 1 (2.7)

It is important to keep in mind that the increase in anonymity that will

be measured is associated with an increase in the average latency of the

messages. Using the above probability distribution we can calculate the

mean number of rounds a message will be in the pool before being sent out.

This represents the latency introduced by the mix. The expected latency µ

and its variance σ2 can be derived to be:

µ = 1 +
n

N
(2.8)

σ2 =
n(N + n)2

N3
(2.9)

Given this probability distribution we can now calculate the effective

30 CHAPTER 2. DEFINING ANONYMITY

sender anonymity set size Ak of the pool mix:

Ak =
k∑

x=1

N × Pr[round x] log Pr[round x] + Pr[round 0] log Pr[round 0]

(2.10)

= pk log pk + N

k−1∑

j=0

p

n
pj log

p

n
pj (2.11)

= pk log pk +
Np

n

[
(

log
p

n

)
(

k−1∑

j=0

pj

)

+ (log p)

(
k−1∑

j=0

jpj

)]

(2.12)

= pk log pk +
Np

n

[(

log
p

n

)(1 − pk

1 − p

)

+ (log p)

(
1 − kpk−1 + (k − 1)pk

(1 − p)2

)]

(2.13)

We are particularly interested in the value of the effective anonymity set

size after a very large number of rounds k therefore we calculate the above

as k tends to infinity (note that limk→∞ pk = 0).

lim
k→∞

pk log pk = lim
k→∞

kpk log p = 0 (2.14)

Therefore the anonymity of a pool mix after a very large number of rounds

tends to:

A∞ = lim
k→∞

Ak =
Np

n

[(

log
p

n

)(1

1 − p

)

+ (log p)

(
p

(1 − p)2

)]

(2.15)

= −(1 +
n

N
) log(N + n) +

n

N
log n (2.16)

Note that in the special case n = 0, namely the pool size is zero, the

anonymity of the mix becomes A∞ = − log N . This is indeed the entropy

of the uniform distribution over N elements, and intuitively what we would

expect the anonymity of a threshold mix to be. Richard E. Newman has

proved the same result using a different method, and which was also used by

Serjantov to calculate the anonymity of timed pool mixes [SN03].

If we express the pool size n as a function of the input size N , such that

n = lN we can rewrite (2.16), in a more intuitive manner: limk→∞ Ak =

− log N + l log l − (1 + l) log(1 + l). A pool mix with a pool size equal to its

input size (that is l = 1) will therefore always provide two additional bits of

anonymity, in comparison with a threshold mix of the same input size.

2.3. AN INFORMATION THEORETIC DEFINITION 31

Mix i

Mix 1

Mix 2 Mix "Sec"

p1

p2

pi

Figure 2.3: Mix composition

2.3.2 Application: composing mixes

Given a particular arrangement of anonymous communication systems it is

possible to calculate the overall anonymity provided just by knowing the

anonymity provided by the components and how they are connected. As

before, the basic assumption is that different inputs originate from different

senders, and are delivered to different receivers. Such an assumption is not

realistic, but the resulting calculation provides a useful upper bound on the

anonymity that can be provided by such a system. Furthermore we do not

allow for cycles and feedback in the arrangement of anonymity systems.

Assume there are l mixes each with effective sender anonymity size Si

where 0 < i ≤ l. Each of these mixes sends some messages to a mix we

call sec. The probability a message received by mix sec was sent by mix i is

defined as pi where 0 < i ≤ l and
∑

i pi = 1. Using our definition it is clear

that the sender anonymity provided by mix sec is Asec =
∑

i pi log pi, namely

the entropy of the probability distribution describing where messages have

come from.

The effective sender anonymity size can be derived for the whole system.

We denote as pij the input probability distributions of the different elements

32 CHAPTER 2. DEFINING ANONYMITY

of mix i, and the function f(i) provides the number of the elements of mix i

Atotal =
l∑

i=1

f(i)−1
∑

j=1

pijpi log pijpi =
l∑

i=1

pi

f(i)−1
∑

j=1

pij log pijpi (2.17)

=
l∑

i=1

pi





f(i)−1
∑

j=1

pij log pij +

f(i)−1
∑

j=1

pij log pi



 (2.18)

=
l∑

i=1

pi (Ai + log pi) (2.19)

Atotal =
l∑

i=1

piAi + Asec (2.20)

Therefore it is possible just by knowing the sender anonymity sizes of

the intermediary mixes and the probabilities that messages are sent along

particular links, to calculate the overall anonymity provided by the system.

As pointed out before, it is not possible to apply this calculation to networks

with cycles. This is the subject of the next section.

2.3.3 A framework for analysing mix networks

In chapter 7 we will analyse the anonymity different mix network topologies

provide. We consider the effective sender anonymity set size of a message, as

the entropy of the probability distribution describing the likelihood particular

participants were senders of the message.

We analyse properties of mix networks in which a core set of nodes is

dedicated to relaying messages, and can define the points at which messages

enter the mix network, and leave the mix network. Since networks of mixes

will generally contain loops, it is not possible to apply directly the formu-

lae for composing mixes presented in section 2.3.2 to calculate the anonymity

provided by the network. Instead we calculate the probability that input mes-

sages match particular output messages directly, approximating the routing

of messages as a Markov process (see chapter 7 for details).

The model considered is the following. A message me exits the mix net-

work at time te from node ne. The network is made out of N mix nodes, n1 to

nN . Messages mij are injected at node ni at time tj. The task of an attacker

2.3. AN INFORMATION THEORETIC DEFINITION 33

is to link the message me with a message mij. Figure 2.4 summarises this

model.

We consider the probability distribution

pij = Pr[me is mij]

= Pr[me is mij|me inserted at ni] × Pr[me inserted at ni]
(2.21)

that describes how likely the input messages in the network are to have been

message me. We can express this as the probability a node ni was used

to inject a message, multiplied by the conditional probability a particular

message mij injected at this node is me. The entropy of the probability

distribution pij is the effective sender anonymity set of the message. Because

of the strong additive property of entropy we can calculate it as:

A = E(pij)

= E(Pr[me inserted at ni])

+
N∑

x=1

Pr[me inserted at nx] × E(Pr[me is mij|me inserted at nx])

(2.22)

An attacker might attempt to reduce the anonymity by subjecting the

network to traffic analysis to reduce the uncertainty of Pr[me inserted at ni].

We shall therefore name Anetwork = E(Pr[me inserted at ni]), the anonymity

provided by the network. This quantifies how effectively the traffic injected

to or ejected from particular nodes is mixed with traffic from other nodes.

Given a particular threat model if no technique is available for the attacker to

reduce the uncertainty of Anetwork beyond her a priori knowledge, we can say

that the network is resistant to traffic analysis with respect to that particular

threat model. Results in [Ser04] show how a global passive adversary can use

observations of a mix network to reduce Anetwork.

The attacker can also try to reduce the anonymity set of the message

by reducing the uncertainty of the probability distribution describing the

traffic introduced at the mix nodes, Pr[me is mij|me inserted at nx]. The

attacker can do this by using additional information about me and mji, such

as the time te the message comes out of the network or tj the time it was

injected into the network. She can also control these times by flooding nodes,

or stopping messages arriving to the initial nodes. It is worth noting that a

34 CHAPTER 2. DEFINING ANONYMITY

n3

n4

n5

n2

n7

m12

m13

m11

m61

m62

me
n1

n6

Traffic Confirmation Traffic Analysis

Figure 2.4: Traffic analysis and traffic confirmation of mix networks.

network might protect users from traffic analysis, but still provide inadequate

anonymity because of side information leaked by messages as they enter and

exit the mix network. Side information is not limited to timestamps, but

can also be associated with the protocol or mechanism used, client type,

unique identifiers or route length indications observed at the edges of the

mix network. Attacks that try to link messages using such side information

leaked at the edges of the network, instead of tracing the message through

the network, are called traffic confirmation attacks [RSG98].

In chapter 7 we study how to protect mix networks from traffic analysis by

using selected topologies, long enough paths and adequate volumes of traffic.

Protection against traffic confirmation is much more a design specific issue

and heavily depends on the efforts of the designers to avoid partitioning at-

tacks and leaking information at the edges of the anonymous communication

network.

2.4 Summary

In this chapter we have defined the objectives of anonymous communication,

and the threats against it. During the rest of this work we are going to assess

the security of the systems proposed against a traditional adversary that can

2.4. SUMMARY 35

eavesdrop on communication links, performs active attacks and controls a

subset of the network nodes. We are also going to take into account the

threat of an adversary with compulsion powers, that can ask nodes to decode

material, or provide activity logs.

We presented a metric of anonymity, based on Shannon’s information

theory. This represents how much information an adversary is missing to

identify the sender or the receiver of a target message. The pool mix was used

as an example to illustrate how the metric can be applied, and a framework

was proposed for analysing the anonymity of complete anonymous networks.

36 CHAPTER 2. DEFINING ANONYMITY

Chapter 3

Primitives and building blocks

“It is a tragicomic fact that our proper upbringing has become

an ally of the secret police. We do not know how to lie. ”

The unbearable lightness of being. — Milan Kundera

The technical work presented in this thesis makes routine use of an ar-

ray of cryptological tools. While it is beyond the scope of this dissertation

to explain these in detail, it is important to present their capabilities, and

limitations. Without going into the theory of cryptology (those who wish

can find it in [Sch96, MOV96, Gol01]) we will concisely present the main

primitives, and constructions that will be used as basic building blocks in

the systems presented in the next chapters.

3.1 Symmetric cryptographic primitives

When describing Mixminion, in chapter 5, we will make extensive use of

hash functions, stream ciphers, and block ciphers. These primitives are quite

classic in the sense that they predate the invention of public key cryptogra-

phy. On the other hand we will use them to provide properties that are not

usual, such as bitwise unlinkability, instead of secrecy. In this section we will

present each of them, and highlight the properties that are important to us.

37

38 CHAPTER 3. PRIMITIVES AND BUILDING BLOCKS

3.1.1 Hash functions

A cryptographic hash function is a function h that takes an input x of ar-

bitrary size, and outputs a fixed output h(x). Hash functions are assumed

to be public, therefore given x anyone can compute h(x). The main three

properties that are desirable in a hash function are pre-image resistance, weak

collision resistance and strong collision resistance.

Pre-image resistance means that given h(x) it is difficult to extract any

bits of x.

Weak collision resistance means that given x it is difficult to find y such

that h(x) = h(y).

Strong collision resistance means that it is difficult to find any x and y

such that h(x) = h(y).

Pre-image resistance does not protect x if the domain over which it is

defined can be exhaustively searched. An attack that computes h(x) for all

possible x in order to find a match with h(y) is called a dictionary attack.

It can be shown that, if a hash function has an l-bit output, a value y

with h(y) that matches a fixed h(x) can be found in O(2l). On the other

hand finding any two x and y such that h(x) = h(y) is much cheaper because

of the birthday paradox, and takes O(
√

2l).

The main cryptographic hash function used in this work is the standard

SHA-1 [SHA93]. Its output is 160 bits long (20 bytes), and offers good strong

collision resistance properties (∼ 280 hashes to break). Being a National In-

stitute of Standards and Technology (NIST) standard it is readily available in

most implementations of cryptographic libraries. It is believed to be secure,

since no known attacks have been published against it.

Since many protocols make heavy use of hash functions, it is important to

use variants of them for operations within the protocols that have a different

purpose. This stops some attacks that use one party in a protocol as an

oracle that performs operations using hashed secrets. In order to construct

a secure variant h1 of h it is sufficient to prepend a well-known string to

the hashed bit-string, h1(x) = h(‘1’, x). This creates differing hash functions

quickly and cheaply.

3.1. SYMMETRIC CRYPTOGRAPHIC PRIMITIVES 39

3.1.2 Pseudo-random functions: stream ciphers

A pseudo-random function, or stream cipher s takes as its input a fixed length

key k and generates an infinitely long (in theory) string of bits s(k). Some

properties of a stream cipher are:

Key secrecy means that given some of the output of the stream cipher s(k)

it is difficult to infer anything about the key k.

Pseudo-randomness means that for any party that does not know the

key k, the output s(k) of the cipher, in indistinguishable from a truly

random bit-string.

Steam ciphers can be used to provide secrecy by XORing the output of

the cipher with plaintext in order to generate the ciphertext. Such a scheme

does not protect the integrity of the plaintext, since the adversary can XOR

into the ciphertext any bit-string that will be XORed with the plaintext after

decryption. Such attacks are called attacks in depth.

Stream ciphers could be considered the poor man’s one time pad [Bau97,

p.144–146]. From a short secret a long pseudo-random stream can be gen-

erated. The drawback is that the stream generated from a stream cipher

does not provide plausible deniability, namely the ability to claim that any

plaintext was encrypted. An adversary could compel a user to reveal their

keys, and check that the key stream is indeed generated from them. It is

impossible to find a key generating any random stream because the key is

shorter than the stream generated.

3.1.3 Random permutations: block ciphers

A block cipher takes as an input a secret key and a plaintext bit-string of

length l (called the block length). It then outputs another l bit-string called

the ciphertext. The mapping between the inputs and outputs of a block

cipher is a secret permutation of the l-bit space, for a given key k. For this

reason, the operation of a block cipher can be “undone”, by a decryption

operation that takes the key k and a ciphertext and outputs the original

plaintext. The main properties of a block cipher are:

40 CHAPTER 3. PRIMITIVES AND BUILDING BLOCKS

Key secrecy means that given any number of known pairs of plaintext and

ciphertext an adversary cannot extract the key k. In other words no

operation leaks the key.

Permutation pseudo-randomness means that given any number of pairs

of known plaintext and ciphertext it is not possible for the adversary

to infer any other mappings of the random permutation.

The block cipher used in this dissertation is the Advanced Encryption

Standard (AES) [AES01] as specified by NIST. AES takes keys of 128, 192 or

256 bits in length, and acts on blocks of 128 bits. Being a NIST standard, high

quality AES implementations are available in most cryptographic libraries

and there are no known plausible attacks.

3.2 Cryptographic constructions

Beyond the primitives themselves, some standard ways of combining them

are frequently used.

3.2.1 Block cipher modes

A block cipher can be used to encrypt a single block of text, but encrypting

multiple blocks requires special attention. A set of special modes has been

designed to perform such operations, each with different properties. The

ones that are relevant to our research are briefly presented. We denote as Pi

the ith block of plaintext and Ci the block of ciphertext. The block cipher

encryption operation is denoted by Ek and decryption by Dk, where k is the

key.

Electronic Code Book (ECB) mode just divides the message to be en-

crypted into blocks, the size of the block length of the cipher, and

encrypts them separately.

Ci = Ek {Pi} (3.1)

3.2. CRYPTOGRAPHIC CONSTRUCTIONS 41

Cipher Block Chaining (CBC) mode divides the plaintext into blocks

and XORs the encryption of the previous block into the plaintext be-

fore it is encrypted. The first block transmitted is a randomly chosen

initialisation value (IV), to make sure that repeated messages look dif-

ferent to someone who does not have the key.

C0 = IV (3.2)

Ci = Ek {Ci−1 ⊕ Pi} (3.3)

It is worth noting that while the encryption in CBC is sequential the

decryption can be performed in random order. For the same reason er-

rors in the ciphertext do not propagate beyond the block that contains

the error itself and the next block. The randomised encryption, yield-

ing different ciphertexts for the same key and plaintext, and the good

protection of confidentiality, have made CBC one of the most popular

encryption modes.

Counter Mode turns a block cipher into a random function (stream ci-

pher). An initialisation vector is chosen at random and transmitted in

clear. Then blocks containing the IV XORed with a counter are en-

crypted, to generate the stream that will be XORed with the plaintext.

C0 = IV (3.4)

Ci = Pi ⊕ Ek {IV ⊕ i} (3.5)

Counter mode does not propagate errors, except if they are in the IV.

The careful reader will note that decryption of the message uses the

encryption operation of the block cipher again and the decryption of

the block cipher is not needed. Under these circumstances one could

be tempted to replace the block cipher with a hash function containing

the key and the XOR of the IV and the counter.

3.2.2 Large block ciphers: BEAR

In order to avoid having to choose a block cipher mode, an alternative is

to construct a block cipher large enough to encrypt the whole message as

42 CHAPTER 3. PRIMITIVES AND BUILDING BLOCKS

one block. This has the advantage that the error propagation, in case the

ciphertext is modified, is total and unpredictable. An adversary will not be

able to guess, with probability better than random, any of the resulting bits

of plaintext.

BEAR [AB96] is a construction proposed by Anderson and Biham that

builds such a block cipher from a hash function h(x) and a random function

s(k). Their paper uses Luby-Rackoff’s [LR88] theorem to prove that such

a construction is secure against chosen ciphertexts and plaintext attacks.

BEAR is an unbalanced Feistel structure [SK96], which divides the block

into the left hand size whose length is the key size of the stream cipher |sk|
and a right hand side of arbitrary length l − |sk|.

(L|sk|, Rl−|sk|) = M (3.6)

L′ = L|sk| ⊕ h(Rl−|sk| ⊕ K1) (3.7)

R′ = Rl−|sk| ⊕ s(L′) (3.8)

L′′ = L′ ⊕ h(R′ ⊕ K2) (3.9)

return (L′′, R′) (3.10)

An attack is presented in [Mor] against the key schedule in the original

BEAR paper. It can be fixed by making the sub keys K1, K2 used equal to

the master key K. That way the decryption operation is the same as the

encryption operation.

An important feature of BEAR is its all-or-nothing nature. None of the

plaintext can be retrieved until all the bits of ciphertext are known. Further-

more, if any ciphertext is modified by an attacker, without knowledge of the

key the message will decrypt into a random stream. In many cases even a

key-less (or with a fixed globally known key) BEAR transform can be used.

For example performing a key-less BEAR transform on a whole message, and

then encrypting the first block using a block cipher, or by XORing a random

value into it, guarantees the confidentiality of the whole message. Similar

schemes can be constructed with asymmetric ciphers. Generally, a rule of

thumb when reasoning about BEAR is that every bit of the ciphertext de-

pends on every bit of the plaintext, and vice versa. All bits of the ciphertext

and plaintext also depend on all bits of the key when encryption or decryp-

tion operations are performed. Modification of any of these will cause an

3.2. CRYPTOGRAPHIC CONSTRUCTIONS 43

s

|sk| l − |sk|

|sk| l − |sk|

Message length l

k1

k2

h

h

Figure 3.1: The structure of the BEAR block cipher

unpredictable stream to be output. Constructions with similar properties

are described by Rivest as all-or-nothing transforms [Riv97] and their use is

discussed in [JSY99].

3.2.3 Message authentication codes for integrity

A message authentication code (MAC) is a short bit-string that is derived

from a message and a key. The parties with the key can compute the MAC,

which also allows them to verify it, while the parties without the key can-

not distinguish a valid MAC from a random one. There are many possible

construction of MACs. Two of them are presented here:

• A block cipher in CBC mode can be used to compute a MAC. The

initialisation vector is set to a globally known value (usually a string

of zeros) and only the last block of the CBC ciphertext is kept as the

MAC. Using AES would result in a 128 bit MAC.

• A hash function can be used to compute a MAC by appending and

44 CHAPTER 3. PRIMITIVES AND BUILDING BLOCKS

prepending the key to the text to be checked.

HMACk(x) = h(k, x, k) (3.11)

It is important to append the key at the end since this prevents an at-

tacker using implementation specificities of SHA-1, to update the mes-

sage and the MAC, therefore producing a valid MAC without knowing

the key [FS03].

While a MAC can be used by any of the parties sharing the key to assure

themselves that another party knowing the shared key has authenticated the

particular message, they cannot prove this to a third party. In particular

if Alice and Bob share a symmetric key, it is not possible for Alice to show

a message with a MAC to Charlie, a third party, and convince him that

it originated from Bob. Since the key is shared, Alice could equally have

constructed the message and the valid MAC. In order to convince third par-

ties of the authenticity of messages, and prove that they originated from a

particular principal, some form of digital signature has to be used. There-

fore the difference between digital signatures and MACs is that the former

provide non-repudiation. As argued in Mike Roe’s thesis [Roe97], one could

consider the complementary property to be plausible deniability, which will

be discussed in detail in section 3.4.

3.3 Asymmetric cryptographic primitives

All the keyed primitives in the previous section require keys to be shared

between Alice and Bob to perform encryption and decryption or authentica-

tion and verification. In this section we present asymmetric cryptographic

primitives that rely on pairs of private and public keys.

3.3.1 Diffie-Hellman exchange

In [DH76] Whitfield Diffie and Martin Hellman presented for the first time

in public, a system that allowed two participants to establish a shared secret,

using only publicly available information. The Diffie-Hellman exchange bases

3.3. ASYMMETRIC CRYPTOGRAPHIC PRIMITIVES 45

its security on the difficulty of the discrete logarithm problem in a finite field.

In the case of integers, it is trivial to compute E = gx mod p for a prime p, a

generator g and a random number x. On the other hand it is computationally

very difficult to determine x by computing the logarithm x = logg E mod p.

In other words, modular exponentiation can be thought as being a one way

function with special properties.

In order to perform a Diffie-Hellman exchange Alice and Bob share g and

p that are public parameters of the crypto-system. These can be reused,

and are globally known. Alice chooses a random string x, her private key,

computes gx mod p and publishes it as her public key. Bob does the same

with the private key y and the public key gy mod p. Alice and Bob can

then exchange their public keys, or simply publish them, and can compute

the shared key gxy mod p. This shared key can be used with any of the

primitives described in the previous section to protect the confidentiality

and integrity of their communications.

Asymmetric, or public key, cryptography, does not totally solve the prob-

lem of secure key distribution. It simply transforms it from a confidentiality

problem to an integrity problem. Alice must be sure that what she thinks is

Bob’s public key is indeed Bob’s public key, otherwise she could be talking to

someone else, such as the eavesdropper. Public key infrastructures [LA99],

public key registers [ACL+99], and webs of trust [Zim95] have been proposed

to solve this problem.

The Diffie-Hellman crypto-system, and generally systems based on dis-

crete logarithms have quite a nice feature: the private key can be easily gen-

erated from public information and a strong pass-phrase. Therefore, there is

no need to ever store a private key, since it can simply be regenerated when

a user needs to use it. The public key can also be trivially recomputed given

the secret pass-phrase and the public parameters of the system.

3.3.2 The El Gamal encryption system

The Diffie-Hellman scheme allows two parties to share a symmetric key.

El Gamal developed a system that allows the exchange of encrypted mes-

sages [El 85]. The public key y = gx mod p is used for encryption and the

46 CHAPTER 3. PRIMITIVES AND BUILDING BLOCKS

private key x is used for decryption. If Bob wants to send a message M to

Alice he picks a random secret k, and encodes it in the following way.

C = (a, b) =
(
gk mod p, ykM mod p

)
(3.12)

The first term a can be seen as the “hint” that allows Alice to compute

the session key gkx to unblind the second term b using division. El Gamal

is a randomised encryption scheme, that produces different ciphertexts for

the same plaintext thanks to the different session secrets k used. Its main

drawback is that the size of the ciphertext is always the double of the size of

the plaintext.

Two important operations that can be done to an El Gamal ciphertext

without the knowledge of the key are blinding and re-encryption. These

are used extensively in robust and verifiable mix constructions, described in

section 4.2.8. Blinding is performed by raising a ciphertext (a, b) to a power

d, resulting in (ad, bd). As a result the plaintext M is also raised to this

power, and will be M d. Since p is prime, it is trivial for someone knowing d to

recover the plaintext M , but very difficult for anyone else. Re-encryption uses

multiplication instead of exponentiations. The factors (gd, yd) are multiplied

with the ciphertext, resulting in (gda, ydb). The decryption operation will

still output the plaintext M . The ability to change the ciphertext in a way

that is not predictable is used in many constructions to provide the bitwise

unlinkability necessary to build mix systems.

3.3.3 The Rivest-Shamir-Adelman crypto-system

The RSA crypto-system [RSA78] relies on the difficulty of factoring com-

posites of large primes to provide its security. A composite n = p × q is

computed, and made public, while the two primes p and q are kept secret.

A value e where 1 < e < (p− 1)(q − 1) is chosen at random, and d such that

d× e = 1 mod (p−1)(q−1) is efficiently calculated. The public key is (e, n),

while (d, n) is the secret key.

In order to encrypt a message M for the public key (e, n) one simply per-

forms an exponentiation modulo n. The ciphertext is therefore M e mod n.

To decrypt, the message is simply raised to the power of the decryption key,

3.3. ASYMMETRIC CRYPTOGRAPHIC PRIMITIVES 47

M ed mod n = M mod n.

Digital signatures can also be implemented. The public verification key

is denoted (v, n) while the signature key is (s). The signer raises the message

to be signed to the power s and the verifier checks the signature by raising

it to the power v. All operations are performed modulo n.

Digital signatures provide integrity properties and non-repudiation prop-

erties: if the public key of Bob is well known, Alice can prove to a third party

that Bob has signed a message. Often this property is not desirable but for

technical reasons other integrity primitives, such as message authentication

codes, cannot be used. One can adapt protocols using digital signatures to

provide plausible deniability by publishing the private keys as the last step

of the protocol.

Chaum invented in [Cha83] a way to provide a valid signature on a un-

known plaintext. This can be used to provide unlinkable credentials, special

forms of which can be used to construct electronic coins. The setting is sim-

ple. Alice wants to make Bob, who controls a key pair (s, n), (v, n), sign a

message M, but does not want Bob to be able to link the message M with

Alice. Alice can choose a random nonce b and submit to Bob the ciphertext

bvM mod n. Bob can then perform the normal RSA signature operation and

return (bvM)s mod n = bMd mod n. Alice knows b and can therefore get a

valid signature M d mod n just by dividing the returned value. This property

can be used to build anonymous credential systems or to attack protocols

that use “raw” RSA.

3.3.4 Strengthening the primitives

Soon after the introduction of the public key techniques described, it was

realised that by themselves they were not as secure as conventional “encryp-

tion”. In particular the mathematical structure that they relied upon, could

be used to mount adaptive active attacks, blinding and re-encryption, to leak

information about the plaintext.

A lot of research has focused on trying to formally define security for

encryption, and to try and minimise the potential leakage of information out

of public key encryption systems. Semantic security [GM84] means that no

48 CHAPTER 3. PRIMITIVES AND BUILDING BLOCKS

useful information can be extracted from the ciphertext about the plaintext.

Chosen ciphertext security means that no information about the plaintext

can be extracted if modified ciphertexts are submitted to a decryption oracle.

This is quite close to the idea of plaintext-aware encryption that detects any

modification to the plaintext. Sometimes this property is also called non-

malleability [DDN91].

Technically these constructions pre-process the plaintext to give it a par-

ticular structure. Luby-Rackoff structures are used to distribute each bit

of information across all other bits, so that all or none of the plaintext can

be recovered. Hashes are also used to check the integrity of the message.

The PKCS#1 [PKC02] standard defines the Optimal Asymmetric Encryp-

tion Procedure (OAEP [BR95]) that should be used when encrypting with

RSA.

Another issue relevant to anonymity engineering is that encrypting with

an asymmetric crypto-system might not leak any information about the

plaintext, but could be leaking information about the public key used. Sys-

tems that effectively hide the public key used to perform the encryption are

called key private [BBDP01].

3.4 Plausible deniability

Plausible deniability is the security property which ensures that a princi-

pal cannot be linked to some action with an appropriate level of certainty.

The level of certainty used is usually beyond reasonable doubt in the case

of a criminal court, on the balance of probability in a civil court. Michael

Roe argues that plausible deniability is the complementary property of non-

repudiation, the inability to deny that an action has been associated with a

principal, or the ability to prove to third parties that an action was linked

to a principal [Roe97].

3.4.1 Deniable encryption

Plausibly deniable encryption is the inability to prove that a particular ci-

phertext decrypts to a particular plaintext. A system that provides perfectly

3.4. PLAUSIBLE DENIABILITY 49

deniable encryption is the one time pad. Since the key is as long as the

plaintext and ciphertext, a key can always be constructed to decrypt any

ciphertext to any plaintext. Furthermore the key provided will be indistin-

guishable from noise, and therefore any other possible key that might have

been used. It is important to notice that under compulsion the sender and

the receiver should release the same fake key, leading to some fake plaintext,

otherwise they might be uncovered. This might be difficult to arrange if the

ciphertext has not yet reached the receiver.

From the example above it should be clear that the mathematics, and

the procedures, surrounding such systems must be carefully designed to yield

plausible outcomes. Furthermore what is plausible is not simply the result

of the mathematics, but also made plausible by the fact that the human

procedures around them are plausible.

A System that does not simply make the content of messages deniable

but allow one to deny their presence have been developed by Clayton and

Danezis [CD02]. Chaffinch is a system that supports the presence of many

streams of data, hidden within each other. It follows closely chaffing and

winnowing introduced by Rivest [Riv98, BB00]. .

The principal idea behind Chaffinch is that streams of data are made to

look like noise using an all-or-nothing transform, and then are multiplexed

together. A cover message that can be revealed under compulsion, is always

included to make the act of communication itself plausible. It is impossible

for an adversary not knowing the keys to unwrap the other channels and

tell if any further messages are present or not. The intended recipient can

always untangle the streams by recognising the labels of packets within the

stream using different secret keys. An interesting feature of Chaffinch is that

the keys are necessary for decoding streams, but any third party can mix

streams without directly knowing them.

An equivalent system for storage, instead of transmission, is the stegano-

graphic file system, as proposed in [ANS98] and implemented in [MK99].

Again, a user stores files indexed as tuples of file names and keys. An adver-

sary that does not have a key cannot find out if a particular file is present in

the file system or not. While the system works very well against an adversary

that just gets one snapshot of the file system, it does not protect against an

50 CHAPTER 3. PRIMITIVES AND BUILDING BLOCKS

adversary that gets many snapshots at different times, and compares them

to find differences. Such an adversary will query the user of the system until

all the differences that are due to file insertions are explained.

In [Bea96, CDNO97] some deniable public key encryption schemes are

presented. It is also argued that deniable encryption is an important ele-

ment of receipt-freeness that is necessary to build fair election schemes. An

attempt to generalise plausible deniability to general multi-party protocols

is made in [CDNO97]. These aim to avoid transforming the party’s inputs

and outputs into unforgeable commitments, which would allow an adversary

with coercion powers to check any answers given under compulsion.

3.5 Forward security

Forward security is the property of a system which guarantees that after a

certain time, or protocol step, none of the security properties of the cur-

rent state of the system can be violated. Forward security relies heavily on

securely deleting information such as key material.

Ross Anderson points out in [And97] that the name forward security

is deceptive. He argues that the term would better be suited to describe

the property of a system to become secure in the future, after it has been

compromised. We shall call this property self-healing, and define it as the

ability of a system to regain its security properties after an attack, given

that the attack has ceased. In practise this property raises the cost of an

attacker, and usually forces them to be on-line all the time, recording all the

communications as they happen and duplicating all computations.

The simplest way to achieve forward secure confidential communications

is to perform key updating at regular time intervals. Key updating transforms

the secret shared key using a one way function, such as a cryptographic hash

function, and then makes sure that the old keys are deleted. Hashing the

key using SHA-1 would be sufficient, but another common technique is to

encrypt the key of a block cipher under itself and use the resulting ciphertext

as the new key. Since the transform is one way, an adversary that captures

the current key read any previous communications.

The ephemeral Diffie-Hellman exchange provides forward secure encryp-

3.6. SUMMARY 51

tion, without the need to previously share any secrets. Alice and Bob simply

compute some fresh public keys and exchange them. As soon as they have

generated the shared key, they securely delete their respective private keys.

The session key can be used to exchange confidential messages, and period-

ically key updating can be performed as described above. Note that such a

scheme is open to man in the middle attacks, unless digital signatures are

used to sign the ephemeral public keys exchanged.

We can extend the simple example provided above to also be self-healing.

Instead of just hashing the session key to perform the key updating operation,

all the plaintext transmitted in the channel is hashed, to generate the new

session key. Therefore, even if an attacker gets access to the key, they will

have to monitor all communications, and recompute all the keys in order to

maintain their ability to eavesdrop on the channel. SSL and TLS can be

made to behave like this.

In the same paper Anderson also introduces the concept of forward secure

digital signatures. These behave exactly like digital signatures but provide a

way of updating the secret signing keys and public verification keys so that

signatures in past epochs cannot be forged. A number of such schemes have

since been proposed [BM99, AR00, IR01].

A similar idea has been proposed for asymmetric encryption schemes.

Forward secure encryption techniques usually make use of identity based

schemes, and modify them to provide a succession of public and private keys.

Details of such schemes are presented in [CHK03, DKXY02, DFK+03]. The

intrusion-resilience and key-insulation properties discussed in these papers

are very similar to self-healing described above.

Some work has also been done on using forward secure techniques to

detect corruption of signatures [Itk03] or server logs [BY03] after a successful

attack that has leaked private information.

3.6 Summary

In this chapter we presented a selection of symmetric and asymmetric cryp-

tographic primitives of particular significance to anonymity systems. The

BEAR cipher and RSA OAEP encryption will be used extensively in the de-

52 CHAPTER 3. PRIMITIVES AND BUILDING BLOCKS

sign of Mixminion, our anonymous remailer design, presented in chapter 5.

Plausible deniability techniques for message transport, storage and en-

cryption are also reviewed, due to the resemblance of this property to anony-

mous communications. Furthermore forward secure systems for link encryp-

tion and signatures are discussed. In chapter 6 we will present how forward

secure mixing can be implemented to make the work of an attacker with

compulsion powers more difficult.

Chapter 4

Related work

“One technique used in COINTELPRO1 involved sending a-

nonymous letters to spouses intended, in the words of one

proposal, to ‘produce ill-feeling and possibly a lasting dis-

trust’ between husband and wife, so that ‘concerns over what

to do about it’ would distract the target from ‘time spent in

the plots and plans’ of the organisation”

Final Report of the Select Committee to Study

Governmental Operations with Respect to Intelligence

Activities of the United States Senate

— 94th Congress, 2nd Session, 1976

Research on anonymous communications started in 1981 with Chaum’s

seminal paper “Untraceable electronic mail, return addresses, and digital

pseudonyms” [Cha81]. Since then a body of research has concentrated on

building, analysing and attacking anonymous communication systems. In

this section we present the state of the art of anonymity systems at the time

our research commenced. The principles that are extracted, and the attacks

that are described have shaped our view of the field, and marked the design

of the protocols presented in the rest of this thesis.

More recent research has been intrinsically linked and shaped by its in-

teraction with our own work and will be presented alongside the actual work

1COINTELPRO: FBI counter intelligence programme, operating from 1956 to 1971.

53

54 CHAPTER 4. RELATED WORK

in the relevant later chapters. The attacks against Tarzan presented in sec-

tion 4.2.7 are original but do not deserve a whole chapter.

4.1 Trusted and semi-trusted relays

We will start presenting anonymous communications by introducing systems

that rely on one central trusted node to provide security. They also provide

a varying, but usually low, degree of protection against traffic analysis and

active attacks.

4.1.1 anon.penet.fi

Johan Helsingius started running a trusted mail relay, anon.penet.fi, pro-

viding anonymous and pseudonymous email accounts in 1993. The technical

principle behind the service was a table of correspondences between real

email addresses and pseudonymous addresses, kept by the server. Email to

a pseudonym would be forwarded to the real user. Email from a pseudonym

was stripped of all identifying information and forwarded to the recipient.

While users receiving or sending email to a pseudonym would not be able to

find out the real email address of their anonymous correspondent, it would

be trivial for a local passive attacker or the service itself to uncover the

correspondence.

While protecting from a very weak threat model, the service was finally

forced to close down through legal attacks. In 1996 the “Church of Spiritual

Technology, Religious Technology Centre and New Era Publications Inter-

national Spa” reported that a user of anon.penet.fi sent a message to a

newsgroup infringing their copyright. Johan Helsingius, the administrator of

anon.penet.fi, was asked to reveal the identity of the user concerned. The

details of the case, that put enormous strain on the service, can be found in

the press releases of the 23 September 1996 [Hel96b, Hel96c] or the informa-

tion centre set up around this case [New97]. Reputation attacks were also

experienced, when unfounded reports appeared in mainstream newspapers

about the service being used to disseminate child pornography [Hel96a].

The service finally closed in August 1996 since it could no longer guar-

4.1. TRUSTED AND SEMI-TRUSTED RELAYS 55

antee the anonymity of its users. The closure was quite significant for the

privacy and anonymity research community. In the initial judgement the

judge had ruled that “a witness cannot refrain from revealing his informa-

tion in a trial” [Hel96c], even though an appeal was lodged on the grounds

of privacy rights protected by the Finish constitution, and the fact that the

information might be privileged, as is the case for journalistic material.

The concept that even non-malicious relay operators could be forced un-

der legal or other compulsion, to reveal any information they have access

to, provided a new twist to the conventional threat models. Honest relays

or trusted nodes could under some circumstances be forced to reveal any

information they held concerning the origin or destination of a particular

communication. Minimising the information held by trusted parties is there-

fore not just protecting their users, but also acts to protect the services

themselves.

4.1.2 Anonymizer & SafeWeb

Anonymizer2 is a company set up by Lance Cottrell, also author of the Mix-

master remailer software, that provides anonymous web browsing for sub-

scribed users. The Anonymizer product acts as a web proxy through which

all web requests and replies are relayed. The web servers accessed, should

therefore not be able to extract any information about the address of the

requesting user. Special care is taken to filter out any “active” content, such

as javascript or Java applets, that could execute code on the user’s machine,

and then signal back identifying information.

As for anon.penet.fi, the anonymity provided, depends critically on

the integrity of the Anonymizer company and its staff. The service is less

vulnerable to legal compulsion attacks, since no long-term logs are required

to be kept, that could link users with resources accessed. Unlike email, users

always initiate web requests, and receive the replies, and all records can be

deleted after the request and reply have been processed. Records can be

made unavailable to seize after just a few seconds.

SafeWeb is a company that provides a very similar service to Anonymizer.

2http://www.anonymizer.com/

56 CHAPTER 4. RELATED WORK

The two main differences in their initial products, was that SafeWeb al-

lowed the traffic on the link from SafeWeb to the user to be encrypted using

SSL [DA99], and “made safe” active content in pages by using special wrap-

per functions. Unfortunately their system of wrappers did not resist a set of

attacks devised by Martin and Schulman [MS02]. Simple javascript attacks

turn out to be able to extract identifying information from the users. In the

absence of any padding or mixing, a passive attacker observing the service

would also be able to trivially link users with pages accessed. The study of

this vulnerability has prompted the research presented in [SSW+02].

Censorship Resistance

The threat model that SafeWeb wished to protect against was also very

peculiar. The company was partly funded by the United States Central In-

telligence Agency (CIA), and attempted to secure funding from The Voice

of America and the Internet Broadcasting Bureau in order to “help Chi-

nese and other foreign Web users get information banned in their own com-

pany (sic)”3 [Sin01]. This claim explicitly links anonymous communications

with the ability to provide censorship resistance properties. The link has

since then become popular, and often anonymity properties are seen as a

pre-requisite for allowing censorship resistant publishing and access to re-

sources. No meticulous requirements engineering study has even been per-

formed that proves (or disproves) that claim, and no cost benefit analysis has

ever been performed to judge if the technical cost of an anonymity system

would justify the benefits in the eyes of those interested in protecting them-

selves against censorship. Furthermore no details were ever provided, besides

hearsay claims, about groups using the technology in a hostile environment,

and their experiences with it. The latter would be particularly interesting

given the known vulnerabilities of the product at the time.

The first paper to make a clear connection between censorship resistant

storage and distribution is Anderson’s Eternity service [And96]. Serjantov

has also done some interesting work on how to use strong anonymous com-

3The Freudian slip confusing “country” with “company”, and the way this goal can be

understood in two opposing ways might be interpreted as quite telling of the nature of the

CIA’s interest in this product.

4.1. TRUSTED AND SEMI-TRUSTED RELAYS 57

munications to provide censorship resistance [Ser02]. The system presented

is, for very good technical and security reasons, very expensive in terms of

communication costs and latency. Peer-to-peer storage and retrieval sys-

tems such as Freenet [CSWH00], FreeHaven [DFM00], and more recently

GnuNet [BG03] also claimed to provide or require anonymous communica-

tions. Attacks against some anonymity properties provided by GnuNet have

been found [Küg03]. Since the design of the three mentioned systems changes

frequently it is very difficult to assess the security, or the anonymity they pro-

vide at any time. Feamster et al. have looked at different aspects of web

censorship resistance in [FBH+02, FBW+03] by making use of steganogra-

phy to send high volumes of data, and what they called “URL hopping” to

transmit requests. Finally, aChord [HW02] presents concisely the require-

ments of a censorship resistant system, and attempts to build one based on

a distributed hash table primitive.

4.1.3 Type I “Cypherpunk” remailers

Type I remailers, first developped by Eric Hughes and Hal Finney [Par96], are

nodes that relay electronic mail, after stripping all identifying information

and decrypting it with their private key. The first code-base was posted

to the cypherpunks mailing list, which gave the remailers their nickname.

The encryption was performed using the Pretty Good Privacy (PGP) public

key encryption functions. The encoding scheme was also designed to be

performed manually, using standard text and email editing tools. Many

remailers could be chained together, in order for users not to rely on a single

remailer to protect their anonymity.

Reply blocks were supported to allow for anonymous reply addresses. The

email address of the user would be encrypted using the remailer’s public key,

and inserted in a special header. If a user wished to reply to an anonymous

email, the remailer would decrypt it and forward the contents.

The type I remailers offer better resistance to attacks than the sim-

ple anon.penet.fi relay. No database that links real user identities with

pseudonyms is kept. The addressing information required to reply to mes-

sages is included in the messages themselves, in an encrypted form.

58 CHAPTER 4. RELATED WORK

The encryption used when the messages are forwarded through the net-

work prevents the most trivial passive attacks based on observing the exact

bit patterns of incoming messages and linking them to outgoing ones. How-

ever it leaks information, such as the size of the messages. Since PGP, beyond

compressing the messages, does not make any further attempts to hide their

size, it is trivial to follow a message in the network just by observing its

length. The reply blocks provided are also a source of insecurity. They can

be used many times and an attacker could encode an arbitrary number of

messages in order to mount a statistical attack to find their destination (see

chapter 9 for more details on such attacks). The attack can then be repeated

for any number of hops.

Despite these drawbacks type I remailers became very popular. This is

due to the fact that their reply capabilities allowed the use of Nym Servers.

The anonymity research community is concerned by the inability to phase

out type I remailers. Their reply block feature, that is not present in the

later type II Mixmaster software, is both essential to build nym servers, but

also insecure even against passive adversaries. This has prompted the work

presented in chapter 5, which describes a type III remailer, that is extremely

resistant to traffic analysis, and provides secure single-use reply blocks.

4.1.4 Crowds

Crowds [RR98] was developed by Reiter and Rubin at the AT&T Laborato-

ries. It aims to provide a privacy preserving way of accessing the web, with-

out web sites being able to recognise which individual’s machine is browsing.

Each user contacts a central server and receives the list of participants, the

“crowd”. A user then relays her web requests by passing it to another ran-

domly selected node in the crowd. Upon receiving a request each node tosses

a biased coin and decides if it should relay it further through the crowd or

send it to the final recipient. Finally, the reply is sent back to the user via

the route established as the request was being forwarded through the crowd.

Crowds is one of the first papers to address quantitatively how colluding

nodes would affect the anonymity provided by the system. It is clear that

after the first dishonest node in the path of a request no further anonymity is

4.1. TRUSTED AND SEMI-TRUSTED RELAYS 59

provided, since the clear text of all requests and replies is available to inter-

mediate nodes. Therefore, given a certain fraction of colluding attacker nodes

it is possible to measure the anonymity that will be provided. Crowds also

introduces the concept of initiator anonymity : a node that receives a request

cannot know if the previous node was the actual requester or was just passing

the request along. This property is quite weak and two independent groups

have found attacks that identify the originator of requests [WALS02, Shm02].

Despite the difficulty of securing initiator anonymity, a lot of subsequent sys-

tems such as achord [HW02] and MorphMix [RP02], try to achieve it.

4.1.5 Nym servers

Nym servers [MK98] store an anonymous reply block, and map it to a

pseudonymous email address. When a message is received for this address it

is not stored, but immediately forwarded anonymously using the reply block

to the owner of the pseudonym. In other words, Nym Servers act as a gate-

way between the world of conventional email and the world of anonymous

remailers. Since they hold no identifying information, and are simply us-

ing anonymous reply blocks for routing purposes, they do not require users

to trust them in order to safeguard their anonymity. Over the years, special

software has been developed to support complex operations such as encoding

anonymous mail to go through many remailers, and managing Nym Server

accounts.

Nym servers are also associated with pseudonymous communications.

Since the pseudonymous identity of a user is relatively persistent it is pos-

sible to implement reputation systems, or other abuse prevention measures.

For example a nym user might at first only be allowed to send out a small

quantity of email messages, that increases over time, as long as abuse reports

are not received by the nym server operator. Nym servers and pseudonymous

communications offer some hope of combining anonymity and accountability.

At the same time, it is questionable how long the true identity of a

pseudonymous user can be hidden. If all messages sent by a user are linked

between them by the same pseudonym, one can try to apply author identifi-

cation techniques to uncover the real identity of the user. Rao et al [RR00] in

60 CHAPTER 4. RELATED WORK

their paper entitled “Can Pseudonymity Really Guarantee Privacy?” show

that the frequency of function words4 in the English language can be used

in the long term to identify users. A similar analysis could be performed

using the sets of correspondents of each nym, to extract information about

the user.

4.2 Mix systems

The type I remailer, presented in section 4.1.3, is the insecure version of a

whole body of research that we shall call mix systems and mix networks.

This section presents more secure constructions based on these ideas.

4.2.1 Chaum’s original mix

The first, and most influential, paper in the field of anonymous communi-

cations was presented by Chaum in 1981 [Cha81]. Chaum introduced the

concept of a “mix” node that hides the correspondences between its input

messages and its output messages in a cryptographically strong way.

The work was done in the late seventies, when RSA public key encryption

was relatively new. For this reason the paper might surprise today’s reader

by its use of raw RSA, the direct application of modular exponentiation

for encryption and decryption, along with an ad-hoc randomisation scheme.

Nonces are appended to the plaintext before encryption in order to make two

different encryptions output different ciphertext.

The principal idea is that messages to be anonymized are relayed through

a node, called a mix. The mix has a well-known RSA public key, and messages

are divided into blocks and encrypted using this key. The first few blocks

are conceptually the “header” of the message, and contain the address of the

next mix. Upon receiving a message a mix decrypts all the blocks, strips

out the first block that contains the address of the next relay in the chain,

and appends a block of random bits (the junk) at the end of the message.

4Function words are are specific English words used to convey ideas, yet their usage is

believed to be independent of the ideas being conveyed. For example: a, enough, how, if,

our, the, . . .

4.2. MIX SYSTEMS 61

The length of the junk is chosen to make messages size invariant. The most

important property that the decryption and the padding aim to achieve is

bitwise unlinkability. An observer, or an active attacker, should not be able

to find the link between the bit pattern of the encoded messages arriving at

the mix and the decoded messages departing from the mix. The usage of

the word encoded and decoded instead of encrypted and decrypted serves to

highlight that the former operations are only used to achieve unlinkability,

and not confidentiality as maybe understood to be the aim of encryption.

Indeed, modifying RSA or any other encryption and decryption functions to

provide unlinkability against passive or active attackers is a problem studied

in depth in chapter 5 in the context of the design of Mixminion.

B. Pfitzmann and A. Pfitzmann [PP90] show that Chaum’s scheme does

not provide the unlinkability properties necessary. The RSA mathematical

structure can be subject to active attacks that leak enough information dur-

ing decryption to link ciphertexts with their respective plaintexts. Further

tagging attacks are possible, since the encrypted blocks, using RSA are not

in any way dependant on each other, and blocks can be duplicated or simply

substituted by known ciphertexts. The output message would then contain

two blocks with the same plaintext or a block with a known plaintext respec-

tively. Once again the use of RSA in the context of a hybrid crypto-system,

in which only the keys are encrypted using the public key operations, and

the body of the message using a symmetric cipher were not very well studied

at the time.

A further weakness of Chaum’s scheme is its direct application of RSA

decryption, which is also used as a signature primitive. An active attacker

could substitute a block to be signed in the message and obtain a signature

on it. Even if the signature has to have a special form, such as padding, that

could be detected, a blinding technique could be used to hide this structure

from the mix. It would be unfair to blame this shortcoming on Chaum, since

he himself invented RSA blind signatures only a few years later [Cha83].

The second function of a mix is to actually mix together many messages,

to make it difficult for an adversary to follow messages through it, on a first-

in, first-out basis. Therefore a mix batches a certain number of messages

together, decodes them as a batch, reorders them in lexicographic order and

62 CHAPTER 4. RELATED WORK

then sends them all out. Conceptually, while bitwise unlinkability makes

sure that the contents of the messages do not allow them to be traced, mix-

ing makes sure that the timing of the messages does not leak any linking

information.

In order to make the task of the attacker even more difficult, dummy mes-

sages are proposed. Dummy messages are generated either by the original

senders of messages or by mixes themselves. As far as the attacker is con-

cerned, they are indistinguishable in length or content to normal messages,

which increases the difficulty in tracing the genuine messages. We will call

the actual mixing strategy, namely the batching and the number of dummy

messages included in the inputs or outputs, the dynamic aspects of mixing.

Chaum notes that relying on just one mix would not be resilient against

subverted nodes, so the function of mixing should distributed. Many mixes

can be chained to make sure that even if just one of them remains honest

some anonymity would be provided. The first way proposed to chain mixes

is the cascade. Each message goes through all the mixes in the network, in

a specific order. The second way proposed to chain mixes is by arranging

them in a fully connected network, and allowing users to pick arbitrary routes

through the network. Berthold, Pfitzmann, and Standtke argue in [BPS00]

that mix networks do not offer some properties that cascades offer. They

illustrate a number of attacks to show that if only one mix is honest in the

network the anonymity of the messages going through it can be compromised.

These attacks rely on compromised mixes that exploit the knowledge of their

position in the chain; or multiple messages using the same sequence of mixes

through the network.

Along with the ability for a sender to send messages anonymously to

a receiver, Chaum presents a scheme by which one can receive messages

anonymously. A user that wishes to receive anonymous email constructs an

anonymous return address, using the same encoding as the header of the

normal messages. She creates blocks containing a path back to herself, and

recursively encrypts the blocks using the keys of the intermediate mixes.

The user can then include a return address in the body of a message sent

anonymously. The receiver simply includes the return address as the header

of his own message and sends it through the network. The message is routed

4.2. MIX SYSTEMS 63

through the network as if it was a normal message.

The reply scheme proposed has an important feature. It makes replies

in the network indistinguishable from normal messages. In order to securely

achieve this it is important that both the encoding and the decoding op-

eration provide bitwise unlinkability between inputs and outputs. This is

necessary because replies are in fact decoded when processed by the mix.

The resulting message, after it has been processed by all the mixes in the

chain specified by the return address, is then decoded with the keys dis-

tributed to the mixes in the chain. Both the requirement for decryption to

be as secure as encryption, and for the final mix to know the encryption

keys to recover the message means that raw RSA cannot be used. Therefore

a hybrid scheme is proposed that simply encrypts a symmetric key in the

header along with the address of the next mix in the chain, that can be used

to encrypt or decrypt the message. Since the keys are encoded in the return

address by the user, they can be remembered by the creator of the reply

block and used to decrypt the messages that are routed using them. Return

addresses were also discussed in the Babel system [GT96] and implemented

in the cypherpunk type I remailers. Unfortunately other deployed systems

like Mixmaster did not support them at all.

Chaum’s suggestion that a receipt system should be in place to make

sure that each mix processes correctly messages, has become a branch of

anonymity research in itself, namely mix systems with verifiable properties.

We will give an overview of these systems in section 4.2.8. A system was also

proposed to support pseudonymous identities that was partly implemented

as the Nym Server described in section 4.1.3.

4.2.2 ISDN mixes, Real Time mixes and Web mixes

In 1991, A. Pfitzmann, B. Pfitzmann and Waidner designed a system to

anonymise ISDN telephone conversations [PPW91]. This design could be

considered practical, from an engineering point of view, since it meets the

requirements and constraints of the ISDN network. Later the design was

generalised to provide a framework for real-time, low-latency, mixed commu-

nications in [JMP+98]. Finally, many of the design ideas from both ISDN

64 CHAPTER 4. RELATED WORK

and Real Time mixes were adapted for anonymous web browsing and called

Web Mixes [BFK00]. Part of the design has been implemented as a web

anonymizing proxy, JAP5. All three designs were the product of what could

be informally called the Dresden anonymity community (although early re-

search started in Karlsruhe), and the main ideas on which these systems are

based are better illustrated by presenting them together.

A major trend in all three papers is the willingness to secure anonymous

communication, even in the presence of a very powerful adversary. It is

assumed that this adversary would be able to observe all communications

on the network (global passive), modify the communications on the links

by delaying, injecting or deleting messages and finally control all but one of

the mixes. While other designs, such as Mixmaster and Babel (that will be

presented next), opted for a free route network topology, ISDN, Real Time

and Web mixes always use cascades of mixes, making sure that each message

is processed by all mixes in the same order. This removes the need for

routing information to be passed along with the messages, and also protects

the system from a whole set of intersection attacks presented in [BPS00].

The designs try never to compromise on security, and attempt to be

efficient. For this reason, they make use of techniques that provide bitwise

unlinkability with very small bandwidth overheads and few asymmetric cryp-

tographic operations. Hybrid encryption with minimal length encrypts the

header, and as much as possible of the plaintext in the asymmetrically en-

crypted part of the message. A stream cipher is then used to encrypt the

rest of the message. This must be performed for each intermediate mix that

relays the message.

Furthermore, it is understood that some protection has to be provided

against active tagging attacks on the asymmetrically encrypted header. A

block cipher with a globally known key is used to transform the plaintext

before any encryption operation. This technique allows the hybrid encryption

of naturally long messages with very little overhead. It is interesting to notice

that while the header is protected against tagging attacks, by using a known

random permutation, there is no discussion about protecting the rest of the

message encrypted using the stream cipher. Attacks in depth could be used,

5http://anon.inf.tu-dresden.de/

4.2. MIX SYSTEMS 65

by which a partially known part of the message is XORed with some known

text, in order to tag the message in a way that is recognisable when the

message is decrypted. As we will see Mixmaster protects against this using

a hash, while Mixminion makes sure that if modified, the tagged decoded

message will contain no useful information for the attacker.

From the point of view of the dynamic aspects of mixing, ISDN, Real

Time and Web mixes also introduce some novel techniques. First the route

setup messages are separated from the actual data travelling in the network.

In ISDN mixes, the signalling channel is used to transmit the onion encoded

message that contains the session keys for each intermediary mix. Each

mix then recognises the messages belonging to the same stream, and uses

the session key to prime the stream cipher and decode the messages. It

is important to stress that that both “data” messages and “route setup”

messages are mixed with other similar messages. It was recognised that all

observable aspects of the system such as route setup and end, have to be

mixed.

In order to provide anonymity for both the initiator and the receiver of

a call, rendezvous points were defined. An initiator could use an anonymous

label attached to an ISDN switch in order to be anonymously connected with

the actual receiver. This service is perhaps the circuit equivalent of a Nym

server that can be used by message-based systems. It was also recognised

that special cases, such as connection establishment, disconnection and busy

lines could be used by an active attacker to gain information about the com-

municating party. Therefore a scheme of time slice channels was established

to synchronise such events, making them unobservable to an adversary. Call

establishment, as well as call ending have to happen at particular times,

and are mixed with, hopefully many, other such events. In order to create

the illusion that such events happen at particular times, real or cover traffic

should be sent by the users’ phones through the cascade for the full duration

of the time slice. An even more expensive scheme requires users to send cover

traffic through the cascade back to themselves all the time. This would make

call initiation, call tear-down and even the line status unobservable. While

it might be possible to justify such a scheme for ISDN networks where the

lines between the local exchange and the users are not shared with any other

66 CHAPTER 4. RELATED WORK

parties, it is a very expensive strategy to implement over the Internet in the

case of Web mixes.

Overall, the importance of this body of work is the careful extension

of mixes to a setting of high-volume streams of data. The extension was

done with careful consideration for preserving the security features in the

original idea, such as the unlinkability of inputs and outputs and mixing all

the relevant information. Unfortunately, while the ideas are practical in the

context of telecommunication networks, where the mix network is intimately

linked with the infrastructure, they are less so for widely deployed modern

IP networks. The idea that constant traffic can be present on the lines, and

that the anonymity can be guaranteed, but be relatively low, is not practical

in such contexts. Onion routing, presented in section 4.2.5, provides a more

flexible approach that can be used as an overlay network, but is at the same

time open to more attacks.

4.2.3 Babel and Mixmaster

Babel [GT96] and Mixmaster [MCPS03] were designed in the mid-nineties,

and the latter has become the most widely deployed remailer. They both fol-

low a message-based approach, namely they support sending single messages,

usually email, though a fully connected mix network.

Babel offers sender anonymity, called the “forward path” and receiver

anonymity, through replies travelling over the “return path”. The forward

part is constructed by the sender of an anonymous message by wrapping

a message in layers of encryption. The message can also include a re-

turn address to be used to route the replies. The system supports bidi-

rectional anonymity by allowing messages to use a forward path, to protect

the anonymity of the sender, and for the second half of the journey they are

routed by the return address so as to hide the identity of the receiver.

While the security of the forward path is as good as in the secured original

mix network proposals, the security of the return path is slightly weaker.

The integrity of the message cannot be protected, thereby allowing tagging

attacks, since no information in the reply address, which is effectively the

only information available to intermediate nodes, can contain the hash of

4.2. MIX SYSTEMS 67

the message body. The reason for this is that the message is only known

to the person replying using the return address. This dichotomy will guide

the design of Mixminion (see chapter 5), since not protecting the integrity

of the message could open a system to trivial tagging attacks. Babel reply

addresses and messages can also be used more than once, while messages in

the forward path contain a unique identifier and a timestamp that makes

detecting and discarding duplicate messages efficient.

Babel also proposes a system of intermix detours. Messages to be mixed

could be “repackaged” by intermediary mixes, and sent along a random route

through the network. It is worth observing that even the sender of the

messages, who knows all the symmetric encryption keys used to encode and

decode the message, cannot recognise it in the network when this is done.

Mixmaster has been an evolving system since 1995 [MCPS03]. It is the

most widely deployed and used remailer system.

Mixmaster supports only sender anonymity, or in the terminology used

by Babel, only the forward path. Messages are made bitwise unlinkable

by hybrid RSA and EDE 3DES encryption, while the message size is kept

constant by appending random noise at the end of the message. In version

two, the integrity of the RSA encrypted header is protected by a hash, making

tagging attacks on the header impossible. In version three the noise to be

appended is generated using a secret shared between the remailer, and the

sender of the message, included in the header. Since the noise is predictable

to the sender, it is possible to include in the header a hash of the whole

message therefore protecting the integrity of the header and body of the

message. This trick makes replies impossible to construct since the body of

the message would not be known to the creator of an anonymous address

block to compute in the hash.

Beyond the security features, Mixmaster provides quite a few usability

features. It allows large messages to be divided in smaller chunks and sent

independently through the network. If all the parts end up at a common

mix, then reconstruction happens transparently in the network. So large

emails can be sent to users without requiring special software. Recognising

that building robust remailer networks could be difficult (and indeed the first

versions of the Mixmaster server software were notoriously unreliable) it also

68 CHAPTER 4. RELATED WORK

allowed messages to be sent multiple times, using different paths. It is worth

noting that no analysis of the impact of these features on anonymity has ever

been performed.

Mixmaster also realises that reputation attacks, by users abusing the

remailer network, could discredit the system. For this reason messages are

clearly labelled as coming from a remailer and black lists are kept up-to-date

with email addresses that do not wish to receive anonymous email. While

not filtering out any content, for example not preventing death threats being

transmitted, at least these mechanisms are useful to make the network less

attractive to email spammers.

4.2.4 Stop-and-go mixes

As we saw above, Babel and Mixmaster implement a traditional mix network

model. They also both extend the original idea of mixing batches of messages

together to feeding back messages in a pool, in the case of Mixmaster, or to

delaying a fraction of messages an additional round, in the case of Babel.

Stop-and-Go mixes [KEB98] (sg-mix) present a mixing strategy, that is not

based on batches but delays. It aims at minimising the potential for (n− 1)

attacks, where the attacker inserts a genuine message in a mix along with a

flood of his own messages until the mix processes the batch. It is then trivial

to observe where the traced message is going.

Each packet to be processed by an sg-mix contains a delay and a time

window. The delay is chosen according to an exponential distribution by the

original sender, and the time windows can be calculated given all the delays.

Each sg-mix receiving a message, checks that it has been received within the

time window, delays the message for the specified amount of time, and then

forwards it to the next mix or final recipient. If the message was received

outside the specified time window it is discarded.

A very important feature of sg-mixes is the mathematical analysis of the

anonymity they provide. It is observed that each mix can be modelled as

a M/M/∞ queue, and a number of messages waiting inside it follow the

Poisson distribution. The delays can therefore be adjusted to provide the

necessary anonymity set size.

4.2. MIX SYSTEMS 69

The time window is used in order to detect and prevent (n − 1) attacks.

It is observed that an adversary needs to flush the sg-mix of all messages,

then let the message to be traced through and observe where it goes. This

requires the attacker to hold the target message for a certain time, necessary

for the mix to send out all the messages it contains and become empty. The

average time that the message needs to be delayed can be estimated, and the

appropriate time window can be specified to make such a delayed message

be rejected by the mix.

4.2.5 Onion routing

Onion routing [GRS96, RSG98, GRS99, STRL00] is the equivalent of mix

networks, but in the context of circuit-based routing. Instead of routing

each anonymous packet separately the first message opens a circuit through

the network, by labelling a route. Each message having a particular label is

then routed on this predetermined path. Finally, a message can be sent to

close the path. Often we refer to the information travelling in each of these

labelled circuits as an anonymous stream.

The objective of onion routing is to make traffic analysis harder for an

adversary. It aims first at protecting the unlinkability of two participants

who know each other from third parties, and secondly at protecting the

identities of the two communicating parties from each other. Furthermore,

onion routing notes that ISDN mixes are not easily implementable over the

Internet, and aims to distribute the anonymous network and adapt it to run

on top of TCP/IP.

The first message sent through the network is encrypted in layers, that

can only be decrypted by a chain of onion routers using their respective

private keys. This first message contains key material shared between the

original sender and the routers, as well as labels and addressing information

about the next node. As with Chaum’s mixes, care is taken to provide bitwise

unlinkability, so that the path that the first message takes is not trivial to

follow just by observing the bit patterns of messages. Loose routing is also

proposed, according to which routers relay streams through paths that are

not directly specified in the original path opening message. The hope was

70 CHAPTER 4. RELATED WORK

that such a scheme would increase the anonymity provided.

Data travelling in an established circuit is encrypted using the symmetric

keys distributed to the routers. Labels are used to indicate which circuit

each packet belongs to. Different labels are used on different links, to ensure

bitwise unlinkability, and the labels on the links are encrypted using a secret

shared key between pairs of onion routers. This prevents a passive observer

from knowing which packets belong to the same anonymous stream, but does

not hide this information from a subverted onion router.

Onion routing admits to being susceptible to a range of attacks. It has

become clear that in the absence of heavy amounts of cover traffic, patterns

of traffic are present that could allow an attacker to follow a stream in the

network and identify the communicating parties. Such attacks have been

called timing attacks. While they are often cited in the literature [Ray00],

details of how they work and how effective they are have only been presented

relatively recently in [SS03] and are the subject of chapter 10.

Unlike ISDN mixes, onion routing does not perform mixing on the re-

quests for opening or closing channels. While it might be plausible that

enough data would be available to mix properly, it is very unlikely that

the anonymity of circuit-setup messages can be maintained. Therefore an

attacker could follow such messages and compromise the anonymity of the

correspondents. Furthermore very little mixing is done in the system gen-

erally, because of the real-time performance that is assumed to be needed.

Onion routing aims at providing anonymous web browsing, and therefore

would become too slow if proper mixing was to be implemented. Therefore

a mixing strategy that is very close to first-in first-out for each stream is

implemented. This provides only minimal mixing, and as a result a lot of

attacks against onion routing focus on its weak dynamic features.

In order to make deployment easier, it was recognised that some onion

routers might wish to only serve particular clients. The concept of exit poli-

cies was developed to encapsulate this, allowing routers to advertise which

section of the network they were configured to serve. Onion routers are also

free to peer with only a subset of other routers, with which they maintain

long standing connections. The effects that such a sparse network might have

on anonymity were first studied as part of this thesis and are presented in

4.2. MIX SYSTEMS 71

chapter 7.

Zero Knowledge, a Canadian company, designed the Freedom network

that follows quite closely the architecture of onion routing. The principal

architect of the network was Ian Goldberg [Gol00] who published with oth-

ers a series of technical papers describing the system at various levels of

detail [BSG00, BGS01].

4.2.6 Peer-to-peer mix networks

In Chaum’s original work it is assumed that if each participant in the mix

network also acts as a mix for others, this would improve the overall security

of the network. Recent interest in peer-to-peer networking has influenced

some researchers to further examine such networks with large, but transient,

number of mixes.

Freedman designed Tarzan [FM02], a peer-to-peer network in which every

node is a mix. A node initiating the transport of a stream through the

network would create an encrypted tunnel to another node, and ask that

node to connect the stream to another server. By repeating this process

a few times it is possible to have an onion encrypted connection, relayed

through a sequence of intermediate nodes.

An interesting feature of Tarzan is that the network topology is somewhat

restricted. Each node maintains persistent connections with a small set of

other nodes, forming a structure called a mimics. Then routes of anonymous

messages are selected in such a way that they will go through mimics and

between mimics in order to avoid links with insufficient traffic. A weakness

of the mimics scheme is that the selection of neighbouring nodes is done on

the basis of a network identifier or address which, unfortunately, is easy to

spoof in real-world networks.

The original Tarzan design only required each node to know a random

subset of other nodes in the network. This is clearly desirable due to the very

dynamic nature of peer-to-peer networks, and the volatility of nodes. On

the other hand Danezis and Clayton found some attacks, that are described

at the end of this section, against this strategy in a preliminary version of

Tarzan [FSCM02]. To fix this attack the final version of Tarzan requires each

72 CHAPTER 4. RELATED WORK

node to know all others, which is clearly less practical.

Mark Rennhard [RP02] introduces MorphMix, which shares a very simi-

lar architecture and threat model with Tarzan. A crucial difference is that

the route through the network is not specified by the source but chosen by

intermediate nodes, observed by user specified and trusted witnesses. While

the attack by Danezis and Clayton does not apply to route selection, variants

might apply to the choice of witness nodes.

MorphMix realises that leaving the intermediate nodes to choose the route

through the network, might lead to route capture, or in other words the first

subverted mix on the path choosing only other subverted mixes. For this

reason MorphMix includes a collusion detection mechanism, that monitors

for any cliques in the selection of nodes in the path. This prevents subverted

nodes from routinely running attacks on the network but does not provide

security in every case.

4.2.7 Attacks against the ‘young’ Tarzan

Route reconstruction attack The early design of Tarzan [FSCM02] pro-

poses that nodes choose some relays randomly out of the ones they know

and establish a route through them. In order to achieve resilience against

intermediary nodes leaving the network, or proving to be unreliable, a route

reconstruction protocol is provided. The protocol is designed to be low cost

and just routes around the failed node. Rebuilding the entire tunnel would be

expensive, so the working hops are retained and only the failing connections

are replaced.

By the use of active attacks on intermediate nodes, an attacker that can

inspect traffic leaving these nodes will be able to exploit the use of this

protocol so as to infiltrate the chain and to ultimately compromise the entire

path through the Tarzan network. The attacker controls a fraction c of

subverted nodes. The initial probability that a chain of length l is totally

controlled by an attacker is, for a large network, cl. However, if the attacker

can cause one of the good nodes to fail, then the Tarzan route reconstruction

protocol will replace that single node by making another selection from the

pool.

4.2. MIX SYSTEMS 73

The attacker can induce such a failure either by launching a denial of ser-

vice attack directly across the Internet or by overloading the node by routing

large amounts of traffic across the Tarzan network, with all of his traffic go-

ing through the node. The latter scheme would be preferable because the

attacker should find it simpler to hide.

The attacker can then cause the replacement node to fail in a similar

manner until eventually the user selects one of the subverted nodes. The

attacker then turns their attention to the next node along the path to try

and make the user select a malicious node for that position as well. This

attack can be mounted in a linear fashion either from the source towards the

destinations it is accessing, or from the destination towards the sources of

traffic.

The attack can be made even simpler, once the attacker controls one

node in the path. There is no longer a need to mount active denial-of-service

attacks, since the malicious node can merely discard traffic packets. Once the

source realises that its traffic flow has ceased it will send out “ping” packets

to attempt to determine which hop has failed. The attacker discards these

as well and the user will conclude that the next hop has failed, and tries to

route around it.

The attack is rather faster to mount than might näıvely be expected.

The number of nodes disabled, until a subverted node is selected, follows the

geometric distribution and has a mean of m = 1/c. The attack operation

needs to be repeated l times, once until each node along the chain is under

the control of the attacker. Therefore, on average, the attacker needs to

disable l/c nodes until the path is fully controlled.

Clearly the attack is not possible if the entire path is reconstructed when

it fails, but this defeats the original design goal of avoiding excess expense in

such circumstances.

Node knowledge profiling A Tarzan user discovers the identity of par-

ticipating nodes by using a pseudo-random number generator as an index

into a Chord ring [SMK+01] that returns the node identities. Tarzan uses

this random selection process because it is intended to scale to networks so

large that it would not be feasible for every node to have a complete view of

74 CHAPTER 4. RELATED WORK

the network.

An attacker is able to observe the node selection process, either by seeing

the messages from the Chord ring or by inspecting the traffic subsequently

exchanged with the nodes that the Chord ring has identified. Clearly if the

user solely established the identity of the nodes that were to be used to

forward messages then this would compromise the path. Tarzan avoids this

trap by arranging to discover a large number of nodes and then use only a

small subset for a particular path. Unfortunately, the attacker can use their

knowledge of which nodes were known to the user to probabilistically identify

traffic as it passes across the Tarzan network.

Let us suppose that there are N nodes in the Tarzan network and the

user establishes the identity of a random subset of size k out of them. The

attacker can now inspect traffic at any of the k nodes that the user is aware

of to determine if any is arriving from a node that is known to the user and

also if traffic is departing to another node known to the user. If the node

is not both sending and receiving such traffic then the user is not currently

using it. If it is both sending and receiving such traffic then the user may be

using it – and where k is small compared to N it is very likely indeed that

it is the user’s traffic being observed and not some other participant in the

network.

We will calculate the expected number of nodes that could have con-

structed a path including three observed intermediate nodes (the triplet).

1. We assume, for simplicity, that all participants choose k nodes from

the total set of N . Tarzan ensures this selection is uniformly random

by requiring users to query a Chord ring.

2. Each node can generate
(

k
3

)
triplets out of the

(
N
3

)
that exist, where

(
n
m

)
is the number of possible ways of selecting m elements from n.

Therefore given a random triplet of nodes the probability it is known

to a node is p =
(k

3)
(N

3)
.

3. For any particular triplet, the number of nodes who could choose it

follows a binomial distribution with parameters p and N . Each out of

the N nodes has a probability p to know the particular triplet. The

4.2. MIX SYSTEMS 75

expected number of nodes6 µ that know the particular triplet is:

µ = N

(
k
3

)

(
N
3

) =
k(k − 1)(k − 2)

(N − 1)(N − 2)
≈ k3

N2
(4.1)

We can now calculate when a node is vulnerable to the attack. If we wish

the number of nodes that know a particular triple to be one or less (ie they

are, on average, uniquely identifiable) then we need the result of equation

(4.1) to be less than or equal to 1.

k3

N2
≤ 1 ⇒ k ≤ N 2/3 (4.2)

For example, if there are one thousand nodes in the network, then if all

nodes learn the identity of 100 or less participants then any triple they use

will usually be unique to them.

Of course an attacker may be able to establish that traffic is flowing

through a sequence of hops. Generalising equation (4.1) we can see that the

average number of nodes that will know about a particular hop sequence of

length l is:

N
(

k
l

)

(
N
l

) =
k(k − 1)(k − 2) . . . (k − l + 1)

(N − 1) . . . (N − l + 1)
≈ kl

N l−1
(4.3)

Thus, if the attacker has the ability to observe many nodes they will

be able to test all possible combinations of routes against the target node

profiles. Even though the combinations of potential routes to trace might

seem to grow exponentially, most of the paths can be discarded from the

early stages of analysis.

The above results show that the random selection of nodes to provide

routing through the network is extremely unwise. A very significant fraction

of the nodes must be discovered; ie k must be large enough that the attacks

become impractical, although it should be noted that any value short of N

will always cause some information to leak. As an alternative, the discovery

of participant nodes must be made unobservable.

6The variance is σ2 = N

(

(k

3)
(N

3)

)(

1 − (k

3)
(N

3)

)

≈ k
2
N

3
−k

5

N5

76 CHAPTER 4. RELATED WORK

4.2.8 Robust & verifiable mix constructions

Chaum’s original mix network design included a system of signed receipts

to assure senders that their messages have been properly processed by the

network. A whole body of research was inspired by this property and has

attempted to create mix systems that are robust against subverted servers

denying service, and that could offer a proof of their correct functioning

alongside the mixing. Such systems have been closely associated with voting,

where universal verifiability of vote delivery and privacy is of great impor-

tance.

Most of the proposed schemes use the idea of a mix cascade. For this rea-

son no information is usually communicated between the sender of a message

and intermediate mixes in the cascade. It is assumed that routing informa-

tion is not necessary since mixes process messages in a fixed order. The first

scheme to take advantage of this was the efficient anonymous channel and

all/nothing election scheme proposed by Park, Itoh and Kurosawa [PIK93].

In this system messages are of fixed length, of an El Gamal ciphertext, in-

dependently of the number of mixes they go through. Furthermore using

a cut and choose strategy the scheme is made all-or-nothing, meaning that

if any of the ciphertexts is removed then no result at all is output. This

property assures that partial results do not affect a re-election. Birgit Pfitz-

mann found two attacks against this proposal [Pfi94]. The first attack is very

similar to [PP90], and makes use of characteristics that are invariant at the

different stages of mixing because of the El Gamal crypto-system. An active

attack is also found, where the input El Gamal ciphertext is blinded, by be-

ing raised to a power, which results in the final output also being raised to

this power. This is a chosen ciphertext attack against which a lot of systems

will struggle, and eventually fail to eliminate. Birgit Pfitzmann also notes

that the threat model assumed is somehow weaker than the one proposed

by Chaum. A dishonest sender is capable of disrupting the whole network,

which is worse than a single mix, as is the case in Chaum’s paper. Birgit

did not propose any practical countermeasures to these attacks, since any

straight forward fix would compromise some of the interesting features of the

systems.

4.2. MIX SYSTEMS 77

In parallel with Birgit Pfitzmann’s work, Sako and Killian proposed a

receipt-free mix-type voting scheme [KS95]. They attempt to add universal

verifiability to [PIK93], which means that all sender will be able to verify that

all votes were taken into account, not simply their own. They also highlight

that many verifiable mix schemes provide at the end of mixing a receipt, that

could be used to sell or coerce one’s vote, and attempt to make their system

receipt-free. They do this by forcing each mix to commit to their inputs and

outputs, and prove in zero knowledge that they performed the decryption

and shuffle correctly. Unfortunately Michels and Horster [MH96] show that

the scheme is not receipt-free if a sender collaborates with a mix, and that

the active attacks based on blinding proposed by Birgit Pfitzmann could be

used to link inputs to outputs.

In order to avoid disruption of the system if a subset of mixes is subverted

Ogata, Kurosawa, Sako and Takatani proposed a fault tolerant anonymous

channel [OKST97]. This uses a threshold crypto-system to make sure that a

majority of mixes can decode messages even if a minority does not collabo-

rate. Two systems are proposed, one based on El Gamal and the other based

on the rth residue problem. A zero knowledge proof of correct shuffling is

also proposed for the rth residue problem.

In 1998 Abe presented a mix system that provided universal verifiabil-

ity that was efficient, in the sense that the verification work was indepen-

dent from the number of mix servers [Abe98]. This scheme shows an attack

on [KS95], that uses the side information output for the verification to break

the privacy of the system. It then presents a mix system that works in two

phases, El Gamal re-encryption and then threshold decryption. The first

phase is proved to be correct before the second can proceed, and then a

proof of correct decryption is output at the end of the second stage.

The systems that provide universal verifiability based on proofs of per-

mutations, and zero knowledge proofs are computationally very expensive.

Jakobsson designs the Practical Mix [Jak98], and tries to reduce the num-

ber of expensive operations. In order to prove the correctness of the shuffle,

novel techniques called repetition robustness and blinded destructive robust-

ness are introduced. The network works in two phases: first the ciphertexts

are El Gamal blinded, and then the list of inputs is replicated. Each of

78 CHAPTER 4. RELATED WORK

the replicated lists is decoded by all mixes, which results in lists of blinded

plain texts. Then the resulting lists are sorted and compared. If all elements

are present in all lists then no mix has tampered with the system and the

unblinding and further mixing can proceed. Otherwise the sub-protocol for

cheater detection is run. While being very efficient the Practical Mix has not

proved to be very secure, as shown by Desmedt and Kurosawa [DK00]. They

show that one subverted mix in the practical mix can change ciphertexts, and

still not be detected. They then introduce a new mix design, in which veri-

fication is performed by subsets of mixes. The subsets are generated in such

a way that at least one is guaranteed not to contain any subverted mixes.

In an attempt to further reduce the cost of mixing Jakobsson introduced

the Flash Mix [Jak99], that uses re-encryption instead of blinding to keep

the number of exponentiations down. As in the practical mix, mixing op-

erates in many phases, and uses repetition robustness to detect tampering.

Furthermore two dummy messages are included in the input, that are de-

anonymized after all mixes have committed to their outputs, to make sure

that attacks such as [DK00] do not work. An attack against Flash mixing

was found in [MK00] and fixed by changing the unblinding protocol.

A breakthrough occurred when Furukawa, Sako [FS01] and Neff [Nef01]

proposed efficient general techniques to universally verify the correctness of a

shuffle of El Gamal ciphertexts. The first provides proof that the matrix used

was a permutation matrix, and the second uses verifiable secret exponent

multiplication to gain its efficiency.

Even though the above techniques are more efficient than any other pre-

viously known, they are still not efficient enough to scale for elections, with

millions of participants. For this reason Golle, Zhong, Bohen, Jakobsson and

Juels proposed, optimistic mixing [GZB+02], a mix that works quickly if there

is no attack detected, but provides no result if an error occurs. In this case it

provides a fall back mechanism for a more robust technique such as [Nef01] to

be used. Each mix in the chain outputs a “proof” of permutation, that could

be faked by tampering with the ciphertexts. This is detected by making the

encryption plaintext-aware. The second decryption, revealing the votes, is

only performed if all outputs of mixing are well-formed. A series of attacks

were found against this scheme by Wikström [Wik03b, Wik02]. The first two

4.2. MIX SYSTEMS 79

attacks are closely related to [Pfi94] and can break the anonymity of any user.

The second attack is related to [DK00] and can break the anonymity of all

users and compromise the robustness. Finally attacks based on improperly

checking the El Gamal elements are also applicable, and further explored

in [Wik03a].

While most designs for robust mix nets use pure El Gamal encryption,

some provide solutions for hybrid schemes. Ohkubo and Abe present a hybrid

mix without ciphertext expansion [OA00]. Jakobson and Juels [JJ01] also

present a scheme that is resistant to any minority coalition of servers. Bodo

Möller proves the security properties of a mix packet format in [Möl03].

A hope that universal verifiability can be implemented on generic mix

networks, is presented in [JJR02]. In this scheme all mixes commit to their

inputs and outputs and then they are required to disclose half of all corre-

spondences. This assures that if a mix is dropping messages it will be quickly

detected. Privacy is maintained by pairing mixes, and making sure that the

message is still going through enough secret permutations.

4.2.9 Mix building blocks, attacks and analysis

Not all research in the field of mix networks presents complete systems. Many

published papers present specific or generic mechanisms, others present at-

tacks and some analyse proposed systems. We will present a selection of each

in this order.

Replay attacks were first described by Chaum himself [Cha81]. A passive

attacker can trace a message by ‘replaying’ it in the network. An attacker

first records all traffic in the network (or all traffic going in and out of a target

mix). Then the message to be traced is reintroduced in the network. Since

the decoding process is deterministic the output message will have the same

bit-pattern and destination the second time around. Therefore the adversary

can determine that, out of the mix batch, the single message that was seen

before corresponds to the replayed input message. If the bit-patterns of

the messages are not observable, because link encryption is used, the only

information leaked by the replay attack is the destination of the message.

Therefore the replay attack is reduced to a disclosure attack as described in

80 CHAPTER 4. RELATED WORK

Chapter 9. To prevent replay attacks mixes have to remember the messages

that they have processed and not process them a second time. The space

required to do this can be reduced by using a cryptographically secure hash

function. An alternative, which is an active field or research, is to use non

deterministic decoding and routing protocols, possibly implemented using

the new universal re-encryption primitive [GJJS04].

A series of papers have appeared presenting different mixing strategies.

Starting with the proposed metrics for anonymity in [SD02, DSCP02], the

work in [SDS02, DS03b, SN03] tries to measure the anonymity provided by

different mixing strategies, but also the delay introduced and their suscepti-

bility to (n − 1) attacks.

Reputation based schemes have also been used to increase the reliabil-

ity of mix networks in [DFHM01] and mix cascades in [DS02]. Both these

papers present how statistics pages compiled in the Mixmaster system using

pingers [Pal] can be replaced with a more robust system to determine which

nodes are reliable and which are not. Users can then choose reliable nodes,

or the system can exclude unreliable ones from directories.

A whole body of research concentrates on providing attacks against mix

networks. In chapter 5, we will present Mixminion that tries to protect

against most of them.

In [BPS00] Berthold, Pfitzmann and Standtke describe a series of attacks,

assuming a very powerful adversary that controls all mixes in the network

but one:

• The position attack allows an adversary to partition the messages com-

ing in and out according to the position of the only honest mix. They

assume that all routes have the same length and therefore knowing

how many hops each message has gone through and how many hops

outgoing messages are going through an attacker can link them.

• The determining the next mix attack is a variant of an intersection

attack, and is the forefather of the detailed disclosure attacks described

in [KAP02].

In [Ray00] Raymond presents a series of what he calls traffic analysis

attacks:

4.2. MIX SYSTEMS 81

• The brute force attack is the simplest attack that can be performed

against a mix network. The set of all potential recipients is generated by

following a message through the network, and adding to the anonymity

set all the recipients of the messages that have been mixed together. It

is one of the few papers that actually describes how an attacker would

perform such tracing and construct the sets, and offers some tips on

how to increase the difficulty.

• (n − 1) attacks are presented again. An attacker waits until a mix is

empty (or stuffs it until it empties), and then sends a single genuine

message to it. Then the attacker either waits, or again stuffs the mix

until the message under surveillance is output. This leaks the receiver

of this single honest message. It is observed that link encryption might

help foiling this attack. Other ways are sg-mixes (see subsection 4.2.4),

authenticating users, using hashcash [Bac] or re-routing messages to

increase anonymity.

• Timing attacks try to guess the correlation between inputs to the net-

work and outputs by using the fact that each link introduces a different

delay. Therefore, by calculating the delay in each link, a model could

be constructed of the probabilities of output messages relating to par-

ticular input messages.

• Communication patterns can be used to find out when users of pseudo-

nymous systems are on-line and when they are off-line. The patterns

of activity might, for example, betray the time zone in which a sender

is.

• Packet counting attacks take advantage of the fact that systems such

as Onion Routing send whole streams along the same path. They

correlate ingoing and outgoing streams, and follow them in the network

by counting the packets in them. The latest such attack can be found

in [SS03].

• Intersection attacks, also presented in [BPS00], try to extract the sender

of a stream of messages by intersecting the sender anonymity sets of

82 CHAPTER 4. RELATED WORK

consecutive messages sent by a pseudonym. This attack model is also

considered in [KAP02, AKP03] and [WALS03]. The statistical variant

of this attack is the statistical disclosure attack presented in chapter 9.

• User interaction attacks (or Sting attacks) take advantage of the fact

that a user will act in a different way if he is the actual sender of a

message than if he is not. This attack is not simply social but can target

identity management systems that do not implement proper separation

between pseudonyms. A variant of this attack, concerning Mixminion

single-use reply blocks, is presented in chapter 5.

• Send n’ Seek attacks are related to the tagging [PP90, Pfi94] attacks,

but are slightly more general. They rely on a special message being

sent to an anonymous receiver that is then used to track the receiver.

The tracking might not involve traffic analysis, but social mechanisms

such as breaking down doors and seizing computers until this special

message is found.

The work in [BMS01] also refers to an attack invented by Wei Dai. It

also discusses the process of anonymity engineering, and how to balance the

different aspects of it.

• An attacker wishes to defeat the traffic shaping mechanisms that at-

tempt to hide the real volumes of traffic on an anonymous channel.

The attacker creates a route using the link that he wishes to observe,

and slowly increases the traffic on it. The router will not know that

the stream or streams are all under the control of the attacker, and at

some point will signal that the link has reached its maximum capacity.

The attacker then subtracts the volume of traffic he was sending from

the maximum capacity of the link to estimate the volumes of honest

traffic.

In [WALS02] the authors present a set of attacks that can be performed

by a group of subverted network nodes. Against mix networks, they calculate

the number of routes to be chosen between a sender and a receiver before the

full path has been entirely populated by subverted nodes. They also examine

4.3. OTHER SYSTEMS 83

the effect that fixed or variable length paths have on this probability. Similar

results are found for Crowds and DC-nets. In [WALS03] they extend their

analysis to considering a subset of network nodes that simply log all traffic,

and provide bounds on how quickly an intersection attack can be performed.

4.3 Other systems

A number of other anonymous communication systems have been proposed

through the years. Chaum presents in [Cha88] the dining cryptographers’

network, a multi-party computation that allows a set of participants to have

perfect (information theoretic) anonymity. The scheme is very secure but

impractical, since it requires a few broadcasts for each message sent and is

easy for dishonest users to disrupt. A modification of the protocol [WP89]

guarantees availability against disrupting nodes.

Other anonymous protocols include Rackoff and Simon [RS93], Sherwood,

Bhattacharjee and Srinivasan present A5 [SBS02] while Goel, Robson, Polte

and Sirer present Herbivore [GRPS03].

Traffic Analysis Prevention (TAP) systems, attempt to provide third

party anonymity (as already introduced in section 2.1.3), given a collaborat-

ing set of senders, receivers and relays. Timmerman describes adaptive traffic

masking techniques [Tim99], and a security model to achieve traffic flow con-

fidentiality [Tim97]. The information theoretic approach to analysing TAP

systems is presented by Newman et al in [NMSS03]. They study how much

protection is offered overall to the traffic going through a TAP system by cre-

ating a rigorous mathematical model of traffic analysis, rerouting and cover

traffic. This builds on their previous work [VNW94]. The research group at

the Texas A&M University, has a long-term interest in traffic analysis pre-

vention of real time traffic [GFX+01]. Similarly Jiang [JVZ00] et al present

TAP techniques to protect wireless packet radio traffic.

84 CHAPTER 4. RELATED WORK

4.4 Summary

We have presented in detail anonymous communications systems based on

mixing, both trusted intermediates and more secure constructions. These

systems based on the simple idea of a mix, a node that hides the corre-

spondence between its input messages and its outputs, have been adapted to

anonymise email traffic, web traffic or telephony.

Novel attacks against an early design of the Tarzan anonymizing network

are presented. They take advantage of its attempt to be resilient to node

failures and the large size of peer-to-peer networks to attack it. The first one

is active and allows all nodes in the path to be captured, while the second

one is passive and allows an attacker to identify the node that has setup

particular paths through the network.

A series of features and attacks have also been presented, that our anony-

mous remailer design, mixminion presented in the next chapter, will have to

be secure against.

Chapter 5

Mixminion

“Hidden, we are free:

Free to speak, to free ourselves,

Free to hide no more.”

First public Mixminion message — Nick Mathewson as

‘anonymous’

Mixminion has been designed by myself, Roger Dingledine and Nick Math-

ewson, who is also the lead developer, to be the successor of the current

Mixmaster anonymous remailer infrastructure. While the project has many

objectives, the main contribution of this thesis1 to it is the design of a mix

packet format that can effectively:

• be mixed and provide bitwise unlinkability,

• accommodate indistinguishable replies,

• leak minimal information to intermediate mixes,

• be resistant to tagging attacks.

Aspects that are relevant to Mixminion but have been addressed by others

are directory servers, end-to-end issues such as efficient information dispersal

1This chapter is meant to illustrate my contribution to the design of Mixminion, and

does not reflect the current state of the system. Please refer to the detailed and up-to-date

specification for this [DDM03b]

85

86 CHAPTER 5. MIXMINION

algorithms and reliable transmission. It is interesting to note that while

bitwise unlinkability issues can be considered to be well understood, many

of the other aspects are still open problems, and in the process of being

specified.

The requirements for Mixminion are presented first and the reasons be-

hind them are explained. Then the Mixminion packet format is described,

focusing particularly on the security aspects of the design. We then analyse

the security of the mechanisms when Mixminion is under attack. Finally

we present some efficiency improvements that can be easily implemented to

reduce the size overheads.

5.1 Models and requirements

From the point of view of the properties offered by Mixminion to its users

we have identified the following desirable use-cases, that need to be fully

supported.

Forward Path. Alice wants to send a message to Bob, without Bob being

able to tell that it came from Alice. In order to do this Alice constructs

a Mixminion message and sends it to the Mixminion network. The

message gets out of the network at some other point and is sent to Bob

by conventional email. We call this use case the forward path.

Reply Path. Alice wants to send a message to Bob, without Bob being

able to tell that it came from Alice. Despite this, Alice wants Bob

to be able to reply to her message, again without Bob discovering her

identity. Alice therefore constructs a reply block that she includes in a

message sent to Bob using the forward path. Bob is able to send this

reply block to a mix in the network, using conventional mail, along with

a message. The message will be routed anonymously back to Alice, who

will decode it. We call this use case the reply path.

Bidirectional Anonymity. Alice wants to communicate anonymously to

someone that she does not know, that she likes to call Beatrice. Through

some mechanism (such as a Nym Server) she knows one of Beatrice’s

5.1. MODELS AND REQUIREMENTS 87

reply blocks. Alice therefore creates a Mixminion message that is in-

tended to route her message through the network to first hide her

identity using the forward path, and then uses the reply path to reach

Beatrice. We call this bidirectional anonymity, and it allows two par-

ties, through some system of anonymous first contact, to maintain an

anonymous conversation.

As far as the user is concerned they can perform a set of operations vis-

a-vis the anonymous communication system. They can encode and send a

message to a named individual, they can construct a reply block to route back

to themselves, or they can send a message using a reply block. Furthermore

they can combine two of these functions and send an anonymous message to

an anonymous recipient using a reply block.

A user-friendly system should try to minimise any exposure to a user that

does not fit into the model described above. Any security-sensitive operation

that must be performed by the user and does not fit into this “natural”

model above, will likely not be performed effectively. Therefore, it should

be automated and hidden. For example it might be “natural” to expect the

user not to sign the end of an anonymous email with their real name; but

asking them to “contact the directory server at least once a day” might not.

The only reasonable answer to expect would be “what is a directory server?”

This operation should, for the sake of security and usability, be automated

and hidden from the user.

5.1.1 The system view

Mixminion follows an architecture that is quite similar to Mixmaster and

Babel. It assumes that a set of mix nodes or mix servers constitute the mix

network. Each mix node has a directory entry associated with it, containing

its status, network address, public encryption and verification keys, and ca-

pabilities. For the purposes of this work we will assume that there exists an

effective way for anyone to get a set of all directory entries using a directory

server.

Mix clients wish to use some of the anonymity properties offered by the

network, and therefore run dedicated software to get information about the

88 CHAPTER 5. MIXMINION

network, encode or decode messages. Mix clients who wish to send an anony-

mous message, or construct a reply block, therefore choose a set of mix nodes

that will relay their message. They then proceed to package the message or

reply block as described below.

Aside from mix clients, Mixminion assumes that there are also other

network users who do not benefit from anonymity properties, and therefore

do not run dedicated software. They are still able to receive anonymous

messages and reply using reply blocks. In fact this capability is implemented

by making sure that they require no secrets to reply (since they do not require

any security properties) and therefore the operation could be proxied by a

suitable mix node using simple email.

The two principal components of Mixminion, as a standard way of offering

bitwise unlinkable relayed communication, are the packet format and the

inter mix encrypted tunnels. We shall first present an analysis and design

rationale behind the packet format, and the algorithms acting on it. We will

present a discussion of the transport between mixes in the context of forward

security mechanisms in chapter 6. But before addressing these matters we

will present the technical requirements beyond the simple model common to

all mix systems.

5.1.2 Requirements

Mixmaster [MCPS03] has been deployed since 1995 and is the most widely

established and used strong anonymity system. By strong it is meant that

no central authority can compromise the anonymity provided by the system,

and that the network is secure against a global passive adversary. Mixminion

therefore also aims to provide anonymity despite a global passive adversary

that controls a subset of nodes on the message path and can perform active

attacks against honest mix servers. This means that trivial traffic analy-

sis based on uncovering relationships between the incoming and outgoing

messages should be eliminated. In other words, Mixminion should provide

effective bitwise unlinkability between inputs to mixes and outputs.

While the original versions of the Mixmaster server have been buggy and

unreliable, the software was rewritten by Ulf Möeller, and actively main-

5.1. MODELS AND REQUIREMENTS 89

tained since 2001 by Len Sassaman and others. As a result the reliability

of the anonymous transmission has improved drastically. Despite these im-

provements the design of Mixmaster has not, for a long time, been properly

documented making it difficult to assess its security, but also slowing down

deployment and compatible implementations of servers and clients. Mixmin-

ion aims to create a very well-understood, conservative and documented stan-

dard for anonymous communications. Mixminion was always intended to be

the anonymous transport layer for more complex protocols, such as Free-

Haven or anonymous cash, and therefore clear documentation and interfaces

would be essential for its wide deployment. For the same reason, Mixminion

was never meant to be a proof-of-concept academic system, and therefore it

has been engineered to be secure by quite a margin to all known attacks. This

approach has lead to some inefficiencies and unnecessary overheads. The de-

signers’ feeling has been that these should be eliminated only when there is

overwhelming evidence that no security risks are introduced by optimising

them out.

In parallel with Mixmaster, the old Type I Cypherpunk remailers are still

running and providing a less secure service (as described in section 4.1.3).

These services could not be withdrawn due to the fact that they provide

facilities for reply blocks that Mixmaster does not offer. In particular, reply

blocks are used by pseudonym servers to support pseudonymous email ad-

dresses that are fundamental for interactions with most electronic services.

Therefore, a key objective of Mixminion from the start has been to provide

a facility for secure anonymous replies.

It would be trivial to construct two systems: one for forward messages

and one for replies. On the other hand, making the reply messages distin-

guishable from other kinds of traffic would greatly reduce the anonymity of

both replies and forward traffic. At best, assuming that approximately the

same volumes of replies are travelling as forward messages, the anonymity

set sizes are divided by two. If there is an imbalance in the volume of forward

messages and replies, it reduces the anonymity sets of users that might make

use of replies. The argument for this relies on intersection attacks that are

inherently present in any mix system that supports replies. An attack could

be mounted as follows:

90 CHAPTER 5. MIXMINION

1. An adversary generates the effective anonymity set of a forward mes-

sage that he wishes to trace.

2. An adversary then uses one or many reply blocks contained in the

message and computes their effective anonymity sets.

3. The attacker then combines the statistical distributions over the set of

potential senders and receivers to find out who was the sender of the

original anonymous message.

It is clear that providing smaller effective anonymity sets for the reply path

would in this case greatly impact much on the anonymity of the forward

path as well. Therefore Mixminion aims to provide indistinguishable replies,

which means that no only third parties but also intermediary mixes are not

able to tell if they are processing a forward path message or a reply.

Other partitioning attacks are also described in [BPS00] that rely on

information available to subverted intermediary mixes, such as their position

in the mix chain or the total length of the route length. Although the paper

addresses a much stricter threat model, where all the mixes on a message

path but one are subverted, the decision was taken that the position of an

intermediary mix on the path, and the route length, should be hidden.

Special software is required to package a message to be anonymized, and

to mix messages. On the other hand, it is desirable for receivers of messages

not to have to use special software to read Mixminion messages. After all,

receivers of sender-anonymous messages do not benefit from any security

properties, and limiting the conversation to users with special software would

greatly reduce the effective anonymity sets provided by the system. As Back,

Möller and Stiglic [BMS01] report,

“In anonymity systems usability, efficiency, reliability and cost

become security objectives because they affect the size of the user

base which in turn affects the degree of anonymity it is possible

to achieve.”

The decision was taken to design a system where only parties benefiting from

anonymity properties are required to use special software. Others can simply

5.1. MODELS AND REQUIREMENTS 91

use standard email clients, or other specified transports. Note that while

this is trivial for senders and receivers of sender-anonymous messages, it is

an engineering challenge to make sure that users of reply blocks do not require

any special software to converse with an anonymous party.

A lot of systems, including the original proposal by Chaum, are secure

against passive adversaries, but fail against active tagging attacks [PP90,

Pfi94]. Early drafts of the Mixminion specifications were susceptible to such

attacks, and further design work was needed to reduce them. The decision

was taken finally that the tagging attacks must be totally eliminated other-

wise the system would never provide the assurance required by some highly

security-sensitive categories of users.

Finally, it was considered that a lot of its past unreliability was due to

Mixmaster’s reliance on the email protocol SMTP for message transport. It

was decided that a reliable forward secure protocol should be implemented

to communicate messages between mixes. A possible extension of forward

security properties has also prompted the research on forward secure mixing

described in chapter 6.

Other requirements are effectively independent from the constraints pre-

sented above. There is a need for an integrated directory service, and a

system of standard extensions that would allow services to be built on top of

Mixminion, or for enhancing Mixminion basic functionality. These are not

directly related to the bitwise unlinkability properties of Mixminion and are

not therefore described in detail here.

5.1.3 Orthogonal issues

While Mixminion has a set of tight requirements described above, it also

aims at being flexible. It has to be understood that Mixminion is a format

that provides bitwise unlinkability and therefore tries to be agnostic when it

comes to the dynamic aspects of mixing. In particular a network operator

and designer has the following choices:

Mixing strategy. Mixminion does not impose any restrictions on the mix-

ing, batching or delaying strategy that individual mixes or the network

as a whole wishes to implement. An extension mechanism allows clients

92 CHAPTER 5. MIXMINION

to pass special information to intermediate mixes, as is needed to im-

plement sg-mixes [KEB98]. It is of course wise not to have a large

number of mixing strategies that are available but not supported by

everyone, since this would reduce the effective anonymity set by allow-

ing partitioning attacks.

Network Topology. Any network topology can be used to route Mixminion

traffic. Although it supports a fully connected network, alternative

topologies such as cascades and restricted routes networks can be used.

Directory servers are also designed to inform clients about topology.

The security of restricted route networks is analysed in chapter 7.

Route Selection. It is not specified how individual clients choose the path

their messages will take through the network. Directory servers, statis-

tics servers and reputation metrics could be used to increase reliability,

but care has to be taken not to open oneself to intersection attacks.

Dummy Policy. While there is support for both encrypted link padding

and dummy messages, Mixminion nodes are not required to implement

any particular strategy for generating any kind of cover traffic.

Environment Awareness. We assume that each mix simply knows about

the directory servers to which it must periodically upload its informa-

tion. A node is not explicitly required (or prohibited) from knowing

about any other nodes, or the traffic conditions in other parts of the

network to perform its mixing. In this respect a node is required to

know even less than a client, which needs to have a recent version of

the directory of available mixes.

The issues above are either orthogonal to the problems that Mixminion is

trying to tackle or were, at the time of the design, active research areas. For

example, the security of sparse networks for routing was studied separately,

and is discussed in chapter 7. The use of special cover traffic to prevent

(n − 1) attacks is presented in chapter 8. All the matters above are security

sensitive in one way or another, and decisions on which strategy is best should

be subject to very serious analysis.

5.2. THE ANATOMY OF THE MIXMINION FORMAT 93

5.2 The anatomy of the Mixminion format

This section presents the Mixminion packet structure and describes how it is

created by senders, and processed by intermediary mixes. While this section

presents an early design of the packet format, to illustrate the main ideas

behind preventing active attacks, an implementor should always refer to the

latest design specifications [?].

Each Mixminion packet from its creation to its exit from the Mixminion

network is composed of three parts:

• The first header,

• The second header,

• The message body.

Both headers have the same structure, although the second one is en-

crypted with secrets contained in the first one. The body might be en-

crypted, in the case of the forward path, or not in case of the return path.

Each header contains a number of sub-headers, addressed to different mixes,

as we will see. Conceptually each sub-header is a secure communication

channel between the creator of the header and a mix on the message path.

The sub-header contains the secrets that allow a mix to decode the rest of the

first header, the second header and the body of the packet. It also contains

the address of the next mix in the chain. One can view a Mixminion packet

as being a key distribution protocol, along with a distributed decoding of a

message, all in one.

There are also two main algorithms related to a Mixminion packet:

Packet Creation. This algorithm requires a sequence of mix server descrip-

tion, containing the network addresses and the public keys of the mixes,

a final address and a body. It will then generate a Mixminion packet

suitable for being relayed by the chosen intermediaries. Note that the

final address might be a reply block.

Packet Processing. Given a secret key, a public list of hashes of previous

message signatures, and a Mixminion message, this algorithm will out-

put the Mixminion packet to be relayed and the address of the next

94 CHAPTER 5. MIXMINION

Sender Onion

Sender Onion

Payload

Reply Block
Single Use

Random Data
Single Use
Reply Block

Sender Onion

Payload

Version
Shared Secret
Digest
Next Address

2kb size

Payload
28kb size

2kb size
 16 subheaders

16 subheaders

Second Leg

First Leg

Forward Direct Reply

Payload

Reply
Anonymized

Up to 16

padded to
2kb

Subheader

subheaders

Header Subheader

Figure 5.1: The structure of the Mixminion packet format.

mix. If the processing mix is the last one, the procedure will provide a

body, and instructions on how to send out the message by conventional

email.

We will start by explaining how packets are constructed.

5.2.1 The sub-header structure

A sub-header communicates information to one of the intermediate mixes on

the message path. The information fields transmitted are:

Version Major: 1 byte

Version Minor: 1 byte

Shared Secret: 16 bytes

Digest: 16 bytes

Flags: 1 byte

Address Size: 2 bytes

Address Type: 2 bytes

Address: [Address Size] bytes

For the purposes of explaining its security properties, we will denote the

above sub-header structure as:

SH [S,D, F,A] (5.1)

5.2. THE ANATOMY OF THE MIXMINION FORMAT 95

S is the secret that will be shared between the creator of the sub-header,

and the mix it is destined to. The secret should never be used directly.

Instead is used as a master secret to derive all the key material for operations

on the message. The transformation applied is a secure hash function of

the master key concatenated with a type string that is different for each

operation.

D is the digest. It is constructed by hashing the contents of the whole

header (with the digest field itself set to zero), and the rest of the sub-headers

in the same header. By checking this digest a mix ensures that an adversary

has not modified the header. This prevents tagging attacks on the header

(but not on the rest of the message).

F are the flags, and they indicate what processing is to be applied on the

packet.

Finally A is the address of the next mix in the chain or the final address,

depending on the flags. It is important to note that the address of the next

mix in the chain contains the hash of the signature key of its public key.

Therefore an honest mix is able to check that it is passing the packet to the

appropriate next mix.

The sub-header is encrypted using the public key of the mix it is destined

to. For the purposes of encryption RSA OAEP is used [BR95], with the

public encryption key of the mix denoted ki. We then denote the encrypted

sub-header:

ESHki
= Eki

{SH [S,D, F,A]} (5.2)

The RSA OAEP padding scheme guarantees that modifications to the

ciphertext will be detected. It also guarantees that an adversary cannot

submit a modified ciphertext to the mix and gain any information about its

contents.

5.2.2 The header structure

Sub-headers cannot be created serially and then aggregated in a header.

The creation of the header as a whole, and the individual sub-headers are

intrinsically related, and cannot be separated. As we have briefly mentioned

above, the digest contained in each sub-header is a hash of the whole header

96 CHAPTER 5. MIXMINION

as it will be seen by the mix node processing the message. Therefore, while

constructing each sub-header, the view that each intermediate mix will have

of the full header needs to be computed, to allow the computation of the

appropriate hash.

A header can contain up to 16 sub-headers. Given that a 1024bit RSA key

is used this gives a size of 2kb for the full header (16×128 Bytes = 2 KBytes).

If not all sub-headers are used, the rest of the header must be filled with

random noise.

The encoding algorithm for a header is shown in figure 5.2. The inputs

to the algorithm are Ai the addresses to which each mix should forward the

packets, ki the public key of each mix in the path, si the secrets to be shared,

J random noise (junk) to be appended and F the type of header. The type

of header relates to the processing that the final hop should do to the packet.

As we will see when describing the decoding algorithm it can either pass it

to an application (in order to deliver email for example), swap the first and

second header after some decoding, or simply forward the message.

The same algorithm is used to encode single-use reply blocks (SURB).

The address specified, instead of being the receiver, is the address of the

sender and creator of the SURB. Furthermore a master key is included in

the SURB, that is returned to the sender, and allows them to reconstruct

all the intermediate secrets necessary to decode the reply. This allows the

SURB decoding to be stateless.

5.2.3 The whole packet

Each Mixminion packet has three parts: two headers, and a body. The

second header and the body are encrypted using a derivative of the secrets

contained in the first header with BEAR, an all-or-nothing transform. As

the packet progresses across the mix network, the second header and body

get decrypted by the intermediate nodes.

The second header can either be a header created by the sender, or a

reply block. In the first case the body should be encrypted by the secrets

contained in the second header; they are known to the sender. In the second

case where the second header is a reply block, the body is not encrypted

5.2. THE ANATOMY OF THE MIXMINION FORMAT 97

% Requires list of addresses, public and shared keys,

% some Junk and a type.

input: Ai, ki, si, J, Fn

for i ∈ (1 . . . n)

% Recreates the Junk as seen by each mix.

J0 = J

for i ∈ (1 . . . n)

EncryptionKeyi = hashH(si)

JunkKeyi = hashR(si)

Ji = Ji−1 append streamcipherJunkKeyi
(0Sizei)

Ji = Ji ⊕ streamcipherEncryptionKeyi
(016×128)

[bytes (16 × 128 − LenJi) to (128 × 16)]

end for

% Encodes the header a sub-header at a time.

Hn+1 = J

for i ∈ (n . . . 1)

Di = hash(streamcipherEncryptionKeyi
(Hi+1) append Ji)

if i = n : F = Fn else F = forward

Hi = Eki
{SH [si, Di, F, Ai]}
append streamcipherEncryptionKeyi

(Hi+1)

end for

output: H1

Figure 5.2: Algorithm for encoding a header

98 CHAPTER 5. MIXMINION

using its secrets since they are not known to the sender.

The second header and the body are encoded in a way that make them

interdependent. The encoding scheme is not unlike the Luby-Rackoff struc-

ture that provides security against adaptive attacks in block ciphers. The

interdependence ensures that if an adversary attempts to change the second

header or the body of the message (in order to tag them), both will decode

as random noise. Unless an attacker controls all the mixes on the path of a

message, he will not be able to extract any information about the message

or its final destination.

The full algorithm describing how a whole Mixminion packet is put to-

gether is presented in figure 5.3. The procedure takes either two known

headers and their key along with a message or one header with known keys,

a reply block and a message. The procedure returns a Mixminion packet

ready to be sent to the first mix.

5.2.4 Decoding messages

Each mix is only required to be aware of their private key, and a list of

previously seen messages. Messages are then received and processed as shown

in figure 5.5.

Upon receiving a message the mix attempts to decrypt the first 128 bytes

using RSA OAEP and its private key. If the message cannot be decrypted,

because the OAEP structure is not valid, it is dropped. Otherwise, the hash

contained in the sub-header is used to check the integrity of the full first

header. Again if the hash contained in the message is different from the hash

of the header the message is dropped.

When the integrity of the first header has been established the keys used

to perform different operations are extracted and computed from the sub-

header. One of the keys is used with AES in counter mode to generate

128 bytes of noise to be appended at the end of the header. Note that the

padding required to keep the length of messages constant is appended at the

end of the first header, and not at the end of the message as in Mixmaster.

A variant of the key is used to detect if the packet has been processed

before. If the packet has been seen before it is dropped otherwise a hash of

5.2. THE ANATOMY OF THE MIXMINION FORMAT 99

% Takes two headers and their associated secrets, and a body.

input: H1, si, H2, s
′
i, B

% Takes one headers and its associated secrets,

% a reply block and a body.

or H, si, H2 = R,B

% Phase 1: Hides body with second header’s keys.

if H2 not reply: for i ∈ (1 . . . n)

BodyKeyi = hashB(s′i)

B = bearBodyKeyi
(B)

% Phase 2: Makes the second header and the body interdependent.

HideHeaderKeyi = hashBH(B)

H2 = bearHideHeaderKeyi
(H ′)

HidePayloadKeyi = hashHB(H2)

B = bearHidePayloadKeyi
(B)

% Phase 3: Hides second header and body using first header secrets.

for i ∈ (1 . . . n)

HeaderKeyi = hashH2(si)

BodyKeyi = hashB(si)

H2 = bearHeaderKeyi
(H2)

B = bearBodyKeyi
(B)

% Returns the full Mixminion encoded message.

output: [H1, H2, B]

Figure 5.3: Algorithm for a whole message

100 CHAPTER 5. MIXMINION

H1 H2 B

RSA

Check
&

Decrypt PRNG

BEAR

BEAR

H2’ B’

H2’’ B’’

BEAR HASH

H1’

H1’’

Steps for
all messages

Extra steps
for "Swap"
messages

BEARHASH

DS

Figure 5.4: The process of decoding a Mixminion packet.

the key is stored to detect replays.

The rest of the first header, beyond the RSA encrypted block, is decrypted

using AES in counter mode. Note that the noise is also encrypted as if it was

part of the message. An intermediate mix also always decodes the second

header and the body of the message using the keys derived from the sub-

header. The BEAR cipher is used for this operation.

Beyond the standard decoding specified above, the flags contained in

the decrypted sub-header may indicate that the mix should perform the

swap operation. Conceptually this operation swaps around the first with the

second header. More precisely the second header is hashed into a key, and

used to decode the body, and the body of the message is in turn used to

decode the second header. This ensures that if the body of the message or

the second header are modified in any way, they will both result in complete

noise. Because of the absolute error propagation of BEAR, if any bit has been

changed then an adversary that does not know all the keys involved will not

be able to extract any information out of the decoding. Finally the second

header and the first header are swapped. Therefore the second header, or the

reply block, is providing the routing for the rest of the message’s journey.

5.2. THE ANATOMY OF THE MIXMINION FORMAT 101

% Requires a message and a private decryption key.

input: M = [H1, H2, B], ki

% Decrypts and checks integrity of the first sub-header.

SH [si, Di, F, Ai] = Dki
{M [byte 0 to 128]}

In case of OAEP error drop the packet

Check Di
?
= hash(H1 [byte 128 to 16 × 128])

Check si not in database otherwise drop the packet

% Computes keys used to decode all parts.

EncryptionKeyi = hashH(si)

HeaderKeyi = hashH2(si)

BodyKeyi = hashB(si)

JunkKeyi = hashR(si)

H1 = H1 [byte 128 to 16 × 128] append streamcipherJunkKeyi
(0128)

% Decodes all parts using the appropriate keys.

H1 = streamcipherEncryptionKeyi
(H1)

H2 = bearHeaderKeyi
(H2)

B = bearBodyKeyi
(B)

% Performs the swap operation.

if F = swap :

HidePayloadKeyi = hashHB(H2)

B = bearHidePayloadKeyi
(B)

HideHeaderKeyi = hashBH(B)

H2 = bearHideHeaderKeyi
(H2)

Swap H1 and H2

% Gives message to application for processing.

if F = end :

return (H1, H2, B) to application.

% Sends message to next mix.

else send (H1, H2, B) to Ai

Figure 5.5: Algorithm for decoding a layer of the packet

102 CHAPTER 5. MIXMINION

5.3 Security analysis of Mixminion

5.3.1 Bitwise unlinkability

In order to provide security against passive observers the Mixminion packet

format should guarantee that the message entering a mix looks different when

it leaves it. The first header of a Mixminion packet will indeed be unlinkable

since it has been decoded using AES in counter mode and a private RSA key

unknown to the attacker. Note that the quality of the noise appended is not

important (it could be zero padding) since it is encrypted with the rest of

the first header.

The second header and body of the message are decoded using BEAR

with keys unknown to an adversary and cannot therefore be linked to any of

the inputs. The swap operation does not add any vulnerability in the sense

that the intermediate results (which are not relying on a secret key) are kept

secret and only the final form of the packet (after the swap) is output.

5.3.2 Route position and length leakage

A mix knows if it is the last one in the header, because it is required to

perform a special operation, such as swap, or must forward the message by

email. It is very likely that a mix node knows if it is the first one on the path,

because the message will arrive from a source that is not an established mix.

Furthermore, the Mixminion packet format does not automatically pro-

tect the secrecy of the message transmitted. Therefore an intermediary node

might infer that it is the first node on the return path if it is required to

transmit a message that is in clear. End-to-end encryption can, of course, be

used to avoid this.

Besides the specific cases above, an adversary controlling a mix cannot

know the exact position of the mix on the path, or the total length of the

path. Note that not even the last node is able to find out the total length of

the path, due to the fact that the padding in not included at the end of the

message but at the end of the first header. Otherwise the number of trailing

blocks of random noise would betray the number of intermediaries.

The total length of the path cannot exceed 16 hops for the first header and

5.3. SECURITY ANALYSIS OF MIXMINION 103

16 hops for the second header or message block. This limit was considered

appropriate given that Mixmaster uses much shorter paths. A discussion

about the security of choosing paths and path length is provided in chapter 7.

5.3.3 Tagging attacks

Tagging attacks are a family of active attacks performed by modifying mix

packets travelling through a sequence of mixes, in order to recognise the pack-

ets elsewhere in the network, or when they leave the network. Tagging attacks

are greatly enhanced when the attacker controls some subverted nodes in the

network, and can therefore control some of the message processing. There

are many variants of tagging attacks:

• An attacker tags some part of the message by modifying the ciphertext,

and then checks if a message is tagged by using integrity checks (such

as a hash or MAC) contained in the message. This attack could be

performed by subverted mixes on the path of a message.

• Instead of using integrity checks, an attacker could modify the cipher-

text of a plaintext-aware encryption scheme. If the decryption does not

yield a well-formed plaintext, the tagging is detected.

• Tagged messages could be detected if the plaintext is at least partially

known. This is the case for messages travelling on the forward path

since they usually result in a natural language email at the last mix.

An attacker could attempt to modify the body to discriminate between

well-formed email messages and tagged messages.

• Any of the above attacks can be permanent or temporary. A tagging

attack is temporary if the tagger can remove the tag to allow further

processing of the message. This could be the case if a tagging attack

relies on an attack in depth against part of a message encrypted using

a stream cipher. The attacker would just need to XOR the tag out of

the message. An attack is permanent if the tag cannot be removed.

To prevent tagging attacks, Mixmaster attempts to detect any modifi-

cation of the message. If the message has been modified in any way, it is

104 CHAPTER 5. MIXMINION

discarded. Technically this is achieved by making the processing of messages

deterministic, by generating the random padding using a shared key, and

by communicating a hash of the whole message to each intermediate mix.

Resistance to tagging using integrity checks relies on each intermediate mix

checking the integrity of the message. It is not sufficient to rely on the last

node to check if the message has been tagged, since the last node might be

subverted. Therefore the task of protecting against such attacks must be

distributed across all mixes in the path.

Mixminion cannot implement this strategy in a straightforward fashion.

Because of its support for indistinguishable replies, such a strategy could not

be used to detect modifications of the body of the message. The body is

legitimately modified to contain the reply to a message. Therefore, while we

indeed use this strategy to protect the integrity of the headers that are created

by one party, we cannot extend it to protect the integrity of the body of a

forward message or a reply. If we used this strategy to protect the integrity of

the forward path only (where the message body is known) but not the reply

path, this would allow intermediate nodes to infer the nature of the message

transported. Making the forward path processing distinguishable from the

reply path is contrary to the requirements we have set for Mixminion.

Mixminion follows a different strategy. If the message body is modified, it

will be processed correctly but the result will not leak any information about

the final destination or the original body of the message. In other words, the

tagging attack is not detected early enough to discard the message, but the

error introduced is amplified to such a degree that it is impossible to extract

any information about the content or destination of the message afterwards.

Technically, this is implemented by using large block ciphers to encode the

second header and body, allowing maximal error propagation in the event of

modification of the ciphertext. The decoding of the second header and body

are also made interdependent, so that modifying one would result in both

being turned into random noise.

Neither the first nor or the second header of the message can be tagged,

because they contain a digest to detect any modifications. Any header mod-

ification would result in the packet being dropped. This is similar to the

strategy Mixmaster implements, but restricted to the headers.

5.3. SECURITY ANALYSIS OF MIXMINION 105

An attacker can choose to tag the body of the message. This is the

reason why the counter-intuitive swap operation is performed. If an attacker

chooses to tag the message before the swap operation is performed then the

second header, containing the final destination, and the message body, will

turn into unrecoverable noise. If the attacker attempts to tag the message

after the swap point, the message has received already enough anonymity for

the attack to be fruitless.

It has to be pointed out that Mixminion’s resilience to single messages

being tagged does not automatically extend to multiple messages known to

the attacker to belong to the same stream. In case one of them gets tagged

it will turn into random noise, but the information in the other related mes-

sages will still be visible. Such attacks are possible against reliable transmis-

sion schemes, using forward error-correction codes to ensure the delivery of

messages despite messages being dropped by the Mixminion network. Such

schemes must be designed with care not to allow attacks.

The careful reader should note the imbalance of security resulting from the

routing provided by the first and second header to a forward path message.

It is indeed the case that most of the anonymity is provided by the first

header, and that the second header could simply contain the final address.

In the case of a bidirectional anonymous message, all the sender anonymity

is provided by processing the first header and all recipient anonymity by the

second.

Tag capacity

It is also instructive to note that not all tagging attacks convey the same

amount of information to an attacker. If instead of using BEAR as an en-

cryption primitive, Mixminion used a steam cipher, then an attacker could

embed a long stream of information in the packet, that could be later recog-

nised since it would be simply XORed with the plaintext. This would al-

low the attacker to differentiate between different messages that have been

tagged.

Since BEAR is used, any modification results in a completely random

decryption, that cannot be correlated in any way with the tag. Therefore

106 CHAPTER 5. MIXMINION

one tagged messages could not be distinguished from another, which means

that only one tagging attack could be taking place at any time in the whole

network to reduce the effective anonymity set of a message to zero.

It has been a matter of intense discussion if such a small amount of

information leakage is acceptable or not. Accepting it would greatly reduce

the complexity of the Mixminion design, since there would be no need for

two headers and a swap point. It would be sufficient to route the anonymous

packets using one header, and decoding the body of the message using BEAR

at each mix. It anyone tags the contents of the message it is completely

destroyed, and is also indistinguishable from any other tagged message.

The decision was taken that no information at all should be leaked, and

therefore the swap point was introduced to make sure that all information is

destroyed in case a message is tagged.

5.4 Protocols with reply blocks

Mixminion’s main novel feature is the provision of secure reply blocks. By

secure it is meant that reply blocks provide the same degree of protection

against all the above attacks as the messages travelling on the forward path.

A limitation that was imposed on reply blocks, both to make them indis-

tinguishable from forward messages, and to maintain their bitwise unlinka-

bility is that each can only be used once. A list of seen reply blocks is kept,

exactly in the same way as for forward messages, and a node will not route

a message using the same reply block again. Therefore we have named this

feature single-use reply blocks or SURB. This restriction imposes consider-

able overheads. Each reply block is 2kb long, and one has to be used for

each 28kb message that needs to be sent back as a reply. Therefore protocols

need to be modified to minimise the use of reply blocks, and give preference

to excess messages in the forward path2.

It can also be considered insecure to allow a large number of SURBs to

be available to untrusted parties. The reason for this relates to the way in

which a compulsion attack can be performed on the forward and reply paths.

2This was first noted by Peter McIntyre.

5.4. PROTOCOLS WITH REPLY BLOCKS 107

In the case of the forward path, a message cannot be traced back from the

receiver to the sender. At each intermediary node the message is stripped of

the information that could be used to route it back. On the other hand, a

reply block can be traced by compelling each intermediary node in turn to

perform the decryption until the final recipient is uncovered. This attack is

hard for an adversary that does not control all intermediate nodes, but can

be performed on SURBs more easily than on the forward path.

For the purposes of discussing protocols with reply blocks, we will first in-

troduce a notation, then illustrate an attack, and then discuss how one could

implement a simple Nym Server using the primitives offered by Mixminion.

5.4.1 Protocol notation

The traditional ways of representing protocol steps provide a view of all the

participants as an omniscient third party would observe them. Names are

included in the protocol steps even in the case where they are not known to

the participants, as when describing authentication protocols. It is indeed

quite perverse to state that “Alice sends a message X to Bob” when the whole

point of the protocol is for Bob to establish that “Alice” is indeed Alice.

In protocols using anonymous communication primitives, it is very impor-

tant to make a clear distinction between who is actually sending messages,

and the knowledge that different participants have of whom they are receiving

from or sending messages to.

We shall therefore denote anonymous communication primitives as fol-

lows:

(A) → B : X should denote that Alice sends a message X anonymously to

Bob. The message travels using the forward path. Bob is, by conven-

tion, not able to observe inside the parenthesis to find that Alice is the

actual sender of the message.

(A)i is used within the body of the messages exchanged to denote a reply

block of Alice, that can be used to send a message back to her using

the reply path.

108 CHAPTER 5. MIXMINION

A → (B) : X denotes Alice replying with message X to Bob using a single-

use reply block. Again Alice is not able to see inside the parenthesis,

and is not able to link the anonymous recipient with Bob.

(A) → (B) : X combines the forward path with the return path and means

that Alice anonymously sends a message to Bob.

The protocol notation above assumes that using non-anonymous primi-

tives does not prove who the sender or the recipient is, but provides strong

enough evidence to jeopardise anonymity. Therefore, unless an anonymous

communication primitive is used, one should assume that the message sent

can be linked with the sender or receiver. Note also that one cannot send

recipient-anonymous messages without first getting hold of a valid single-use

reply block. Therefore an anonymous party can be thought to be giving

explicit permission to be contacted back by providing an anonymous reply

block.

5.4.2 The Who Am I? attack

While the primitives presented above seem quite straightforward a subtle

attack is possible if they are simply used as described.

Imagine Alice anonymously runs the following counting protocol with

many parties:

(A) → X : idx, 0, (A)x0 (5.3)

X → (A) : idx, 1 (5.4)

(A) → X : idx, 2, (A)x2 (5.5)

X → (A) : idx, 3 (5.6)

(A) → X : . . . (5.7)

This protocol introduces some persistent state that, namely the counter

that is increased. If a message arrives that does not contain the number

expected it is ignored. In order to make the existence of this session explicit,

we have introduced the session identifier idx.

Imagine that Alice runs the simple counting protocol with two different

parties Bob and Charlie under the respective pseudonymous identities Anna

5.4. PROTOCOLS WITH REPLY BLOCKS 109

and Amelia respectively. If the two different pseudonyms do not share any

data, namely the counters, one would expect them to be unlinkable. By

unlinkable we mean that an observer should not be able to tell that they

belong to the same principal, namely Alice.

The attack that allows us to link the two pseudonyms proceeds as follows:

Anna and Bob are running the counter protocol and have reached the value

i, and Bob has Anna’s reply block (A)Bi
. Similarly Amelia and Charlie have

reached the number j and Charlie holds (A)Cj
. Bob and Charlie collude and

exchange their reply blocks. Bob then sends to Amelia (not Anna!):

B → (A)Cj
: idB, i + 1 (5.8)

(A) → B : idB, i + 2, (A)xi+2
(5.9)

If Anna recognises the session and replies to Charlie, although the message

was actually sent to a reply address that was provided by Amelia, there is

a clear link that is formed. Therefore the two pseudonymous identities have

been linked.

In order to prevent this attack, it is important to realise that in anony-

mous communication protocols, each principal must cryptographically protect

and check their own identity. This extends the requirement of conventional

authentication protocols that authenticate the identity of the other communi-

cating party. Therefore each single-use reply block must provide the genuine

recipient in a cryptographically secure way, with the pseudonym to which

the message must be addressed. We should therefore denote such a reply

block (A)α
x where α is the pseudonym provided to the principal A when she

receives the message. This pseudonym must be unobservable to anyone else,

and its integrity must be cryptographically protected.

The example attack above would then become:

B → (A)Amelia
Cj

: idB, i + 1 (5.10)

A : Error j + 1 6= i + 1 and idB not recognised (5.11)

Alice is explicitly told, by the single-use reply block, that the recipient of

this message must be the pseudonym Amelia (that is discussing with Charlie

and has state idC and j). Therefore the message sent by Bob is rejected,

110 CHAPTER 5. MIXMINION

and no linking information is received. Note that Bob actually sending the

values idC and j + 1 would not actually be an attack on the unlinkability of

the pseudonyms.

This attack highlights a subtle requirement for single-use reply blocks.

What matters, in order to preserve one’s pseudonymity, is a cryptographically

secure way of knowing who the SURB is addressed to. This is unlike, or

maybe complementary, to the requirements of usual authentication protocols

that aim to establish the identity of the communicating partner. Note that

this should be built in the design of single-use reply blocks, and is not per se

a protocol failure.

Mixminion prevents such attacks by encoding in the SURB the pseudonym

to which the reply block is addressed. This is done by having separate se-

cret keys for each pseudonym to gain access to the information necessary to

reconstruct the secrets that decrypt the reply. This unfortunately requires

Mixminion to be aware of pseudonyms, although the same service could be

provided by allowing a user to encode an arbitrary string with the creation

of each pseudonym. This string would be protected against tampering, and

revealed when the reply is decoded.

5.4.3 Nym servers

One of the crucial requirements of Mixminion has been to allow users that do

not benefit from any anonymity protection to still be able to communicate

with users that wish to protect themselves. Furthermore this should be

achieved without requiring any special software, aside from a normal email

client. This requirement is straightforward in the case where an anonymous

sender uses the forward path to send an anonymous mail message. On the

other hand, allowing a näıve user to use reply blocks to reply to an anonymous

recipient requires manual effort. This manual effort will inevitably lead to

mistakes, and will probably provide an unsatisfactory user experience.

Furthermore, Mixminion supports fully bidirectional anonymous chan-

nels. Users might wish to use another party’s reply block, and anonymously

converse with them. Up to now we have never explicitly dealt with the issue

of how this initial reply block can be found. One could assume that they are

5.4. PROTOCOLS WITH REPLY BLOCKS 111

exchanged off-line, but such an assumption is quite unrealistic. It might be

acceptable to use an off-line bootstrap mechanism, that for example relies on

the exchange of a few bytes representing the fingerprint of a verification key.

On the other hand a two kilobyte SURB cannot be exchanged by hand, and

other means could leave forensic traces.

In order to solve both problems, special services named nym servers pro-

vide a gateway between the world of Mixminion and conventional email.

Furthermore they allow normal mail users to initiate conversations with par-

ties they did not have any contact with before, and therefore allow the first

contact problem to be naturally solved.

It is important to realise that nym servers are trusted to reliably perform

their tasks, guaranteeing the availability of the service offered, but are not

trusted to safeguard the anonymity of the users. In other words a misbe-

having or subverted nym server can jeopardise the delivery of messages, but

cannot link pseudonyms to users. This is of course assuming the underlying

Mixminion transport provides perfect anonymity, and that the aggregate in-

formation transmitted, or its content, does not leak enough side information

to uniquely identify the pseudonymous user.

A simple protocol to implement a nym server would work in two phases.

First the registration phase and then the request phase. In the registration

phase a user registers a pseudonym with the server, along with a verification

key VAnna. All the messages coming from the pseudonym will be signed with

this key (denoted SAnna). The registration phase is:

(A) → Nym : {Anna, VAnna, (A)Anna
0 }SAnna

(5.12)

Nym → (A)Anna
0 : {Status}SNym

(5.13)

The nym server replies with the status of the request. Usual errors might

include the request concerning a pseudonym that is already taken. A positive

reply assures that the nym server has stored the association between the key

and the pseudonym, and that it is ready to accept email for it.

The request phase is then used by Alice to retrieve her email from the

nym server. Alice periodically sends a few reply blocks that are used by the

112 CHAPTER 5. MIXMINION

nym server to relay the messages back to her.

B →
SMTP

Anna@Nym.net : M1 (5.14)

(A) → Nym : {Anna, (A)Anna
1 , . . . , (A)Anna

i }SAnna
(5.15)

Nym → (A)Anna
1 : {M1}SNym

(5.16)

This simple scheme for a nym server makes some choices that are contro-

versial, and have to be justified. First of all, no single-use reply blocks are

intended to be stored on the nym server. There are several reasons for this.

As discussed earlier reply blocks are inherently less secure against compulsion

attacks, since they provide an adversary with a bit sequence he can request

to be decoded. Therefore the nym server holding SURBs would present a

greater risk to the anonymity of the users.

On the other hand holding messages does not present the same problems.

The content of the messages does not make the nym server liable in most

jurisdictions [EU00]. The secrecy of messages can also be safeguarded by

encrypting them, which is an orthogonal issue. Therefore, aside from the

greater size requirements necessary to store the messages, and the potential

additional latency from a security point of view, it is a preferable choice.

Careful examination would also reveal that the authenticity of the mes-

sages between the nym server and the anonymous users does not need to be

non-repudiable. In other words it is enough to allow the user and nym server

to satisfy themselves that messages indeed originate from one another, but

never to prove it to third parties. Therefore it is preferable to introduce a

repudiable scheme for providing such integrity guarantees. For example a

Diffie-Hellman key exchange can take place in the registration round, and

provide a secret to be used to compute message authentication codes on sub-

sequent messages. Such a scheme would destroy a great part of the evidential

value any seized material might have.

A robust implementation of a nym server would have to make sure that no

email is ever deleted until it has received confirmation that the pseudonymous

user has received it3. A worthwhile observation is that reliable transmission

3Such a mechanism has been investigated by Peter McIntyre during his final year

undergraduate project.

5.5. BEYOND MIXMINION 113

mechanisms cannot be directly used in this context. There is a clear asym-

metry between the nym server and the user, in the sense that the user can

always communicate with the nym server, while the server has only a limited

number of reply blocks to use. Therefore a reliable transmission layer would

need to take into account this asymmetry and preserve the single-use reply

blocks available to the server, by requiring, if necessary, the user to retransmit

acknowledgements, rather than the nym server retransmitting messages.

Finally it is worth noting that the nym server only requires the ability

to receive normal email. As a service it is therefore less prone to abuse than

even the regular Mixminion nodes that allow anonymous messages to be sent

out to normal email addresses.

5.5 Beyond Mixminion

Mixminion is an evolving system. Early designs concentrated on securing bit-

wise unlinkability and minimising the potential of active attacks, but further

improvements regarding efficiency and reducing the overheads on messages

have been achieved or discussed since.

5.5.1 Lowering the overheads of Mixminion

The original 1024 bit OAEP-RSA encryption of each sub-header was replaced

by the 2048 bit equivalent. This was done to avoid attacks on the reputation

of the Mixminion design, claiming that the key size is smaller than what is

conventionally considered secure, and provide security to messages for years

in the future. Implementing this change in a straightforward manner would

imply that the sub-headers and therefore headers would double in size, if

one was to allow the same maximum number of relays to be used. For

similar reputation reasons the maximum number of relays could not have

been reduced, and therefore alternative strategies had to be employed to

reduce the size of the headers.

A technique similar to hybrid encryption with minimal length [JMP+98]

has been independently invented by Nick Mathewson and used to reduce

the header overheads in Mixminion. It uses the spare space inside the RSA

114 CHAPTER 5. MIXMINION

encryption of the outer layer, not only to encrypt content destined to the in-

termediary node, but also part of the information to be relayed. It allows all

the space available inside the OAEP envelope to be used, and therefore allows

for 16 sub-headers, using 2048 bit RSA, to be encrypted in less than 2 kilo-

bytes. Therefore the overhead of this scheme is comparable to the overhead

of the scheme with shorter keys that does not implement this optimisation.

Further reduction of the size of the headers is possible, but requires a

careful security analysis. It was an early choice to use OAEP padding to pro-

vide plaintext-aware and semantically-secure encryption, thereby protecting

the sub-headers from active attacks. The secure and well-understood OAEP

padding reduces the size of the encodable plaintext since it includes large

nonces (20 bytes) and secure digests (another 20 bytes). The Mixminion

sub-header structure replicates some of the functionality of the nonces, and

the digests, in order to to secure the integrity of the full headers. Therefore a

possible avenue for reducing the overheads could be to design a custom RSA

padding scheme, based on the information that can also be used both for

keying, namely the master secret and the digest that will be used to check

the integrity of the full message. Such a scheme could immediately reduce

each sub-header by 40 bytes, but cannot be treated as secure until it has

received due consideration by the cryptology community.

There are also compelling arguments for reducing the size of all the SHA-1

hashes to 10 bytes (80 bits). No attack against Mixminion packets has been

exposed that relies on breaking the strong collision-resistance properties of

the digests present in the sub-headers. The only party that could benefit

from such attacks would be the creator of the packet whose anonymity is

protected. Therefore, unless the party to be protected consents, the attacker

cannot mount any attack based on birthday properties. Such a modification

would be extremely controversial, and would open Mixminion to reputation

attacks. Therefore the full 20 bytes of SHA-1 are included in each sub-header.

5.5.2 Simplifying the swap operation

As mentioned before, the first header of the Mixminion packet, offers most of

the anonymity. The swap operation is only there to make sure that the mes-

5.5. BEYOND MIXMINION 115

sage and the routing information are destroyed in case of tagging attacks, and

the second leg, using the second header, can be very short. A more efficient

construction would therefore make the second header extremely short.

A further refinement would be to construct such a cryptographic trans-

form that if the message is modified in any way the final address and the

content are destroyed. To do this a convention can be used: the data to be

destroyed should be at the end of the packet, and a mode of operation could

be used that propagates errors forward. Therefore if the packet is modified

at any point the sensitive data will be unreadable.

An appropriate, although inefficient, mode of operation, using a block

cipher with encryption operation E and a hash function H, could be:

Ci = EK⊕H(C1P1...Ci−1Pi−1)(Pi) (5.17)

It is clear that this mode of operation will propagate any errors in a

particular ciphertext to the rest of the decryption since the subsequent keys

are all dependant on this ciphertext. We will denote encryption using this

mode of operation and secret key K as {·}K .

A packet travelling through mixes A0, A1, . . . , A2, with payload M and

final address A could then be constructed using the new mode of operation

and RSA OAEP. We denote RSA OAEP encryption using the public key Ax

as {·}Ax
.

{A1, K1}A0{{A2, K2}A1{{−, K3}A2{BEAR(A,M)}K3}K2}K1 , J (5.18)

This construction is extremely similar to traditional mix network packets,

except that it uses the new mode of operation and instead of communicating

to mix A3 the final address in the RSA encrypted header it includes it in the

body of the packet. Furthermore the BEAR all-or-nothing transform is used

on the final address and the content of the packet. This makes sure that if

any part of it is modified no information can be extracted any more.

The decoding of the packets is very simple. Each node decrypts the

header using its RSA private key, and extracts the shared key Kx and the

final address Ax. It then appends a block of junk Jx, as long as the RSA

encrypted block, at the end of the packet and decodes the whole message

using the shared key K. The result is sent to the next mix.

116 CHAPTER 5. MIXMINION

Indistinguishable replies can also be used. A reply block addressed back

to a user S would look like:

{A1, K1}A0{{A2, K2}A1{{S,K3}A2{{Kmaster}S}K3}K2}K1 (5.19)

The key Kmaster is returned to the receiver S and can be used to recon-

struct all the intermediate keys K1, . . . , K4 to decode the message appended

to the reply block.

The security of the scheme presented relies on the fact that all sensitive

information will be destroyed if an adversary modifies the message. If the

modification takes place on one of the headers, then the final address and the

content will be completely destroyed. If the content is modified, the BEAR

operation will ensure that again the content and final address are destroyed.

If the tagging takes place on the junk, the adversary will not be able to

observe any difference since it is random noise anyway.

5.6 Summary

We have presented Mixminion, an anonymous remailer providing facilities

for both sender-anonymous messages and anonymous replies. We have anal-

ysed its security properties and it should be resistant to passive attackers,

subverted intermediaries, and active attackers. The technical breakthrough

is the use of “fragile” primitives to render any information contained in the

message useless in case of a tagging attack.

The single-use reply block facilities provided can be used to build a variety

of protocols. The simple Who Am I? attack demonstrates that such protocols

are subtle and require careful study. A nym server is provided as an example

of such a protocol.

Chapter 6

Forward secure mixing

“Behind our black mask, behind our armed voice, behind our

unnameable name, behind the ‘us’ that you see, behind this

we are you.”

Speech, July 1996 — Major Insurgent Ana Maria

In the previous chapter we examined Mixminion, a state-of-the-art anony-

mous remailer, that can be used to anonymise message-based communica-

tions. We have presented a security analysis of Mixminion, and in particular

its resistance to passive attacks, active tagging attacks, and resilience to a

set of subverted mix nodes. These threats are very much in line with the

traditional cryptological threat model, as presented in detail in section 2.1.1,

but the analysis does not fully address the compulsion threat model. Here

we will assume that an adversary is capable of requesting information from

honest mix nodes and clients.

In this chapter, we will describe how an adversary can use compulsion

powers to trace anonymous communications through the network. We will

also define the notion of forward secure anonymity. This is similar to forward

security in the sense that unconditional anonymity is provided after a certain

point in time. We present a construction that can be used to implement

forward anonymous properties in remailers such as Mixminion. A security

analysis is also provided to assess how the cost of tracing messages is increased

as a result of the techniques proposed.

117

118 CHAPTER 6. FORWARD SECURE MIXING

6.1 How to trace a mixed message

The object of our study is to determine how an opponent could use the

compulsion powers (described in section 2.1.2), in order to trace a sender-

anonymous communication or to find out the originator of a reply block.

In particular we will assume that the adversary can ask mixes to decode

messages presented to them, and provide the resulting message and its des-

tination, along with any other information embedded in it.

Compulsion powers are usually used in addition to more traditional pow-

ers, such as passive logging of messages. In the absence of any content

interception of mixed messages through the network, it is extremely difficult

to trace back a forward path communication. Assuming that the mix net-

work provides some anonymity the recipient of the message does not hold

any bit-string that they could ask any intermediate mix node to decrypt and

trace back. All the routing information has been stripped and deleted by the

time the message arrives at its final destination.

In order to trace back a communication, an attacker is required to work

forward starting at an interception point, by requiring mixes to decrypt the

material intercepted, hoping that the communication traced ends up being

the one that had to be traced. This process means that the opponent will

need to acquire exponentially many decryptions in the number of hops to

trace a message. A good anonymizing protocol would force this effort to be

as large as to require all messages present in the mix network to be decrypted.

However an opponent interested in tracing forward a communication ini-

tiated by a particular user, only needs to put this specific user under surveil-

lance and request all intermediate nodes that relayed the messages to reveal

the destinations of the messages. Therefore in the case of directed surveil-

lance against a particular user, interception needs only to take place around

that user, and then intermediate nodes can be requested to decrypt the ci-

phertexts until the ultimate destination is revealed.

If near-ubiquitous content surveillance is a reality, the above procedure

becomes much more efficient. It is only necessary for the opponent to re-

quire the last hop to decrypt all communications that were intercepted until

the message to be traced is decrypted. Then the procedure is repeated on

6.1. HOW TO TRACE A MIXED MESSAGE 119

the previous hops recursively. Different mixing strategies [SDS02] may make

such an attack slightly harder, but it should in general be linear in the num-

ber of mixes used by the communication (although all content has to be

intercepted).

Where a single-use reply block has to be traced back to its destination,

much more information is available to the attacker. Reply blocks contain

all the routing information needed to deliver the message, encrypted under

the private keys of intermediate mixes. Therefore the attacker can simply

request the reply block to be decrypted iteratively which requires a number

of consecutive requests equal to the number of mixes. It has to be noted that

single-use reply blocks are inherently easier to trace, and the process does

not require any interception to be reliably performed1.

This has a considerable impact on the forward channels if they contain

single-use reply blocks, for the purpose of allowing the recipient to reply. It

is therefore intrinsically safer not to include a reply block in very sensitive

sender-anonymous communication. It is also wise, to design protocols with

the compulsion threat model in mind, to minimise the time validity and

volume of single-use reply blocks available to intermediaries that could be

subject to attacks. The nym server presented in section 5.4.3, is a good

example of such a design.

To summarise, it takes a number of requests equal to the number of

hops to trace the recipient of a reply block, or the recipient of a forward

path communication. On the other hand, in the absence of blanket content

interception, it takes an exponential number of decryption requests to confirm

the sender of a given message received. If blanket content interception is in

place the cost of confirming the sender in the latter case is also proportional

to the number of hops times the number of messages mixed together in each

batch.

1This was first stated by Roger Dingledine during one of our discussions.

120 CHAPTER 6. FORWARD SECURE MIXING

6.2 Defining forward anonymity

We have presented, in section 3.5, forward security as the property that

guarantees that a successful attack will not jeopardise any past sensitive in-

formation beyond a certain point in time. In the context of a secure channel,

for example, key compromise should not reveal any information about any

previous communication.

In the context of anonymous communications, we want to make the de-

coding of a transited message impossible by honest mixes after a certain

amount of time or after a certain event. We shall call this property for-

ward secure anonymity and a mix that implements it a forward secure mix

(fs-mix).

In the case of mixes, the event that will trigger this property is the mes-

sage being processed. In other words we will aim for a mix not to be able

to decode any message a second time. As we will see the scheme proposed

does not provide perfect forward secure anonymity, but raises the cost of an

attack considerably by requiring the adversary to perform a large number of

requests for decryption.

6.3 The fs-mix

We can achieve forward secure anonymity by introducing secret state into the

mix nodes. This is not a radically new requirement, since most techniques

implementing replay prevention already expect mixes to keep a database of

the hashes of the packets, or other data, that have been processed in the

past. The difference is that the new state we require has to be kept secret,

since it will be used to derive keying information.

In traditional mix systems [MCPS03, GT96, DDM03a] the address of the

next mix (AMn+1) and the session key used to decrypt the payload to be

sent (Kmsg) are included in the asymmetrically encrypted header, under the

public key of the mix (Pkn).

Mn−1 → Mn : {Kmsg, AMn+1}Pkn
, {msg}Kmsg

Traditional mix systems, such as Mixmaster, store a packet ID that is

6.3. THE FS-MIX 121

used along with some integrity checking to avoid messages being processed

more than once by the node [MCPS03]. In the case of Mixminion a special

public hash Nreplay of the symmetric key K, otherwise used to decrypt parts

of the message, is kept in order to avoid replays of the same message. If

another message’s secret hashes to the same value, it is dropped.

Nreplay := H1(Kmsg)

We propose keeping a second secret hash of the symmetric secret (Ki) in

a table indexed by a public value Ni:

Ki := H2(Kmsg) and Ni := H3(Ki)

When a message goes though the mixing network it leaves behind it a

sequence of keys and their indexes on each of the nodes it went past. Future

packets can therefore use these keys, in conjunction with secrets they carry,

in order to decrypt both their addressing information and their payload.

So a node would first decrypt the headers of a message using its private

decryption keys and then read the index of the key to be used Nj, and

retrieve the appropriate secret Kj. It would then compute a secret shared

key Kfinal based on both the key Kj and the secret Kmsg contained in the

decrypted header:

Kfinal := H4(Kmsg, Kj), Kl := H2(Kfinal) and Nl := H3(Kl)

Mn−1 → Mn : {Smsg, Nj}Pkn
, {AMn+1 , Message}Kfinal

In order to make it impossible for an attacker to force the decryption of

this message or to gain any information by accessing the list of secrets K

some key updating operations need to be performed, to replace the old keys

by new values:

Kl := H5(Kfinal) and Nl := H3(Kl)

As soon as the old values (Nj, Kj) are replaced by the newly generated

(Nl, Kl) they must be permanently deleted. It is wise to perform this oper-

ation before the decoded message has been sent out into the network.

To summarise, the H1 hash function is used to extract a public tag of the

message to avoid replays and is always applied to the secret contained in the

122 CHAPTER 6. FORWARD SECURE MIXING

First

Subsequent

Message Secret Public

H1

H3
H2

H5 H3

H1

H3

H4

Nreplay

N0

N ′
0

N ′
replay

N1

K ′

K

K0

K1

K ′
0

Figure 6.1: Cryptographic key derivation in an fs-mix.

message. The function H2 is applied to the final symmetric secret in order to

generate keys that can be used in future communications, and the function

H3 is applied to these keys to generate their public indexes. The function H4

is used on the secrets stored in the mix and the packet to create final shared

secrets while the function H5 is used to update secrets. All functions Hx

are secure hash functions, in particular they have to be pre-image resistant,

to avoid giving any information about the key Ki associated with an index

Ni := H3(Ki) or the relation between new and old keys Kj := H5(Kfinal).

There must be a special index N0 indicating that the message does not

depend on any existing key present on the server, and the message should be

processed in the traditional way. This way clients and mixes can bootstrap

the communication and relay messages even if no previous secrets are shared

and stored. If messages refer to a key index that does not exist they should

be dropped.

6.3.1 The cost of an fs-mix

The properties provided by fs-mixes, as described above, are not achieved for

free. The next section will explore the security advantages of this new scheme

but first we will discuss the additional expenses both in terms of storage and

processing.

6.4. SECURITY ANALYSIS 123

A traditional mix only needs to maintain a public record of the ID of all

the messages it has ever processed under its current private key. Therefore

the storage required after processing n messages is O(n). For each new

message processed a lookup is performed on the public record. Assuming

that the lookup table is implemented using a hash table one can expect a

cost of O(log n) to perform each lookup.

An fs-mix stores more state than a traditional mix. It will need to store

m pairs of (N,K) values. Unlike n, the number of messages processed by

the current private key of the server, m is proportional to the number of

messages that have ever been processed by the mix. As above the cost of

finding a particular element should be proportional to O(log m). In addition

to the lookups as many as four hash operation might need to be performed

per message.

In order to minimise the state needed by an fs-mix, entries in the index

and key table can be made to expire, either automatically or as requested by

the sender. More details about this scheme will be presented in section 6.5.

Care must be taken not to reveal through the granularity of the timestamps

or dates the link between messages and keys stored.

6.4 Security analysis

We shall argue that the modifications presented do not make the mix any

weaker, when it comes to bitwise unlinkability, while providing additional

security features. It is clear that if the keys Ki contained in every mix were

public, an adversary would be exactly in the same position as in a traditional

mix architecture. He would have to compel the mix to perform decryption

using its private key or surrender it, in order to trace any material that is

in his possession. Therefore in that case the new scheme is equivalent to the

traditional one.

6.4.1 Protection against compulsion

An attacker that tries to trace back a message that has already gone past an

fs-mix cannot decrypt it unless all the messages upon which this communi-

cation’s key depends were also intercepted and decrypted. Such an exercise

124 CHAPTER 6. FORWARD SECURE MIXING

would require all traffic to all the mixes to be logged and all of it to be de-

crypted in order of arrival for the attack to work, since the attacker does not

have any a priori knowledge of the message dependencies. The above is true

for both sender-anonymous communications and single-use reply blocks.

If keys K are seized, the first messages referring to them can be traced.

The attacker then needs to intercept all subsequent messages in order to

update his knowledge of keys to maintain his decryption capabilities. For

each of these messages there must be a decryption request made to the mix

(unless the private keys are seized).

Since it is impossible to decrypt not only the address also but the whole

message, there is no way an opponent could try to use the body of the

message in order to find out its destination. Therefore even a single honest

mix in a chain that implements a forward secure anonymous channel, that

has genuinely deleted the used keys, is sufficient in order to provide forward

security for the whole communication.

The cost of attacking the system is not much more expensive if the at-

tacker performs an active attack, and extracts the message from the network

before it is processed. He can then proceed to show the message to all the

intermediate nodes, requesting the usage of the appropriate stored secrets. In

particular this could be done for single-use reply blocks, since they are often

readily available. Therefore the lesser security of distributing reply blocks,

in the face of compulsion attacks remains.

6.4.2 Traffic analysis

Although the cryptographic security of fs-mix messages is stronger than in

the traditional mixes, there is a new requirement imposed on the selection of

routes that packets need to travel through. If there is a need for state to be

present on the mix from previous packets, that means that the same mixes are

chosen repetitively in a non-random manner. That selection process might

provide enough information for the adversary to be able to link messages

between them.

Since the number of nodes applying the proposed scheme does not need to

be very large, and provided that there is a small number of mixes, the traffic

analysis of the route should be hard. This is the case because a particular

6.4. SECURITY ANALYSIS 125

node has a high probability of being present in two routes anyway. In the

alternative scenario of a large peer-to-peer mix scheme, the security of such

protocols against traffic analysis has to be re-evaluated.

Additionally, the intermediate mixes are aware of the correlation between

messages, since the only party that knows the keys stored is the party that

has sent the previous messages. They are also aware of two other nodes on

the path that are seeded by the same messages (the one preceding them and

the one after them).

It is worth noting that the messages used to distribute keys are identical

to otherwise normal messages, as far as any outside observer or compromised

mix is concerned. This is an essential feature, that makes the traffic selection

task of extracting messages that contain key material extremely hard for the

adversary. In particular the key trail left behind normal messages could be

used as key material for further messages.

6.4.3 Robustness

If the anonymity of a network cannot be broken, an attacker might choose

to degrade its performance, hoping that it will put off people from using it.

Therefore a large body of work concentrates on proving the correctness of

mix networks (described in section 4.2.8). Unfortunately, the requirement

upon fs-mix nodes to store additional state makes the transport of messages

more fragile and the nodes more prone to denial-of-service attacks.

If messages can get dropped at random, due to traffic congestion or net-

work failures, making future messages reliant on past ones makes the network

even less reliable overall. One could ensure the proper delivery of special key

distribution messages, before making further messages dependent on them.

For example a client could send messages back to herself and check for de-

livery before using the secrets distributed to route further messages. Un-

fortunately there are security implications, namely the risk of having the

key distribution message intercepted and traced, as well as all further mes-

sages linked. On the other hand this strategy ties in very well with rgb-mix

techniques described in chapter 8, to avoid (n − 1) attacks.

126 CHAPTER 6. FORWARD SECURE MIXING

6.5 Additional features

In addition to the mechanisms described above, having facilities to make

messages dependent on keys on the nodes could be used to implement inter-

dependent reply blocks and path burning messages.

Without modifications to the mechanisms described above it is possible

to make many reply blocks depend on each other, in such a way that once

one of then has been used the other ones cannot be traced back. We put

in the path of all the reply blocks a common mix, that has been given a

particular secret by a previous message. All SURBs are constructed so that

they can only be decrypted by a single secret entry on the shared mix node.

As soon as the first of the messages routed using one of the interdependent

SURBs is decoded, the single secret entry is updated and the other SURBs

get dropped. Furthermore, it is impossible to trace any of them back.

Such a mechanism could be very useful if for purposes of resilience many

single-use reply blocks have been communicated to a third party in order to

carry back a single message. If all these SURBs share a reliable mix and use

the same key, the first one going through the mix will destroy all information

that could be used by an adversary to trace the others.

Much in the same way, it is possible to make reply blocks valid for only

a limited amount of time. After a determined time period a message is con-

structed that uses the same intermediate secrets as the SURBs, and is fired

into the mix network. This message updates the keys, and any subsequent

messages depending on them will get dropped. The same techniques can be

used to make reply blocks valid only after a particular time period by only

providing the necessary keys at some future time.

By adding a timestamp to each of the keys one can make sure that the

intermediate nodes automatically delete the keying material. This would pro-

vide the same functionality as the Path Burning Messages without requiring

the principals who wish to maintain their anonymity to actively delete keys.

An expiry time could be specified by the user along with the key. This has

the disadvantage that it could be used for traffic analysis if any logic is used

to calculate this expiry date, that takes into account the current time, or

other information local to the user.

6.6. OTHER FORWARD SECURITY MECHANISMS 127

6.6 Other forward security mechanisms

Some other solutions are available to make the cost of compulsion attacks

higher or prohibitive for an adversary.

6.6.1 Forward secure link encryption

A cheap way to render link level surveillance and recording of content fruitless

for an opponent is to use a forward secure encrypted channel between mix

nodes. Technically this involves encrypted channels established using key

exchanges with ephemeral public keys, signed with long-term signing keys.

The ephemeral keys are discarded immediately after a session key has been

established. After each message is processed the session key is updated using

some hash function, some exchanged fresh nonces and possibly the message

content. The old keys and the nonces are systematically deleted after the

update has taken place. This makes it impossible for nodes to decrypt past

messages that are presented to them, since the keys used have been deleted.

It is essential that fresh nonces are used during the key updating. This forces

an adversary that at some point in time seizes the keys used by the mixes to

indefinitely observe the channel to keep his knowledge of the current keys up

to date. Mixminion uses TLS [DA99] with a signed ephemeral Diffie-Hellman

key exchange and key updating as a forward secure link between mixes.

This technique renders interception at the link level useless, assuming that

mixes have good ways of authenticating each other. If only a small number

of mixes operate, this should not be a practical problem. The task of au-

thenticating mixes could also be performed by the creator of the anonymous

message, by including the hash of their verification keys in the anonymous

routing data, as it is the case in Mixminion. An honest node should check

that this hash matches the verification key during the key exchange proto-

col before establishing the encrypted channel. It also makes it difficult to

perform active attacks, as described in [SDS02], such as inserting, delaying,

deleting or modifying messages on the network links, that can be used to

flood nodes to decrease the amount of anonymity they provide .

Messages, in a form suitable for compelling mixes into decrypting them,

can still be intercepted by malicious nodes and presented to the next hon-

128 CHAPTER 6. FORWARD SECURE MIXING

est mix in the chain. In order to detect malicious nodes the name of the

previous mix could be contained in the headers of messages. In that way it

is impossible to hide which node performed the interception or the previous

decryption.

6.6.2 Tamper-proof secure hardware

In order to minimise the risk of being compelled to surrender key material

or decrypt intercepted material, one could implement the core functions of

the mix inside a tamper-proof hardware box. The sensitive functions, in-

cluding the decryption of messages and the replay prevention, would need to

be performed by the secure co-processor in order to avoid compelled decryp-

tion. Assuming that the cryptographic co-processor is secure it should be

extremely difficult to extract the secret key material inside it. This construc-

tion protects against compulsion to reveal keys, but does not protect against

subverted mixes, that want to trace the correspondence between inputs and

outputs in the cryptographic module. In addition to the decryption and

replay prevention, the secret permutation needs to be performed inside the

cryptographic module in order to protect against such attacks. Furthermore,

mechanisms must be in place that allow third parties to assure themselves

that the trusted hardware and software is indeed being used, and has not

been modified. This is a likely area of future research.

6.7 Summary

We have described the impact that an adversary with compulsion powers

might have on a mix network, and described the effort required to trace

messages and single-use reply blocks. Then we presented the fs-mix, that

increases the cost of such an adversary by making messages interdependent

on each other. Therefore all messages need to be intercepted and decrypted

for an adversary to be sure that any target message can be traced. The

resulting system is more secure, but also more fragile.

Mixminion implements a partial solution to the problem of compelled

decryption by using forward secure link encryption.

Chapter 7

Sparse mix networks

“Those targets like terrorism and weapons transport are used

as a cover for the traditional areas of spying, which are po-

litical, diplomatic, economic and military.”

European Parliament ECHELON Committee

— Nicky Hager

In this chapter we present and discuss some proposals for the topology

that mix networks might assume. We look at a fully connected graph, and

a mix cascade. We then discuss the advantages and disadvantages of a re-

stricted network topology, a sparse constant-degree graph, and analyse it

using existing work on expander graphs. Finally we compare the anonymity

and other properties provided by this new topology against more traditional

topologies.

We will prove that such restricted networks scale well in the number of mix

nodes. The route length necessary to provide maximal anonymity grows only

logarithmically in the number of nodes in the network and the total amount

of genuine traffic required to protect the network against traffic analysis and

intersection attacks grows linearly with the number of mix nodes.

Although the research presented was inspired by uncertainties concern-

ing how path selection and topology restrictions might affect Mixminion (see

chapter 5) the results presented concern a much wider variety of mix net-

works. In particular the calculation of traffic required to perform traffic

129

130 CHAPTER 7. SPARSE MIX NETWORKS

analysis on a stream of traffic taking the same route applies directly to onion

routing and other circuit-based anonymity mechanisms.

7.1 Previous work

Some work has already been done on the topology of mix networks. The

network topology influences how clients choose the path their messages take

through the network.

In [Cha81] Chaum introduces mix networks as a collection of nodes that

relay messages between each other from their original senders to their fi-

nal recipients. Throughout the paper there is an implicit assumption that

all nodes can communicate with all other nodes, therefore forming a fully

connected network. Clients choose the path their messages take by select-

ing a sequence of nodes at random from the set of all existing mix nodes.

Mixmaster [MCPS03] which follows Chaum’s original proposals quite closely,

also allows clients to choose any route through the network, using reliabil-

ity statistics [Moc] to select nodes. Other proposals for route selection use

reputation metrics [DFHM01] to quantify how reliable mixes in a network

are.

While the fully connected nature of the mix networks seemed to improve

the anonymity provided, Berthold et al [BPS00] found that they can be

vulnerable against very powerful adversaries, such as those who control all

the mix nodes except one. In particular, if only one of the mixes in the

network is honest, the anonymity of the messages going through it will most

likely be compromised. Attackers can perform intersection attacks, while

the probability that all nodes in a short path are compromised is very high.

Additionally if two or more messages follow the same route, attacks are trivial

to perform.

As a solution a cascade [JMP+98, PPW91, BPS00] of mixes is proposed.

Users of the network are not free to choose which route to take, but are all

forced to route their messages though a predefined sequence of mixes. Further

work has been done to improve the reliability of networks of cascades against

subverted nodes using reputation [DS02]. The obvious drawbacks of cascades

are the small anonymity sets they provide in the general case due to the fact

7.2. MIX NETWORKS AND EXPANDER GRAPHS 131

that they do not scale well to handle heavy load, and high-latency. Cascades

are also vulnerable to denial-of-service attacks, since disabling one node in

the cascade will stop the functioning of the whole system. Some solutions

are proposed to solve the problem that active attacks could pose, but require

user authentication to work properly [BPS00].

The freedom network [BSG00] only allows restricted routes to be used,

for performance reasons but without any published analysis about what

repercussions on anonymity such restrictions on the network might have.

In [BPS00] Berthold et al briefly introduces the possibility of having mix

networks that are sparse, but then as we will see, focuses on describing the

benefits of mix cascades.

7.2 Mix networks and expander graphs

We propose a mix network with a network topology based upon sparse

constant-degree graphs, where users may only choose routes following this

topology. Furthermore, each link out of a node should be followed by mes-

sages according to a predefined probability distribution. Therefore, selecting

a path in the network can be approximated as a random walk on the cor-

responding weighted graph. We will show that this network provides some

of the advantages of cascades, while being more scalable. We will provide

theoretical anonymity bounds using the metric presented in section 2.3, and

define under which conditions the network provides anonymity close to the

theoretical limit. Minimum traffic bounds to prevent the network being vul-

nerable to traffic analysis and intersection attacks are also calculated.

The topology that we propose for the mix network is based on expander

graphs. Expanders are a special family of graphs with the following prop-

erties: a D-regular graph G is a (K,A)-expander if for every subset S of

vertexes of G, if |S| ≤ K, then |N(S)| > A|S| where |S| is the number of ver-

texes in S and |N(S)| is the number of nodes sharing an edge (neighbouring)

with a vertex in S. In plain language it means that any random subset of

nodes will have “many” different neighbouring nodes. In practise expanders

have a relatively small and constant-degree D in relation to the number of

edges of the graph, and a large expansion factor A, that is proportional to

132 CHAPTER 7. SPARSE MIX NETWORKS

the number of “neighbours”. A good introduction to expander graphs and

their applications can be found in [LW03].

A relevant result is that most bipartite graphs with degree of at least

three provide good expansion properties. A topology based on a random

bipartite graph, with each mix node having three fixed neighbours will be

an expander [Pin73] with high probability. Therefore, such networks can be

constructed by brute force, or by using the surveyed or proposed methods

in [RVW00]. The families of expanders with explicit constructions presented

in [RVW00] have a constant, but large, degree and also an arbitrary large

number of nodes, which makes them practical for large networks.

The first question that comes to mind is quantifying the anonymity that

such networks provide in comparison to fully connected networks. In a fully

connected network a message coming out of the network has a probability

of originating from a particular node that is proportional to the input load

of that node. As we will see, the position of a message after a random walk

though the expander graph will converge toward the same probability after a

number of steps proportional to O(log N) where N is the number of nodes in

the network [Gil93]. This represents the a priori knowledge of an adversary

that only knows the topology of the graph, but no details about the actual

traffic going through it.

The intersection attacks presented in [BPS00] rely on the fact that mes-

sages using the same sequence of nodes will only occur in a fully connected

network with a relatively small probability. Since networks based on small

constant-degree graphs only provide a limited choice of routes for messages

to take, nodes can wait so that enough messages are accumulated before

sending them, to make sure that all links have traffic on them. Because

there is only a linear number of routes to fill with traffic, only order O(DN)

messages are required where N is the number of nodes and D the degree of

the graph. This strategy is more efficient than filling all the O(N 2) links in a

fully connected graph, since adding more nodes only requires the total traffic

to increase linearly in order to maintain the network’s resistance to traffic

analysis.

7.3. THE ANONYMITY OF EXPANDER TOPOLOGIES 133

7.3 The anonymity of expander topologies

In analysing the anonymity provided by networks with restricted routes we

will limit ourselves to considering traffic analysis resistance since it depends

heavily on the topology, while traffic confirmation attacks depend on the par-

ticular mix batching and flushing strategy individual nodes use (see section

2.3.3 for a definition of these attacks). Having defined in this section a way of

quantifying the anonymity provided by the network, we will study the route

length necessary to achieve maximal anonymity in expander graph based mix

networks and the volumes of traffic necessary to avoid traffic analysis attacks.

In a fully connected mix network it is intuitive that a message that comes

out of a mix node, after a number of hops, could have originated from any

node in the network with a probability proportional to the input load of the

mix. Since users chose their initial nodes at random, or taking into account

reliability statistics [Moc], we can say that the probability the messages orig-

inated from an initial node is equal to the probability a client has chosen this

node as an entry point to the network. The same probability distribution is

often used to determine the intermediate and final nodes of the anonymous

path. This observation allows us to compute the traffic analysis resistance

of the network Anetwork for fully connected networks, using the probability

distribution describing the selection of the entry node.

For a graph that is not fully connected, we need to calculate the proba-

bility that a message present in a node after a number of mixing steps has

originated from a particular initial node. This requires us to trace the mes-

sage backwards in the network. If the graph is not directed, the likelihood

a message was injected at a particular node is equal to the probability a

random walk starting at the final node finishes on a that node after a certain

number of hops.

Therefore, we consider the network as a graph and the act of selecting a

path through it as a random walk, and we model the route selection procedure

as a Markov process. In practise, some anonymous route selection algorithms

exclude nodes from being present on the path of a message twice, which

violates the memoryless property of the Markov process. Despite this a

Markov process is still a good approximation to the route selection process.

134 CHAPTER 7. SPARSE MIX NETWORKS

After an infinite number of steps the probability a message is present on a

particular node should be equal to the stationary probability distribution π

of the Markov process. Therefore the maximum anonymity provided by the

network will be equal to its entropy, Anetwork = E [π]

For reasons of efficiency we need to find how quickly the probability dis-

tribution q(t) describing where a message is after a number of random steps t,

converges to the stationary probability π of the Markov process. A smaller t

would allow us to minimise the number of hops messages need to be relayed,

therefore reducing the latency and increasing the reliability of the network.

Motwani and Raghavan [MR95] provide a theoretical bound on how

quickly a random walk on a graph converges to the stationary distribution.

If πi is the stationary distribution of a random walk on a graph G and q(t)

the probability distribution after t number of steps starting from any ini-

tial distribution q(0). We define ∆(t) as the relative point-wise distance as

follows:

∆(t) = max
i

|q(t)
i − πi|

πi

(7.1)

They go on to show that this distance after a number of random steps t is

bounded by the number of nodes in the network N and the second eigenvalue

λ2 of the transition matrix corresponding to the graph of the network:

∆(t) ≤
√

N(λ2)
t

mini πi

(7.2)

⇒ log ∆(t) + log min
i

πi −
1

2
log N ≤ t log λ2 (7.3)

⇒ t ≤ log ∆(t) + log mini πi − 1
2
log N

log λ2

∼ O(log N) (7.4)

The distance decreases exponentially as the number of steps t, for which

the message travels through the networks, increases linearly. The quick rate

of convergence of the probability distribution is also dependent on the second

eigenvalue being small. An extensive body of research has concentrated on

linking the value of the second eigenvalue to expansion properties of graphs,

to show that good expanders exhibit small second eigenvalues (see [MR95]

for details). There is a fundamental limit of how quickly a network can mix

7.3. THE ANONYMITY OF EXPANDER TOPOLOGIES 135

that depends on the degree D of the graph:

1 > λ2 ≥
2
√

D − 1

D
(7.5)

The results above assure us that a mix network with a topology corre-

sponding to a good expander graph would mix well, in a number of steps

logarithmic in its size, O(log N). This means that in this small number of

steps a message will leave the network at a node selected with probability

approaching the probability after an infinite number of steps, namely the

stationary probability distribution π.

In fact the methods described above can be used to calculate the theo-

retical probability that message that comes out at a mode ne of the network

has been injected at another node ni. In theory the a priori knowledge of

the attacker, concerning where a message was injected, corresponds to the

probability distributions after the random walk on the graph representing

the network. It also depends on the way that initial nodes are being chosen

by clients, using reliability statistics, or other information. As the number of

intermediaries grows, this distribution converges towards being the same for

all initial choices of entry nodes. Therefore as the number of hops grows, a

network based on expander graphs offers uniform anonymity, which means

that the anonymity provided by the network is the same regardless of the

node used to inject a message.

In the next section we will study how much traffic is needed to make the

network resistant to traffic analysis, in other words an actual observation of

it running will not give the attacker much additional information beyond the

theoretical calculations presented above.

7.3.1 Protection against intersection attacks

An advantage of mix cascades, as argued in [BPS00], is that they are not

susceptible to intersection attacks. Such attacks use the fact that many mes-

sages are sent using the same path to perform traffic analysis and follow the

messages through the network. The authors note that, if every time a mes-

sage is sent by the user under surveillance, the set of possible destinations

of every mix is intersected with the set of possible destinations of previous

136 CHAPTER 7. SPARSE MIX NETWORKS

messages, then the actual path of the message will become apparent. This

is due to the very small probability the same, even partial, route is used

by different messages. Since in mix cascades all messages use the same se-

quence of intermediary nodes, such an attack does not yield any results. Of

course traffic confirmation is always possible, by observing all the edges of

the network, and finding correlations between initial senders and final recip-

ients. Such attacks will always be possible if the network does not provide

full unobservability [PK00], or other specific countermeasures.

In a mix network with restricted routes and small degree, such as one

based on expander graphs described in the previous section, the potential for

intersection attacks, can be greatly reduced. This is done by making sure

that all the links from a node to its neighbours are used in a flushing cycle.

This is possible in practice since the number of these links in the network

is relatively small, and does not grow proportionally to O(N 2) as for fully

connected networks. Making sure that all links are used is sufficient to foil

the simplest intersection attacks that use the intersection of sets of potential

senders to trace messages [KAP02]. Traffic analysis is still possible if the

probability a message has used a link is skewed. Therefore we need enough

genuine traffic to be mixed together for the observable load on the network

links to be proportional to the theoretical probability distribution described

by the transition matrix representing the topology graph.

Using a threshold mix as an example we will calculate how much traffic

is needed for no link from a node to be left empty. We assume that clients

select the next hop from a particular node i using a probability distribution

pn, where n is the number of Ni neighbouring nodes. Then the probability

that the link to a node is left empty in a batch of b messages is:

Pr[∃i.Ni empty] < Pr[N1 empty] + . . . + Pr[Nn empty] (7.6)

Pr[∃i.Ni empty] <
∑

∀Ni

(1 − pi)
b (7.7)

As the size of the batch of messages to be processed grows, the probability

that a link is empty decreases exponentially, making simple intersection at-

tacks infeasible. It is important to note that the same effect can be achieved

by adding dummy traffic on the links that are not used. Again the amount

7.3. THE ANONYMITY OF EXPANDER TOPOLOGIES 137

of dummy traffic in the network will only grow linearly with the number of

nodes in the network.

In order to avoid the attacker gaining more information than the theoreti-

cal anonymity, which is the entropy of the stationary probability distribution

on the nodes E [πi], the actual volume of messages on the links should be pro-

portional to the matrix describing the network topology. As described above,

each node receives a number of messages b, some of which will be output on

a particular link i according to a binomial distribution, with probability pi.

We can require the number of messages that are actually transmitted not

to diverge on a particular round or time period by more than a small per-

centage f from the average mean. We approximate the binomial distribution

describing the volume of traffic on a link i, by the normal distribution with

mean µ = bpi and variance σ2 = bpi(1 − pi). We then know that the nor-

mal distribution will not diverge from its mean by more than three standard

deviations 99% of the time. We can require this deviation to be less than a

fraction of the mean.

(1 − f)µ = µ − 3
√

σ2 (7.8)

⇒ (1 − f)bpi = bpi − 3
√

bpi(1 − pi) (7.9)

⇒ f
√

bpi − 3
√

pi(1 − pi) = 0 (7.10)

⇒ b =
9

f 2

(
1 − pi

pi

)

(7.11)

This result can then be used in conjunction with pmin, the probability as-

sociated with the link that is least likely to be used in the network or mix,

to derive how much genuine traffic would be necessary in a node to protect

against traffic analysis.

Another way of calculating the appropriate threshold value for a threshold

mix would be to calculate the number of rounds necessary to perform an

intersection attack against a stream of k messages. The techniques used do

this are related to the statistical disclosures attacks described in chapter 9.

The attacker performs a hypothesis test on each of the links, with H0

representing the hypothesis that the stream of messages under surveillance

are output on the link under observation, and H1 representing the hypothesis

the messages are output on another link. In case H0 is true the volume of

138 CHAPTER 7. SPARSE MIX NETWORKS

messages on the observed link follows a probability distribution Y0 = k+Xb−1

otherwise it follows a probability distribution Y1 = Xb−1, where b is the

threshold of the mix, k the number of mixing rounds, and pi the probability

the link is used by messages. Xb−1 is the random variable following the

binomial distribution with probability pi after b − 1 trials. The mean µ and

standard deviation σ2 of these distributions are:

µY0 = k + k(b − 1)pi σ2
Y0

= k(b − 1)pi(1 − pi) (7.12)

µY1 = k(b − 1)pi σ2
Y1

= k(b − 1)pi(1 − pi) (7.13)

In order to be able to accept or reject hypothesis H0 we will require

the observed volume of traffic to be within a distance of a few standard

deviations σY0 from the mean µY0 , while also at a minimum distance of a

few standard deviations σY1 from µY1 to avoid false positives. The number

of standard deviations l depends on the degree of confidence required. The

minimum number of mixing rounds k that need to be observed by an attacker

to confirm of reject the hypothesis can therefore be calculated by:

µY0 − lσY0 > µY1 + lσY1 (7.14)

k > 4l2
pi

1 − pi

(b − 1) (7.15)

For values of l = 1 we get a confidence of 68%, for l = 2, 95% and for

l = 3, 99%. The above formula is true both for general mix networks and for

mix networks with restricted routes. We can require the value of rounds k

to be greater than one k > 1, with l = 0.6745 for the attacker to have only a

confidence of 50% in order to frustrate traffic analysis of messages that are

not part of a stream that follows the same route.

7.3.2 Subverted nodes

An important factor that has to be taken into account when judging an

anonymous network, is how robust it is to subverted nodes. In particular one

has to assess the likelihood that all the nodes that have been selected to be on

the path of a message are subverted nodes. For the topology presented this

amounts to determining the probability pl/c that l nodes selected by a random

7.4. COMPARING TOPOLOGIES 139

walk on the expander graph, might include c ≤ l subverted nodes. Gillman

provides an upper bound for this probability [Gil93], that is dependent on

the expansion properties of the graph, and the “probability mass” of the

subverted nodes.

If the matrix representing the graph of the mix network has a second

eigenvalue λ2 then define ε = 1 − λ2. Assume that the set C of nodes

is subverted. Then define πc as the probability mass represented by this

corrupt set, πc =
∑

i∈C πi where π is the stationary probability distribution

of the random walk on the graph. After a number of steps l the probability

that a walk has only been performed on subverted nodes is:

Pr[tc = l] ≤
(

1 +
(1 − πc)ε

10

)

e−l
(1−πc)2ε

20 (7.16)

The probability that a path is totally controlled by subverted nodes there-

fore depends on the amount of traffic processed by the subverted nodes, and

the mixing properties of the graph, but decreases exponentially as the route

length increases. Assuming a particular threat model, the route length can

be increased until that threat is very improbable. In practice the constant

factors of the bound are too large to lead to values of the route length that

are practical in real systems. Therefore, despite the initially encouraging re-

sults, for even modest πc other methods might have to be used to determine

and minimise the probability that the full route is composed of subverted

nodes.

7.4 Comparing topologies

We have studied in the previous sections some properties of sparse mix net-

works, namely the route length and the batch size or volume of traffic nec-

essary to provide nearly maximal anonymity. Next we shall compare these

properties with previously introduced topologies.

Sparse networks based on expander graphs scale well by providing maxi-

mal network anonymity for a route length l proportional to O(log N). Fur-

thermore, they can be made resistant to traffic analysis and intersection

attacks using a constant volume of traffic per node, depending on the degree

140 CHAPTER 7. SPARSE MIX NETWORKS

D of the network. Using (7.15) we observe that if the route selection algo-

rithm is uniform, then the batch size b of nodes can be b < 1
4l2

k(D − 1) + 1

which is independent of the number of nodes in the network.

7.4.1 Mix cascades

Given our definitions, it is clear that a mix cascade is resistant to traffic anal-

ysis, since observing the network traffic does not provide an attacker with

more information than she originally had about the correspondence of input

and output nodes. This is the case because there is no uncertainty about the

node where all messages were inserted, since there is only one. The fact that

Anetwork = 0 does not mean that the network does not provide any anonymity

to messages, but simply that all the anonymity provided to the messages orig-

inates conceptually form the single E [Pr[me is mij|me inserted at nx]] com-

ponent of (2.22).

This absolute protection against traffic analysis comes at a very high cost.

The anonymity provided is reduced to the volume of messages that can be

processed by the node with least throughput in the cascade. The latency

of the messages is also large, since each message has to be processed by all

nodes in the cascade.

Despite the inefficiencies presented above, mix cascades are a valuable

design. They are resistant to very powerful adversaries that control all nodes

but one. They also highlight the advantages of implementing topologies that

can be analysed, in order to understand their anonymity properties.

7.4.2 Mix networks

General mix networks are distinct from sparse, constant-degree, mix networks

because anonymous messages are allowed to follow arbitrary routes through

them. This sometime is misinterpreted as meaning that the traffic matrix

corresponding to the mix network is fully connected. Indeed an attacker

who has no additional knowledge of the network, beyond the way routes

are selected, has no other way of attributing probabilities linking output

messages to input nodes other than by using a random walk on this fully

connected graph, for a number of steps corresponding to the route length.

On the other hand, an attacker that can observe the traffic in the network

7.4. COMPARING TOPOLOGIES 141

can get much better results. If we assume that the number of nodes is larger

than the threshold of the mixes then some links remain unused in each mix

round. Furthermore, even if the threshold is comparable to the number of

mixes, the volume of messages sent will give the attacker a different proba-

bility distribution from the theoretical one described by the route selection

distribution. Therefore an attacker can use additional information, extracted

from these observations to trace messages more effectively (for an example

see [Ser04]).

We will denote the graph used for the route selection through the network

as G. This graph has N nodes, the number of mixes, that are all connected

with each other by weighted edges. The weights correspond to the probability

that a node is selected as the next mix in the path, and can be uniform if the

selection is performed at random, or it can be based on reliability statistics

or reputation metrics. Given a column vector v describing where a message

was injected, the probability P a message comes out of the network at a

particular node after l steps, can be calculated to be Pl = Glv This is the

a priori information that an attacker has about the correspondence between

input and output nodes, even before any traffic analysis has been performed.

As the attacker observes the network, for round i it can deduce a matrix

Gi with the mixes as the vertexes, and the traffic load that was observed be-

tween them during round i as the weights on the edges. It is worth observing

that Gi is closely related to G in the sense that the selection of routes for

any round is performed using G, but is sparse if the threshold of the mixes

is lower than the number of nodes. In fact, the weights on the edges fol-

low the same probability distribution as for G, but are going to be different,

subject to the variance of the multinomial distribution and the threshold of

the mixes. An adversary that observes the actual traffic patterns in the net-

works will therefore be able to have more accurate information about where

the messages injected are going, by calculating the probability distribution

P ′
l = Gl . . . G2G1v.

The relation of Gi the graph of the traffic observed at round i with the

graph G used to route messages, is crucial in understanding the anonymity

that generic mix networks provide. The smaller the difference between Gi

and G the more resistant the network will be to traffic analysis. In order for

Gi to be close to G there needs to be enough genuine or cover traffic to make

142 CHAPTER 7. SPARSE MIX NETWORKS

the mean load on all the links proportional to the probabilities of the route

selection, as described for sparse topologies in section 4.2. In general one

would expect liml→∞ E [P ′
l] = liml→∞ E [Pl], but also ∀l, E [Pl] ≤ E [P ′

l], where

E [·] denotes the entropy of a distribution.

For Gi to be a good approximation of G it is necessary each round to fill all

links with traffic volumes proportional to the values on the edges of G. This

requires the volumes of traffic handled by the network to be proportional to

O(N 2) as the number of nodes N in the network grows. The batch size that

needs to be handled by each node therefore grows proportionally in the size

of the network b < k
4l2

(N−1)+1, as described by (7.15). The increased batch

size also has repercussions on the latency of messages that travel through the

network, since mixes will wait for more messages before they operate.

Mix networks that do not use a deterministic threshold mixing strategy,

where the first batch of messages to go in are also the first batch of messages

to go out, can also be analysed in a similar fashion by redefining Gi. It would

then need to represent the probability distributions leading to the effective

anonymity sets of messages instead of the volumes of traffic in the network.

7.5 An example network

In order to illustrate how all the results presented on mix networks based

on expander graphs fit together, we will present an example network and

analyse it. We will proceed to calculate the route length necessary for it to

provide uniform anonymity, the amount of real traffic that should be present

in each node for it to be resistant to traffic analysis and intersection attacks.

7.5.1 Selecting a good topology

We aim to create a network with N = 400 mix nodes, each with D = 40

neighbours. The neighbour of a mix both sends and receives messages from

the mix and therefore we can represent this network as an undirected graph.

Furthermore, we will assume that senders will choose their path across the

network using a random walk on the graph, with equal weights on all the

edges. Therefore the probability that a messages follows a particular link,

given that it has already reached a node is equal to pn = pmin = 1
40

. We

expect such a graph to have Nl = 16 · 103 links instead of N 2 = 16 · 104 that

7.5. AN EXAMPLE NETWORK 143

a fully connected graph would have. Therefore it is sparse in the sense that

only one in ten links are used.

Using a brute force algorithm, we created a number of networks and com-

pute their second eigenvalue until a network with good expansion properties

is found. After testing less than ten candidates we find a graph with a second

eigenvalue λ2 = 0.3171, which is close to the theoretical limit of λ2 > 0.3122

given by equation (7.5).

7.5.2 Mixing speed

Using the formula (7.2) we know that the network will provide nearly uniform

anonymity after a number of mixing steps proportional to log N . From the

graph we know that the mini πi = 1
400

since the stationary distribution is

uniform, and therefore the resistance to traffic analysis should be equal to

A = − log2 N = −8.6438.

In theory the relative point-wise distance ∆(t) between the observed q(t)

distribution after t steps and the stationary distribution πi should converge

following ∆(t) ≤ n
√

nλt
2. This allows us to calculate that the safe route

length is around six. In practise much tighter bounds can be computed by

directly calculating using Gt the distributions q(t) from the available graph G.

It is therefore observed that after four steps of the random walk the entropy

of q(t) is equal to the theoretical entropy calculated above. Figure 7.1(a)

illustrates this by showing how the mean entropy provided to messages en-

tering on any node compares with the minimum entropy that is offered by

the network. Their convergence indicates that after four steps the network

provides uniform and also maximum anonymity.

7.5.3 Resisting intersection and traffic analysis attacks

In order to avoid the simplest forms of intersection attack, all the network

links need to be used for every round. The probability a network link is not

used is described by equation (7.7). For this particular network all pi = 1
40

where pi is the probability a link is followed. The probability that any link is

left empty for threshold mix with batch size b = 300 is Pr[∃i.Ni empty] < 2%.

Therefore for batches larger than 300 messages the probability a link is left

empty is very small.

144 CHAPTER 7. SPARSE MIX NETWORKS

1 2 3 4 5 6 7 8
−9

−8.5

−8

−7.5

−7

−6.5

−6

−5.5

−5

Route length

M
ea

n
an

d
m

in
im

um
 a

no
ny

m
ity

 p
ro

vi
de

d

(a) Mean and lowest entropy after a random walk

150 200 250 300 350 400 450
0.035

0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

Batch size of mix

P
ro

ba
bi

lit
y

of
 1

0%
 o

r m
or

e
de

vi
at

io
n

(b) Probability the distribution deviates more than 10%

Figure 7.1: Characteristics of the example topology

7.6. SUMMARY 145

In order to protect against more sophisticated traffic analysis attacks

taking into account statistical differences in the observed distributions from

the graph G, we need to calculate the probability this deviation is large

(for example larger than 10% as shown in figure b). In practice with a

batch size of b = 300 as specified above, the attacker would need to observe

k > 4 1
40−1

(300 − 1) = 30 messages in a stream in order to have a confidence

of 68% that a particular link was used.

7.6 Summary

We have presented different topologies that mix networks can assume, and

analysed the traffic analysis resistance that each offers. We have calculated

the number of hops necessary to provide adequate mixing, and the volume

of traffic necessary to make the network invulnerable to traffic analysis.

It turns out that sparse networks based on expander graphs, can have low

degree and still mix traffic quite quickly. A further advantage is that they

require less genuine traffic to be present in the network than fully connected

graphs, while scaling much better than mix cascades.

146 CHAPTER 7. SPARSE MIX NETWORKS

Chapter 8

Red-green-black mixes

“One FBI internal memorandum describing steps to be taken

against the Black Panther Party, included a plan to release

false police films ‘indicating electronic surveillance where

none exists’. Another spoke of the need ‘to get the point

across that there is an FBI agent behind every mail box’.”

The technology of political control — C. Ackroyd,

K. Margolis, J. Rosenhead, T. Shallice

In this chapter we describe a technique that mix nodes can employ to

detect whether they are under an active attack. The most powerful active

attack is the (n − 1) attack, performed by flooding a node with attacker

messages alongside a single target message to be traced. The attacker can

recognise her messages as they emerge and therefore link the sender with

the receiver of the target message. This attack is active in the sense that it

critically depends on the adversary’s ability to inject fake messages in order

to flood the honest node and delete or delay other genuine messages except

the one under surveillance. Clearly it also requires the ability to observe

arbitrary network links.

The ability to detect and prevent such attacks relies upon individual mixes

being aware of their network environment and their state of connectivity with

it by sending anonymous messages through the network back to themselves.

We call these heartbeat messages, or “red” traffic. When a mix is under

147

148 CHAPTER 8. RED-GREEN-BLACK MIXES

attack it cannot directly detect how much of the traffic it receives is genuine

“black” traffic and how much is the attackers’ flooding traffic. Therefore the

mix tries to estimate the amount of flooding traffic from the rate of heartbeat

messages and injects dummy “green” traffic in order to artificially increase

the anonymity provided to honest messages.

The key intuition for understanding the properties of rgb-mixes is that

the different colours of the traffic can only be observed by the mix itself. To

all other mixes or attackers, traffic exiting the mix looks the same. In order

to perform the (n − 1) attack, an attacker would need to delete or delay

selected messages while simultaneously allowing the mix to receive heartbeat

messages. While an attacker flooding the mix will be able to distinguish her

black messages from other messages exiting the mix, the attacker is prevented

from filtering out genuine traffic from heartbeat messages. Thus, the number

of heartbeat messages received can be used by the mix to estimate the number

of honest messages present in the mix’s input.

8.1 Related work

Active attacks, and in particular the (n− 1) attack, were known in different

communities working on anonymous communications [GT96] for a long time.

In their survey of mixing strategies Serjantov et al. [SDS02] assess the ef-

fectiveness of different mixing strategies against a number of active attacks.

They calculate the number of rounds that it would take an attacker to be

successful, and find that some mix strategies are more expensive to attack

than others. On the other hand no mixing strategy provides an absolute

defence since they can all be attacked in a finite amount of time or rounds.

The (n − 1) attack (applicable primarily to threshold mixes) is generalised

for other mixing strategies and called a blending attack. It is a simultaneous

trickle attack, namely stopping genuine messages, and a flooding attack, that

fills the mix with the attacker’s messages.

In designing sg-mixes to resist (n − 1) attacks Kesdogan et al. [KEB98]

followed a different approach. They observe that the ability to realistically

perform the (n − 1) attack relies on delaying rather than deleting messages.

Therefore if messages follow a tight schedule in the network, and are dropped

8.2. DESIGN PRINCIPLES, ASSUMPTIONS AND CONSTRAINTS 149

if they are late, an attacker would have to destroy traffic and ultimately the

network would become aware of the attack. Furthermore, only a fraction

of the traffic could be attacked at any time. In order to provide real-time

guarantees, they use a continuous mixing strategy based on delaying messages

according to an exponential distribution. Messages contain timestamps and

are delayed for as long as requested by the original sender. If a message

misses its deadlines it is dismissed.

Mixmaster [MCPS03], the only widely deployed mix network, uses dummy

traffic to counter (n− 1) attacks. A random number of dummy messages are

included in the message pool every time an message arrives from the network.

This is an effective, but quite expensive, strategy since dummy messages are

sent even during normal operation.

Other mix designs, such as Mixminion [DDM03a], use link encryption that

makes it difficult for an attacker to recognise even her own messages in the

network. This can be effective, particularly if it is combined with each mix

peering only with a small set of others. However it cannot provide an absolute

protection against flooding since the attacker controls the path through which

her messages are routed. Designs that disallow or restrict source routing

could be one way to defend mix networks from flooding attacks.

8.2 Design principles, assumptions and con-

straints

Using the analysis of Serjantov et al. one can calculate how much time, or

how many messages, should be injected into a mix until an adversary can

trace a message. While this can make an attack expensive, and will delay

the overall functioning of the network, it does not guarantee that an attack

will not succeed. On the other hand, we will aim to completely eliminate the

potential for (n − 1) or blending attacks.

Kesdogan et al. guarantee that most messages delayed will be dropped,

but do not guarantee that single messages will not be traced. Again it would

be easy to notice that such an attack is taking place (since messages are

dropped) but no algorithmic way of doing this is included in the mix strategy.

150 CHAPTER 8. RED-GREEN-BLACK MIXES

Therefore one of our aims will be to specify a way for the mix to detect such

an attack, and a strategy to counter it.

In designing rgb-mixes to resist active attacks, we will assume that the

mixes have some knowledge of their environment, in particular the addresses,

keys and capabilities of the other mixes in the network. This assumption

is not unrealistic since clients require this information to send or receive

anonymous messages, and directory server infrastructures are deployed to

provide them [DDM03a]. We also require the rgb-mix to be included in the

list of active mixes in the directory listing and clients or other mixes to use

it to relay traffic.

Furthermore we will assume that the network, through which the “red”,

“green” or “black” messages travel, provides some anonymity against the

attacker. In most mix networks this means that the network is either not fully

under the control of the adversary, or that a large fraction of the mix nodes

are honest. The key requirement is for the network to make indistinguishable

to the attacker the colour of the traffic, which could be, as we will see, red,

green or black.

While recognising that introducing dummy traffic into the network in-

creases its cost, we do so for two purposes: first as signalling, to assess the

state of connectivity with the rest of the network in the form of red traffic;

and secondly in order to increase the anonymity sets while the mix is under

attack, in the form of green traffic. It is a requirement that the amount of

green traffic should be minimal (or even zero) if the mix is not under attack.

On the other hand it increases when the mix is under attack in order to

reduce latency, or to bootstrap the functioning of a network of rgb-mixes.

8.3 Red-green-black mixes

An rgb-mix receives a certain number of black messages per round. These are

genuine messages to be anonymized, or could be the product of a flooding

attack mounted against the mix. The mix needs to estimate how many

of these black messages are genuine in order to guarantee some quality of

anonymity. Unfortunately, because of the nested encryption, and the absence

of identifying information in the packets, the mix cannot do this by simple

8.3. RED-GREEN-BLACK MIXES 151

inspection.

In order to get an estimate of the number of genuine messages, a mix uses

the same property that makes it unable to distinguish genuine from flooding

traffic: namely that mixed traffic is not separable by a third party. With

each output batch it includes a fraction of red messages, which are indistin-

guishable from other anonymous messages but are anonymously addressed

back to itself. These messages are mixed with the outputs of the mix and

are impossible to distinguish from other genuine black messages (notice that

an attacker can distinguish them from flooding traffic). After a certain num-

ber of rounds we expect the same fraction of red messages to come back to

the mix. These messages can be distinguished by the mix since they were

created by itself. This should be done in order to calculate their fraction in

comparison with the black traffic received.

If the fraction of red messages received in a round is smaller than ex-

pected, subject to statistical fluctuations, this could mean one of three things.

Firstly, the mix could be under a blending attack, meaning that the genuine

traffic is being blocked and only the attacker’s messages are let through.

Since the attacker cannot distinguish red messages from the genuine traffic

it cannot selectively allow some of them through. Therefore it has to block

them, and the fraction of red messages will drop depending on the severity

of the attack. A second reason why the fraction of red messages could be

small or zero is the fact that the mix has only recently started its operation

and the red messages sent did not have enough time to loop back. A third

is that traffic load is changing.

When the fraction of red messages drops, a possible strategy would be

to stop the operation of the mix until enough red messages are received, or

forever if the attack persists. Unfortunately this transforms the blending

attack to a denial-of-service attack on the mix. Furthermore if all the mixes

implement this strategy it would be very difficult for the network to start

its operation: all the nodes would block since their respective heartbeat red

messages would not have yet arrived. This creates deadlock.

Instead dummy messages are introduced in order to guarantee the quality

of the anonymity provided by the mix. A certain number of green messages

are generated when necessary and injected in the output of the mix. These

152 CHAPTER 8. RED-GREEN-BLACK MIXES

R

BT

BF

???

Received
traffic

Flooding Traffic

Genuine
network
traffic

Probability of geting a
red message out of the bag
is r.

(BT+R)

BF

Mix OperatorAttacker

Figure 8.1: Model of the attacker and rgb-mix

messages are multiple hop dummy messages that will be dismissed at the end

of their journeys. Since an adversary is not able to distinguish them from

other genuine black or red traffic these messages increase the anonymity set

of the genuine messages trickled through by the attacker.

The objective we have set for the functioning of the mix is to reduce the

amount of dummy traffic during normal operation, namely when the mix is

not under flooding attack. The key to achieve this is to estimate the number

of genuine black messages in the input, and only include green traffic if this

is below a threshold.

8.4 The security of rgb-mixes

The key to understanding the security of rgb-mixes is the realisation that an

attacker is not able to distinguish between red, green and black messages.

Allowing through the red messages but not any genuine black message is

difficult, so can only be done at random. On the other hand the rgb-mix

cannot distinguish the genuine black messages from the attacker’s flooding

messages, but can estimate their numbers using the calculated frequency of

the red messages received during a mix round or time interval.

A number of messages R + B is received by the mix during a period

or round, with R being the number of red messages and B the number of

black messages received. Out of the black messages some might be genuine

8.4. THE SECURITY OF RGB-MIXES 153

traffic BT but some might be flooding traffic BF , with B = BT + BF .

The probability of the adversary choosing a red message along with any

genuine traffic chosen is equal to the fraction r of red messages included in

the output of the mix. This assumes that the overall genuine traffic volumes

do not change significantly.

An attacker will try to substitute genuine black traffic with flooding traf-

fic that she can identify, thereby reducing the anonymity of the remaining

message(s). If the substitution is done näıvely then no red messages will be

received by the mix, which will use green cover traffic to maintain the sizes of

the anonymity sets. Therefore an attacker will try to allow through some red

messages. Since the attacker is “colour blind”, she can only choose messages

at random, according to the fraction injected in the network, until a certain

number of red messages are present in the input batch.

The rgb-mix needs to answer the following question: Given that R red

messages are received, how many genuine traffic messages BT are likely the

have been allowed through? The number of genuine messages that an at-

tacker needs to choose for R red messages are present, if for each message

the probability of being red is a fraction r, can be described by a negative

binomial distribution.

Pr[BT = x] =

(
R + x − 1

R − 1

)

rR−1(1 − r)x (8.1)

We can also calculate for a number R of red messages the expected number

E of genuine black messages, and its variance V . Detailed derivation of these

can be found in [Bha72].

E[BT] =
R(1 − r)

r
(8.2)

V [BT] =
R(1 − r)

r2
(8.3)

The calculation above takes into account that the attacker is able to ob-

serve the event where the mix receives a certain number of red messages.

While an adversary is not able to tell that the message just input into the

mix is red, she could still be able to observe some side effect, such as the

mixing of a batch. This provides the mix designer with the flexibility to

154 CHAPTER 8. RED-GREEN-BLACK MIXES

implement mixing strategies conditional upon the number of heartbeat mes-

sages received.

Let (R + B) be the number of messages received in a batch and r the

fraction of red messages sent by batch. Given that (R + B)r red messages

are expected during each round, this would provide a standard anonymity

set size of on average ((R+B)r(1−r)
r

≈ B. This number should be made large

enough to provide adequate anonymity set sizes for the messages. If the

number of red messages received is smaller, then a number of green messages

G′ needs to be generated and output by the mix to make up for the potential

loss of anonymity, where:

G′ =
((R + B)r)(1 − r)

r
︸ ︷︷ ︸

Expected genuine black

traffic given total volume

received

− R(1 − r)

r
︸ ︷︷ ︸

Expected genuine black

traffic given number of red

received

=
((R + B)r − R)(1 − r)

r
︸ ︷︷ ︸

Difference is the number of green

dummies to be injected to

compensate

(8.4)

R′ = (R + B)r (8.5)

Therefore if the mix is functioning properly and is not under flooding

attack, it only outputs a minimal number of green, cover traffic, messages.

When it is under attack it maintains the anonymity provided by outputting

greater amounts of green cover traffic.

If the attacker cannot observe the number of red messages in the stream

reaching a threshold (such as a mixing batch being processed), a slightly dif-

ferent model can be used to estimate the number of genuine traffic messages

BT . The probability a certain number of messages BT are present in the

batch, given that there is a number of red messages R and the probability a

message addressed to the mix is red is r can be described as follows.

Pr[R|N, r] =

(
N

R

)

(1 − r)(N−R) (8.6)

⇒ Pr[N |R, r] =

(
N
R

)
rR(1 − r)(N−R)

∑

N

(
N
R

)
(1 − r)(N−R)

note that N = BT + R (8.7)

⇒ Pr[BT = x|R, r] =

(
x+R

R

)
(1 − r)x

∑

0≤x≤B

(
x+R

R

)
(1 − r)x

(8.8)

8.5. A CAUTIONARY NOTE 155

A similar procedure to the first model can then be followed to estimate

the deviation of the received genuine traffic from what would be expected if

the number of red messages were indeed (B + R)r.

8.5 A cautionary note

The security of rgb-mixes is calculated for the average case, namely the ex-

pectations are taken into account to calculate the amount of green traffic to

be injected. This expected value will only be attained when the batch sizes

are large enough, in comparison with the probability r a message received

is red. Furthermore, the analysis above is only accurate when the network

traffic received by the attacker can be approximated by the red-black traffic

“bag”, as shown in figure 8.1. This means that the attacker taking a message

from the network has a certain probability r of choosing a red message. In

practise this is only an approximation since there is only a limited number

of red messages, that will eventually run out if the experiment is repeated

enough times. A more accurate model can be derived from the hypergeomet-

ric distribution.

Another critical assumption on which the models presented above are

based is that the levels of genuine traffic do not change very much in time.

Indeed there is no way a mix can tell the difference between an active attack

and a genuine spike in traffic load. The traffic loads of the previous mixing

rounds, or times, are therefore used to calculate the probability a red message

is chosen by the attacker.

Another weak point of the method described above is that the attacker

might try to influence r, the probability a message from the network is red.

In order to avoid this the number of red messages injected in the network

should be calculated based on a longer history of traffic load, not just the

previous round of mixing. This way an attacker will have to attack for a very

long time before getting any results.

The worst case presents itself when the mix does not receive any genuine

traffic at all from the network through which the red messages are relayed.

This means that the adversary will know which messages are red, and will

be able to trivially perform flooding attacks, without being detected. The

156 CHAPTER 8. RED-GREEN-BLACK MIXES

operational conditions under which this attack could be performed are a bit

unusual. The mix under attack would have to not be included in the directory

servers’ lists, and therefore others not using it in order to relay traffic. Why

would then the attacker try to attack it, since there is only minimal traffic

on it? One reason could be that the attacker has lured a victim into sending

a message through this particular mix. Again other methods of attack could

be easier, such as forcing a victim to use a completely compromised node,

instead of an “attackable” mix.

Finally it is worth noting that the green traffic offers some degree of

protection against traffic analysis of the network, namely the traffic of a

message node by node as it travels. It does not on the other hand offer any

end-to-end protection against traffic confirmation. The green messages are

simply discarded by mix nodes a few hops away, and modifying them to be

sent to actual users is still a not very well-understood problem.

8.6 Summary

The most dangerous active attack against mixing is the (n − 1) attack, by

which the adversary injects only one genuine message into a mix along with

a flood of his own messages. We devise a strategy that allows mixes to detect

that such an attack is taking place. They send heartbeat messages back to

themselves, and use the rate at which these messages are received to estimate

the amount of genuine traffic they receive.

In case an adversary is delaying traffic to perform the (n − 1) attack

the rate at which the heartbeat messages are received is reduced, and the

attack is detected. In this case special cover traffic messages are generated to

maintain the quality of anonymity provided. This technique is very efficient,

since it only uses large volumes of cover traffic when under attack.

Chapter 9

Statistical disclosure attacks

“[. . .] privately our intelligence officers were helping the US

and Australia spy on East Timor people at a time where that

intelligence was being funnelled through to the Indonesian

military. ”

European Parliament ECHELON Committee

— Nicky Hager

A family of well-known attacks against mix systems are intersection at-

tacks [BPS00]. These rely on the fact that a sequence of messages use the

same route through the network, or are ultimately destined to the same re-

ceiver to perform traffic analysis. The set of potential receivers is computed

for each message in the sequence. The intersection of these sets will eventu-

ally only contain the actual receiver of the stream.

Kesdogan et al. present an interesting variant of this attack in [KAP02]

called the disclosure attack, where it is applied to a whole anonymity system.

They assume that a particular user, Alice, sends messages only to a restricted

set of recipients. They then note that it is possible by observing the recipi-

ent anonymity sets attributed to her messages to extract information about

the ultimate recipients. The attack is generalised by viewing mix networks,

or other anonymity systems, as abstract mixes, since the attack does not

rely upon any particular properties of mixing other than the unlinkability it

provides.

157

158 CHAPTER 9. STATISTICAL DISCLOSURE ATTACKS

b−1 other
senders

Alice’s m
recipients

Abstract Mix

Alice

N recipients

Figure 9.1: A single round of mixing in the abstract model

In this chapter we are going to briefly describe the disclosure attack as

originally presented. A more efficient attack, the statistical disclosure attack,

will then be presented. It requires less computational effort by the attacker

and yields the same results. An analysis of the applicability and efficiency

of the statistical disclosure attack, and a discussion of its relevance to other

systems beyond the formal model is included.

9.1 The disclosure attack revisited

The formal model on which the disclosure attack is based is quite simple. A

single mix is used by b participants each round, one of them always being

Alice, while the other (b − 1) are chosen randomly out of a total number of

N−1 possible participants. The threshold of the mix is b so it fires after each

of the round’s participants has contributed one message. Alice chooses the

recipient of her message to be a random member of a fixed set of m recipients.

Each of the other participants sends a message to a recipient chosen uniformly

at random out of N potential recipients. We assume that the other senders

and Alice choose the recipients of their messages independently from each

other. Figure 9.1 illustrates a round of communication. The attacker observes

R1, . . . , Rt the recipient anonymity sets corresponding to t messages sent out

by Alice during t different rounds of mixing. The attacker then tries to

establish which out of all potential recipients, each of Alice’s messages was

sent to.

9.2. THE STATISTICAL DISCLOSURE ATTACK 159

The original attack as proposed by Kesdogan et al. [KAP02] first tries

to identify mutually disjoint sets of recipients from the sequence of recipient

anonymity sets corresponding to Alice’s messages. This operation is the

main bottleneck for the attacker since it takes a time that is exponential in

the number of messages to be analysed. The underlying method used by

Kesdogan et al is equivalent to solving the Constraints Satisfaction Problem

which is well known to be NP-complete. An analysis of the cost of performing

the attack, and how quickly results are expected, can be found in [AKP03].

The second phase of the algorithm proposed intersects the disjoint sets

found with anonymity sets of messages. When this intersection generates a

set of only one element it is assumed that it is a correspondent of Alice.

9.2 The statistical disclosure attack

We wish to use the same model as above to show that a statistical attack

is possible that yields the set of potential recipients of Alice’s messages. In

turn this set can be used to find the recipients of particular messages sent

out by Alice.

We define as ~v, the vector with N elements corresponding to each poten-

tial recipient of a messages in the system. We also set the values correspond-

ing to the m recipients that might receive messages by Alice to 1
m

and the

others to zero, therefore requiring |~v| = 1. Observe that ~v is the probability

distribution that is used by Alice to choose the recipient of her message for

each round of the abstract mixing as described in the formal model above.

We also define ~u to be equal to the uniform distribution over all potential

recipients N. Therefore all elements of ~u are set to be equal to 1
N

with |~u| = 1.

This vector represents the probability distribution used by all other senders

to select their recipients’ for each round of mixing.

The information provided to the attacker is a sequence of vectors ~o1, . . . , ~ot

representing the recipient anonymity sets observed corresponding to the t

messages sent by Alice. Each of ~oi is the probability distribution assigning

potential recipients to Alice’s message during round i. The adversary will

therefore try to use this information in order to infer ~v that, as described

above, is closely linked to the set of recipients that Alice communicates with.

160 CHAPTER 9. STATISTICAL DISCLOSURE ATTACKS

The principal observation underlying the statistical disclosure attack is

that for a large enough set of observations t it holds true that (by using the

Law of Large Numbers):

Ō =

∑t
i=1 ~oi

t
=

~v + (b − 1)~u

b
(9.1)

It is therefore possible, just from the knowledge of the observations ~o1, . . . , ~ot,

the batch size b of the mix and the model ~u of other senders to calculate ~v,

the set of recipients of Alice:

~v = b

∑t
i=1 ~oi

t
− (b − 1)~u (9.2)

When the vector ~v is reconstructed by the adversary it can then be used

to give an indication on the particular communications partners of Alice in

a round k. The attacker simply multiplies each element of the ~v vector with

each element of the observation ~ok of round k, and normalises the resulting

vector.

~rk =
~v · ~ok

|~v · ~ok|
(9.3)

The elements with highest probability out of ~rk are the most likely recip-

ients of Alice’s message k.

The statistical disclosure attack therefore allows an attacker to identify

all possible recipients m of Alice’s messages and even further to establish

the precise recipients of particular messages in the formal model, with an

arbitrary degree of confidence that, as we will see, depends on the number

of observations t.

9.2.1 Applicability and efficiency

The main drawback of the original disclosure attack was its reliance on solv-

ing an NP-complete problem. The statistical disclosure attack only relies

on collecting observations and performing trivial operations on vectors, and

therefore is computationally cheap and scales very well. Therefore we foresee

the collection of observations, and the calculation of anonymity sets cor-

responding to messages, to be the main computational bottlenecks of an

attacker.

9.2. THE STATISTICAL DISCLOSURE ATTACK 161

0 10 20 30 40 50 60 70 80 90 100
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Receivers

µ
Alice

 + µ
Noise

µ
Noise

lσ
Alice

 + lσ
Noise

lσ
Noise

Figure 9.2: Means and variance of received messages for Alice’s and other’s

recipients

It is important to establish the limits of the statistical disclosure attack

and calculate the number of observations that are necessary in order to reli-

ably perform it. We observe that extracting the vector ~v is a typical signal

detection problem. The problem therefore is to differentiate the signal of

Alice from the noise introduced by the other senders. In this case the signal

strength of Alice is 1
m

t versus the noise strength of the other senders that is

equivalent to b−1
N

t. Note that the signal, namely the volume of messages sent

by Alice, is added to the noise produced by the other senders. For the signal

to noise ratio to be larger than one we require:

Alice’s Signal

Noise Strength
=

1
m

t + 1−b
N

t
1−b
N

t
> 1 ⇒ true (9.4)

The above bound on m provides the necessary condition for a mix sys-

tem following the formal model to be susceptible to the statistical disclosure

attack. It is interesting that the disclosure attack, according to [KAP02] is

only applicable when m < N
b−1

.

162 CHAPTER 9. STATISTICAL DISCLOSURE ATTACKS

It is important to calculate how many observations t are necessary to

reliably retrieve ~v. This depends on the variance of the signal ~v and the

noise (b − 1)~u.

The observations in Ō corresponding to Alice’s recipients have a mean

µAlice = 1
m

t and a corresponding variance of σ2
Alice = m−1

m2 t while the noise has

a mean of µNoise = 1
N

(b− 1)t and a variance of σ2
Noise = N−1

N2 (b− 1)t. We will

need a number of observations t large enough for the mean of the signal to be

larger than the sum of the standard deviations, multiplied by an appropriate

factor to provide us with a satisfactory confidence interval.

µAlice + µNoise − l
√

σ2
Alice + σ2

Noise > µNoise + l
√

σ2
Noise (9.5)

⇒ µAlice > l
√

σ2
Noise + l

√

σ2
Alice + σ2

Noise (9.6)

⇒ 1

m
t > l

(√

N − 1

N2
(b − 1)t +

√

N − 1

N2
(b − 1)t +

m − 1

m2
t

)

(9.7)

⇒ t >

[

ml

(√

N − 1

N2
(b − 1) +

√

N − 1

N2
(b − 1) +

m − 1

m2

)]2

(9.8)

With l = 2 we have a 95% confidence of correct classification, when

determining if a recipient is associated with Alice or not, while l = 3 increases

the confidence to 99%.

9.3 Statistical attacks against a pool mix

So far the statistical disclosure attack has been applied to the exact model

that is described in the previous disclosure attack research [KAP02]. As we

will see, one of the main advantages of the statistical disclosure attack pre-

sented is that it can be generalised and used against other anonymous com-

munication network models. In particular [KAP02] assumes that the anony-

mous network can be abstracted as a large threshold mix, where batches of

messages (of size b) are anonymized together and sent out to their respec-

tive recipients. We will illustrate how the statistical disclosure attack can be

generalised to anonymous communication mechanisms that can be modelled

as pool mixes, or in other words where some messages are fed forward to the

next mixing rounds.

9.3. STATISTICAL ATTACKS AGAINST A POOL MIX 163

We are going to modify the model introduced in [KAP02] to model a pool

mix. It is worth noting that the threshold mix is a special example of a pool

mix, with no messages feeding forward to the next mixing round. Figure 9.3

illustrates the model used for the attack.

The anonymous communication system that we are going to attack works

in rounds from 1 to K. In each round k a number b of messages are put into

the mix from the previous round. We call these messages the pool. A number

B of messages are input from the senders of this particular round. Out of

the B + b messages input in the mix a random subset of size B is output,

and sent to their respective receivers, during a round k. The remaining b

messages stay in the pool for the next round.

One of the senders, Alice, is singled out to be the victim of the attack.

Each time that she has to send a message she selects a recipient randomly

out of a probability distribution described by the vector ~v over all possible

N receivers in the system. Alice does not send in each round (as was the

case in the model described in the previous section) but only sends at rounds

described by the function s(k). Depending on whether it is a round when

Alice sends or not, B − 1 or B other senders respectively, send a message.

They choose the recipient of their messages, each independently, according

to a probability distribution described by the vector ~u, over all possible re-

cipients N . The initial b messages present in the pool at round 1 are also

destined to recipients chosen independently according to the same probability

distribution ~u.

9.3.1 Approximating the model

We are going to define a series of approximations. These approximations

distance the generalised statistical disclosure attack from other exact attacks,

but allow the adversary to make very quick calculations and to decrease the

anonymity of Alice’s set of recipients.

We will first model the input distribution ~ik of recipient of messages of

each round k as being a combination of the distributions ~u and ~v. Depending

on whether Alice sends a message or not the component ~v will be present.

164 CHAPTER 9. STATISTICAL DISCLOSURE ATTACKS

Round 1
B

~o1 = B~i1+b ~π0

B+b

~π0 = ~u

~i1 = ~v+(B−1)~u
B

~πk = B ~ki+b ~πk−1

B+b

Round k + 1~ik+1 = ~v+(B−1)~u
B

~ok+1 = B ~ik+1+b ~πk

B+b

b

B

b

Figure 9.3: The pool mix model and the probability distributions defined.

~ik =







~v+(B−1)~u
B

if s(k) = 1

~u if s(k) = 0
(9.9)

~ik is a vector modelling the distribution of messages expected after a

very large number of rounds with the input characteristic of input round k.

Depending on whether Alice is sending at round k, (s(k) being equal to one),

the appropriate distribution is used to model this input.

At the same time we model the output of each round k, and name it ~ok.

This output is the function of the input distribution at the particular round

k and the distribution of recipients that is forwarded to the present round

via the pool. We call the distribution of recipients that are in the pool ~πk−1.

The output distribution of each round can then be modelled as

~ok =
B~ik + b~πk−1

B + b
(9.10)

By definition ~π0 = ~u and for all other rounds the distribution that rep-

resents the pool has no reason to be different from the distribution that

represents the output of the round. Therefore ~πk = ~ok.

The attacker is able to observe the function s(k) describing the rounds at

which Alice is sending messages to the anonymous communication channel.

9.3. STATISTICAL ATTACKS AGAINST A POOL MIX 165

The adversary is also able to observe for each round the list Ok of receivers,

to whom messages were addressed.

The generalised statistical disclosure attack relies on some approxima-

tions:

• The set of receivers Ok at round k, can be modelled as if they were

each independently drawn samples from the distribution ~ok as modelled

above.

• The outputs of the rounds are independent from each other, and can

be modelled as samples from the distribution ~ok.

Using the samples Ok we will try to infer the distributions ~ok and in turn

infer the distribution ~v of Alice’s recipients.

One can solve equation (9.10) for a given function s(k) and calculate ~ok

for all rounds k. Each distribution ~ok is a mixture of ~u, the other senders’

recipients, and ~v Alice’s recipients. The coefficient xk can be used to express

their relative weights.

~ok = xk~v + (1 − xk)~u (9.11)

By combining Equations (9.9) and (9.10) one can calculate xk as:

xk =
∑

i≤k

s(i)

(
b

B + b

)(i−1)
B

B + b

1

B
(9.12)

This xk expresses the relative contribution of the vector ~v, or in other

words Alice’s communication, to each output in Ok observed during round k.

When seen as a decision tree, each output contained in Ok has a probability

(1 − xk) of being unrelated to Alice’s set of recipients, but of being drawn

instead from another participant’s distribution ~u.

9.3.2 Estimating ~v

The aim of the attack is to estimate the vector ~v that Alice uses to choose

the recipients of her messages. Without loss of generality we will select a

particular recipient Bob, and estimate the probability vBob Alice selects him

as the recipient.

166 CHAPTER 9. STATISTICAL DISCLOSURE ATTACKS

We can calculate the probability of Bob being the recipient of Alice for

each sample we observe in Ok. We denote the event of Bob receiving message

i in the observation Ok as Oki → Bob. Given our approximations we consider

that the particular message Oki was the outcome of sampling ~ok and therefore

by using equation (9.11) we can calculate the probabilities.

Pr[Oki → Bob|vBob, uBob, xk] = (xkvBob + (1 − xk)uBob) (9.13)

Pr[¬Oki → Bob|vBob, uBob, xk] = 1 − (xkvBob + (1 − xk)uBob) (9.14)

As expected, Bob being the recipient of the message is dependent on

the probability Alice sends a message vBob (that is Bob’s share of ~v), the

probability others have sent a message uBob (which is Bob’s share of ~u) and

the relative contributions of Alice and the other’s to the round k, whose

output we examine.

Now applying Bayes’ theorem to Equations (9.13) and (9.14) we estimate

p.

Pr[vBob|Oki → Bob, uBob, xk] =

Pr[Oki → Bob|vBob, uBob, xk] Pr[vBob|uBob, xk]
∫ 1

0
Pr[Oki → Bob|vBob, uBob, xk] Pr[vBob|uBob, xk]dvBob

∼ (xkvBob + (1 − xk)uBob) Pr[Prior vBob]

Pr[vBob|¬Oki → Bob, uBob, xk] =

Pr[¬Oki → Bob|vBob, uBob, xk] Pr[vBob|uBob, xk]
∫ 1

0
Pr[¬Oki → Bob|vBob, uBob, xk] Pr[vBob|uBob, xk]dvBob

∼ (1 − (xkvBob + (1 − xk)uBob)) Pr[Prior vBob]

Note that we choose to ignore the normalising factor for the moment since

we are simply interested in the relative probabilities of the different values of

vBob. The Pr[Prior vBob] term encapsulates our knowledge about vBob before

the observation, and we can use it to update our knowledge of vBob. We will

therefore consider whether each message observed has been received or not

by Bob and estimate vBob considering in each step the estimate of vBob given

the previous data as the a priori distribution1. This technique allows us to

1Since we are calculating relative probabilities we can discard the a priori since it is

the uniform distribution over [0, 1]

9.4. EVALUATION OF THE ATTACK 167

estimate the probability distribution describing vBob given we observed Rk

messages sent to Bob in each round k respectively.

Pr[vBob|(x1, R1) . . . (xl, Rl), uBob]

∼
∏

k

(xkvBob + (1 − xk)uBob)
Rk(1 − (xkvBob + (1 − xk)uBob))

(B−Rk)

The calculation above can be performed for each receiver in the system to

estimate the likelihood it is one of Alice’s receivers. The resulting probability

distributions can be used as an indication of who Alice is communicating

with, and their standard deviations can be used to express the certainty that

this calculation provides.

9.4 Evaluation of the attack

Figure 9.4 shows the set of probability distributions for 50 receivers. In this

case we take the probability distribution ~u to be uniform over all receivers and

Alice to be choosing randomly between the first two receivers and sending

messages for a thousand consecutive rounds (the mix characteristics in this

case were B = 10, b = 0, namely it was a threshold mix). Figure 9.5 shows

the same data for a pool mix with characteristics B = 30, b = 15. Note that

the receivers 1 and 2 are Alice’s and their respective v1 and v2 have different

characteristics from the other receivers.

The same information can be more easily visualised if we take the av-

erage of all the distributions of receivers that do not belong to Alice, and

compare them with the receivers of Alice. Figures 9.6(a) and 9.6(b) show

the distributions of Alice’s receivers and the averaged distributions of other

receivers. The curves can be used to calculate the false positive rates, namely

the probability a receiver has been attributed to Alice but is actually not in

Alice’s set, and false negative, namely a receiver wrongly being excluded from

Alice’s set of receivers.

It is unfortunate that we do not yet have analytic representations for the

means and variances of the distribution describing vreceiver. Such representa-

tions would allow us to calculate the number of rounds for which Alice can

168 CHAPTER 9. STATISTICAL DISCLOSURE ATTACKS

0

10

20

30

40

50

0
20

40
60

80
100

120

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Estimation of v
receivers

Receivers 1...50

P
r

Figure 9.4: Comparing the distributions of vreceiver for B = 10, b = 0

0

10

20

30

40

50

0
20

40
60

80
100

120

0

0.05

0.1

0.15

0.2

0.25

Estimation of v
receiverReceivers 1...50

P
r

Figure 9.5: Comparing the distributions of vreceiverfor B = 30, b = 15

9.5. SUMMARY 169

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

Estimator of p

P
ro

ba
bi

lit
y

Estimation of p
for non receivers

Estimation for
Alices receivers

(a) Comparing the distributions of

v1 and others. B=10, b=0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Estimate of probability v
Receiver

P
r

Other receivers

Alice’s first receiver Alice’s second receiver

(b) Comparing the distributions of

v1, v2 and others. B=30,b=15

send messages, given a particular set of mix characteristics, without being

detected with any significant degree of certainty. The attack presented allows

an attacker to understand where they stand, and how much certainty the at-

tack has lead to, by numerically calculating them. On the other hand the

network designer must simulate the behaviour of the network for particular

characteristics to get some confidence that it does not leak information.

9.5 Summary

In this section we have presented a family of powerful intersection attacks

that can be applied to the whole anonymity system to find the recipients

of particular senders. The first attack models the anonymity system as a

threshold mix, and a detailed analysis of its applicability and efficiency is

provided. The second attack analyses the anonymity system as a pool mix

which should give more realistic results. Bayesian methods are used to ex-

tract the receivers, that have been validated experimentally, but no analysis

has yet been possible. Both attacks are based on a set of carefully selected

approximations that make them extremely efficient and very effective.

170 CHAPTER 9. STATISTICAL DISCLOSURE ATTACKS

Chapter 10

Continuous stream analysis

“Intelligence agencies pursued a ‘vacuum cleaner’ approach to

intelligence collection – drawing in all available information

about groups and individuals, including their lawful political

activity and details of their personal lives.”

Final Report of the Select Committee to Study

Governmental Operations with Respect to Intelligence

Activities of the United States Senate

— 94th Congress, 2nd Session, 1976

Round-based mix strategies, such as the pool mixes presented in section

2.3, provide well-understood anonymity properties. The same is not true for

mixes that operate in continuous-time, by individually delaying messages,

instead of batching then and ejecting them in rounds. Example of these

include timed mixes but also the sg-mix construction presented by Kesdogan

et al. [KEB98]. Its inventors present an analysis of its anonymity, but

this cannot easily be generalised to other mix strategies. Furthermore, the

definitions of anonymity used in Kesdogan’s paper are different from the

newer ones presented here which have, in our view, certain advantages.

We will therefore present a new framework for analysing the anonymity

provided by mix strategies, functioning in continuous-time, that individually

delay messages according to a predetermined strategy. In order to make

the analysis easier, we assume that the rate of arrival of messages to the

171

172 CHAPTER 10. CONTINUOUS STREAM ANALYSIS

mixes is Poisson distributed. Using the work presented here, many different

mix strategies can be analysed but we choose to illustrate our work with an

analysis of an exponential mix (sg-mix), both because it is relatively simple

(but not trivial as the simple timed mix) and because it has been extensively

mentioned in the literature. Furthermore, a section is devoted to showing

that the exponential mix has, given some latency constraints, the optimal

mixing strategy.

We then proceed to show a powerful attack that, given enough packets,

can break the anonymity provided by connection-based mix networks func-

tioning in continuous-time. The attack is based on detecting an input traffic

pattern, at the outputs of the mixes or network, using signal detection and

estimation techniques. A detailed description is given on how to perform

this attack, and confidence intervals are provided to assess how reliable are

the results provided. The attack can be used effectively against many pro-

posed anonymous communications systems such as Onion Routing [RSG98],

TARZAN [FM02] or MorphMix [RP02].

10.1 The delay characteristic of a mix

The main aim of a mix node, as introduced by Chaum in [Cha81], is to hide

the correspondence between its inputs and outputs. First it makes its inputs

and outputs bitwise unlinkable, which means that a third party cannot link

them by observing their bit patterns without knowledge of the cryptographic

keys used to perform the transform. Second it blurs the timing correlations

between inputs and outputs by batching, introducing appropriate random

delays, or reordering the messages. Continuous-time mixes employ a family

of mixing strategies that simply delay each message independently of the

others.

We can say that a particular mix strategy is characterised by its delay

characteristic. This is a function f(β|α) that calculates the probability a

message injected in the mix at time α leaves the mix at time β, where α ≤ β.

Since f(β|α) is a conditional probability distribution, it is normalised.

∀α.

∫ +∞

α

f(β|α) dβ = 1 . (10.1)

10.1. THE DELAY CHARACTERISTIC OF A MIX 173

The inverse delay characteristic, f ′(α|β), of the same mix strategy is a

probability distribution that describes the likelihood a message being ejected

at time β was injected at time α. Again because it is a conditional probability

distribution it is normalised.

∀β.

∫ β

−∞

f ′(α|β) dα = 1 . (10.2)

It is obvious that the two characteristics are related. Indeed the second

f ′ can be calculated using Bayes theorem from f . Some knowledge of the

probability of arrivals at particular times is necessary to perform this con-

version. In order to simplify the analysis we will consider that arrivals are

Poisson distributed with a rate λα. We rely on the fact that in a Poisson

process, the probability of an arrival is independent from other arrivals and

the particular time α.

f ′(α|β) =
f(β|α)Pr[Arrival at α]

∫ β

−∞
f(β|α)Pr[Arrival at α] dα

(10.3)

=
f(β|α)

∫ β

−∞
f(β|α) dα

(10.4)

Therefore, given the delay characteristics and some assumptions about

the traffic in the network we can calculate the inverse delay characteristic.

As we will see, these will allow us to measure the effective sender and receiver

anonymity sets for this mix strategy.

10.1.1 Effective sender anonymity sets

We will use the metric introduced in section 2.3 to calculate the sender

anonymity that a particular mix strategy provides. This metric is based

on creating a random variable that describes the possible senders of a de-

parting message and calculating the entropy of its underlying probability

distribution. The value of the entropy is then a measure of the anonymity

provided, and can be interpreted as the amount of information an attacker

is missing to deterministically link the messages to a sender.

We assume that in a time interval (β−T, β), K messages arrive at the mix,

where K is distributed according to a Poisson distribution with parameter

174 CHAPTER 10. CONTINUOUS STREAM ANALYSIS

λαT . These messages arrive at times X1...K each distributed according to a

uniform distribution U(t) over the time interval of length T .

Given that the inverse delay characteristic of the mix is f ′(α|β) the

anonymity provided by the mix can be calculated.

A =
K∑

i=1

f ′(Xi|β)
∑K

j=1 f ′(Xj|β)
log

f ′(Xi|β)
∑K

j=1 f ′(Xj|β)
(10.5)

=
1

∑K
j=1 f ′(Xj|β)

(
K∑

i=1

f ′(Xi|β) log f ′(Xi|β)

)

− log
K∑

j=1

f ′(Xj|β) (10.6)

From the Law of Large Numbers we know that the sums will respectively

converge.

K∑

j=1

f ′(Xj|β) → K

T
(10.7)

K∑

i=1

f ′(Xi|β) log f ′(Xi|β) → K

T

∫ β

β−T

f ′(t|β) log f ′(t|β)dt (10.8)

Thus the fraction K/T converges to λα, which is the rate of arrival of mes-

sages to the mix and the integral above reduces to the entropy of the inverse

delay characteristic function E [f ′(α|β)]. Therefore the sender anonymity of

a continuous mix with this delay characteristic f ′ and a rate of arrival λα

can be expressed.

A → E [f ′(α|β)] − log λα (10.9)

Putting this into words, the effective sender anonymity set size of the

mixing strategy will converge towards the relative entropy of the inverse

delay characteristic, as defined by Shannon [Sha48], minus the logarithm of

the rate at which messages are received. Similarly the recipient anonymity set

size can be calculated using the same techniques and the delay characteristic

of the mix strategy.

10.1.2 The exponential mix

In order to illustrate how to quantify the anonymity provided by a continuous

mixing strategy we will present an analysis of the exponential mix. The

10.1. THE DELAY CHARACTERISTIC OF A MIX 175

exponential mix has been presented as a mixing strategy by Kesdogan et

al. [KEB98], but in his design additional features are implemented to avoid

(n − 1) attacks [GT96, SDS02].

The exponential mix can be abstracted as an M/M/∞ queue. We assume,

as required from the calculations above, the arrival rates of messages to be

Poisson distributed with rate λα. Each of the messages that arrives at the

Mix is delayed according by a random variable that follows the exponential

distribution with parameter µ. Therefore the delay characteristic of the

exponential mix is

f(β|α) = µe−µ(β−α) . (10.10)

From equation (10.4) we can calculate the inverse delay characteristic,

and see that is equal to the delay characteristic, due to the nature of the

exponential distribution.

f ′(α|β) =
f(β|α)

∫ β

−∞
f(β|α) dα

(10.11)

= f(β|α) (10.12)

= µe−µ(β−α) (10.13)

Using the inverse delay characteristic, and (10.9) we can now calculate

the expected sender anonymity set size. As defined previously, E [·] is the

entropy function.

E [Pr[α]] → E [f ′(α|β)] − log λα (10.14)

=

∫ β

−∞

µe−µ(β−α) log µe−µ(β−α) dα − log λα (10.15)

= − log
λαe

µ
(10.16)

To check the above result a simulation was run for some values of λα and

µ, and the results were compared with the metric predictions in equation

(10.16). The inverse delay characteristic was used to calculate the probability

assigned to a number of messages arriving at a mix. The number of messages

was Poisson distributed according to λα, and their time of arrival was chosen

uniformly. Their delay was a random variable distributed according to the

176 CHAPTER 10. CONTINUOUS STREAM ANALYSIS

0

5

10

15

20
0

5

10

15

20

25

30

−1

0

1

2

3

lambda

Difference between model and simulation

mu

D
iff

er
en

ce

Figure 10.1: Absolute difference between metric and simulation

0

5

10

15

20
0

5
10

15
20

25
30

−7

−6

−5

−4

−3

−2

−1

0

lambda

Simulation results

mu

E
nt

ro
py

(a) Exponential mix simulation re-

sults

0

5

10

15

20
0

5

10

15

20

25

30

−8

−6

−4

−2

0

2

4

lambda

Entropy predicted by model

mu

E
nt

ro
py

(b) Metric predictions for exponen-

tial mix

10.1. THE DELAY CHARACTERISTIC OF A MIX 177

exponential distribution with rate µ. The results are presented in figure 10.1.

It is worth noting that the main divergence of the simulated results from

the predicted results, is in the region where the metric predicts positive values

for the entropy. This is intuitively impossible and indeed is the largest error

from the actual simulation results. The conditions for which the model, that

the equation (10.16) describes, should not be considered accurate is described

by:

− log
λαe

µ
> 0 (10.17)

µ > λαe (10.18)

It is clear that an M/M/∞ queue with a departure rate µ larger than the

arrival rate λα would not provide much anonymity most of the time. The

average time a message would spend in the mix is 1
µ

while the average time

between message arrivals is 1
λα

, which is larger. Therefore the mix would

behave most of the time as a first-in first-out queue.

10.1.3 The timed mix

A simpler example that also illustrates the method introduced to calculate

the anonymity of a mix strategy, is the timed mix. A timed mix gathers

messages for a period of time t and sends them all in a batch at the end of

this period. Its inverse delay characteristic is easier to express than the delay

characteristic and is equal to:

f ′(α|β) =

{
1
t

if α > β − t

0 if α ≤ β − t
(10.19)

The effective sender anonymity set size can then be calculated using equa-

tion (10.9).

H →
∫ β

−∞

f ′(α|β) log f ′(α|β) dα − log λα (10.20)

=

∫ β

β−t

1

t
log

1

t
dα − log λα (10.21)

= − log λαt (10.22)

178 CHAPTER 10. CONTINUOUS STREAM ANALYSIS

Since positive values mean that no anonymity at all is provided, we require

the above to be negative for the system to provide any mixing.

− log λαt < 0 (10.23)

t >
1

λα

(10.24)

10.1.4 The latency of a mix strategy

The delay characteristic of a mix can also be used to calculate the latency

introduced by a mix strategy, and its variance. This can be done trivially

since the latency of the mix strategy is the expectation E[·] of the delay

characteristic function f(β|α).

E[f(β|α)] =

∫ +∞

α

(β − α) f(β|α) dβ (10.25)

Similarly the variance V [·] of the delay can be calculated using the ex-

pectation:

V [f(β|α)] =

∫ +∞

α

(E[f(β|α)] − (β − α))2 f(β|α) dβ (10.26)

For the exponential mix presented in the previous section the mean delay

is 1
µ

and the variance is 1
µ2 .

10.1.5 Optimal mixing strategies

So far, we have described how to measure a continuous-time mix’s anonymity,

latency and variance, given its delay strategy. The next natural problem is

finding a mix strategy that maximises entropy, and therefore anonymity.

Without any constraints the uniform constant distribution f in the in-

terval [0, +∞) is optimal. This function would clearly be impractical for

mixing since the latency of messages would be unpredictable. Furthermore

the length of the queues in the mixes would tend to infinity, which makes

such a mix strategy impossible to implement.

We need to find a distribution f with a particular mean a, which rep-

resents the average latency of the mix. Furthermore because of causality,

10.2. TRAFFIC ANALYSIS OF CONTINUOUS MIXES 179

namely a packet only being able to leave the mix after it arrived, the func-

tion f can only occupy half the line, namely the interval [0, +∞). We need

to prove that the optimal probability distribution f is the exponential prob-

ability distribution. This result was first proved by Shannon [Sha48] using

techniques from the calculus of variations [Wei74]. We want to minimise:

E[f(x)] = −
∫ −∞

0

f(x) log f(x)dx (10.27)

Subject to the constraints:

a =

∫ −∞

0

xf(x)dx (10.28)

∫ −∞

0

f(x)dx = 1 (10.29)

Then by the calculus of variations we must solve:

∂(−f(x) log f(x) + λxf(x) + µf(x))

∂f
= 0 (10.30)

⇒ −1 − log f(x) + λx + µ = 0 (10.31)

⇒ f(x) = eλx+µ−1 (10.32)

By using the constraints, the resulting function is:

f(x) =
1

a
e−

1
a
x (10.33)

This is exactly the exponential mix as analysed in section 10.1.2.

10.2 Traffic analysis of continuous mixes

In the previous sections we have considered the anonymity of single packets

mixed using a continuous-time mixing strategy. Continuous-time mixes can

approximate circuit-based systems, since they implement minimal mixing

trying to provide real-time communications. In such systems a number of

packets, all belonging to the same stream, are routed through the same route

in the network.

The Onion Routing project [STRL00] first drew the community’s atten-

tion to the need for traffic padding to protect against fine-grained traffic

180 CHAPTER 10. CONTINUOUS STREAM ANALYSIS

analysis. Since then many publications have discussed traffic analysis and

possible defences against it [BMS01, Ray00]. Others refer to the same prob-

lem in the context of intersection attacks [BPS00, BL02, KAP02] and present

padding as a potential protection.

Some previous work has drawn attention to the vulnerabilities of anony-

mous systems to “timing” attacks [RP02], but only Kesdogan et al. present a

concrete attack [KAP02]. We will now present a very general way of perform-

ing traffic analysis on streams of packets travelling through the same route

in a continuous-time mix network. We will show that after a certain number

of messages, that can be calculated, the communication can be traced with

high confidence.

10.2.1 Concrete traffic analysis techniques

We denote as f(t) the function that describes the traffic on one of the input

links of a continuous mix with delay characteristic d(x). We assume that all

messages described by f(t) belong to the same stream, and will therefore be

ejected on the same output link.

An attacker might acquire the knowledge that a series of messages belong

to the same stream in a number of ways. The simplest one is by observing

unpadded links at the edges of the mix network. A subverted node will also

be able to link messages to streams. We will assume that there are two

output links. The attacker’s aim is to determine on which output link the

stream is redirected.

On the first link we observe messages coming out at times X1···n and

on the second link messages come out at times Y1···m in the time interval

[0, T]. H0 represents the hypothesis the input stream f(t) is interleaved in

the first channel described by the observations Xi, and H1 that is in the

second corresponding with Yi.

In order to detect the streams we will make some approximations.We will

create two model probability distributions CX and CY and will assume that

all messages in the output channels are independent samples out of one of

these distributions. The difference between CX and CY is due to our attempt

to model the noise in the two output channels. We will also consider that all

10.2. TRAFFIC ANALYSIS OF CONTINUOUS MIXES 181

the other messages are uniformly distributed in the interval [0, T] according

to the distribution U(t) = u.

When H0 is true the stream under observation is interleaved in the obser-

vations Xi. We will model each of them as following probability distribution:

CX(t) =
λf (d ∗ f)(t) + (λX − λf)U(t)

λX

(10.34)

In the above probability distribution (d ∗ f) is the convolution of the

input signal with the delay characteristic of the mix. The probability a

message delayed by d(x) is output at time t given an input stream of messages

described by f(t) is described by this convolution.

(d ∗ f)(t) =

∫

d(x)f(t − x)dx (10.35)

Furthermore λf is the rate of messages in the input signal, while λX is

the rate of the output channel. Finally U(t) = u is the uniform distribution

in the interval [0, T].

Similarly if hypothesis H1 is true, the signal is interleaved in the obser-

vations Yi that follow the distribution:

CY (t) =
λf (d ∗ f)(t) + (λY − λf)U(t)

λY

(10.36)

In order to decide which of the two hypothesis is valid, H0 or H1, we can

calculate the likelihood ratio of the two alternative hypothesis.

L(H0|Xi, Yj)

L(H1|Xi, Yj)
=

∏n
i=1 CX(Xi)

∏m
j=1 u

∏n
i=1 u

∏m
j=1 CY (Yj)

> 1 (10.37)

We choose to accept hypothesis H0 if the condition (10.37) is true, and

hypothesis H1 otherwise. Section 10.2.3 will show how we calculate our

degree of confidence when making this choice.

10.2.2 Observations

Figure 10.2 shows six diagrams illustrating the traffic analysis attack. The

first column represents, from top to bottom, the signal that we inject in a mix

and the two output channels, one of which contains the delayed signal. The

182 CHAPTER 10. CONTINUOUS STREAM ANALYSIS

0 200 400 600 800 1000
0

0.5

1

1.5

2
Signal f(t)

0 100 200 300 400
0

0.01

0.02

0.03

0.04
Delay d(x)

0 200 400 600 800 1000
0

0.5

1

1.5

2

Output link 1, X
i

0 200 400 600 800 1000
0

1

2

3
x 10−3 Convolution (f*d)

0 200 400 600 800 1000
0

1

2

3

Output link 2, Y
i

0 200 400 600 800 1000
−0.01

0

0.01

0.02
Decision

Figure 10.2: Final and intermediate results of traffic analysis.

right hand side column represents the delay characteristic of the network, an

exponential distribution in this case (sg-mix), the “model” that is created by

convolving the input signal with the delay characteristic and, at the bottom,

the log-likelihood ratio.

The “noise” in the above experiments is assumed to be a Poisson pro-

cess. Noise is added both to the channel that contains the stream under

surveillance (in this case link 1, Xi) and the other link (Yi). The rate of the

signal f(t) in the traffic analysis graphs shown above is 50 messages, while

the noise added in Xi has a rate of 150 messages. The second link contains

random padding with a rate of 200 messages (Yi). The delay characteristic

d(x) chosen to illustrate the traffic analysis technique is exponential with a

departure rate of 30. The graphs therefore illustrate the traffic analysis of

an sg-mix node. The decision graph presents the logarithm of the likelihood

ratio log
L(H0|Xi,Yj)

L(H1|Xi,Yj)
, as an attacker would compute it at each point in the

simulation time.

10.2. TRAFFIC ANALYSIS OF CONTINUOUS MIXES 183

10.2.3 Performance of the traffic analysis attack

There are two question that need to be answered concerning the traffic anal-

ysis attack presented. First the conditions under which it is at all possible

must be established. Second the number of observations necessary to get

reliable results has to be calculated.

By simple mathematical manipulations with logarithms, we can derive

that the likelihood ratio test, applied to select the most appropriate hypoth-

esis can be expressed using sums of random variables:

LH0/H1 =
L(H0|Xi, Yj)

L(H1|Xi, Yj)
=

∏n
i=1 CX(Xi)

∏m
j=1 u

∏n
i=1 u

∏m
j=1 CY (Yj)

> 1 (10.38)

⇒
n∑

i=1

log CX(Xi) + m log u > n log u +
m∑

j=1

log CY (Yj) (10.39)

⇒ logLH0/H1
=

n∑

i=1

log CX(Xi) −
m∑

j=1

log CY (Yj) + (m − n) log u > 0

(10.40)

The expression above is the rule by which we choose the hypothesis to

accept. The condition for which the attack is possible is that the decision

rule above must equal to zero. This could be the case if both CX and CY

were the uniform distribution.

But even through the inequality might hold it does not give us any mea-

sure of confidence in the result. We will therefore attempt to find bounds

within which we are confident that the decision is correct.

Note that the two sums will converge to the expectations nE [log CX(X)|Xi ∼ X]

and mE [log CY (Y)|Yj ∼ Y]. The notation Xi ∼ X means that the samples

Xi are sampled from the distribution X, and the samples Yj from the distri-

bution Y . The two distributions X and Y are different according to the two

hypothesis accepted. In case H0 then Xi ∼ CX , Yj ∼ U . Alternatively if H1

is true then Xi ∼ U and Yj ∼ CY .

Without losing generality we will demonstrate when to accept hypothesis

H0. The derivations are the same in the other case.

In case the hypothesis H0 is correct, E [log CX(X)|H0 : Xi ∼ CX] con-

verges to the entropy of the probability distribution CX(t), denoted E [CX(t)],

184 CHAPTER 10. CONTINUOUS STREAM ANALYSIS

since the probabilities assigned to each value of the random variable log CX(X)

follow the distribution CX .

E [log CX(X)|H0 : Xi ∼ CX] =

∫ T

0

CX(t) log CX(t)dt = E [CX(t)] (10.41)

On the other hand E [log CY (Y)|H0 : Yj ∼ U] converges to the expecta-

tion of CY namely E [log CY (t)].

E [log CY (Y)|H0 : Yj ∼ U] =

∫ T

0

1

T
log CY (t)dt = E [log CY (t)] (10.42)

Therefore in case we accept hypothesis H0 the expected value of the

decision rule logLH0/H1
(10.40) is µH0 :

µH0 = E

[
n∑

i=1

log CX(Xi) −
m∑

j=1

log CY (Yj) + (m − n) log u|H0

]

=

nE [log CX(X)|H0] − mE [log CY (Y)|H0] + (m − n) log u =

nE [CX(t)] − mE [log CY (t)] + (m − n) log u (10.43)

The variance can be calculated using the above observations:

V [log CX(X)|H0] =

∫ T

0

CX(t)(log CX(t) − E [CX(X)])2dt (10.44)

V [log CY (Y)|H0] =
1

T

∫ T

0

(log CY (t) − E [log CY (Y)])2dt (10.45)

Using these we will calculate the variance σ2
H0

of the decision rule logLH0/H1

(10.40) is:

σ2
H0

= V

[
n∑

i=1

log CX(Xi) −
m∑

j=1

log CY (Yj) + (m − n) log u|H0

]

=

= nV [log CX(X)|H0] + mV [log CY (Y)|H0] (10.46)

Using Chebyshev’s inequality we can derive that in order to accept hy-

pothesis H0 with confidence p it must hold that:

p = Pr
[∣
∣logLH0/H1

− µH0

∣
∣ ≥ µH0

]
≤ σ2

H0

µ2
H0

⇒ (10.47)

p ≤ σ2
H0

µ2
H0

(10.48)

10.3. FURTHER CONSIDERATIONS AND FUTURE WORK 185

An equivalent test can be derived to assess our confidence when accepting

hypothesis H1.

10.3 Further considerations and future work

The work presented in this chapter measures the average anonymity provided

by a mix strategy. One of the important assumptions is that the expected

number of messages is received in any time interval t, namely λαt. The

actual number of messages received in any interval may vary according to

the Poisson distribution. Should a mix be flooded by the attacker’s messages

the rate needs to be adjusted to the level of genuine traffic. The rgb-mix

strategy could be a way of calculating this.

Mix strategies that take into account the number of messages queueing

or that adapt their parameters according to the rate of arrival of messages

have not been explicitly studied. The metric proposed should still be usable

with them, although their delay characteristic function may be dependant

of additional factors such as the rate of arrival of messages λα. We expect

the functions depending on the delay characteristic, such as the mean and

variance of the latency, to still be usable.

10.3.1 Traffic analysis of streams

Much more work needs to be done on how far the traffic analysis attack

presented on stream-based anonymity systems can be exploited. Techniques

from transient signal detection, as surveyed in [WW00], can be used as a

theoretical foundation for such traffic analysis.

The attack assumes that an adversary can observe a “naked” stream

somewhere in the network, in order to build a model later used for detection.

This assumption might be invalidated if cover traffic is used on all links, but

variants of the attack might still work. Some preliminary results suggest that

good models can be created despite this.

The attack can be performed by a passive adversary, without any knowl-

edge of the relationships between packets on the attacked links. When an

attacker knows the relationship between packets in the same stream, as a

186 CHAPTER 10. CONTINUOUS STREAM ANALYSIS

subverted node would, it is much easier to perform the statistical tests since

the cover traffic can in fact be discarded.

Furthermore the attacks are passive, in the sense that the attacker does

not modify in any way the characteristics of the traffic. An active attacker

would modulate the input traffic in order to maximise the chances of de-

tecting it. Techniques used might be to introduce periodicity, allowing for

periodic averaging for noise cancellation, injecting patterns of traffic1 special

designed to be easily detected. Unless the anonymity system takes special

steps beyond delaying the traffic to destroy such structure, traffic streams

will quickly be traceable.

10.4 Summary

The information theoretic anonymity metric is adapted to describe the prop-

erties of mixes that simply delay individual packets. We discovered that the

optimal delaying strategy is the exponential mix, for which we calculate the

anonymity and latency.

A very powerfully attack is then presented that traces streams of messages

following the same path through a delaying mix network. We present the

conditions under which it is possible, and derive expressions that an adversary

can use to assess his confidence. This attack is applicable to systems that

provide real-time anonymous communications and leaves us very sceptical

about the possibility of secure and efficient such constructions.

1Markus Kuhn was the first to observe this.

Chapter 11

Conclusions and future work

“Whoever thinks his problem can be solved using cryptogra-

phy, doesn’t understand his problem and doesn’t understand

cryptography.”

— Roger Needham or Butler Lampson

During our three years of work in the field of anonymous communications

we have discovered a series of attacks, proposed new systems and provided a

framework for understanding anonymity.

Mixminion, presented in chapter 5, is recognised as the state-of-the-art

anonymous remailer. At the time of writing the alpha reference implemen-

tation1 runs on twenty six machines, and is fully usable. Due to the secure

reply block facilities and other features, the remailer community has agreed

that it will gradually phase out the older Cypherpunk and Mixmaster re-

mailers. Mixminion shows that the cryptographic security of mix systems

is now well understood, and secure systems can be constructed to leak very

little information.

While Mixminion provides very good security against passive or active

attackers and subverted nodes, operators are still liable to be compelled to

decode messages. For this reason we explore in detail how messages can

be traced in a network, and design the fs-mix to provide forward secure

anonymity (chapter 6).

1Implemented and maintained by Nick Mathewson.

187

188 CHAPTER 11. CONCLUSIONS AND FUTURE WORK

The static security aspects of anonymous communications are well under-

stood, and time has come to build systems using them. Section 5.4 presents

the design of a secure pseudonym server, to act as a gateway between the

world of anonymous communications and regular email. It also presents the

Who am I? attack reminding us that such protocols must be implemented

with care, not to jeopardise the anonymity of users.

On the other hand the dynamic aspects of mixing and anonymous com-

munications have not been previously studied in such depth. We contributed

to this field by providing a technical definition for anonymity described in

section 2.3. This definition, based on information theory, brings anonymity

measures in line with traditional security measures. It also allows systems

that bear little other resemblance to be compared and partial attacks to be

expressed2.

The anonymity metric is used to assess how mixes can be arranged in fully

connected or sparse networks to relay traffic (chapter 7). For the first time

a full analysis of the impact of these topologies on anonymity is provided. A

new topology based on expander graphs proves to be quite effective: messages

need to only travel for a few hops and less traffic is needed to protect the

network against traffic analysis.

Although the work on network topologies examines how much anonymity

is provided against a passive adversary it fails to address active attackers.

In order to prevent such attackers flooding honest nodes to perform traffic

analysis, we have engineered the rgb-mix, in chapter 8. Such a mix uses active

countermeasures to detect if it is under attack, and if necessary uses cover

traffic to maintain the anonymity it provides.

The analysis of network topologies and the active countermeasures against

flooding attacks ensure it is difficult to perform traffic analysis, and therefore

extract any information from observing the working of mix networks. On the

other hand they do not protect against an attacker that draws inferences by

observing all inputs and outputs to the whole network. Such attacks are

2This by itself is important for an academic field to grow, since partial attacks can

be the subject of publications. Imagine how backwards the field of block cipher security

would be if the insecurity introduced by differential and linear cryptanalysis could not be

quantified.

189

presented and analysed in chapter 9. These statistical attacks will, in the

long run, always uncover the user’s persistent patterns of communication.

Even more devastating attacks have been devised against anonymizing

networks that hardly mix, and simply delay and interleave streams. Chapter

10 presents an anonymity analysis of such mix strategies, and uses it to

calculate the strategy providing maximal anonymity. It then presents an

attack, based on statistical pattern recognition, that traces streams of traffic

through the network.

When possible, and inspired by our anonymity metric, we have attempted

to provide a full analysis of both the defences and attacks proposed. As a

result we have laid engineering foundations for a whole section of the field of

traffic analysis that used to be considered a black art.

A lot of work [SK03, MNCM03, MNS] has been inspired by the anonymity

metric proposed in section 2.3, which is quite expressive. What is still ques-

tionable is how it can be used as a tool to understand complex anonymizing

networks by measuring the anonymity offered by their components. The

composition rules are a first step in this direction.

Mixminion offers the core of an anonymizing channel for email traffic, but

a lot of its peripheral infrastructure is still not well defined. Open questions

include the impact of crooked directory servers, reliable transmission pro-

tocols that are not prone to traffic analysis, and implementing anonymous

services at higher layers. The conservatism of the design also imposes some

overheads that could be simplified, as discussed at the end of chapter 5. A

formal analysis of the bitwise unlinkability properties of the packet format,

might allow us to simplify it further. More research is also needed to make

sure that Mixminion is not prone to denial-of-service attacks.

Given that compulsion threats are very realistic, much more research

should be done on forward security and plausible deniability properties. It is

an embarrassing realisation that most anonymous communication protocols

are not receipt-free, and cannot therefore be used for electronic elections.

Receipt-freeness and plausible deniability properties could also be sought in

190 CHAPTER 11. CONCLUSIONS AND FUTURE WORK

future mix network architectures in order to protect the mix node operators

from compulsion attacks.

The work on mixing using sparse networks, presented in chapter 7, needs

to be extended for the case of networks with highly dynamic membership.

This could answer some questions about the anonymity provided by peer-to-

peer mix networks, such as Tarzan. Generally solutions to other problems,

such as peer discovery and route reconstruction attacks, presented in section

4.2.7, have to be found before the peer-to-peer paradigm can effectively be

used for mixing.

Taking active steps to avoid flooding attacks, as the rgb-mix does, and

making nodes aware of their environment, is a new field that may well lead

to interesting new systems and attacks. The active monitoring for colluding

nodes performed by MorphMix [RP02] is a step in this direction. More

research is required on how traffic padding can be used in a well-understood

manner, rather than to confuse everyone (including the designers) about the

security of the system.

Both statistical disclosure attacks and the attack presented against continuous-

time streams illustrate the difficulty of properly anonymising persistent com-

munications between two parties. A lot more research is required on the

attacks themselves. In particular they are based on some approximations

that, while validated experimentally, are not fully understood. Protecting

again such attacks is then the next challenge.

Anonymous communications, aside from their military applications, were

once presented as the straightforward solution to protecting one’s privacy

in an increasingly surveilled world. This thesis illustrates the dangers of

unconditionally adopting such an attitude.

We have shown that low-volume, high-latency email anonymous commu-

nications can be secured by a system such as Mixminion for a finite number

of message exchanges. The packet formats are cryptographically robust and

can even be modified to resist compulsion attacks. On the other hand, the

statistical disclosure attacks clearly show that the anonymity of long-term

191

conversations will eventually be compromised. Therefore anonymous com-

munications can only offer tactical, and not strategic, protection against a

global passive adversary.

On the other hand, high-volume, low-latency communications, as required

for web browsing, seem immediately susceptible to attack. The statistical

disclosure attacks and the attacks against continuous-time stream-based mix

systems leaves us very sceptical about the possibility of securing them. Fur-

thermore approaches such as peer-to-peer systems, contrary to popular be-

lief, seem to offer a lesser degree of protection. They are susceptible to peer

discovery attacks as with Tarzan, and they offer weaker protection against

traffic analysis because their topologies spread the traffic too thinly across

large numbers of links.

Our results might at first appear very negative. It is worth keeping in

mind that the threat models we used are harsh, and that adversaries will need

huge resources in order to mount such attacks. A new line of research should

assess how these techniques protect individuals and organisations against

weaker threat models.

These conclusions might also be disturbing because a lot of protocols per-

forming other security tasks, such as censorship resistance, have traditionally

assumed anonymous channels. Peer-to-peer protocols in turn assumed that

large amounts of data can be transported anonymously to do file sharing.

Unless some unforeseen breakthrough is made, such channels seem unlikely

to materialise in the near future.

The assumption of the existence of secure anonymous channels has for a

long time encouraged protocol and network designers to explore particular

avenues. Maybe these negative conclusions should be a new beginning. It is

time for all of us to go back and perform some solid requirements engineering

and design work to find out if the same properties can be offered using weaker,

purpose specific anonymity, or even no anonymous channels at all.

192 CHAPTER 11. CONCLUSIONS AND FUTURE WORK

Bibliography

[AB96] Ross Anderson and Eli Biham. Two practical and provably se-

cure block ciphers: BEAR and LION. In D. Gollmann, editor,

International workshop on Fast Software Encryption, volume

1039 of LNCS, pages 113–120, Cambridge, UK, 1996. Springer-

Verlag.

[Abe98] Masayuki Abe. Universally verifiable MIX with verification work

independent of the number of MIX servers. In K. Nyberg, editor,

Advances in Cryptology (Eurocrypt’98), volume 1403 of LNCS,

pages 437–447, Helsinki, Finland, 31 May–4 June 1998. Springer-

Verlag.

[ACL+99] Ross Anderson, Bruno Crispo, Jong-Hyeok Lee, Charalampos

Manifavas, Vaclav Matyas, and Fabien Petitcolas. The Global

Internet Trust Register. MIT press, 1999. ISBN: 0262511053.

[AES01] Advanced Encryption Standard, FIPS-197. National Institute of

Standards and Technology, November 2001.

[AKP03] Dakshi Agrawal, Dogan Kesdogan, and Stefan Penz. Proba-

bilistic treatment of mixes to hamper traffic analysis. In IEEE

Symposium on Security and Privacy, pages 16–27, Berkeley, CA,

USA, May 2003. IEEE Computer Society.

[And96] Ross Anderson. The eternity service. In 1st Interna-

tional Conference on the Theory and Applications of Cryptol-

ogy (Pragocrypt ’96), pages 242–252, Prague, Czech Republic,

193

194 BIBLIOGRAPHY

September/October 1996. Czech Technical University Publish-

ing House.

[And97] Ross Anderson. Two remarks on public-key cryptology.

Available at http://www.cl.cam.ac.uk/ftp/users/rja14/

forwardsecure.pdf, 1997. Invited Lecture, ACM-CCS ’97.

[ANS98] Ross Anderson, Roger Needham, and Adi Shamir. The stegano-

graphic file system. In David Aucsmith, editor, Information

Hiding (IH’98), volume 1525 of LNCS, pages 73–82, Portland,

Oregon, USA, 15-17 April 1998. Springer-Verlag.

[AR00] Michel Abdalla and Leonid Reyzin. A new forward-secure digital

signature scheme. In Tatsuaki Okamoto, editor, Advances in

Cryptology (Asiacrypt 2000), volume 1976 of LNCS, pages 116–

129, Kyoto, Japan, December 2000. Springer-Verlag.

[Bac] Adam Back. Hashcash — a denial of service counter-measure.

http://www.hashcash.org/.

[Bau97] Friedrich Ludwig Bauer. Decrypted secrets. Springer-Verlag,

1997. ASIN: 3540604189.

[BB00] Mihir Bellare and Alexandra Boldyreva. The security of Chaffing

and Winnowing. In T. Okamoto, editor, Advances in Cryptol-

ogy (Asiacrypt 2000), page 517, Kyoto, Japan, January 2000.

Springer-Verlag.

[BBDP01] Mihir Bellare, Alexandra Boldyreva, Anand Desai, and David

Pointcheval. Key-privacy in public-key encryption. In Colin

Boyd, editor, Advances in Cryptology (Asiacrypt 2001), volume

2248 of LNCS, pages 566–582, Gold Coast, Australia, 9-13 De-

cember 2001. Springer-Verlag.

[Bea96] D. R. Beaver. Plausible deniability. In 1st International

Conference on the Theory and Applications of Cryptology

(Pragocrypt ’96), pages 272–288, Prague, Czech Republic,

BIBLIOGRAPHY 195

September/October 1996. Czech Technical University Publish-

ing House.

[BFK00] Oliver Berthold, Hannes Federrath, and Stefan Köpsell. Web

MIXes: A system for anonymous and unobservable Internet ac-

cess. In H. Federrath, editor, Designing Privacy Enhancing Tech-

nologies, volume 2009 of LNCS, pages 115–129. Springer-Verlag,

July 2000.

[BG03] Krista Bennett and Christian Grothoff. GAP – practical anony-

mous networking. In Roger Dingledine, editor, Privacy Enhanc-

ing Technologies workshop (PET 2003), volume 2760 of LNCS,

pages 141–160. Springer-Verlag, March 2003.

[BGS01] Adam Back, Ian Goldberg, and Adam Shostack. Freedom sys-

tems 2.1 security issues and analysis. White paper, Zero Knowl-

edge Systems, Inc., May 2001.

[Bha72] U. Narayan Bhat. Elements of applied stochastic processes. John

Wiley & Sons, Inc., 1972.

[BL02] Oliver Berthold and Heinrich Langos. Dummy traffic against

long term intersection attacks. In Roger Dingledine and Paul

Syverson, editors, Privacy Enhancing Technologies workshop

(PET 2002), volume 2482 of LNCS, pages 110–128. Springer-

Verlag, 2002.

[BM99] Mihir Bellare and Sara Miner. A forward-secure digital signa-

ture scheme. In Michael Wiener, editor, Advances in Cryptology

(Crypto’99), volume 1666 of LNCS, pages 431–448, Berlin Ger-

many, 15-19 August 1999. Springer-Verlag.

[BMS01] Adam Back, Ulf Möller, and Anton Stiglic. Traffic analysis at-

tacks and trade-offs in anonymity providing systems. In Ira S.

Moskowitz, editor, Information Hiding workshop (IH 2001), vol-

ume 2137 of LNCS, pages 245–257. Springer-Verlag, April 2001.

196 BIBLIOGRAPHY

[BPS00] Oliver Berthold, Andreas Pfitzmann, and Ronny Standtke. The

disadvantages of free MIX routes and how to overcome them. In

H. Federrath, editor, Designing Privacy Enhancing Technologies,

volume 2009 of LNCS, pages 30–45. Springer-Verlag, July 2000.

[BR95] Mihir Bellare and Phillip Rogaway. Optimal asymmetric en-

cryption — How to encrypt with RSA. In A. De Santis, editor,

Advances in Cryptology (Eurocrypt ’94), volume 950 of LNCS,

pages 92–111. Springer-Verlag, 1995.

[BSG00] Philippe Boucher, Adam Shostack, and Ian Goldberg. Freedom

systems 2.0 architecture. White paper, Zero Knowledge Systems,

Inc., December 2000.

[BY03] Mihir Bellare and Bennet Yee. Forward-security in private-key

cryptography. In Topics in Cryptology — CT-RSA 2003, volume

2612 of LNCS, pages 1–18, San Francisco, CA, USA, 13-17 April

2003. Springer-Verlag.

[Cam99] Duncan Campbell. Development of surveillance technology and

risk of abuse of economic information. Technical report, Scien-

tific and Techonological Option Assessment unit (STOA), Euro-

pean Parliament, April 1999.

[CD02] Richard Clayton and George Danezis. Chaffinch: Confidentiality

in the face of legal threats. In Fabien A. P. Petitcolas, editor,

Information Hiding workshop (IH 2002), volume 2578 of LNCS,

pages 70–86, Noordwijkerhout, The Netherlands, 7-9 October

2002. Springer-Verlag.

[CDK01] Richard Clayton, George Danezis, and Markus G. Kuhn. Real

world patterns of failure in anonymity systems. In Ira S.

Moskowitz, editor, Information Hiding workshop (IH 2001), vol-

ume 2137 of LNCS, pages 230–244, Pittsburgh, PA, USA, Jan-

uary 2001. Springer-Verlag.

[CDNO97] Ran Canetti, Cynthia Dwork, Moni Naor, and Rafail Ostrovsky.

Deniable encryption. In B. S. Kaliski, editor, In Advances in

BIBLIOGRAPHY 197

Cryptology (Crypto’97), volume 1294 of LNCS, pages 90–104,

Santa Barbara, CA, USA, 17-21 August 1997. Springer-Verlag.

[Cha81] David Chaum. Untraceable electronic mail, return addresses,

and digital pseudonyms. Communications of the ACM, 24(2):84–

88, February 1981.

[Cha83] David Chaum. Blind signatures for untraceable payments. In

David Chaum, Ronald L. Rivest, and Alan T. Sherman, editors,

Advances in Cryptology (Crypto’82), pages 199–203, New York

and London, 1983. Plenum Press.

[Cha88] David Chaum. The dining cryptographers problem: Uncondi-

tional sender and recipient untraceability. Journal of Cryptology,

1:65–75, 1988.

[CHK03] Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure

public-key encryption scheme. In Eli Biham, editor, Advances

in Cryptology (Eurocrypt 2003), volume 2656 of LNCS, pages

255–271, Warsaw, Poland, 4-8 May 2003. Springer-Verlag.

[CSWH00] Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W.

Hong. Freenet: A distributed anonymous information storage

and retrieval system. In H. Federrath, editor, Designing Privacy

Enhancing Technologies, number 2009 in LNCS, pages 46–66,

Berkeley, CA, USA, July 2000. Springer-Verlag.

[DA99] T. Dierks and C. Allen. Rfc 2246: The tls protocol version 1.0.

http://www.ietf.org/rfc/rfc2246.txt, January 1999.

[Dan02] George Danezis. Forward secure mixes. In Jonsson Fisher-

Hubner, editor, Nordic workshop on Secure IT Systems (Norsec

2002), pages 195–207, Karlstad, Sweden, November 2002.

[Dan03a] George Danezis. Mix-networks with restricted routes. In Roger

Dingledine, editor, Privacy Enhancing Technologies workshop

(PET 2003), volume 2760 of LNCS, pages 1–17, Dresden, Ger-

many, March 2003. Springer-Verlag.

198 BIBLIOGRAPHY

[Dan03b] George Danezis. Statistical disclosure attacks. In Gritzalis,

Vimercati, Samarati, and Katsikas, editors, Security and Privacy

in the Age of Uncertainty, (SEC2003), pages 421–426, Athens,

May 2003. IFIP TC11, Kluwer.

[DDM03a] George Danezis, Roger Dingledine, and Nick Mathewson.

Mixminion: Design of a Type III Anonymous Remailer Proto-

col. In IEEE Symposium on Security and Privacy, Berkeley, CA,

11-14 May 2003.

[DDM03b] George Danezis, Roger Dingledine, and Nick Mathewson. Type

III (Mixminion) mix protocol specifications. Technical report,

The mixminion project http://mixminion.net, 2003.

[DDN91] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable

cryptography. pages 542–552, 1991.

[DFHM01] Roger Dingledine, Michael J. Freedman, David Hopwood, and

David Molnar. A Reputation System to Increase MIX-net Re-

liability. In Ira S. Moskowitz, editor, Information Hiding work-

shop (IH 2001), volume 2137 of LNCS, pages 126–141. Springer-

Verlag, 25-27 April 2001.

[DFK+03] Yevgeniy Dodis, Matt Franklin, Jonathan Katz, Atsuko Miyaji,

and Moti Yung. Intrusion-resilient public-key encryption. In

M. Joye, editor, Topics in Cryptology - CT-RSA 2003, volume

2612 of LNCS, pages 19–32, San Francisco, CA, USA, 13-17 April

2003. Springer-Verlag.

[DFM00] Roger Dingledine, Michael J. Freedman, and David Molnar. The

free haven project: Distributed anonymous storage service. In

H. Federrath, editor, Designing Privacy Enhancing Technologies,

volume 2009 of LNCS, pages 67–95, Berkeley, CA, USA, July

2000. Springer-Verlag.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in

cryptography. IEEE Transactions on Information Theory, IT-

22(6):644–654, 1976.

BIBLIOGRAPHY 199

[DK00] Yvo Desmedt and Kaoru Kurosawa. How to break a practical

mix and design a new one. In Bart Preneel, editor, Advances

in Cryptology (Eurocrypt 2000), volume 1807 of LNCS, pages

557–572, Bruges, Belgium, 14-18 May 2000. Springer-Verlag.

[DKXY02] Yevgeniy Dodis, Jonathan Katz, Shouhuai Xu, and Moti Yung.

Key-insulated public key cryptosystems. In Lars R. Knudsen,

editor, Advances in Cryptology (Eurocrypt 2002), volume 2332

of LNCS, pages 65–82, Amsterdam, The Netherlands, 28 April–2

May 2002. Springer-Verlag.

[DS02] Roger Dingledine and Paul Syverson. Reliable MIX Cascade

Networks through Reputation. In Matt Blaze, editor, Financial

Cryptography (FC ’02), volume 2357 of LNCS. Springer-Verlag,

March 2002.

[DS03a] George Danezis and Len Sassaman. Heartbeat traffic to counter

(n−1) attacks. In workshop on Privacy in the Electronic Society

(WPES 2003), Washington, DC, USA, November 2003.

[DS03b] Claudia Diaz and Andrei Serjantov. Generalising mixes. In

Roger Dingledine, editor, Privacy Enhancing Technologies work-

shop (PET 2003), volume 2760 of LNCS, pages 18–31, Dresden,

Germany, March 2003. Springer-Verlag.

[DSCP02] Claudia Diaz, Stefaan Seys, Joris Claessens, and Bart Preneel.

Towards measuring anonymity. In Roger Dingledine and Paul

Syverson, editors, Privacy Enhancing Technologies workshop

(PET 2002), volume 2482 of LNCS, pages 54–68, San Francisco,

CA, USA, 14-15 April 2002. Springer-Verlag.

[El 85] T. El Gamal. A public key cryptosystem and a signature scheme

based on discrete logarithms. IEEE Transactions on Information

Theory, IT-31(4):469–472, July 1985.

[EU00] Legal aspects of information society services, in particular elec-

tronic commerce, in the internal market. Directive 2000/31/EC

200 BIBLIOGRAPHY

of the European Parliament and of the Council. Official Journal

of the European Communities, July 2000.

[FBH+02] N. Feamster, M. Balazinska, G. Harfst, H. Balakrishnan, and

D. Karger. Infranet: Circumventing web censorship and surveil-

lance. In Dan Boneh, editor, USENIX Security Symposium,

pages 247–262, San Francisco, CA, 5-9 August 2002.

[FBW+03] Nick Feamster, Magdalena Balazinska, Winston Wang, Hari Bal-

akrishnan, and David Karger. Thwarting web censorship with

untrusted messenger discovery. In Roger Dingledine, editor,

Privacy Enhancing Technologies workshop (PET 2003), volume

2760 of LNCS, pages 125–140, Dresden, Germany, March 2003.

Springer-Verlag.

[FM02] Michael J. Freedman and Robert Morris. Tarzan: A peer-to-

peer anonymizing network layer. In Vijayalakshmi Atluri, editor,

ACM Conference on Computer and Communications Security

(CCS 2002), pages 193–206, Washington, DC, November 2002.

ACM.

[FS01] Jun Furukawa and Kazue Sako. An efficient scheme for proving

a shuffle. In Joe Kilian, editor, Advances in Cryptology (Crypto

2001), volume 2139 of LNCS, pages 368–387, Santa Barbara,

CA, USA, 19-23 August 2001. Springer-Verlag.

[FS03] Niels Ferguson and Bruce Schneier. Practical Cryptography. John

Wiley & Sons, 2003. ISBN: 0471223573,.

[FSCM02] Michael J. Freedman, Emil Sit, Josh Cates, and Robert Morris.

Introducing tarzan, a peer-to-peer anonymizing network layer.

In Peter Druschel, M. Frans Kaashoek, and Antony I. T. Row-

stron, editors, International workshop on Peer-to-Peer Systems

(IPTPS), volume 2429 of LNCS, pages 121–129, Cambridge,

MA, March 2002. Springer-Verlag.

[GFX+01] Yong Guan, Xinwen Fu, Dong Xuan, P. U. Shenoy, Riccardo

Bettati, and Wei Zhao. Netcamo: camouflaging network traffic

BIBLIOGRAPHY 201

for qos-guaranteed mission critical applications. IEEE Transac-

tions on Systems, Man, and Cybernetics, Part A 31(4):253–265,

2001.

[Gil93] David Gillman. A chernoff bound for random walks on expander

graphs. In 34th Annual Symposium on Foundations of Com-

puter Science, pages 680–691, Palo Alto, California, 3-5 Novem-

ber 1993. IEEE.

[GJJS04] Philippe Golle, Markus Jakobsson, Ari Juels, and Paul Syverson.

Universal re-encryption for mixnets. In Proceedings of the 2004

RSA Conference, Cryptographer’s track, San Francisco, USA,

February 2004.

[GM84] S. Goldwasser and S. Micali. Probabilistic encryption. Journal

of Computer and System Sciences, 28:270–299, 1984.

[Gol00] Ian Goldberg. A Pseudonymous Communications Infrastructure

for the Internet. PhD thesis, UC Berkeley, December 2000.

[Gol01] Oded Goldreich. Foundations of cryptography. Cambridge Uni-

versity press, 2001. ISBN: 0521791723.

[GRPS03] Sharad Goel, Mark Robson, Milo Polte, and Emin Gun Sirer.

Herbivore: A Scalable and Efficient Protocol for Anonymous

Communication. Technical Report 2003-1890, Cornell Univer-

sity, Ithaca, NY, February 2003.

[GRS96] David M. Goldschlag, Michael G. Reed, and Paul F. Syverson.

Hiding routing information. In Ross J. Anderson, editor, In-

formation Hiding, volume 1174 of LNCS, pages 137–150, Cam-

bridge, U.K., 1996. Springer-Verlag.

[GRS99] David M. Goldschlag, Michael G. Reed, and Paul F. Syverson.

Onion routing. Communications of the ACM, 42(2):39–41, 1999.

[GT96] Ceki Gülcü and Gene Tsudik. Mixing E-mail with Babel. In Net-

work and Distributed Security Symposium — NDSS ’96, pages

2–16, San Diego, California, February 1996. IEEE.

202 BIBLIOGRAPHY

[GZB+02] Philippe Golle, Sheng Zhong, Dan Boneh, Markus Jakobsson,

and Ari Juels. Optimistic mixing for exit-polls. In Yuliang Zheng,

editor, Advances in Cryptology (Asiacrypt 2002), volume 2501 of

LNCS, pages 451–465, Queenstown, New Zealand, 1-5 December

2002. Springer-Verlag.

[Hel96a] Johan Helsingius. Johan helsingius closes his internet remailer.

http://www.penet.fi/press-english.html, August 1996.

[Hel96b] Johan Helsingius. Johan helsingius gets injunction in scientol-

ogy case privacy protection of anonymous messages still unclear.

http://www.penet.fi/injunc.html, September 1996.

[Hel96c] Johan Helsingius. Temporary injunction in the anonymous re-

mailer case. http://www.penet.fi/injuncl.html, September

1996.

[Her96] Michael Herman. Intelligence Power in Peace and War. Cam-

bridge University Press, November 1996. ISBN: 0521566363.

[HW02] Steven Hazel and Brandon Wiley. Achord: A variant of the

chord lookup service for use in censorship resistant peer-to-peer

publishing systems. In Peter Druschel, M. Frans Kaashoek, and

Antony I. T. Rowstron, editors, Peer-to-Peer Systems, First In-

ternational workshop, IPTPS 2002, volume 2429 of LNCS, Cam-

bridge, MA, USA, 7-8 March 2002. Springer-Verlag.

[IR01] Gene Itkis and Leonid Reyzin. Forward-secure signatures with

optimal signing and verifying. In Joe Kilian, editor, Advances in

Cryptology (Crypto 2001), volume 2139 of LNCS, pages 332–354,

Santa Barbara, California, USA, 19-23 August 2001. Springer-

Verlag.

[Itk03] Gene Itkis. Cryptographic tamper evidence. In ACM conference

on Computer and communication security (CCS 2003), pages

355–364. ACM Press, 2003.

BIBLIOGRAPHY 203

[Jak98] Markus Jakobsson. A practical mix. In Kaisa Nyberg, editor,

Advances in Cryptology - EUROCRYPT ’98, volume 1403 of

LNCS, pages 448–461, Espoo, Finland, 31 May – 4 June 1998.

Springer-Verlag.

[Jak99] Markus Jakobsson. Flash Mixing. In Principles of Distributed

Computing - PODC ’99. ACM Press, 1999.

[JJ01] Markus Jakobsson and Ari Juels. An optimally robust hybrid

mix network. In Principles of Distributed Computing (PODC

2001), pages 284–292, Newport, Rhode Island, USA, 26-29 Au-

gust 2001. ACM.

[JJR02] Markus Jakobsson, Ari Juels, and Ronald L. Rivest. Making mix

nets robust for electronic voting by randomized partial checking.

In Dan Boneh, editor, USENIX Security Symposium, pages 339–

353, San Francisco, CA, USA, 5-9 August 2002. USENIX.

[JMP+98] Anja Jerichow, Jan Müller, Andreas Pfitzmann, Birgit Pfitz-

mann, and Michael Waidner. Real-Time MIXes: A Bandwidth-

Efficient Anonymity Protocol. IEEE Journal on Selected Areas

in Communications, 16(4):495–509, 1998.

[JSY99] Markus Jakobsson, Julien P. Stern, and Moti Yung. Scramble

all, encrypt small. In Lars R. Knudsen, editor, Fast Software En-

cryption (FSE ’99), volume 1636 of LNCS, pages 95–111, Rome,

Italy, 24-26 March 1999. Springer-Verlag.

[JVZ00] Shu Jiang, Nitin H. Vaidya, and Wei Zhao. Routing in packet

radio networks to prevent traffic analsyis. In IEEE Information

Assurance and Security Workshop, June 2000.

[KAP02] Dogan Kesdogan, Dakshi Agrawal, and Stefan Penz. Limits of

anonymity in open environments. In Fabien A. P. Petitcolas,

editor, Information Hiding workshop (IH 2002), volume 2578

of LNCS, pages 53–69, Noordwijkerhout, The Netherlands, 7-9

October 2002. Springer-Verlag.

204 BIBLIOGRAPHY

[KEB98] Dogan Kesdogan, Jan Egner, and Roland Büschkes. Stop-and-

Go MIXes: Providing probabilistic anonymity in an open sys-

tem. In David Aucsmith, editor, Information Hiding workshop

(IH 1998), volume 1525 of LNCS, pages 83–98, Portland, Ore-

gon, USA, 14-17 April 1998. Springer-Verlag.

[KS95] Joe Kilian and Kazue Sako. Receipt-free MIX-type voting

scheme — a practical solution to the implementation of a vot-

ing booth. In Louis C. Guillou and Jean-Jacques Quisquater,

editors, Advances in Cryptology (Eurocrypt 1995), volume 921

of LNCS, pages 393–403, Saint-Malo, France, 21-25 May 1995.

Springer-Verlag.

[Küg03] Dennis Kügler. An Analysis of GNUnet and the Implications

for Anonymous, Censorship-Resistant Networks. In Roger Din-

gledine, editor, Privacy Enhancing Technologies workshop (PET

2003), volume 2760 of LNCS, pages 161–176, Dresden, Germany,

March 2003. Springer-Verlag.

[LA99] Steve Lloyd and Carlisle Adams. Understanding the Public-Key

Infrastructure: Concepts, Standards, and Deployment Consider-

ations. Que, 1999. ISBN: 157870166X.

[LR88] Michael Luby and Charles Rackoff. How to construct pseudoran-

dom permutations from pseudorandom functions. SIAM Journal

on Computing, 17(2):373–386, 1988.

[LW03] Nati Linial and Avi Wigderson. Expander graphs and their

applications. Collection of Lecture Notes

http://www.math.ias.edu/∼avi/TALKS/expander course.

pdf, January 2003.

[MCPS03] Ulf Möller, Lance Cottrell, Peter Palfrader, and Len Sassaman.

Mixmaster Protocol — Version 2. Draft, July 2003.

[MH96] Markus Michels and Patrick Horster. Some remarks on a

receipt-free and universally verifiable mix-type voting scheme.

BIBLIOGRAPHY 205

In Kwangjo Kim and Tsutomu Matsumoto, editors, Advances in

Cryptology (Asiacrypt ’96), volume 1163 of LNCS, pages 125–

132, Kyongju, Korea, 3-7 November 1996. Springer-Verlag.

[MK98] David Mazières and M. Frans Kaashoek. The Design, Imple-

mentation and Operation of an Email Pseudonym Server. In

ACM Conference on Computer and Communications Security

(CCS’98), pages 27–36, San Francisco, CA, USA, 3-5 November

1998. ACM Press.

[MK99] Andrew D. McDonald and Markus G. Kuhn. StegFS: A stegano-

graphic file system for linux. In Andreas Pfitzmann, editor,

Information Hiding (IH ’99), volume 1768 of LNCS, pages

462–477, Dresden, Germany, 29 September – 1 October 1999.

Springer-Verlag.

[MK00] Masashi Mitomo and Kaoru Kurosawa. Attack for flash MIX.

In Tatsuaki Okamoto, editor, Advances in Cryptology (Asiacrypt

2000), volume 1976 of LNCS, pages 192–204, Kyoto, Japan, 3-7

December 2000. Springer-Verlag.

[MNCM03] Ira S. Moskowitz, Richard E. Newman, Daniel P. Crepeau, and

Allen R. Miller. Covert channels and anonymizing networks. In

workshop on Privacy in the Electronic Society (WPES 2003),

Washington, DC, USA, October 2003.

[MNS] Ira S. Moskowitz, Richard E. Newman, and Paul F. Syverson.

Quasi-anonymous channels. In Communication, Network, and

Information Security (CNIS 2003), New York, USA, 10-12 De-

cember.

[Moc] Christian Mock. Mixmaster Statistics (Austria).

http://www.tahina.priv.at/∼cm/stats/mlist2.html.

[Möl03] Bodo Möller. Provably secure public-key encryption for length-

preserving chaumian mixes. In Marc Joye, editor, Topics in

Cryptology CT-RSA 2003, volume 2612 of LNCS, pages 244–262,

San Francisco, CA, USA, 13-17 April 2003. Springer-Verlag.

206 BIBLIOGRAPHY

[Mor] Pat Morin. A critique of BEAR and LION. Manuscript,

citeseer.nj.nec.com/124166.html.

[MOV96] Alfred J. Menezes, Paul C. Van Oorschot, and Scott A. Vanstone.

Handbook of Applied Cryptography. CRC Press, 1996. ISBN: 0-

8493-8523-7.

[MR95] Rajeev Motwani and Prabhakar Raghavan. Randomized Algo-

rithms. Cambridge Univerisity Press, 1995. ISBN: 0521474655.

[MS02] David Martin and Andrew Schulman. Deanonymizing users

of the safeweb anonymizing service. Technical Report 2002-

003, Boston University Computer Science Department, February

2002.

[Nef01] C. Andrew Neff. A verifiable secret shuffle and its application

to e-voting. In Pierangela Samarati, editor, ACM Conference

on Computer and Communications Security (CCS 2002), pages

116–125. ACM Press, November 2001.

[New97] Ron Newman. The Church of Scientology vs. anon.penet.fi,

March 1997. http://www.xs4all.nl/∼kspaink/cos/rnewman/

anon/penet.html.

[NMSS03] Richard E. Newman, Ira S. Moskowitz, Paul Syverson, and An-

drei Serjantov. Metrics for traffic analysis prevention. In Privacy

Enhancing Technologies Workshop, Dresden, Gernamy, March

2003.

[OA00] Miyako Ohkubo and Masayuki Abe. A Length-Invariant Hy-

brid MIX. In Tatsuaki Okamoto, editor, Advances in Cryptology

(Asiacrypt 2000), volume 1976 of LNCS, pages 178–191, Kyoto,

Japan, 3-7 December 2000. Springer-Verlag.

[Odl03] Andrew M. Odlyzko. Privacy, economics, and price discrimina-

tion on the internet. In N. Sadeh, editor, International Con-

ference on Electronic Commerce (ICEC 2003), pages 355–366.

ACM Press, 2003.

BIBLIOGRAPHY 207

[OKST97] Wakaha Ogata, Kaoru Kurosawa, Kazue Sako, and Kazunori

Takatani. Fault tolerant anonymous channel. In Yongfei

Han, Tatsuaki Okamoto, and Sihan Qing, editors, Informa-

tion and Communication Security, First International Confer-

ence (ICICS’97), volume 1334 of LNCS, pages 440–444, Beijing,

China, 11-14 November 1997. Springer-Verlag.

[Pal] Peter Palfrader. Echolot: a pinger for anonymous remailers.

http://www.palfrader.org/echolot/.

[Par96] Sameer Parekh. Prospects for remailers: where is anonymity

heading on the internet? First Monday, 1(2), August 5 1996.

On-line journal http://www.firstmonday.dk/issues/issue2/

remailers/.

[Pfi94] Birgit Pfitzmann. Breaking efficient anonymous channel. In

Alfredo De Santis, editor, Advances in Cryptology (Eurocrypt

’94), volume 950 of LNCS, pages 332–340, Perugia, Italy, 9-12

May 1994. Springer-Verlag.

[PIK93] Choonsik Park, Kazutomo Itoh, and Kaoru Kurosawa. Efficient

anonymous channel and all/nothing election scheme. volume

765 of LNCS, pages 248–259, Lofthus, Norway, 1993. Springer-

Verlag.

[Pin73] M. S. Pinsker. On the complexity of a concentrator. In Pro-

ceedings of the 7th International Teletraffic Conference, pages

318/1–318/4, Stockholm, 1973.

[PK00] Andreas Pfitzmann and Marit Köhntopp. Anonymity, unobserv-

ability, and pseudonymity: A proposal for terminology. Draft,

version 0.14, July 2000.

[PKC02] PKCS #1 v2.1: RSA Cryptography Standard. RSA Security

Inc., June 2002.

[PP90] Birgit Pfitzmann and Andreas Pfitzmann. How to break the di-

rect RSA-implementation of MIXes. In Jean-Jacques Quisquater

208 BIBLIOGRAPHY

and Joos Vandewalle, editors, Advances in Cryptology (Euro-

crypt ’89), volume 434 of LNCS, pages 373–381, Houthalen, Bel-

gium, 10-13 April 1990. Springer-Verlag.

[PPW91] Andreas Pfitzmann, Birgit Pfitzmann, and Michael Waidner.

ISDN-mixes: Untraceable communication with very small band-

width overhead. In Wolfgang Effelsberg, Hans Werner Meuer,

and Günter Müller, editors, GI/ITG Conference on Commu-

nication in Distributed Systems, volume 267 of Informatik-

Fachberichte, pages 451–463. Springer-Verlag, February 1991.

[Ray00] Jean-François Raymond. Traffic Analysis: Protocols, Attacks,

Design Issues, and Open Problems. In Hannes Federrath, edi-

tor, Designing Privacy Enhancing Technologies, volume 2009 of

LNCS, pages 10–29. Springer-Verlag, July 2000.

[RIP00] Regulation of Investigatory Powers Act 2000. The Stationery

Office Limited, 2000. ISBN 0-10-542300-9.

[Riv97] Ronald L. Rivest. All-or-nothing encryption and the package

transform. In Eli Biham, editor, Fast Software Encryption (FSE

’97), volume 1267 of LNCS, pages 210–218, Haifa, Israel, 20-22

January 1997. Springer-Verlag.

[Riv98] Ronald L. Rivest. Chaffing and winnowing: Confidentiality with-

out encryption. CryptoBytes (RSA Laboratories), 4(1):12–17,

Summer 1998.

[Roe97] Michael Roe. Cryptography and Evidence. PhD thesis, University

of Cambridge, Computer Laboratory, 1997.

[RP02] Marc Rennhard and Bernhard Plattner. Introducing MorphMix:

Peer-to-Peer based Anonymous Internet Usage with Collusion

Detection. In workshop on Privacy in the Electronic Society

(WPES 2002), Washington, DC, USA, November 2002.

BIBLIOGRAPHY 209

[RR98] Michael Reiter and Aviel Rubin. Crowds: Anonymity for web

transactions. ACM Transactions on Information and System

Security (TISSEC), 1(1):66–92, 1998.

[RR00] Josyula R. Rao and Pankaj Rohatgi. Can pseudonymity really

guarantee privacy? In Proceedings of the 9th USENIX Security

Symposium, pages 85–96. USENIX, August 2000.

[RS93] Charles Rackoff and Daniel R. Simon. Cryptographic defense

against traffic analysis. In ACM Symposium on Theory of Com-

puting (STOC’93), pages 672–681. ACM, 1993.

[RSA78] Ron L. Rivest, A. Shamir, and Leonard M. Adleman. A method

for obtaining digital signatures and public-key cryptosystems.

Communications of the ACM, 21(2):120–126, February 1978.

[RSG98] Michael G. Reed, Paul F. Syverson, and David M. Goldschlag.

Anonymous connections and onion routing. IEEE Journal on

Selected Areas in Communications, 16(4):482–494, May 1998.

[RVW00] Omer Reingold, Salil P. Vadhan, and Avi Wigderson. Entropy

waves, the zig-zag graph product, and new constant-degree ex-

panders and extractors. In Symposium on Foundations of Com-

puter Science (FOCS 2000), pages 3–13, Redondo Beach, Cali-

fornia, USA, 12-14 November 2000. IEEE Computer Society.

[SBS02] Rob Sherwood, Bobby Bhattacharjee, and Aravind Srinivasan.

P5: A protocol for scalable anonymous communication. In IEEE

Symposium on Security and Privacy, page 58, Berkeley, Califor-

nia, USA, 12-15 May 2002. IEEE Computer Society.

[Sch96] Bruce Schneier. Applied Cryptography. Wiley, 1996. ISBN 0-

471-11709-9.

[SD02] Andrei Serjantov and George Danezis. Towards an informa-

tion theoretic metric for anonymity. In Roger Dingledine and

210 BIBLIOGRAPHY

Paul Syverson, editors, Privacy Enhancing Technologies work-

shop (PET 2002), volume 2482 of LNCS, pages 41–53, San Fran-

cisco, CA, USA, 14-15 April 2002. Springer-Verlag.

[SDS02] Andrei Serjantov, Roger Dingledine, and Paul Syverson. From

a trickle to a flood: Active attacks on several mix types. In

Fabien A. P. Petitcolas, editor, Information Hiding workshop

(IH 2002), volume 2578 of LNCS, pages 36–52, Noordwijkerhout,

The Netherlands, 7-9 October 2002. Springer-Verlag.

[Ser02] Andrei Serjantov. Anonymizing censorship resistant systems. In

Peter Druschel, M. Frans Kaashoek, and Antony I. T. Rowstron,

editors, International Peer-To-Peer Systems workshop (IPTPS

2002), volume 2429 of LNCS, pages 111–120, Cambridge, MA,

USA, 7-8 March 2002. Springer-Verlag.

[Ser04] Andrei Serjantov. On the anonymity of anonymity systems. PhD

thesis, University of Cambridge, 2004.

[Sha48] Claude E. Shannon. A mathematical theory of communication.

The Bell System Technical Journal, 27:379–423, 623–656, 1948.

[Sha49] Claude E. Shannon. Communication theory of secrecy systems.

Bell System Technical Journal, 28:656–715, 1949.

[SHA93] FIPS PUB 180-1: Secure Hash Standard (SHS), 1993. National

Institute of Standards and Technology.

[Shm02] Vitaly Shmatikov. Probabilistic analysis of anonymity. In Com-

puter Security Foundations workshop (CSFW-15 2002), pages

119–128, Cape Breton, Nova Scotia, Canada, 24-26 June 2002.

IEEE Computer Society.

[Sin01] Michael Singer. CIA Funded SafeWeb Shuts Down.

http://siliconvalley.internet.com/news/article.php/

3531 926921, November 20 2001.

BIBLIOGRAPHY 211

[SK96] Bruce Schneier and John Kelsey. Unbalanced feistel networks

and block cipher design. In Dieter Gollmann, editor, Fast Soft-

ware Encryption, Third International workshop, volume 1039 of

LNCS, pages 121–144, Cambridge, UK, 21-23 February 1996.

Springer-Verlag.

[SK03] Sandra Steinbrecher and Stefan Köpsell. Modelling unlinkabil-

ity. In Roger Dingledine, editor, Privacy Enhancing Technolo-

gies workshop (PET 2003), volume 2760 of LNCS, pages 32–47,

Dresden, Germany, March 2003. Springer-Verlag.

[Smi03] Tony Smith. European RIAA-style anti-file swap lawsuits

‘inevitable’. The Register http://www.theregister.co.uk/

content/6/34547.html, December 2003.

[SMK+01] Ion Stoica, Robert Morris, David Karger, M. Francs Kaashoek,

and Hari Balakrishnan. Chord: A scalable peer-to-peer lookup

service for internet applications. In Conference on applications,

technologies, architectures, and protocols for computer commu-

nications (ACM SIGCOMM 2001), pages 149–160, San Diego,

CA, USA, 27-31 August 2001. ACM Press.

[SN03] Andrei Serjantov and Richard E. Newman. On the anonymity of

timed pool mixes. In workshop on Privacy and Anonymity Issues

in Networked and Distributed Systems, pages 427–434, Athens,

Greece, May 2003. Kluwer.

[SS03] Andrei Serjantov and Peter Sewell. Passive attack analysis for

connection-based anonymity systems. In European Symposium

on Research in Computer Security (ESORICS 2003), Gjovik,

Norway, 13-15 October 2003.

[SSW+02] Qixiang Sun, Daniel R. Simon, Yi-Min Wang, Wilf Russell,

Venkat Padmanabhan, and Lili Qiu. Statistical identification

of encrypted web browsing traffic. In IEEE Symposium on Secu-

rity and Privacy, pages 19–30, Berkeley, California, USA, 12-15

May 2002. IEEE Computer Society.

212 BIBLIOGRAPHY

[STRL00] Paul F. Syverson, Gene Tsudik, Michael G. Reed, and Carl E.

Landwehr. Towards an analysis of onion routing security. In

Hannes Federrath, editor, Designing Privacy Enhancing Tech-

nologies, volume 2009 of LNCS, pages 96–114, Berkeley, CA,

USA, 25-26 July 2000. Springer-Verlag.

[Tim97] Brenda Timmerman. A security model for dynamic adaptive

traffic masking. In New Security Paradigms Workshop, pages

107–115, Langdale, Cumbria, UK, 1997. ACM.

[Tim99] Brenda Timmerman. Secure dynamic adaptive traffic masking.

In New Security Paradigms Workshop, pages 13–24, Ontario,

Canada, September 1999. ACM.

[VNW94] B. R. Venkatraman and Richard E. Newman-Wolfe. Performance

analysis of a method for high level prevention of traffic analysis

using measurements from a campus network. In Proceeding of

the IEEE/ACM Tenth Annual Computer Security Applications

Conference, pages 288–297, Orlando, FL, December 5-9 1994.

IEEE CS Press.

[WALS02] Matthew Wright, Micah Adler, Brian Neil Levine, and Clay

Shields. An analysis of the degradation of anonymous proto-

cols. In Network and Distributed Security Symposium (NDSS

’02), San Diego, California, 6-8 February 2002.

[WALS03] Matthew Wright, Micah Adler, Brian Neil Levine, and Clay

Shields. Defending anonymous communication against passive

logging attacks. In IEEE Symposium on Security and Privacy,

page 28, Berkeley, CA, USA, 11-14 May 2003. IEEE Computer

Society.

[Wei74] Robert Weinstock. Calculus of variations. Dover publications,

1974. ISBN: 0486630692.

[Wik02] Douglas Wikström. How to break, fix, and optimize “optimistic

mix for exit-polls”. Technical Report T2002-24, Swedish Insti-

BIBLIOGRAPHY 213

tute of Computer Science, SICS, Box 1263, SE-164 29 Kista,

SWEDEN, 2002.

[Wik03a] Douglas Wikström. Elements in Z∗
p\Gq are dangerous. Technical

Report T2003-05, Swedish Institute of Computer Science, SICS,

Box 1263, SE-164 29 Kista, SWEDEN, 2003.

[Wik03b] Douglas Wikström. Four practical attacks for “optimistic mixing

for exit-polls”. Technical Report T2003-04, Swedish Institute of

Computer Science, SICS, Box 1263, SE-164 29 Kista, SWEDEN,

2003.

[WP89] Michael Waidner and Birgit Pfitzmann. The dining cryptogra-

phers in the disco — underconditional sender and recipient un-

traceability with computationally secure serviceability. In Jean-

Jacques Quisquater and Joos Vandewalle, editors, Advances in

Cryptology (Eurocrypt ’89), volume 434 of LNCS, page 690,

Houthalen, Belgium, 10-13 April 1989. Springer-Verlag.

[WW00] Zhen Wang and Peter Willett. A performance study of some

transient detectors. IEEE transactions on signal processing,

48(9):2682–2685, September 2000.

[YM] John Young and Erich M. On obtaining “lawful interception”

documents. http://www.quintessenz.org/etsi.

[Zim95] Philip Zimmermann. PGP Source Code and Internals. The MIT

Press, 1995. ISBN 0-262-24039-4.

214 BIBLIOGRAPHY

Production notes

This thesis was written in LATEX and its bibliography was compiled using

BibTEX. The source files have been stored in the Concurrent Versions Control

(CVS) system, which allows for a full history of the write-up process to

be extracted. The make utility was used to run the compilation process

and to manage the production of this document. Over time “debugging”

functionality was added to the scrips, using grep and perl, to check for

repeated words and inconsistent hyphens as well as inconsistencies in the

bibliography. You are holding in your hands thesis version 1.67 (bibiography

version 1.26).

215

