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Abstract Privacy-preserving billing protocols are useful in
settings where a meter measures user consumption of some
service, such as smart metering of utility consumption, pay-
as-you-drive insurance and electronic toll collection. In such
settings, service providers apply fine-grained tariff policies
that require meters to provide a detailed account of user
consumption. The protocols allow the user to pay to the
service provider without revealing the user’s consumption
measurements. Our contribution is twofold. First, we propose
a general model where a meter can output meter readings
to multiple users, and where a user receives meter readings
from multiple meters. Unlike previous schemes, our model
accommodates a wider variety of smart metering applications.
Second, we describe a protocol based on polynomial commit-
ments that improves the efficiency of previous protocols for
tariff policies that employ splines to compute the price due.

Keywords Universally composable security, privacy, billing,
smart meters, polynomial commitments

1 Introduction

In privacy-preserving billing a meter measures a user’s con-
sumption of some utility or service and service providers
apply fine-grained tariff policies, i.e., policies that require
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detailed and frequent consumption measurements, in order
to determine the bill.

A classical example is smart metering of electricity, water
and gas [36]. In this setting, utility providers install smart
meters in households in order to measure user consumption.
Smart meters provide meter readings to the service provider.
These readings are used by the service provider to calculate
the bill under the tariff policy. The tariff policy may be com-
plex, e.g., by applying a different rate depending on the time
of consumption or on whether the consumption measurement
reaches a threshold.

Other examples are electronic toll collection [24] and
pay-as-you-drive car insurance [7]. In these cases, drivers
install a meter in their cars that reports to the service provider
which roads are used and when. Typical tariff policies apply
different rates depending on the type of road (e.g. motorway,
street), the time of the day (e.g. day or night), or even the
speed of the vehicle.

In all the settings above, billing poses a threat to user
privacy. Meters report fine-grained readings to the service
provider, which potentially discloses sensitive information.
For example, electricity smart-meter readings reveal when
users are at home and the electrical appliances they use [2],
and electronic toll collection and “pay as you drive” insurance
reveal the driver’s whereabouts [40, 3,49].

In privacy-preserving billing protocols, meters do not
send consumption measurements to the service provider. In-
stead, the computation of the bill is done locally and only the
amount to be paid is revealed to the service provider.

Privacy-preserving billing protocols, in particular those
which employ meters that are not tamper-resistant, involve
mechanisms to ensure that users report meter readings cor-
rectly, such as random spot-checks in the electronic toll col-
lection protocol in [3,37,43].

The protocols that use tamper-resistant meters either per-
form the bill calculation in the meter or outsource it to an
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untrusted platform to keep the meters simple. In [49], the bill
calculation is performed inside the tamper-resistant meter. In
contrast, in [47] the tamper-resistant meter outputs signed
meter readings to a user application. At the end of a billing
period, the user application employs the tariff policy sent by
the service provider and the signed readings obtained from
the meter to calculate the bill. The user application reveals
to the service provider only the total bill, along with a proof
that the computation of the bill is correct. This proof does not
reveal any additional information on the meter readings. The
approach in [47] has the advantage that it allows to minimize
the trusted computing base and that it avoids the need to up-
date tamper-resistant meters when the tariff policy changes.
In addition, the mandatory deployment of smart meters in
many countries implies that the purchase cost of a meter
must be kept low. Therefore, it is advisable to keep meters
as simple as possible. In [47] and in our protocol, meters
are required to compute just digital signatures, but all the
other computations are executed outside the meter. Practical
implementations of these protocols have been shown in [17].

Our contribution. We revisit the work of [47] and improve it
in two ways. First, we generalize the security model in [47] to
consider multiple meters and multiple users. Second, we pro-
pose a privacy-preserving billing protocol for our model that,
in comparison to the protocol in [47], improves efficiency for
policies described by splines.

The security model in [47] considered a setting where
a meter communicates only with one user, and a user com-
municates only with one meter, i.e., there is a one-to-one
relation between users and meters. This is insufficient for
some smart metering applications. For example, consider a
building where there is one meter per apartment that mea-
sures the water consumption in that apartment. Additionally,
in the laundry room, there is one washing machine and one
meter per apartment, and the meter measures the water con-
sumption of the washing machine. In this example, the user
needs to use meter readings from both meters to compute the
water consumption bill.

As another example, consider a building with central
heating. Each apartment is provided with a smart meter that
measures the electricity consumption of its tenants. Addition-
ally, another meter measures the electricity consumption of
each of the tenants with respect to the central heating system.
To model this setting adequately, it is necessary to both allow
a meter to send meter readings to multiple users, and to allow
a user to receive meter readings from more than one meter.

Of course, it is possible to use a protocol that considers
only a one-to-one relation between users and meters in these
examples. Simply, each meter-user pair is considered sepa-
rately, and the user reports one separate bill for each meter.
However, doing so does not achieve the same level of privacy
offered in our model because the user reveals the price to be

paid for the consumption at each meter, instead of revealing
only the total price.

Therefore, we propose an ideal functionality Fpyy, for
privacy preserving billing protocols that considers multiple
meters and multiple users. In addition to that, Fg1, has the
following main differences in comparison to the functionality
for smart metering described in [47].

— JFpiL includes an interface through which the service
provider sends a list of meters to a user at each billing
period. The meter readings received from the meters in
the list must be employed by the user to perform the bill
calculation for that billing period.

— JFpiL includes an interface that allows meters to signal
the end of a billing period and to report to the users
the number of meter readings that were sent during the
billing period. This necessary interface was omitted in
the functionality in [47].

— JFpir, models explicitly the communication with the sim-
ulator S. S needs this communication in order to provide
a simulation for the adversary in the security proof.

— JFpiL allows any verifying party (and not just the service
provider) to verify the bill to be paid. This may be useful
in case of dispute between the meter and the service
provider.

— JFpi, models the cases in which corrupt users collude
with corrupt meters and/or with the service provider.

We propose a privacy-preserving billing protocol that
realizes our functionality Fpyr, and thus allows a meter to
send meter readings to multiple users, and users to employ
meter readings from multiple meters in the computation of
a bill. In a nutshell, our protocol works as follows. At each
billing period, the provider registers a signed tariff policy.
Tariff policies are of the form Y : (¢, t) — p, where c is the
consumption measurement, ¢ is the time of consumption, and
p is the price. The provider also sends to each user a signed
list of meters. Meters send signed meter readings to users
and a signed “end of billing period” message that contains
the number of meter readings sent from the meter to the user
at that billing period. The user application calculates the bill
and computes a zero-knowledge proof of knowledge of its
correctness. This zero-knowledge proof involves proofs of
signature possession that demonstrate that the correct tariff
policy is used to compute the price for each of the signed
meter readings.

In [47], it is shown how to sign different types of tariff
policies: a linear policy that multiplies each reading by a
price per unit of consumption and a cumulative policy that
divides the consumption range in intervals and applies a
different price per unit to each interval. Additionally, it is
mentioned that, in general, a tariff policy may be described
by a polynomial for each interval. (Other functions can be
approximated by polynomial splines.) Although the protocol
in [47] provides efficient zero-knowledge proofs for the linear
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and cumulative policies, the cost of a zero-knowledge proof
of a tariff policy described by a polynomial grows with the
polynomial degree.

Our privacy-preserving billing protocol employs the same
technique in [47] to sign linear and cumulative policies, and
employs a new method for tariff policies described by splines.
Consider the following tariff policy as example. A day is
divided into L time intervals. For each time interval, the
price to be paid for the consumption c is given by a spline:

@1(6) ift e [tl, tz)
Ve, t) =4 :
@L(C) ift € [tL, tL+1)

Each spline @;(¢) (I € [1, L]) is defined as follows.

d1(c) ifc €[y, )
@l(C) = . :

oum(c) if ¢ € [emr, carg1)

Therefore, for a meter reading (¢, t), the price to be paid is
defined by the polynomial ¢, (c) such that ¢ € [¢p, Cmt1)
that belongs to the spline @;(¢) associated to the time interval
[t, f+1) such that ¢ € [t;, tj11).

Alternatively, one can consider consumption bands, i.e.
if a user’s consumption is below a certain threshold she may
get a better price at peak hours. For each consumption band,
the price to be paid at a certain time of day ¢ is given by a
spline where the polynomials take the time as input.

Our method to sign a tariff policy given by splines em-
ploys the polynomial commitment scheme of [29]. In a nut-
shell, the service provider computes polynomial commit-
ments C' to each of the polynomials in the tariff policy for
the billing period bp. Additionally, the service provider com-
putes, for each polynomial commitment, a signature on [bp,
C,ti—1, 1, ¢m—1, ¢m]. The service provider sends the poly-
nomial commitments and the signatures to the users, together
with the polynomials. To prove in zero knowledge that the
price calculated for a meter reading is correct, the user eval-
uates the polynomial on input the consumption to compute
the price, and then proves possession of a witness for the
polynomial commitment that shows that the price is the cor-
rect evaluation of the committed polynomial. The size of this
proof of witness possession is independent of the polyno-
mial degree. Additionally, the user proves possession of a
signature on the polynomial commitment, and proves that
the values of consumption and time in the meter reading lie
within the respective intervals in the signature.

Our use of polynomial commitments is somewhat dif-
ferent from their common use. In our scheme, the service
provider computes polynomial commitments and sends them
to the user together with the polynomials. Therefore, we do
not need the hiding property of commitments. However, we

need the binding property because the polynomial commit-
ments are employed by the user to prove in zero-knowledge
that prices are computed following the polynomials that de-
fine the tariff policy.

The reason why we use a polynomial commitment scheme
is that it provides efficient selective opening, i.e., the com-
mitment can be opened to an evaluation of the committed
polynomial with cost independent of the polynomial degree.
If a signature scheme is used, each of the coefficients of
the polynomial needs to be signed as a separate message in
the signature, and then the cost of proving possession of the
signature is linear in the polynomial degree.

We show that our protocol realizes Fgy,. Unlike [47],
we analyze all the possible collusion scenarios. Concretely,
we analyze in detail the case in which the provider is corrupt,
the case in which a subset of the users U are corrupt, and
the case in which the provider, a subset of the users and a
subset of the meters M are corrupt. We analyze more briefly
the case in which the provider V and a subset of the users
are corrupt, the case in which a subset of the users I/ and a
subset of the meters M are corrupt, and the case in which
the provider )V and a subset of the meters M are corrupt.

For all the cases above, we consider Byzantine corrup-
tions where a single adversary corrupts different parties and
controls their behaviour. Obviously, in this corruption model,
when the provider and a meter are corrupt, there is no protocol
that can prevent the provider from learning the meter readings
input to the meter because both entities are controlled by the
same adversary. For this reason, in Section 4.6.7, we consider
a corruption model in which different adversaries, with no
communication link between them, corrupt different parties.
We show that, under such corruption model, our protocol
prevents the corrupt meters from sending information about
the meter readings to the provider. This is akin to showing
that our protocol is collusion-free in the sense of [33].

Additionally, we consider the case in which the provider
and the meters are corrupt but do not have a side commu-
nication channel between them. We show that, in this case,
our protocol is collusion-free in the sense of [33] and pre-
vents corrupt meters from disclosing the meter readings to
the provider or another corrupt verifying party.

We discuss how our protocol compares to other possi-
ble approaches for the design of privacy-preserving billing
protocols in Section 5. Concretely, we discuss the use of
regulations and codes of conduct, trusted parties, techniques
to reduce variability, data anonymization methods, differen-
tial privacy, verifiable computing, and secure two-party and
multi-party computation.

We note that our protocol is not only useful for billing,
but, in general, allows to prove correctness of any compu-
tation on meter readings. This is important in settings such
as smart metering, where meter readings are not only used
for the sake of billing but also for consumption forecasting
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or profiling. For these other purposes, protocols that support
complex computations on meter readings are necessary.

Outline of the paper. In Section 2, we summarize the univer-
sally composable security framework and we describe our
ideal functionality Fpyy, for privacy-preserving billing. In
Section 3, we describe the cryptographic building blocks that
are employed by our protocol. We depict our protocol in Sec-
tion 4. In Section 5, we discuss how our protocol compares
to other possible approaches, and we conclude in section 6.

2 Definition of Privacy-Preserving Billing

In Section 2.1, we summarize the universal composability
paradigm and describe the ideal functionalities for registra-
tion, common reference string and secure message transmis-
sion, which are employed in our protocols. In Section 2.2,
we describe our ideal functionality for privacy-preserving
billing.

2.1 Universal Composability

The universal composability framework [9] is a framework
for defining and analyzing the security of cryptographic pro-
tocols so that security is retained under arbitrary composition
with other protocols. The security of a protocol is defined
by means of an ideal protocol that carries out the desired
task. In the ideal protocol, all the parties send their inputs to
an ideal functionality F for the task. The ideal functionality
computes locally the outputs of the parties and provides each
party with its prescribed output.

The security of a protocol ¢ is analyzed by comparing the
view of an environment Z in a real execution of ( against that
of Z in the ideal protocol defined in ;. The environment Z
chooses the inputs of the parties and collects their outputs. In
the real world, Z can communicate freely with an adversary
A who controls the network as well as any corrupt parties.
In the ideal world, Z interacts with dummy parties, who
simply relay inputs and outputs between Z and F,, and a
simulator S. We say that a protocol ¢ securely realizes F,
if Z cannot distinguish the real world from the ideal world,
i.e., Z cannot distinguish whether it is interacting with A
and parties running protocol ¢ or with S and dummy parties
relaying to F.

More formally, let & € N denote the security param-
eter and ¢ € {0,1}* denote an input. Two binary distri-
bution ensembles X = {X(k,a)}ren,aeqo,13+ and Y =
{Y'(k, a) }ren,aeqo,1}+ are indistinguishable (X ~ Y) if for
any ¢, d € N there exists kg € N such that for all £k > k( and
all @ € U,<a{0,1}", [Pr [X(k,a) = 1] = Pr [Y(k,a) =
1]] < k=¢. Let REAL, 4 z(k,a) denote the distribution
given by the output of Z when executed on input a with A

and parties running ¢, and let IDEAL#_ s z(k,a) denote
the output distribution of Z when executed on a with S and
dummy parties relaying to F,. We say that protocol ¢ se-
curely realizes F, if, for all polynomial-time A, there exists
a polynomial-time S such that, for all polynomial-time Z,
REAL%A?Z =~ IDEAL]:WS’Z.

A protocol 9 securely realizes F in the G-hybrid model
when ¢ is allowed to invoke the ideal functionality G. There-
fore, for any protocol v that securely realizes functionality G,
the composed protocol ¥, which is obtained by replacing
each invocation of an instance of G with an invocation of an
instance of 1), securely realizes F.

When describing ideal functionalities, we use the follow-
ing conventions:

Interface Naming Convention. An ideal functionality can be
invoked by using one or more interfaces. The name of
a message in an interface consists of three fields sep-
arated by dots, e.g., reg.register.ini in the registration
functionality described in Figure 1. The first field indi-
cates the name of the functionality and is the same in all
the interfaces of the functionality. This first field is useful
to distinguish between invocations of different function-
alities in a hybrid protocol that employs two or more
different functionalities. The second field indicates the
kind of action performed by the functionality and is the
same in all the messages that the functionality exchanges
within the same interface. The third field distinguishes
between the messages that belong to the same interface
and can take four different values. A message *. * .ini is
the incoming message received by the functionality, i.e.,
the message through which the interface is invoked. A
message *. * .end is the outgoing message sent by the
functionality, i.e., the message that ends the execution
of the interface. The message *. % .sim is used by the
functionality to send a message to the simulator, and the
message *. * .rep is used to receive a message from the
simulator.

Subsession identifiers. Some interfaces in a functionality
can be invoked more than once. When the functional-
ity sends a message *. * .sim to the simulator in such an
interface, a subsession identifier ssid is included in the
message. The subsession identifier must also be included
in the response *. * .rep sent by the simulator. The sub-
session identifier is used to identify the message *. * .sim
to which the simulator replies with a message *. * .rep.
We note that, typically, the simulator in the security proof
may not be able to provide an immediate answer to the
functionality after receiving a message *. *x .sim. The rea-
son is that the simulator typically needs to interact with
the copy of the real adversary it runs in order to pro-
duce the message *. * .rep, but the real adversary may
not provide the desired answer, or may provide a delayed
answer. In such cases, when the functionality sends more
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than one message *. * .sim to the simulator, the simula-
tor may provide delayed replies, and the order of those
replies may not follow the order of the received *. x .sim
messages.

Aborts. When we say that an ideal functionality F aborts
after being activated with a message (x, ...), we mean
that F halts the execution of its program and sends a
special abortion message (*, L) to the party that invoked
the functionality.

Network vs. local communication. The identity of an ITM
instance (ITI) consists of a party identifier pid and a ses-
sion identifier sid. A set of parties in an execution of a
system of ITMs are a protocol instance if they have the
same session identifier sid. ITIs can pass direct inputs
to and outputs from “local” ITIs that have the same pid.
An ideal functionality F has pid = L and is considered
local to all parties. An instance of F with the session
identifier std only accepts inputs from and passes outputs
to machines with the same session identifier sid. Some
functionalities require the session identifier to have some
structure. Those functionalities check whether the session
identifier possesses the required structure in the first mes-
sage that invokes the functionality. For the next messages,
the functionality implicitly checks that the session iden-
tifier equals the session identifier employed in the first
message. Communication between ITIs with different
party identifiers must take place over the network. The
network is controlled by the adversary, meaning that he
can arbitrarily delay, modify, drop, or insert messages.

The conventions we use to describe of our ideal function-
alities make them longer. The reason is that we have chosen
not to omit any details, which are frequently omitted in the
literature. There are two reasons why the descriptions of our
functionalities are longer than usual.

— When our functionalities receive a message, we list all the
reasons why the functionality must abort, including those
related to the input message being malformed. Other
functionalities in the literature omit these needed steps in
their description.

— We describe in detail how the communication with the
simulator takes place. In many ideal functionalities in
the literature, after the functionality sends a message to
the simulator, the functionality waits for the simulator
to provide a response to that message. Similarly, many
functionalities in the literature employ delayed outputs.
However, in many cases, the simulator in the security
proof needs to interact with a copy of the real adversary in
order to provide a response to the functionality. Therefore,
the simulator may not be able to provide a response, or
may be able to do so only at a later stage. This means
that many security proofs do not work because, when
the functionality demands an immediate response from

the simulator, the simulator is not able to provide it. To
solve this problem, our functionalities do not require
the simulator to provide an immediate response. Instead,
our functionalities save their state, create a subsession
identifier, and call the simulator on input this subsession
identifier. When the simulator sends a reply with a given
subsession identifier, our functionalities recover the state
and continue the computation. With this mechanism, our
functionalities do not require the simulator to provide an
immediate response.

It is possible to omit these operations in the description
of a functionality, and simply describe in a generic way that
functionalities abort when an input message is malformed
or that they save the state before calling the simulator and
recover it when receiving a reply. However, our approach is
less error-prone because it lists all the conditions for abortion
and it shows what information needs to be saved and how
this information is recovered.

Our protocol makes use of the functionality Frpg for
key registration [9], FgyT for secure message transmission
[9], and ]-"égsé'semp [9] for common reference string gener-
ation. We describe these functionalities in Fig. 1. We also
employ a variant fg%%ver of the registration functionality
that is parameterized with a verification function REG.Ver.
We employ a box to indicate the steps that are only executed

in this variant of Frgg. We consider static corruptions only.

The functionalities Fruc, FREGVS and Fong " are

set-up assumptions that we use in order to be able to provide
a protocol that realizes our functionality Fpyy, for privacy
preserving billing. In [9], it is explained that only very weakly
security guarantees can be obtained in the bare model, i.e.,
without set-up assumptions. In the real world, these set-up
assumptions can be realized by trusting certain parties, or
alternatively by relying on certain physical phenomena. In
the first case, to realize Freq, ]—'EE%V“ and ]—'égss‘set“p,
protocol that follows the ideal world protocol defined by
Frua, FREGVE and FGhy ™ is employed, i.e., a trusted
party in the real world executes the protocol.

In the case of Fgsyr, it is shown in [9] how this func-
tionality can be realized by a protocol that uses a public
key encryption scheme and an ideal functionality for au-
thenticated communication. In [9], it is also shown that the
ideal functionality for authenticated communication can be
realized by a protocol that uses an existentially unforgeable
signature scheme and the ideal functionality for registration
Freg- Here, Freg is a set-up assumption that allows the
realization of the ideal functionality for authenticated com-
munication, which, as proven in [10], cannot be realized
without set-up assumptions.
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. 3 REG.Ver
Functionality Fr5

1. On input (reg.register.ini, sid, v) from a party 7
— Abort if sid # (T, sid") or if there is a tuple (sid, v’, 0)
stored.
- ’ Abort if 0 = REG.Ver(v). ‘
- Store (sid, v, 0).
- Send (reg.register.sim, sid, v) to S.

S. On input (reg.register.rep, sid) from the simulator S:
— Abortif (sid, v,0) is not stored or if (sid, v, 1) is already
stored.
- Store (sid, v, 1).
- Send (reg.register.end, sid) to 7.
2. On input (reg.retrieve.ini, sid) from any party P:
— If (sid, v, 1) is stored, set v’ < v, else set v’ + L.
— Create a fresh ssid and store (ssid, P, v’).
- Send (reg.retrieve.sim, sid, ssid, v’) to S.
S. On input (reg.retrieve.rep, sid, ssid) from the simulator S:
— Abort if (ssid, P, v’) is not stored.
— Delete ssid from (ssid, P, v").
— Send (reg.retrieve.end, sid, v') to P.

Functionality Fgnim

Parameterized by a leakage function ! : {0, 1}* — N that leaks
the message length, FgnT works as follows:

1. On input (smt.send.ini, sid, m) from a party 7
- Abortif sid # (T, R, sid’).
— Create a fresh ssid and store (ssid, R, m).
— Send (smt.send.sim, sid, ssid, I[(m)) to S.
S. On input (smt.send.rep, sid, ssid) from S:
— Abort if (ssid, R, m) is not stored.
- Delete ssid from (ssid, R, m).
— Send (smt.send.end, sid, m) to R.

Functionality Fq o ="
Parameterized by a ppt algorithm CRS.Setup, Fcrg works as
follows:

1. Oninput (crs.get.ini, sid) from any party P:
— If (sid, crs) is not stored, run crs < CRS.Setup and
store (sid, crs).
— Create a fresh ssid and store (ssid, P).
- Send (crs.get.sim, sid, ssid, crs) to S.
S. On input (crs.get.rep, sid, ssid) from the simulator S:
— Abort if (ssid, P) is not stored.
- Delete ssid from (ssid, P).
- Send (crs.get.end, sid, crs) to P.

REG.V
Fig. 1 The ideal functionalities , FsmT and féﬁs;et”p.

2.2 Ideal Functionality for Privacy-Preserving Billing

We depict the ideal functionality Fpyy, for privacy preserving
billing. Fpyr, interacts with a provider V, users U;, meters
M, and any verifying parties . The provider V creates
billing periods bp. A billing period is not necessarily a period
of time. More generally, it is an identifier that meters M
associate to the meter readings that they output. The meter
readings associated to the same billing period are used to
compute the payment for that billing period.

The provider V associates to each billing period bp a tariff
policy Y. The tariff policy Y : (¢, t) — p is a function that
takes in a consumption value ¢ and the time of consumption
t, and outputs the price to be paid p. Fpi, can easily be
generalized to employ tariff policies that take as input more
variables.

At a billing period bp, the provider V also associates
each user U{; with a list of meters M, ,..., M, . The meter
readings output by those meters are employed by the user I/;
to calculate the bill p[bp] to be paid at the billing period bp.

A meter M can send meter readings to multiple users. A
meter reading is a tuple (U, bp, ¢, t). At the end of a billing
period bp, M; also sends a user I/; the number of meter
readings N[M;, bp| that M sent to U, during the billing
period bp.

A user U; obtains the tariff policy Y and the list of meters
M;,, ..., M, for the billing period bp. The user U; also
gets meter readings from multiple meters. In order to compute
the bill p[bp], U; employs the meter readings received from
the meters in the list M;,,..., M; . U; applies the tarift
policy Y to each meter reading in order to compute a price
p. The prices for all the meter readings are added in order to
obtain the bill p[bp].

Any verifying party P receives the bill p[bp] from a user.
‘P could be the provider V but, in general, is any party that
verifies the correctness of p[bp].

The interaction between the functionality Fpyr, and the
provider V, the users U;, the meters M and the verifying
parties P takes place through the following interfaces:

1. The provider V uses the bil.policy.* interface to send the
pricing policy Y associated to the billing period bp.

2. The provider V uses the bil.listmeters.x* interface to send
the list of meters M, ..., M associated to a user U;
at the billing period bp.

3. A meter M; uses the bil.consumption.x interface to send
a meter reading (¢, t) for the billing period bp to a user
U;.

4. A meter M uses the bil.period.* interface to send to a
user U; the number of meter readings N[M,, bp] that
M sent to U; during the billing period bp.

5. A user U; employs the bil.payment.* interface to send
to any verifying party P the bill p[bp] for the billing
period bp. U; also discloses to the provider V the number
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of meter readings N[M,, bp] obtained from each of the
meters M, ..., M; .

FiiL, employs a table 7' to store meter readings. 71" stores
entries of the form (M, U;, bp, c, t,b). M; is the identifier
of the meter that outputs the meter reading. U; is the identifier
of the user that receives the meter reading. bp denotes the
billing period, c is the consumption value, and ¢ is the time
of consumption. The bit b = 0 indicates that the reading
was not received by the user, while b = 1 indicates that the
reading was received by the user.

Fp1r, has the following main differences in comparison
to the functionality for smart metering described in [47].

— JpiL interacts with multiple users and multiple meters,
while the functionality in [47] only considers one me-
ter and one user. Furthermore, Fgrp, allows a meter to
send meter readings to multiple users, and users receive
meter readings from multiple meters. Therefore, Fpy, is
applicable to a wider variety of billing settings.

— JFpiL includes an interface through which the service
provider sends a list of meters to a user at each billing
period. The meter readings received from the meters in
the list must be employed by the user to perform the bill
calculation for that billing period.

— JFpiw includes an interface bil.period.*, which allow me-
ters to signal the end of a billing period and to report to
the users the number of meter readings that were sent
during the billing period. This necessary interface was
omitted in the functionality in [47].

— JFpiL models explicitly the communication with the sim-
ulator S. S needs this communication in order to provide
a simulation for the adversary in the security proof.

— Fgiw allows any verifying party to receive the bill to be
paid. This may be useful in case of dispute between the
meter and the service provider.

— JFpir, models the cases in which corrupt users collude
with corrupt meters and/or with the service provider. In
the functionality in [47], a corrupt meter was not consid-
ered because they were assumed to be tamper-resistant.
A collusion of a corrupt provider with a corrupt user was
also not considered because it lacked practical interest.
However, when considering multiple meters and users as
JFpir does, Fpir, must still provide some security guar-
antees for honest users in the case in which some meters,
some users and the provider are corrupt. For example,
FpiL guarantees that such a collusion is prevented from
reporting a bill calculation to any verifying party P on
behalf of an honest user. We note that, when a user col-
ludes with the provider or with a meter included in the
list of meters for a billing period, the price to be paid is
not computed by Fpyr, but is input by the simulator S,
and thus may not be correct.

We now discuss the five interfaces of the ideal function-
ality Fpir,, which we depict in Figure 2 and in Figure 3.

1. The provider V invokes the bil.policy.ini message on in-

put a billing period bp and a tariff policy Y. The restric-
tion that the provider’s identity must be included in the
session identifier sid = (), sid’) guarantees that each
provider can initialize its own instance of the functional-
ity. This check is implicitly done in the other interfaces.
The functionality also checks that the billing period and
the tariff policy belong to their respective universes of
allowed inputs. Fpyr, performs similar checks on the
data received as input through the other interfaces. Fpir,
also aborts if a policy for that billing period was already
received through the bil.policy.ini message. Otherwise
FpiL, stores bp and Y and sends bp and Y to the simula-
tor S through the bil.policy.sim message.
After being triggered by the simulator S through the
bil.policy.rep message on input a billing period bp, Fprr,
aborts if the policy for that billing period was not received
through the bil.policy.ini message, or if the registration of
the policy was already finalized. To realize this feature in
any construction for Fpyr,, the registration functionality
in Section 2.1 can be employed. If Fgy1, does not abort,
FiiL stores the policy Y for the billing period bp.

2. The provider V invokes the bil.listmeters.ini message on

input a billing period bp, a user identifier U/;, and a list
of meter identifiers (M, ,..., M; ). Fg, aborts if a
list of meters for the same user and billing period was
already received as input before. We note that, if the
provider V and the user U, are corrupt, S can change
the list of meters used for a payment through the mes-
sage bil.payment.rep. Otherwise Fpyy, records that a list
of meters for that user at that billing period has been
sent. gy, creates a subsession identifier and sends U/; to
the simulator S through the message bil.listmeters.sim.
Since bp and (M, , ..., M, ) are not revealed to S, any
construction that realizes Fpy1, would need to employ a
communication channel that prevents bp and (M, ...,
M, ) from being disclosed to S. The functionality Fsnr
in Section 2.1 fulfills this property.
After being triggered by S through the bil.listmeters.rep
message, Fpir, aborts if the subsession identifier does not
exist. If Fgyr, does not abort, Fgyy, stores the meter list
and sends the meter list to the user ;.

3. A meter M; invokes the bil.consumption.ini message
on input a user identifier I/;, a billing period bp, a con-
sumption value ¢ and a time ¢. Fpyy, aborts if the meter
M had already sent an end of period message for the
billing period bp through the bil.period.ini message. We
note that, if the meter M and the user U{; are corrupt,
the simulator can input an incorrect bill p[bp] through the
bil.payment.rep message. Otherwise Fpir, stores the me-
ter reading sent by the meter in the table T'. Fpyy, creates
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Functionality Fpy,: Interfaces bil.policy.x, bil.listmeters.x and bil.consumption.*

FBIL is parameterized by a universe of policies Uy, a universe of consumptions U, a universe of times U, a universe of billing periods Uy,,,
and a maximum size M4, for the meter lists. Fgyy, interacts with a provider V, users Uf;, meters M and verifying parties P.

1. On input (bil.policy.ini, sid, bp, Y') from V:

— Abortif sid # (V, sid’), orif bp ¢ Uy, orif Y ¢ Uy, orif (sid, bp’, Y’,0) such that bp’ = bp is already stored.

- Store (sid, bp, Y, 0).
— Send (bil.policy.sim, sid, bp, Y) to S.
S. On input (bil.policy.rep, sid, bp) from S:

- Store (sid, bp, Y, 1).
— Parse sid as (V, sid’).
— Send (bil.policy.end, sid) to V.

2. Oninput (bil.listmeters.ini, sid, bp,U;, M;, , ..., M;, ) from V:
— Abortif bp ¢ Uy, orif U; is not a user identifier, or if m > Myaq, or if, for k& = 1 to m, M, is not a meter identifier.
- Abort if (sid, bp’,U!, Moo, M, 0) such that bp = bp’ and U; = U] is already stored.

2

- Store (sid, bp, U;, My, ..., M;,.,0).

— Create a fresh ssid and store (ssid, bp,U;, M, , ..., M, ).

Send (bil.listmeters.sim, sid, ssid,U;) to S.

S. On input (bil.listmeters.rep, sid, ssid) from S:
- Abort if (ssid, bp,U;, My, ..., Mj,, ) is not stored.
- Store (sid, bp, U;, My, ..., M;,.,1).
— Delete (Ss’id, bp, Ui, ./\/l]'1 sy M.fm)'

- Send (bil.listmeters.end, sid, bp, M;,, ..., M, ) to the user U;.
3. On input (bil.consumption.ini, sid,U;, bp, c, t) from the meter M;:
— Abort if U; is not a user identifier, or if bp ¢ Uy, orif ¢ ¢ U, orif ¢t ¢ Uy.
- Abort if (sid, M, U, bp’, N[Mj, bp], 0) such that M = M;, U] = U; and bp’ = bp is already stored.

- Store (M;,U;, bp, ¢, t,0) in Table T

— Create a fresh ssid and store (ssid, M;,U;, bp, c, t).

- Send (bil.consumption.sim, sid, ssid, M;,U;) to S.
S. On input (bil.consumption.rep, sid, ssid) from S:

- Abort if (ssid, M;,U;, bp, ¢, t) is not stored.

- Delete ssid from (M;,U;, bp, c, t).

Send (bil.consumption.end, sid, M, bp, c, t) to U;.

Abort if (sid, bp, Y, 0) is not stored or if (sid, bp, Y, 1) is already stored.

Abort if (sid, M}, U], bp’, N[M;, bp], 1) such that M = M;, U =U; and bp’ = bp is already stored.
Replace (M;,U;, bp, ¢, t,0) by (M;,U;, bp, ¢, t,1) in Table T

Fig. 2 Fgiy,: Interfaces bil.policy.*, bil.listmeters.x and bil.consumption.x.

a subsession identifier and sends the meter identifier M
and the user identifier I/; to the simulator S. The values ¢
and ¢ are not disclosed. Therefore, any construction that
realizes Fpyr, would need to employ a secure channel
such as Fsym.

After being triggered by the simulator S through the
message bil.consumption.rep, Fgyy, aborts if the subses-
sion identifier is not stored. Fgyr, also aborts if the end
of billing period message has already been sent to the
user through a bil.period.end message. We note that it
is possible that Fpyy, receives a meter reading through
a bil.consumption.ini message before the end of billing
period message is received through a bil.period.ini mes-
sage, but the bil.consumption.rep message for that meter
reading is received after the end of billing period message
is sent to the user. If Fyyy, does not abort, Fiy1, indicates

in the table 7' that the meter reading is received by the
user and sends M, bp, c and ¢ to the user U;.

. A meter M invokes the bil.period.ini message on in-

put a user identifier U/; and a billing period bp. Fpr,
checks the validity of the input. Fpyy, aborts if the mes-
sage bil.period.ini was already sent for the same user,
meter and billing period. Else Fpyy, calculates the num-
ber N[M;, bp] of meter readings that M; sent to U;
at the billing period bp. We note that, if the meter M,
and the user U; are corrupt, the simulator can change the
number of meter readings for that billing period through
the bil.payment.rep message. Fpyy, creates a subsession
identifier and sends the meter identifier M and the user
identifier U; to the simulator S.

After being triggered by S through the bil.period.rep
message, Jpr, aborts if the subsession identifier is not
stored. Fpiy, calculates the number of meter readings re-
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4. On input (bil.period.ini, sid,U;, bp) from M;:

S. On input (bil.period.rep, sid, ssid) from S:

5. On input (bil.payment.ini, sid, P, bp) from U;:

S. Oninput (bil.payment.rep, sid, ssid), if either U; is honest or if V and the meters in the list (sid, bp,U;, M, . .
or else on input (bil.payment.rep, sid, ssid, p[bp], (Mj, , N[M;, , bp])7™_;) from S:

Functionality Fpy1,: Interfaces bil.period.x and bil.payment.x

Abort if U; is not a user identifier, or if bp ¢ Uy,.

Abort if (sid, M;,L{{, bp’, N|M;, bp], 0) such that M; = M;,U! =U; and bp’ = bp is already stored.

Set N[M;, bp] to the number of entries (M;,Z/{l’, bp’, ¢’, t',b) in Table T such that M = M;, U] = U; and bp’ = bp.
Store (sid, M;,U;, bp, N[M;, bp],0).

Create a fresh ssid and store (ssid, M;,U;, bp, N[M;, bp]).

Send (bil.period.sim, sid, ssid, M;,U;) to S.

Abort if (ssid, M;,U;, bp, N[M,, bp]) is not stored.

Delete ssid from (ssid, M;,U;, bp, N[M;, bp]).

Set N'[M;, bp] to the number of entries (M, U], bp’, c’,t',b) in Table T such that M= M, Ul =U, bp’ = bp,and b = 1.
Abort if N'[M;, bp] # N[M,, bp].

Store (sid, ./\/lj,ui, bp, ]V[./\/lj7 bp]7 1)

Send (bil.period.end, sid, bp, M;, N[M;, bp]) to U;.

Abort if P is not a valid party identifier, of if bp ¢ Uy,,.

Abort if (sid, bp’, Y’, 1) such that bp’ = bp is not stored.

If U; is honest or if V is honest, abort if (sid, bp’, U], M;,, ..., M;,., 1) such that bp’ = bp and U] = Uf; is not stored.

For k = 1 to m, if U; is honest or if V and M, are honest, abort if a tuple (sid, MU, bp’, N[M;, bp], 1) such that M = M;,,
bp’ = bp and U] = U, is not stored.

Create a fresh ssid and store (ssid,U;, P, bp).

Send (bil.payment.sim, sid, ssid,U;,P) to S.

., M,,,., 1) are honest,

Abort if (ssid,U;, P, bp) is not stored.
Delete ssid from (ssid,U;, P, bp).
Abort if U; and V are corrupt and m > Myqz.
If U; or V are honest, retrieve (M;, , ..., M;, ) from the tuple (sid, bp,U;, M;,, ..., M, ., 1), else employ the list of meters sent
by S.
For k = 1 to m, if Mj;,_ is honest, abort if a tuple (sid, MU, bp’, N|M’, bp], 1) such that M= M, bp' = bp and U =U;
is not stored.
If either U; is honest or if V and the meters in the retrieved list are honest, for £ = 1 to m, do the following:
Set p[M;, , bp] = 0.
— Retrieve N[M;, bp] from the tuple (sid, MU, bp’, N[M;, bp], 1) such that M= M;,, bp’ = bp and U] = U;.

- Retrieve all the N[M/, bp] tuples (M, U], bp’, ¢, t,1) in Table T such that M} = M;, , U = U; and bp’ = bp.

- Forn =1to N[Mj,, bp], set p[M;, , bp] = p[M;, , bp] + Y (c[k, n], t[k, n]).
If either U, is honest or if V and the meters in the retrieved list are honest, set p[bp] = p[M;,, bp] + ... + p[M;,, , bp], else employ
the value p[bp] sent by S.
For k = 1 to m, if U; or M, (in the retrieved meter list) are honest, retrieve N [M;, bp] from the tuple (sid, MU, bp’,
N[M‘;, bp], 1) such that M= My, bp’ = bp and U] = U;, else employ the value N[M;, , bp] sent by S or abort if this value is
lower than 0.
Send (bil.payment.end, sid,U;, bp, p[bp], M;,, N[M;,, bp], ..., M;,., N[M,;, , bp]) to P.

Fig. 3 FgiL: Interfaces bil.period.x and bil.payment.x.

ceived by U; from M at that billing period and aborts if
that number does not equal the number of meter readings
sent by M to U;. If Fgyr, does not abort, Fpiy, stores
N[M,, bp] and sends N[ M, bp] to U;.

. A user U; invokes the bil.payment.ini message on input
the identifier of a verifying party P and a billing period
bp. Fpir, aborts if the tariff policy is not stored. Fpir,
also aborts if U{; or V are honest but the list of meters
for the billing period bp is not stored. Fpyr, does not
abort for this reason when U; and V are corrupt because,
in that case, S is allowed to input another list through

the bil.payment.rep message. Fp1, also aborts if Uf; is
honest, or if }V and any of the meters in the list are honest,
but the end of period message from that meter was not
received by the user U{;. We note that Fgyr, does not abort
for that reason when the meter is honest but the user and
the provider are corrupt. The reason is that, when the user
and the provider are corrupt, S may send a different list
of meters through the bil.payment.rep message. If Fpir,
does not abort, Fgyr, creates a subsession identifier and
sends the user identifier I/; and the party identifier P to
the simulator S.
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When the simulator S invokes the bil.payment.rep mes-

sage, we distinguish two cases.

User honest or provider and meters honest. S sends no
input to Fpyr, through the bil.payment.rep message.
JFgir aborts if the subsession identifier is not stored.
Otherwise Fgrr, computes the bill p[bp] as follows.
For each of the meters in the list of meters that the
provider sent to the user for the billing period bp,
Fpi1, takes the meter readings that the meter sent to
the user at that billing period. Fp1r, applies the policy
for the billing period bp to each of the meter readings
to obtain a price. The prices associated to a meter are
summed up to get a price p[M,, , bp] for the meter
readings sent by the meter M, . Finally, the prices
corresponding to each meter are summed up to get
the bill p[bp]. Friw sends to the party P the bill, the
billing period and the user identifier along with the
meter list and the number of meter readings from
each meter.

User corrupt and provider or meters corrupt. S sends to
JFBI1, a price, a list of meters, and a counter of meter
readings for each meter. If the provider is honest,
Fpiw disregards the list of meters sent by S and uses
instead the list that the functionality stores for that
billing period. For each of meters in the list, if the user
or the meter are honest, Fpyy, disregards the counter
of meter readings sent by S and uses instead the one
the functionality stores. Fpir, outputs the price, the
billing period and the user identifier along with the
list of meters and counter of meter readings from each
meter.

We note that disclosing to the verifying party P the num-
ber of meter readings from each meter along with the bill
may reveal sensitive information about the user. It is easy to
modify Fpy, so that this information is not disclosed. How-
ever, the constructions that realize such a functionality would
be less efficient.

3 Technical Preliminaries
3.1 Non-interactive Zero-Knowledge Proofs of Knowledge

Let R be a polynomial time computable binary relation. For
tuples (wit, ins) € R we call wit the witness and ins the in-
stance. Let L be the NP-language consisting of the instances
ins for which there exist witnesses wit such that (wit, ins)
€ R. A non-interactive zero-knowledge proof of knowledge
(NIPK) system for the relation R consists of three algorithms
PKSetup, PKProve and PKVerify. On input a security pa-
rameter 1%, PKSetup(1¥) outputs the parameters par,y,. The
algorithm PKProve(par,, wit, ins) checks whether (wit,
ins) € R and in that case outputs a proof m. PKVerify(par,,

ins, ) outputs 1 if 7 is a valid proof that ins € L or 0 if that
is not the case.

Definition 1 A NIPK system must fulfill the following com-
pleteness, extractability and zero-knowledge properties.

Completeness. Completeness requires that the verification
algorithm PKVerify accepts the proofs computed by the
algorithm PKProve. More formally, for all (wit, ins) €
R, the completeness property is defined as follows.

paryy, & PKSetup(1%);
Pr| 8 PKProve(paryy, wit, ins) : | =1

1 = PKVerify(parpg, ins, )

Extractability. The extractability property requires the exis-
tence of a knowledge extractor (£, E). £1(1%) outputs
parameters paryy and a trapdoor td, such that paryy, is
indistinguishable from the output of PKSetup(1¥). More
formally, for all polynomial time adversaries .A:

Priparys & PKSetup(1%) : 1 = A(pary)] =
Pr{(parpk, tde) & E1(1F) 1 1 = A(pary)]

For all polynomial time adversaries A, & extracts wit
from a valid proof with overwhelming probability. More
formally:

(pary, tde) & € (1%);

(ins, ) & A(parpr, tde);

wit +— 82(pa‘rpk7 tdea Z.77'87 7T) : S €(k)
1 = PKVerify(paryg, ins, m) A

(ins, wit) ¢ R

Pr

Zero-knowledge. Zero-knowledge requires that there exists
a simulator (S, S2) such that, for all polynomial time
adversaries A:

Priparyy & PKSetup(1¥) :

1 = A(paryy,)”CrParm)] ~

Pr{(paryk, tds) & S1(17) -

1= A(parpk)“’s(?arpk,tds7.,.)]

The oracle O, (parpk, wit, ins) executes the algorithm
PKProve(paryy, wit, ins) and returns its output. (We re-
call that PKProve only outputs a proof if (wit, ins) €
R.) S(parpg, tds, wit, ins) runs Sa(paryy, tds, ins) and
returns its output if (wit, ins) € R, else returns failure.
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3.2 Signature Schemes

A signature scheme consists of the algorithms KeyGen, Sign,
and VfSig. Algorithm KeyGen(1*) outputs a secret key sk
and a public key pk, which include a description of the
message space M. Sign(sk, m) outputs a signature s on
a message m € M. VfSig(pk, s, m) outputs 1 if s is a valid
signature on m and 0 otherwise. This definition can be ex-
tended to blocks of messages m = (mq,...,m;,). In this
case, KeyGen(l’“ , n) receives the maximum number of mes-
sages as input.

Definition 2 A signature scheme must fulfill the following
correctness and existential unforgeability properties [21].

Correctness. Correctness ensures that the algorithm V{Sig
accepts the signatures created by the algorithm Sign on
input a secret key computed by the algorithm KeyGen.
More formally, correctness is defined as follows.

(sk, pk) <& KeyGen(1%); m & M;

Pr $
s < Sign(sk,m) : 1= VfSig(pk, s, m)

=1

Existential Unforgeability. The property of existential un-
forgeability ensures that it is not feasible to output a
signature on a message without knowledge of the secret
key or of another signature on that message. Let O, be an
oracle that, on input sk and a message m € M, outputs
Sign(sk, m), and let S be a set that contains the mes-
sages sent to O . More formally, for any ppt adversary
A, existential unforgeability is defined as follows.

(sk, pk) & KeyGen(1%);
(m. ) & A(pk) =05
1 = VfSig(pk, s, m) A
meM A mé¢ S

Pr < e(k)

3.3 Commitment Schemes

A commitment scheme consists of algorithms CSetup, Com
and VfCom. The algorithm CSetup(1*) generates the pa-
rameters of the commitment scheme par., which include a
description of the message space M. Com(par,, z) outputs
a commitment com to z € M and some auxiliary informa-
tion open. The verification algorithm VfCom(par., com, z,
open) outputs 1 if com is a commitment to z € M with
some auxiliary information open or 0 if that is not the case.

Definition 3 A commitment scheme should fulfill the fol-
lowing correctness, hiding and binding properties.

Correctness. Correctness requires that VfCom accepts all
commitments created by the algorithm Com, i.e., for all

r e M

pare & CSetup(1¥);
Pr| (com, open) & Com(parg,z): | =1
1

= VfCom(par,., com, z, open)

Hiding. The hiding property ensures that a commitment com
to x does not reveal any information about z. For any PPT
adversary A, the hiding property is defined as follows:

[ par. & CSetup(1%);
(w0, st) < A(par,);
I (i M;

Pr $ < 1 + e(k)

b« {0,1} =2 '
(com, open) & Com(pare, xp);
b & A(st, com) :

lzp E M AN b=V

Binding. The binding property ensures that com cannot be
opened to another value z’. For any PPT adversary A,
the binding property is defined as follows:

pare & CSetup(1%);

(com, z, open, ', open’) & A(par.) :
PrlzeMAazeMnaza'A

1 = VfCom(par., com, x, open) A

1 = VfCom(par., com, x’, open’)

<e(k).

3.4 Polynomial Commitments

A polynomial commitment scheme [29] consists of the fol-
lowing algorithms.

PSetup(1%,¢). On input the security parameter 1* and an
upper bound for the polynomial degree ¢, output the pa-
rameters par,, which include a description of the poly-
nomial space M.

PCommit(par,, ¢(z)). On input the parameters par, and a
polynomial ¢(z) € M, output a commitment C to ¢(z)
and decommitment information d.

PProve(par,, ¢(z), 1, d). Output a witness w that ¢(7) is
the evaluation of ¢(z) on input 4.

PVerify(pary, C, 4, (i), w). Output 1 if w is a valid wit-
ness that ¢(4) is the evaluation of ¢(z) on input i. Other-
wise output 0.

Definition 4 A polynomial commitment scheme should ful-
fill the correctness and evaluation binding properties.

Correctness. Correctness ensures that the output of PProve
is always accepted by PVerify. More formally, for all
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o(x) € M:

par, <& PSetup(1*, 0);

pr | (C,d) & PCommit(pary, ¢(z)); | = 1
w < PProve(par,, ¢(z), 4, d) :
1 = PVerify(par,, C, i, ¢(i), w)

Evaluation Binding. A commitment to a polynomial ¢(z)
cannot be opened to two different evaluations ¢(7) and
#(i)" on input 7. More formally, for any ppt adversary A,
the evaluation binding property is defined as follows.

pary & PSetup(1*, ¢);
(€, (9(0), w), (6(i), w')) & A(par,)
Pr| 1 = PVerify(par,, C, i,¢(i), w) A < e(k)
1 = PVerify(par,, C, i, (), w') A
o(i) # o(i)'

4 Construction of Privacy-Preserving Billing

We describe our construction for privacy-preserving billing.
Construction BIL involves a provider V, users U;, meters
M and verifying parties P.

First, we provide a generic description of construction
BIL in Figure 4 and Figure 5. This description does not de-
pend on the type of tariff policy being used. In Section 4.1,
Section 4.2 and Section 4.3, we give the details of our con-
struction when respectively a linear policy, a cumulative
policy and a polynomial policy are employed. In Section 4.4,
we discuss other policies.

Construction BIL is parameterized by a universe of poli-
cies Uy, a universe of consumptions U,, a universe of times
Uy, a universe of billing periods Uy,, and a maximum size
M,qr for the meter lists. We denote by U/ the universe of
user identities and by M the universe of meter identities.

Construction BIL uses a commitment scheme (CSetup,
Com, VfCom). The provider employs a signature scheme
(KeyGeny, Sign1, VfSigy) to sign tariff policies, whose mes-
sage space is specific to each of the tariff policies, and a
signature scheme (KeyGen,, Sign,, VfSig,) to sign meter
lists, whose message space is (U, U, MMne). The me-
ters employ a signature scheme (KeyGens, Signs, VfSigs)
to sign meter readings, whose message space is (U, Upp, N,
U, Uy), and a signature scheme (KeyGeny, Signg, VfSigy) to
sign the number of meter readings in a billing period, whose
message space is (U, Upp, N). Construction BIL also em-
ploys a NIPK scheme (PKSetup, PKProve, PKVerify) for a
relation R. The relation R is specific to each of the tariff poli-
cies. Construction BIL works in the Fanr, FrEc, FRES; Ver

REG

and fggss'set“p—hybrid model. Feynr, FREG, Foee Ve and

féﬁ%‘set“p are described in Section 2.1.

When a polynomial tariff policy is employed, construc-
tion BIL also employs a polynomial commitment scheme

(PSetup, PCommit, PProve, PVerify). In our ieneric de-

scription of the construction, we employ the box
to denote computations that only occur when a polynomial
policy is used.

The provider V, users U;, meters M and verifying par-
ties P are activated through the bil.policy.x*, bil.listmeters.x,
bil.consumption.x, bil.period.* and bil.payment.* interfaces.
We describe on a high level the computations performed for
each of these interfaces.

1. The provider V receives (bil.policy.ini, sid, bp, Y') as in-
put. If the parameters of the scheme are not stored, V
gets the parameters of the commitment scheme and of the
NIPK scheme from Fgng>=""". In the case of a polyno-

mial policy, fégss‘set”p also provides the parameters of
the polynomial commitment scheme. If the signing key
is not stored, V also creates a key pair for the signature
scheme that signs the tariff policies. Next, } proceeds
to sign the tariff policy. The concrete method to sign the
tariff policy is described in Section 4.1, Section 4.2 and
Section 4.3 for the linear, cumulative, and polynomial
policies. Finally, V registers the signing public key and
the signed tariff policy with a new instance of }'P'?EGG'V”
for the billing period bp.

2. The provider V receives (bil.listmeters.ini, sid, bp,U;,
M, ..., M;, ) as input. If a list of meters for the user
U, at the billing period bp was already sent, }V aborts.
Else, if the signing key is not stored, ) creates a key pair
for the signature scheme that signs the lists of meters and
registers the public key with Frgpg. V signs the list of
meters M, ,..., M,  and sends the list of meters and
the signature to the user U/, through an instance of the
functionality Fgnr. U; aborts if a list of meters for the
billing period bp was received before or if the signature
is not correct, else U; outputs the list of meters.

3. The meter M receives (bil.consumption.ini, sid, U;, bp,
¢, t) as input. M; aborts if the end of billing period
message was already sent to U; at the billing period
bp. If the signing keys are not stored, M; creates key
pairs for the signature schemes that sign meter readings
and the number of meter readings output in a billing
period, and registers them with an instance of Frgc.
Next, M, increments a counter ctm/[bp,U;] that counts
the number of meter readings sent to the user I/; during
the billing period bp. M, signs the meter reading (i4;,
bp, ctm[bp,U;], ¢, t) and sends the meter reading and
the signature to the user U{; through an instance of the
functionality Fgnr. U; aborts if the end of billing period
message was already received from the meter M at the
billing period bp. If U; does not store the signing public
key, U; retrieves it from the instance of Frrg. U; ver-
ifies the signature, checks that the counter value in the
meter reading does not equal the counter value of any of
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the stored meter readings from that meter at that billing
period, and outputs the meter reading.

4. The meter M receives (bil.period.ini, sid,U;, bp) as in-
put. M aborts if the end of period message was already
sent to U; at the billing period bp. M signs the counter
that counts the number of meter readings sent to the user
U, during the billing period bp. M; sends the counter
and the signature to U/; through an instance of the func-
tionality FsymT. U; aborts if the end of period message
was already received from M at the billing period bp.
U, verifies the signature, checks that it stores the number
of meter readings indicated by the counter and that the
meter readings are numbered from 1 to the counter value,
and outputs the billing period bp, the meter identity M
and the number of meter readings.

5. The meter U; receives (bil.payment.ini, sid, P, bp) as in-
put. If the parameters of the scheme are not stored, I;
gets them from Fng P, If the public key and the
signed policy are not stored, U; retrieves them from the
corresponding instance of FRESVe". Next, U; checks that
V sent the list of meters (M, ..., M, ) for the billing
period bp. U; also checks that each of the meters in that
list sent the end of billing period message. In that case, U;
computes the bill to be paid by applying the tariff policy
to each of the meter readings and summing up the prices
to be paid for each of the meter readings. {/; computes
a non-interactive zero-knowledge proof that the bill is
correctly calculated. The details for this proof are given
in Section 4.1, Section 4.2 and Section 4.3 for the lin-
ear, cumulative, and polynomial policies respectively. U;
sends the signed list of meters, the bill and the proof to
the verifying party P through an instance of the func-
tionality Fgyr. If the parameters of the scheme are not
stored, P gets them from Fhg ™", P also retrieves the
public keys of the provider and of the meters. P verifies
the signed meter list and the proof, and then outputs the
bill.

4.1 Linear Policies

A linear policy is a tariff policy in which the time is divided
into time intervals [t1, t2), [t2, t3), - - - [tL, tL+1). The tariff
policy associates each time interval to a rate r. The rate
denotes a price per unit of consumption. The policy can be
expressed as follows:

c-T iftG[tl,tg)
Y(Cat) I
c-rpift € [tL,tLJrl)

In order to sign this tariff policy using a key pair (pk;,
sky) for the signature scheme (KeyGeny, Signy, VfSig),

the provider V proceeds as follows. For each time interval
[tmin, tmaz) in the tariff policy, V computes a signature s <—
Signy (sk1, (bp, 7, tmin, tmaz))- The signed tariff policy Y

consists of L tuples [17, tmin.i; tmaw.i» 51][:1' The verification
function REG.Ver verifies the signatures in the signed tariff
policy.

In order to compute a non-interactive zero-knowledge
proof of correctness of the bill computation, U/; proceeds
as follows. Let (sid, bp, M;,,..., M;, ,s) be the list of
meters signed by V. For k = 1 to m, let (sid, M, , bp,
ctm[bp, M, ], si) be the number of meter readings sent by
meter M, . For d = 1 to ctm[bp, M, ], let [M,,, bp, d,
Ck.d, tk.d, Sk,q] be the meter readings sent to U; by M, . U;
computes a non-interactive zero-knowledge proof of knowl-
edge for the following relation.

R = {(ins, wit) :
{1 = VfSiga(pk; &, 51, (bp, Ui, ctm[bp, M 1)) A (D)
[1 = VfSigs(pks,k; sk,d, Ui, bp, d, Ck d, t,d)) A )]
1 = VfSig1(pk1, 1., 4> (b9, T, d> bmin ks tmaz k,d)) A (3)
tk,d € [tmin,k,d> tmaz,k,d) A 4)
ctm/[bp, Jim
Dhyd = Chyd * Thydl g 1p ym A 5
ctm| bp,./\/l]k
p=y > Pr.d A (6)
1= VfCom(parc, com, p, open)}. ™

In this relation, for each meter M, in the meter list,
Line 1 requires the user to prove knowledge of the signa-
ture s from M, on the tuple (bp,U;, ctm[bp, M, ]). This
signed tuple belongs to the instance of the proof. Despite the
fact that the signed values are revealed in the proof instance,
the signature s, must belong to the witness to prevent a ma-
licious meter from disclosing information to the verifying
party through sy. For the ctm[bp, M, ] meter readings that
M, sent to U;, Line 2 requires the user to prove knowledge
of a meter reading cj, 4 and #; 4 and of a signature s 4 from
M, on that meter reading. The signed values U/;, bp, and d
belong to the proof instance. Line 3 requires the user to prove
knowledge of the rate r, g, of an interval [tmin k.d; tmaz.k.d)s
and of a signature s,/cvd in the tariff policy that signs those
values. The signed billing period bp belongs to the proof
instance. Line 4 is a range proof that requires the user to
prove that the time ;4 proven in Line 2 lies within the inter-
val [tmin k,ds tmaz,k,d) Proven in Line 3. Thanks to that, the
verifier ensures that the user employs the rate 7y, 4 associated
with the correct time interval in the tariff policy. Line 5 re-
quires the user to prove that the price associated to the meter
reading proven in Line 2 is computed by multiplying the
rate 73 4 by the consumption ¢y, 4. Finally, Line 6 and Line 7
require the user to prove that com is a commitment to the
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Construction BIL: Interfaces bil.policy.x, bil.listmeters.x and bil.consumption.*

Construction BIL involves a provider V, users U;, meters M, and verifying parties 7P. We denote by I/ the universe of user identities and by M
the universe of meter identities. Construction BIL is parameterized by a security parameter 1*. It is also parameterized by a universe of policies
Uy, a universe of consumptions U, a universe of times U, a universe of billing periods Uy,, and a maximum size Miq, for the meter lists.
Construction BIL uses a commitment scheme (CSetup, Com, VfCom) and a NIPK scheme (PKSetup, PKProve, PKVerify). The provider
employs a signature scheme (KeyGeny, Sign1, VfSig1), whose message space is specific to each of the tariff policies, and another signature
scheme (KeyGeny, Sign2, VfSigz), whose message space is (Upp, U, MMmaz) The meters employ a signature scheme (KeyGens, Signs,
VfSigs), whose message space is (U, Upy, {0, 1}~ U, U;) (L is large enough to avoid collisions), and (KeyGeng, Signs, VfSigs), whose

message space is (U, U, N). ’ Construction BIL employs a polynomial commitment scheme (PSetup, PCommit, PProve, PVerify). ‘ Con-

struction BIL works in the FsnT, FREG .Fg%%ver and ]-'é%séset“p—hybrid model, where CRS.Setup consists of the algorithms (
CSetup, PKSetup).

1. On input (bil.policy.ini, sid, bp, Y'), V does the following:
— Abort if sid # (V, sid’), orif bp ¢ Uyp, orif Y ¢ U,.

— If the parameters | POL: pary, | par. and pary, are not stored, send the message (crs.get.ini, sid) to ]-'é';sésemp, receive the mes-

sage (crs.get.end, sid, ( POL: pary, [parc, parpy)) from the functionality .Fé;séset“p, and store | POL: pary, | parc and paryy,. The

functionality ]-'g;séset“p runs ’ POL: pary, <+ PSetup(1¥,¢) (¢ is the maximum degree of the polynomials in the policy),

CSetup(1*) and pary), < PKSetup(1¥).

— If (sky, pk; ) is not stored, run (sk; , pk; ) < KeyGen1(1*) and store (sk;, pk; ).

— Compute a signed tariff policy Y as described in Section 4.1, Section 4.2 or Section 4.3.

— Send (reg.register.ini, (sid, bp), (pks, Ys)) to FREGVer and receive (reg.register.end, (sid, bp)) from FREG-Ve". In Section 4.1,

Section 4.2 or Section 4.3, we describe REG.Ver.

— Output (bil.policy.end, sid).
2. On input (bil.listmeters.ini, sid, bp,U;, M;, , ..., M;,.), V and U; do the following:

— Vaborts if bp ¢ Uy, or if U; is not a user identifier, or if m > M4y, or if, for k = 1 to m, M, is not a meter identifier.
V aborts if (sid, bp,UJ, Mj ..., M s) such that bp = bp’ and U; = U] is already stored.
If (ske, pke) is not stored, run (skg, pks) < KeyGeny(1%), send (reg.register.ini, sid, pke) to FREq, receive (reg.register.end,
sid, pkg) from Fryc and store (skz, pks).
VY stores (sid, bp, Uy, My, ..., Mj,.).
V signs s < Signa(skz, (bp, Ui, My, ..., Mj,.)).
V sets sidsymT (V,Z/{i7 Sid) and sends (smt.send.ini, stdsMT, <bp,ui, ./\/l]'1 yeey M]'m, S>) to FsMT-
U; receives (smt.send.end, sidsnvr, (bp, Ui, My, ..., M;,,s)) from Fsym.
U, aborts if (sid, bp’, Mo M s) such that bp = bp’ is already stored.
If pkg is not stored, U; sends (reg.retrieve.ini, sid) to Frgg, receives (reg.retrieve.end, sid, pkg ), and stores pks.
U, runs b < VfSiga(pkz, s, (bp, Ui, My, , ..., M, ).
U; aborts if b = 0.
U; stores (sid, bp, M, , ..., Mj, ., s).
U; outputs (bil listmeters.end, sid, bp, M, ..., M;, ).
3. On input (bil.consumption.ini, sid,U;, bp, c, t), M; and U; do the following:
M aborts if U4; is not a user identifier, or if bp ¢ Uy, orif ¢ ¢ Ue, orif t ¢ Uy.
- M; aborts if (sid, U], bp’, ctm[bp,U;], s) such that U] = U; and bp’ = bp is already stored.
If (sks i, pks,;) and (sk; k. pk, 1) are not stored, M, runs (sks i, pks i) + KeyGens(1*) and (sk; 1, pk; 1) + KeyGens(1¥),
sends (reg.register.ini, (sid, M;), (pks i, pk; k) t0 FREG, receives (reg.register.end, (sid, M;), (pks i, pk; 1)) from Frec
and stores (skg i, pks,i) and (sky i, pk; i)-
- M; increments a counter ctm/[bp, ;] (initialized at zero).
M runs s < Signs(sks i, (Us, bp, ctm[bp,U;], ¢, t)).
- ./\/lj sets sidgnmT — (Mj,l/li, sid) and sends (smt.send.ini, stdsmr, (Ui, bp, Ctm[bp,ui], c, t, S>) to FsMmT-
U, receives (smt.send.end, sidsnvir, (Ui, bp, ctm[bp, M;], ¢, t, s)) from Fgmr.
U, aborts if (sid, Mj/., bp’, ctm’[bp, M;], s") such that M; = M and bp’ = bp is already stored.
If pks i, and pky j, are not stored, U/; sends (reg.retrieve.ini, (sid, M;)) to Freq, receives (reg.retrieve.end, (sid, M;), (pks 1,
pky k), and stores pks ; and pky j.
U; runs b < VfSigz(pks ., s, (Ui, bp, ctm[bp, M;], c, t)).
U; aborts if b = 0.
For all the tuples [M;, bp’, ctm/[bp, M;], c, ¢, s] stored such that Mj = M, and bp’ = bp, U; aborts if ctm/[bp, M;] =
ctm[bp, M;].
U; stores [M;, bp, ctm[bp, M;], c, t, s].
U; outputs (bil.consumption.end, sid, M, bp, ¢, t).

pare

Fig. 4 Construction BIL: Interfaces bil.policy.x, bil.listmeters.x and bil.consumption.x.
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Construction BIL: Interfaces bil.period.* and bil.payment.x

4. On input (bil.period.ini, sid,U;, bp), M; and U; do the following:

— M; aborts if U; is not a user identifier, or if bp ¢ Uy,,.

- M; aborts if (sid, U], bp’, ctm[bp,U;]) such that U] = U; and bp’ = bp is already stored.

- M; stores (sid,U;, bp, ctm[bp,U;]). The counter ctm[bp,U;] equals 0 if M; did not send any meter reading to I; at the billing
period bp.
If (sks i, pks,i) and (sk; k, pky ) are not stored, M; runs (skg i, pks i) < KeyGens(1%) and (sky 1, pk; 1) < KeyGeng(1%),
sends (reg.register.ini, (sid, M), (pks i, pk; 1)) to FREG. receives (reg.register.end, (sid, M;)) from Frpq and stores (skg i,
pks k) and (sky k., pky x).-
— M runs s < Signa(sky ., (Ui, bp, ctm[bp,Us])).
- Mj sets sidsnmT — (./\/lj,u,', sid) and sends (smt,send.ini, stdsMmT, <Z/{i, bp, Ctm[bp,ui], 8>) to FsMmT-
U; receives (smt.send.end, sidsmr, (Ui, bp, ctm[bp, M;], s)) from Fsmr.
U, aborts if there is a tuple (sid, M, bp’, ctm/[bp, M;], s) stored such that M = M; and bp’ = bp.
If pks j, and pky j are not stored, U; sends (reg.retrieve.ini, (sid, M;)) to Freg, receives (reg.retrieve.end, (sid, M;), (pks i,
pky i), and stores pks ; and pky j.
U; runs b < VfSiga(pky ., s, (Ui, bp, ctm[bp, M;])).
U; aborts if b = 0.
U; counts the number of tuples [M;, bp’, ctm/[bp, M;], ¢, t, 5] stored such that M = M; and bp’ = bp. If the number is different
from ctm[bp, M;], U, aborts. U; also aborts if, from d = 1 to ctm[bp, M;], U; cannot find a tuple [./\/lj7 bp’, ctm/[bp, M;], ¢, t, s]
stored such that M) = M, and bp’ = bp and d = ctm’[bp, M;].
U; stores (sid, M, bp, ctm[bp, M;], s).

- U, outputs (bil.period.end, sid, bp, M;, ctm[bp, M;]).
5. On input (bil.payment.ini, sid, P, bp), U; and P do the following:

— U, aborts if P is not a valid party identifier, of if bp ¢ Uy,.
— If | POL: pary, | parc and parp; are not stored, U; sends the message (crs.get.ini, sid) to }.g;sésetup, receives the message

(crs.get.end, sid, (| POL: pary, [parc, pary)) from féﬁéset”p, and stores | POL: pary, | parc and parpy.

If (sid, bp’, (pk1, Ys)) such that bp = bp’ is not stored, U; sends (reg.retrieve.ini, (sid, bp)) to FRE.V®", receives (reg.retrieve.end,
(sid, bp), (pky, Ys)) from FRES.Ve", and stores (sid, bp, (pk;, Ys)). U; aborts if FRES:Ver sends (reg.retrieve.end, (sid, bp), L).
If a meter list (sid, bp’, M, ,..., M;, ,s) such that bp’ = bp is not stored, U; aborts.
— For k = 1 to m, U; does the following:

— Abort if a tuple (sid, M, bp’, ctm[bp, M;]) such that M, = M, and bp’ = bp is not stored.

— Set Pk = 0.

— For d = 1 to ctm[bp, M;], retrieve each of the ctm[bp, M;] tuples [M;, bp’,d, cq, tq, sq] such that M, = M and bp’ = bp

and set pr, = pr + Y(Cd, td).

- Setp =3 _7" 1 P-
Run (com, open) < Com(pare, p).
Set wit and ins for a relation R as described in Section 4.1, Section 4.2 or Section 4.3.
Run 7 <— PKProve(paryy, wit, ins).
U, sets sidsvt < (Ui, P, sid) and sends (smt.send.ini, sidsm, (p, open, com, bp, M, , ..., M;, . s,ins, 7)) to FsmT-
P receives (smt.send.end, sidsm, (p, open, com, bp, M, , ..., M, s, ins,w)) from Fsm.
If (sid, bp’, (pk1, Ys)) such that bp = bp’ is not stored, U; sends (reg.retrieve.ini, (sid, bp)) to FRE'®", receives (reg.retrieve.end,
(sid, bp), (pk1, Ys)) from fﬁ%%ver, and stores (sid, bp, (pky, Ys)). U; aborts if fﬁ%cdve' sends (reg.retrieve.end, (sid, bp), L).
If pky is not stored, P sends (reg.retrieve.ini, sid) to FrREg, receives (reg.retrieve.end, sid, pkg ) from Frgc, and stores pkg.
P aborts if 1 # VfSigy(pks, s, (bp, Us, My, ..., M;,)).
— For k = 1 to m, If pks ;, and pky j, are not stored, P sends (reg.retrieve.ini, (sid, M;)) to FrReq, receives (reg.retrieve.end, (sid,
M), (pks k., pky 1)), and stores pkg j, and pky j.

If | POL: pary, | par. and parps are not stored, P sends the message (crs.get.ini, sid) to ]-'g;ssset“”, receives the message

(crs.get.end, sid, (| POL: pary, |parc, paryy)) from Fél;sésemp, and stores | POL: pary, | parc and paryy.

‘P checks that the instance ins is consistent with the received values pk;, pks i, pk; .| POL: parp, | par. and paryy. P also checks

that, for k = 1 to m, the instance includes a counter ctm[bp, M, ] of meter readings and that the proof proves possession of
ctm[bp, M, | meter readings numbered from 1 to ctm[bp, M, ].

P aborts if 1 # PKVerify(paryy, ins, 7).

P aborts if 1 # VfCom(par., com, p, open).

P retrieves (ctm[bp, M, ], ..., ctm[bp, M;, ]) from ins.

P outputs (bil.payment.end, sid,U;, bp, p, M, , ctm[bp, M;,],..., M., ctm[bp, M;, ]).

Fig. 5 Construction BIL: Interfaces bil.period.* and bil.payment.x.
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total price, which is computed by summing up the prices for
each meter reading.
U; sets the witness as follows.

. /
wit < (p, open, [(Ck,ds th,ds Pk, d» k,ds Sk ds Tk, ds

ctm[bp, M, ] m
tmin,k,d> tmaz, k,d) g—1 s Skl pe1)

U, sets the instance as follows.

ins < (pare, pky,U;, com, bp,
[Pks k> Phy k> ctm[bp, My IR ).

The verifying party P, in order to verify the statement
1= VfSig3(p]€37k, Sk.d>» <L{L, bp7 d7 Ck,dy tk,d>) in Line 2 of
the relation, must employ values d from 1 to ctm[bp, M, ].

4.2 Cumulative Policies

A cumulative policy is a tariff policy in which, as in the linear
policy, the time is divided into time intervals [{1, ), [to, t3),
... [tL, t+1). Additionally, for each time interval [{;, {;41),
the consumption is also divided into intervals [c; 1, ¢2),
[ci2,c3)s - - (e, c,pm+1)- The tariff policy associates to
each time interval a set of rates, one for each consumption

interval. The rate denotes a price per unit of consumption.

The policy can be expressed as follows:

@1(6) ift € [tl, tQ)
Y(c,t)=¢":
@L(C) ift e [tL, tL+1)

Each of functions &;(c) (I € [1, L]) is defined as follows.

(c—ca) n+F ifcé€le, )

Pi(c) =

(C — CM) g+ Fyife e [CM, CM+1)

Therefore, for a meter reading (¢, t), the price to be paid is
defined by the function @;(c) associated to the time interval
such that ¢ € [#;, ;4+1). For a consumption ¢ such that ¢ €
[¢ms €m+1), the function @;(c) is (¢ — ) * Tm + Fin. Fin
is a constant that equals Z:Z,_:ll(cm/H — Cmt) * T, €4,
F,, is the price to be paid for a consumption ¢,,, which is
computed by summing up the prices to be paid for all the
previous consumption intervals.

In order to sign this tariff policy using a key pair (pk;,
sk ) for the signature scheme (KeyGeny, Signs, VfSigy), the

provider V proceeds as follows. For each consumption in-
terval [Cimin, Cmaz) in @ function @(c) associated with the
time interval [t,in, tmae), Y computes a signature s <
Signy (sk1, (bp, r, F, tmin, tmaz, Cmins Cmaz))- The signed
tariff policy Y, consists of tuples of the form [r, F) t,in,
tmazs Cmins Cmaz, |- The verification function REG.Ver ver-
ifies the signatures in the signed tariff policy.

In order to compute a non-interactive zero-knowledge
proof of correctness of the bill computation, /; computes a
non-interactive zero-knowledge proof of knowledge for the
following relation.

R = {(ins, wit) :
{1 = VfSiga(pky k> sk, (bp, Ui, ctm[bp, Mj,. 1)) A )
[1 = VfSigs(pks k, Sk,a, Ui, bp, d, cka, ti,a)) A &)

’ 1 = VfSig1(pk1, 81, 4> (bD, Tk,d> Fl,a,

’ tmin,k,d> tmaw,k,d> Cmin,k,d> Cmaz,k,d)) A ‘ (10)
th,d € [tmink,ds tmaz,k,d] A (11
’ ck,d € [emin,k,d» Cmaz,k,d] A ‘ (12)
’pk,d = (¢k,d = Cmin,k,d) * Thd + Frd ‘ (13)
Jary M Ay

p= Z:;l Z;‘t:ml[bp’Mjk] Ph,d A (14)
1 = VfCom(pare, com, p, open)}. (15)

We highlight the differences between this relation and the
relation for linear policies by using boxes. Line 10 requires
the user to prove knowledge of the rate 73, g, of the constant
Fy,.q, of a time interval [¢,in k.d; tmas,k,4), Of @ consumption
interval [Cmin,k,d> Cmaz,k,d) and of a signature 5,;’ 4 in the
tariff policy that signs those values. The signed billing period
bp belongs to the proof instance. Line 12 is a range proof that
requires the user to prove that the consumption cj, 4 proven
in Line 9 lies within the interval [¢min k.ds Cmaz,k,d) Proven
in Line 10. Thanks to that, the verifier ensures that the user
employs the rate 73, 4, the value c,,ip k.4, and the constant
F}, 4 associated with the correct consumption interval in the
tariff policy. Line 13 requires the user to prove that the price
associated to the meter reading proven in Line 9 is computed
by doing (cx,a — Cmin,k.d) - Tk,d + Fl,d-

U,; sets the witness as follows.

. /
wit < (p, open, [(Ck,ds t,d> Pk, d» $k,ds Sk, ds Th,ds t’min,k,d7

ctm[bp,M;, ]
D a=1 " sklien)

tmaac,k,d

sCmin,k,dr Cmazx,k,d
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U; sets the instance as in the case of a linear policy. As
for the linear policy, the verifying party P, in order to verify
the statement 1 = VfSigs(pks k, k.4, (Ui, bp, d, ck.d, tk.a))
in Line 9 of the relation, must employ values d from 1 to
ctm[bp, M, .

4.3 Polynomial Policies

A polynomial policy is a tariff policy in which, as in the cumu-
lative policy, the time is divided into time intervals [¢1, t2),
[t2, t3), ... [tL—1, tr) and, for each time interval [t;, t;11),
the consumption is also divided into intervals [¢; 1, ¢,2),
[ci,2,¢,3)s - - [e,m, c,pm+1). The tariff policy associates to
each time interval a spline @. The policy can be expressed as
follows:

@1(6) ift € [tl, t2)
Y(e,t)=¢": :
QBL(C) ift € [tL, tL+1)

Each of the splines &;(c) (I € [1, L]) is defined as follows.

¢1(c) if ¢ € [e1, ca)
Di(c) =9 :

d)M(C) if (S [CM7 CM+1)

Therefore, for a meter reading (c, t), the price to be paid is
defined by the polynomial ¢,,(c) such that ¢ € [¢p; Cmt1)
that belongs to the spline @;(c¢) associated to the time interval
[t, ti41) such that t € [t ti41).

To compute the signed tariff policy Yy, for all the poly-
nomials ¢ in the tariff policy, the provider V computes (C,
d) < PCommit(pary, ¢) and signs s < Signy(sky, (bp,
C, tmins tmazs Cmin, Cmaz))> Where [tmin, tmaz) and [Cmin,
Cmaz) are the time and consumption intervals associated to
the polynomial ¢. The signed tariff policy Y, consists of
tuples of the form [, tmin, tmaz, Cmins Cmaz, C, d, 8]. The
verification function REG.Ver verifies the signatures in the
signed tariff policy.

In order to compute a non-interactive zero-knowledge
proof of correctness of the bill computation, I/; computes a
non-interactive zero-knowledge proof of knowledge for the
following relation.

R = {(ins, wit) :
{1 = VISiga(pky i, sk, (bp,U;, ctm[bp, M;, 1)) A (16)
[1 = VfSigs(pks .k, sk,a, (Ui, bp, d, ci,d, te,a)) A an

’ 1 = VfSig1(pk1, s, 4. (bp, Ch,a,

’ tmin,k,d» tmaz,k,d> Cmin,k,d> Cmaw,k,d)) A ‘ (18)
th,d € [tmink,ds tmaz,k,d] A (19)
Ck,d € [Cmin,k,d> Cmaz,k,d] A (20
’ 1 = PVerify(parp, Ck,d, Ck,ds Pk,d> Wk,d) ‘ 2D
Jazy Moy A

I o
1 = VfCom(parc, com, p, open)}. (23)

We highlight the differences between this relation and
the relation for cumulative policies by using boxes. Line 18
requires the user to prove knowledge of a commitment Cj, 4,
of a time interval [tmin k.d> tmaz k,d4), Of @ consumption in-
terval [Cmin, k.d> Cmax,k,d) and of a signature s,’C 4 in the tariff
policy that signs those values. The signed billing period bp
belongs to the proof instance. Line 21 requires the user to
prove that the price py, g associated to the meter reading (c;@d,
tr.4) proven in Line 17 is the evaluation of the polynomial
committed to in Cj, 4 on input ¢y, 4.

U, sets the witness as follows.

; /
wit < (p, open, [(ck,d; ti,d> Ph,ds Sk,d> Sk, d»

Ck.ds Wk,d> [tmin,k,d> tmaz,k,d>

ctm[bp, M, |
k s Sk

Cmin,k,dvcmaz,k,d>d:1 ]ZL:]-)

U; computes the witnesses wy, ¢ by running the algorithm
Wk, d < PProve(parp, qSk,d, Ck.d, dk,d)~
U; sets the instance as follows.

ins <—(parc, pky,U;, com, bp,

[Pks,k, Pky i, ctm[bp, My, J]0 ).

As for the linear and cumulative policies, the verifying
party P, in order to verify the statement 1 = V{Sigs(pks 1,
Sk,ds Uiy bD, d, ¢ 4, ti,q)) in Line 17 of the relation, must
employ values d from 1 to ctm[bp, M, ].
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4.4 Other Policies

In [47], a discrete policy and an interval policy are also
considered. In a discrete policy, each consumption value is
associated with a price. In an interval policy, each range of
consumption values is associated with a price. These policies
can be supported by our protocol as simplifications of the lin-
ear and cumulative policies. Additionally, it is also possible
to consider composite policies created by combining two or
more of the aforementioned types.

In the tariff policies considered so far, the price to be
paid for a meter reading (c, t) is solely determined by the
tariff policy and the values (¢, ¢). However, in many practical
tariff policies, the price to be paid depends also on the past
behavior of the user. For example, the tariff policies change
depending on the last daily or monthly consumption of the
user, or on the accumulated consumption of the current day.

Our protocol can support such history-dependent policies
as follows. Consider for instance a policy that employs the
past consumption pc of the user in the last billing period.

Dpcq, peqiql(c, t) =
d)l(c) ift € [tl, tg}

.(bL(C) lft S [tL, tL+1]

In this policy, the past consumption pc is divided into inter-
vals [pc,, pc, 1] for a € [1, A]. Each interval [pc,, pc, 1]
is associated to a spline @[pc,, pc,1](c, t), where the price
to be paid is determined by a polynomial ¢;(c) for a meter
reading (¢, t) such that ¢ € [t;, t;41].

The modification needed in the protocol is as follows. To
sign the tariff policy, the service provider signs tuples [bp, C,
t1, tis1, PCy, PCo 1), Where the the values [pc,, pc, ] define
a past consumption interval.

In the payment phase, the user computes a commitment
com to the past consumption pc of the last billing period and
proves in zero-knowledge that pc is correctly computed, i.e.,
by summing up the consumption values of the meter readings
that belong to the last billing period. Then, to compute the
proof that the total bill is correct, the user proves knowledge
of the value pc in com and proves that pc € [pc,, pc, ]
to ensure that the correct commitment C' associated to the
interval [pc,, pc, ] in the tuple [bp, C, t;, {1, pCyy PCyy 1]
is employed.

4.5 Efficiency Discussion

For a tariff or a cumulative policy, our protocol is quite similar
to the protocol provided in [47] for the setting with one meter
and one user. In [47], an implementation and performance
measurements are provided. Therefore, we refer to [47] for
an in-depth efficient analysis.

We analyze now the cost of the protocol proposed in [47]
when applying a polynomial tariff policy. To sign the tariff
policy, V computes signatures on tuples [bp, g, @1, - - . , ¢,
U1, ti+1, Cmy Cmt1), Where (dg, @1, . . ., ¢¢) denote the coeffi-
cients of the polynomial. In the payment message, the proof
of correct evaluation of the polynomial to show that p = ¢(c)
employs the coefficients (g, @1, . . ., ¢+). While in our pro-
tocol the communication cost of this proof does not depend
on the polynomial degree, the cost of this proof grows with
the degree.

In Section 4.6, we analyze the security of our protocol
under two corruption models. Our main analysis considers
Byzantine corruptions, where a single adversary corrupts
different parties and controls their behaviour. Obviously, in
this corruption model, when the provider and a meter are
corrupt, there is no protocol that can prevent the provider
from learning the meter readings input to the meter because
both entities are controlled by the same adversary.

For this reason, in Section 4.6.7, we also consider a cor-
ruption model in which different adversaries, with no com-
munication link between them, corrupt different parties. This
model is relevant in the case in which the provider V and
a subset of the meters M are corrupt, but they cannot com-
municate directly between each other. In this second corrup-
tion model, for the sake of efficiency, the protocol proposed
in [47] does not prevent the verifying party from learning the
meter readings. The reason is that, in that protocol, instead of
proving knowledge of the signatures on the meter readings,
the user sends those signatures to the verifying party. (The
signatures sign commitments to the meter readings, so as
not to reveal the meter readings.) By manipulating the signa-
ture value, a corrupt meter could disclose information on the
meter readings to the verifying party.

In [47], it is explained that, to protect user privacy in this
corruption model, the user must prove in zero-knowledge
possession of the signatures on the meter readings to the veri-
fying party. This is the approach we follow in our protocol, in
which the user proves possession of signatures on the meter
readings and on the counter of meter readings. Thanks to that,
no information output by the meter to the user is revealed
by the user to the verifying party, which allows us to protect
user privacy in this corruption model (see Section 4.6.7).

4.6 Security Analysis of Construction BIL

Theorem 1 Construction BIL securely realizes Fpiy, in the
F ggss'setuP) Fsmr, FrEG and ]:EE%V""-hybrid model.

We prove that the construction BIL realizes the function-
ality Fpi, when a linear, a cumulative and a polynomial

policy are employed. We provide a unified description of
those proofs. The box is used to describe a com-
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putation that only occurs in the case of a polynomial tariff
policy.

To prove that our protocol securely realizes the ideal
functionality Fgy1,, we have to show that for any environment
Z and any adversary A there exists a simulator S, such that
Z cannot distinguish whether it is interacting with .4 and the
protocol in the real world or with S and Fpyr,. The simulator
thereby plays the role of all honest parties in the real world
and interacts with Fpyy, for all corrupt parties in the ideal
world.

Our simulator § employs any simulator Scrs, SsmTs,
Srec and SE%%VE' for the constructions that realize the
functionalities fégss'semp, Fsmt, FrEG and FREGVer re
spectively. We note that the simulators for all the construc-
tions that realize the functionalities ]—'é;ss' SR T FREG
and FRESVer communicate with each of those functionalities
through the same interfaces. These are the interfaces that our
simulator employs to communicate with any simulator Scrs,
Ssmts Srea and SREGVer. S forwards all the messages ex-
changed between any simulator Scrs, SsmT, SrEc and
SREG.Ver and the adversary .A. When the adversary A sends
a message that corresponds to a protocol that realizes any of
the functionalities fégss'set”p, FsmT, FREG OF FRECVer S
implicitly forwards that message to the respective simulator
Scrs, SsmTs SrEc or SREGVer.

We analyze the case in which the provider V is corrupt in
Section 4.6.1. In Section 4.6.2, we analyze the case in which a
subset of the users U are corrupt. In Section 4.6.3, we analyze
the case in which the provider, a subset of the users ¢/ and a
subset of the meters M are corrupt. We provide a detailed
analysis of these three cases. Note that the provider or a user
can also act as verifying parties, and thus we consider corrupt
verifying parties in all these cases.

We also consider the case in which the provider V' and
a subset of the users are corrupt (Section 4.6.4), the case in
which a subset of the users ¢/ and a subset of the meters M
are corrupt (Section 4.6.5), and the case in which the provider
V and a subset of the meters M are corrupt (Section 4.6.6).
We do not provide a detailed security analysis of those cases
but describe on a high level the simulator.

We note that, e.g., the case in which only a subset of
the users is corrupt is not subsumed by the case in which
the provider, a subset of the users, and a subset of the me-
ters is corrupt. The reason is that the functionality behaves
differently depending on whether the provider is corrupt or
not. If the provider and a user are corrupt, the functionality
does not guarantee that the price reported by the corrupt user
to the verifying party is correct (even if the meters are hon-
est), but when only the user is corrupt, the functionality does
guarantee that the price is correct.

When we say that a subset of the users or a subset of the
meters is corrupt, we mean that at least one user or at least
one meter is corrupt. The security proof does not rely on the

fact that the number of corrupt users or the number of corrupt
meters is limited by a threshold.

For all the cases above, we consider Byzantine corrup-
tions where a single adversary corrupts different parties and
controls their behaviour. Obviously, in this corruption model,
when the provider and a meter are corrupt, there is no pro-
tocol that can prevent the provider from learning the meter
readings input to the meter because both entities are con-
trolled by the same adversary.

For this reason, we also consider a corruption model in
which different adversaries, with no communication link be-
tween them, corrupt different parties. This model is relevant
in the case in which the provider V and a subset of the me-
ters M are corrupt, but they cannot communicate directly
between each other. We show that, under such corruption
model, our protocol prevents the corrupt meters from send-
ing information about the meter readings to the verifying
parties in Section 4.6.7. This is akin to showing that our
protocol is collusion-free in the sense of [33].

We note that Fpyr, guarantees that the bill revealed to
the verifying party is correct when the user is honest or
when the provider and the meters that are involved in the bill
computation are honest. For the cases in which a corrupt user
colludes with the provider and/or with a meter involved in
the computation of the bill, our security analysis shows that
our protocol realizes Fpyr,, but the total bill revealed to the
verifying party is chosen by the adversary.

4.6.1 Case V Corrupt

We start with the case where the provider V is corrupt. The
simulator communicates with the ideal functionality and sim-
ulates the behaviour of the honest parties towards the corrupt
provider. To simulate the behaviour of the honest parties, our
simulator follows the real world protocol, with the exception
that it creates a simulation trapdoor for the NIPK system
and, when an honest user sends a bill to the corrupt provider
(which is acting as a verifying party), the simulator computes
a simulated non-interactive zero-knowledge proof of knowl-
edge 7 to create the message (smt.send.end, sidsymr, (p,
open, com, bp, M, ..., M;, s, ins,m)). Therefore, secu-
rity follows thanks to the zero-knowledge property of the
NIPK system. In Figure 6, we describe our simulator S.

Theorem 2 When the provider is corrupt, construction BIL
securely realizes Fpr1, in the fé;ss‘semp, Fsmt, FrEG and
Fg%%ver-hybrid model if the non-interactive proof of knowl-
edge scheme (PKSetup, PKProve, PKVerify) is zero knowl-
edge.

Proof. We show by means of a series of hybrid games that
the environment Z cannot distinguish between the ensem-
ble REALRi, 4,z and the ensemble IDEAL 7, s z with
non-negligible probability. We denote by Pr [Game 7] the
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Simulator S: case V corrupt

The simulator S employs the simulator (S1, S2) of the zero-knowledge property of the NIPK scheme described in Section 3.1.

— On input (crs.get.ini, sid) from Scrs, if (parg, parpy, tds) is not stored, S runs | POL: pary, < PSetup(1F, ¢), | parc
+ CSetup(1*) and (paryy, tds) < S1(1*), and stores (parc, parpk, tds). S creates a fresh ssid, stores ssid and sends

(crs.get.sim, sid, ssid, (| POL: parp, |parc, parp,)) to Scrs.

— On input the message (crs.get.rep, sid, ssid) from Scrs, if ssid is stored, the simulator S deletes ssid and sends the message

(crs.get.end, sid, (| POL: pary, |parc, parp,)) to Scrs.

— On input the message (reg.register.ini, sid, pke) from Srgq, the simulator S runs a copy of Frrg on input (reg.register.ini, sid, pkz ).
When Frgg outputs the message (reg.register.sim, sid, pkg), S sends the message (reg.register.sim, sid, pkz) to SREG -

— On input the message (reg.register.rep, sid) from Sggq, the simulator S runs Fr g on input the message (reg.register.rep, sid). When
FrEc outputs the message (reg.register.end, sid), the simulator S sends the message (reg.register.end, sid) t0 SREG.

— On input (reg.register.ini, (sid, bp), (pks, Y)) from SREGVer 'S runs a copy of FRES-Ye" on input (reg.register.ini, (sid, bp), (pk1,
Ys)). When FRES-Ye" outputs (reg.register.sim, (sid, bp), (pky, Ys)), S retrieves Y from Y and sends (bil.policy.ini, sid, bp, Y) to
FgiL. When Fgry, outputs (bil.policy.sim, sid, bp, Y), S sends (reg.register.sim, (sid, bp), (pks, Ys)) to SRES-ver,

— On input the message (reg.register.rep, (sid, bp)) from Sﬁ'i:ccve', the simulator S runs the copy of ]-'E'IEEGGVE’ on input the message
(reg.register.rep, (sid, bp)). When FRES:Ve" outputs the message (reg.register.end, (sid, bp)), the simulator S sends the message
(bil.policy.rep, sid, bp) to the functionality Fgr1,. When the functionality Fgrr, outputs (bil.policy.end, sid), the simulator S sends
(reg.register.end, (sid, bp)) to SREG-Ver.

— On input the message (smt.send.ini, sidgm, (bp,Us, My, ..., M, s)) from Ssmr, S checks that sidgyr is (V,Us, sid). The
simulator S runs a copy of Fsy on input the message (smt.send.ini, sidsy, (bp, Ui, My, ..., M;, ,s)). When Fsn outputs the
message (smt.send.sim, sidsm, ssid, {({(bp,Us, Mj,, ..., M;,.,s))), the simulator S forwards it to Sgm.

— On input the message (bil.consumption.sim, sid, ssid, M;,U;) from the functionality Fgyr,, the simulator S sets sidsy + (M, Ui,
sid) and sends the message (smt.send.sim, sidsni, ssid, 1) to Ssnvr, where [ is the length of the message (U;, bp, d, ¢, t, s).

— On input the message (bil.period.sim, sid, ssid, M;,U;) from the functionality Fgir,, the simulator S sets sidsyT < (M, U;, sid)
and sends the message (smt.send.sim, sidsm, ssid, 1) to Ssyv, where 1 is the length of the message (U;, bp, ctm[bp,U;], s).

— On input (bil.payment.sim, sid, ssid,U;, P) from Fp1r,, S sets sidspt < (Ui, P, sid) and sends (smt.send.sim, sidsm, ssid, 1) to
SsmT, where [ is the length of the message (p, open, com, bp, M, , ..., M, s, ins, 7).

— On input (smt.send.rep, sidsym, ssid) from Sy, S proceeds as follows:

— If a message (smt.send.sim, sidgy;p, ssid’, .. .) such that (sidgy, ssid’) = (sidsmT, ssid) was not sent to Sgu, S ignores
the message.

- Else, if the message (smt.send.sim, sidsm, ssid, . ..) was sent after receiving a message (smt.send.ini, sidsnvr, (bp, Ui, M, ,
..., M., s)) from Sgm, S runs the corresponding instance of Fgyvr on input (smt.send.rep, sidsnv, ssid). When Fsyr
sends (smt.send.end, sidsm, (bp, Ui, Mj,, ..., M;,.,s)), S does nothing if there is not an instance of Frgc that stores pks.
S does nothing if a tuple (sid, bp’, U}, M;,, ..., M, ,s) such that bp’ = bp and U] = U; is already stored. S does nothing if
1 # VfSiga(pke, s, (bp,U;, M, , ..., M;,.)). Otherwise S stores (sid, bp,Us, Mj,, ..., M;, ,s).S sends (bil.listmeters.ini, sid,
bp, Ui, My, ..., M;, ) to Fgir.. When Fgir, outputs (bil.listmeters.sim, sid, ssid,U;), S sends (bil.listmeters.rep, sid, ssid) to
FBIL-

— Else, if the message (smt.send.sim, sidsnmT, ssid, . . .) was sent after receiving a message (bil.consumption.sim, sid, ssid, M;,U;)
from the functionality Fg1r,, the simulator S sends the message (bil.consumption.rep, sid, ssid) to the functionality Fgry,.

— Else, if the message (smt.send.sim, sidsm, ssid, . ..) was sent after receiving a message (bil.period.sim, sid, ssid, M;,U;) from
the functionality Fgrr,, the simulator S sends the message (bil.period.rep, sid, ssid) to the functionality Fgry,.

- Else, if the message (smt.send.sim, sidsm, ssid, . . .) was sent after receiving a message (bil.payment.sim, sid, ssid,U;, P) from
FBIL, the simulator S sends the message (bil.payment.rep, sid, ssid) to the functionality Fgry,.

- On input (bil.payment.end, sid,U;, bp, p[bp], Mj;,, N[M;,, bp], ..., M;, ., N[M,, , bp]) from Fgrr,, S proceeds as follows:

— & retrieves the stored | POL: pary, | parc and (parpy, tds).

— Sretrieves pk; and Y for the billing period bp from the corresponding copy of fg%%ver.

— If (skg i, pks,) and (sk; x, pk, 1) are not stored, for k = 1 to m, S runs (sks i, pks k) < KeyGens(1*) and (sk; x,pk; 1)
KeyGeng (1%) and stores (sks i, pks, ;) and (sky g, pky j)-

— Sruns (com, open) < Com(pare, p).

— S sets ins <+ (pa?“C7 pk1,Ui, com, bp, [pks i, pky 1, ctm[bp, My ]| ).

— Sruns 7 < Sa2(parpg, tds, ins). The relation R used by Sz is described in Section 4.1, Section 4.2 and Section 4.3.
- Srecovers sidsyT from the last (smt.send.rep, sidsmT, ssid) message received from Ssyr. S sends (smt.send.end, sidsvT,
(p, open, com, bp, M, ..., M;, ,s,ins,m)) to SsmT-

Fig. 6 Simulator S: case V corrupt.
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probability that the environment distinguishes Game ¢ from
the real world protocol.

Game 0: This game corresponds to the execution of the real-
world protocol. Therefore, Pr [Game 0] = 0.

Game 1: Game 1 follows Game 0, except that Game 1
computes par,y, by running S; (1%). Game 1 stores td;.
The zero-knowledge property ensures that par,;, output
by S; are indistinguishable from those output by the algo-
rithm PKSetup. Therefore, |Pr [Game 1]—Pr [Game 0]| <
A dek— nipk )

A

Game 2: Game 2 follows Game 1, except that, when an
honest user sends a message (smt.send.ini, sidsy, (P,
open, com, bp, M, ..., M, s, ins, 7)), Game 2 com-
putes the proof 7 by running 7 < Sa(paryg, tds, ins).
The zero knowledge property ensures that proofs 7 com-
puted by algorithm Sz are indistinguishable from those
output by PKProve. Therefore, we have that |Pr [Game 2]
— Pr [Game 1]| < Adv’y"Px.

The distribution of Game 2 is identical to that of our simula-
tion.

4.6.2 Case U Corrupt

We analyze the case where a subset of the users U; is corrupt.
The simulator communicates with the ideal functionality and
simulates the behaviour of the honest parties towards the
subset of corrupt users. To simulate the behaviour of the
honest parties, our simulator follows the real world protocol,
with two exceptions. First, as in the case where only the
provider is corrupt described in Section 4.6.1, the simulator
creates a simulation trapdoor for the NIPK system and, when
an honest user sends a bill to a corrupt user (which is acting
as a verifying party), the simulator computes a simulated
non-interactive zero-knowledge proof of knowledge 7 to
create the message (smt.send.end, sidsyr, (p, open, com,
bp, Mj,,...,Mj, ,s,ins,m)). Security follows thanks to
the zero-knowledge property of the NIPK system. Second,
the simulator aborts when a corrupt user sends a payment
message that is verified successfully but where the payment
p is incorrect. In this case, security follows thanks to the
unforgeability of the signature schemes used by the provider,
which prevent a dishonest user from forging signatures on
the tariff policy or on the list of meters for a billing period,
and on the unforgeability of the signature schemes used by
the meters, which prevents a dishonest user from forging
signatures on meter readings or on the number of readings
in a billing period. Additionally, the binding property of the
commitment scheme prevents a corrupt user from opening
the commitment to the price to an incorrect value. In the case
of a polynomial tariff policy, the evaluation binding property
of the polynomial commitment scheme prevents a dishonest
user from opening the polynomial commitments included in

the tariff policy to wrong values. The extraction property of
the NIPK scheme is also employed because it is necessary for
the simulator to get the signatures and the commitment and
polynomial commitment openings included in the witness
of the zero-knowledge proof, which is needed to reduce to
the unforgeability, binding and evaluation binding properties
respectively. In Figure 7 and in Figure 8, we describe our
simulator S.

Theorem 3 When a subset of the users is corrupt, construc-
tion BIL securely realizes Fpi1, in the fggss'semp, FSMT,
Freg and fg%%ver—hybrid model if the non-interactive proof
of knowledge scheme (PKSetup, PKProve, PKVerify) is zero-
knowledge and extractable, the signature schemes (KeyGeng,
Signs, VfSigy), (KeyGen,, Sign,, ViSig,), (KeyGens, Signs,
VfSigs), (KeyGeng, Signg, VfSigs) are existentially unforge-
able, and the commitment scheme (CSetup, Com, VfCom) is
binding. In the case of a polynomial policy, the polynomial
commitment scheme (PSetup, PCommit, PProve, PVerify)
must be evaluation binding.

Proof. We show by means of a series of hybrid games that
the environment Z cannot distinguish between the ensem-
ble REALRiy, 4 z and the ensemble IDEALx, , s = with
non-negligible probability. We denote by Pr [Game 7] the
probability that the environment distinguishes Game ¢ from
the real world protocol.

Game 0: This game corresponds to the execution of the real-
world protocol. Therefore, Pr [Game 0] = 0.

Game 1: Game 1 follows Game 0, except that, when the
adversary sends a message (smt.send.ini, sidsm, (P,
open, com, bp, M, ..., M, s, ins, 7)) such that s is
a correct signature on (bp,U;, M;, ..., M; ), but the
adversary did not receive any signature s’ on (bp,U;,
M, ..., M;, ), Game 1 aborts. Thanks to the existen-
tial unforgeability of the signature scheme (KeyGen,,
Signa, VfSig,), Game 1 aborts with negligible probabil-
ity. Therefore, [Pr [Game 1]—Pr [Game 0]| < Adv'y" &,

Game 2: Game 2 follows Game 1, except that Game 2
computes the parameters paryy, by running (paryy, td.)
+ & (1%). Game 2 stores td,.. The extraction property
ensures that the parameters par,), output by & (1%) are
indistinguishable from those output by PKSetup. There-
fore, |Pr [Game 2] — Pr [Game 1]| < Adve ™",

Game 3: Game 3 follows Game 2, except that, when the ad-
versary sends (smt.send.ini, sidsm, (p, open, com, bp,
M, ..., M, s, ins,m)), after verifying s, com and
m, Game 3 runs wit < Ex(parpk, tde, ins, 7). Game 3
aborts if extraction fails. The extraction property ensures
that extraction works with overwhelming probability.
Therefore, |Pr [Game 3] — Pr [Game 2]| < Adv® ™ "P*.

Game 4: Game 4 follows Game 3, except that, when the ad-
versary sends (smt.send.ini, sidsm, (p, open, com, bp,
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Simulator S: case U/ corrupt (I)

The simulator S employs the simulator (S1, S2) of the zero-knowledge property of the NIPK scheme described in Section 3.1.

— On input (bil.policy.sim, sid, bp, Y') from Fgr1,, S proceeds as follows:
— If this is the first (bil.policy.sim, sid, .. .) message received from Fgr1,, S does the following. If (pm’c, paryy, tds)

are not stored, S runs the algorithms | POL: pary, < PSetup(1¥, ¢), | par. <+ CSetup(1¥) and (paryy, tds) < S1(1%), and stores

(| POL: paryp, [parc, parpy, tds). S creates a fresh ssid, stores (ssid, bp, Y'), and sends (crs.get.sim, sid, ssid, (| POL: pary, [par,

pa’f‘pk>) to Scrs.
- Else, S computes a signed tariff policy Y for Y as described in Section 4.1, Section 4.2 or Section 4.3. S stores (bp, Ys) and sends

(reg.register.sim, (sid, bp), (pks, Ys)) to SREG-Ver.

— On input (crs.get.ini, sid) from Scrs, S works as in the case where V is corrupt.
— On input the message (crs.get.rep, sid, ssid) from Scrs, S proceeds as follows:

— If there is a tuple (ssid’, bp, Y) such that ssid = ssid’, S proceeds as follows. S runs (sk;s, pk;) <+ KeyGeny (1¥) and stores (sk;,
pk1). S computes a signed tariff policy Y for Y as described in Section 4.1, Section 4.2 or Section 4.3. S stores (bp, Ys), deletes
(ssid, bp, Y') and sends (reg.register.sim, (sid, bp), (pks, Ys)) to SRES-ver.

- Else, S sends the message (crs.get.end, sid, <parc, parpy)) to SCrs.

- On input (reg.register.rep, (sid, bp)) from SRESYe", if (bp, Ys) is stored, S sends (bil.policy.rep, sid, bp) to FgiL.

— On input (reg.retrieve.ini, (sid, bp)) from SREG®", S creates a fresh ssid. If (pk;, Ys) are not stored, S stores (sid, bp, ssid, L) and
sends (reg.retrieve.sim, (sid, bp), ssid, L) to SRES2Ye", else stores (sid, bp, ssid, (pk1, Ys)) and sends (reg.retrieve.sim, (sid, bp), ssid,
(pk1, Ys)) to Sg%ccver.

— On input (reg.retrieve.rep, (sid, bp), ssid) from SRES2'®", S ignores the message if there is no tuple (sid, bp, ssid, . . .) stored. If there is
atuple (sid, bp, ssid, L) stored, S sends (reg.retrieve.end, (sid, bp), L) to SRES.Ve". If there is a tuple (sid, bp, ssid, (pk;, Ys)) stored,
S sends (reg.retrieve.end, (sid, bp), (pks, Ys)) to SREG-Ver,

— On input (bil.listmeters.sim, sid, ssid,U;) from Fpir,, S sets sidsmt < (V,U;, sid) and sends (smt.send.sim, sidsm, ssid, l) to
SsmT, where [ is the length of the message (bp,U;, M, ..., M;, ., s).

— On input (bil.listmeters.end, sid, bp, Mj, , ..., M, ) from Fgrr,, S proceeds as follows. If (skg, pke) is not stored, S runs (skz,
pkg) < KeyGeny(1%) and stores (skz, pka). S signs s < Signa(skg, (bp,Us, M, ..., M;, )). S uses the last sidgyr received in a
(smt.send.rep, sidsm, ssid) message from Sgyvr and sends (smt.send.end, sidsnr, (bp, Ui, My, ..., M;, ,s)) to Ssm.

— On input (reg.retrieve.ini, sid) from Sgrrq, S creates a fresh ssid. If (skg,pkz) is not stored, S stores (ssid, L) and sends
(reg.retrieve.sim, sid, ssid, L) to Sgrq, else stores (ssid, pks) and sends (reg.retrieve.sim, sid, ssid, pk2) to SREG-

— On input (reg.retrieve.rep, sid, ssid) from Sgrgq, S ignores the message if there is no tuple (ssid, . . .) stored. If there is a tuple (ssid, L)
stored, S sends (reg.retrieve.end, sid, L) to Sggrc. If there is a tuple (ssid, pk2) stored, S sends (reg.retrieve.end, sid, pk2) to SREG-

— On input (bil.consumption.sim, sid, ssid, M;,U;) from Fgir,, S sets sidsmr + (M;,U;, sid) and sends (smt.send.sim, sidsmT,
ssid, ) to Ssvr, where [ is the length of the message (U;, bp, d, c, t, s).

— On input (bil.consumption.end, sid, M;, bp, c, t) from Fgir,, S proceeds as follows. If (sks i, pks i) and (sk; i, pk; x) are not stored
for the meter M, M; runs (skg j, pks, ;) < KeyGenz(1¥) and (sk; 1, pk; 1) <+ KeyGens(1%), and stores (sks i, pks i) and (sk; .,
pky k) S recovers sidgyT from the last (smt.send.rep, sidsnvT, ssid) message sent by Ssyir. S gets U; from sidgyyT. S increments a
counter ctm[bp, M;,U;] (initialized at zero) that counts the number of meter readings that M;; sends to ¢; during the billing period bp. S
runs s < Signz(sks i, (Us, bp, ctm[bp, M;,U;], ¢, t)). S sends (smt.send.end, sidsm, (Ui, bp, ctm[bp, M;,U;], ¢, t, s)) to Ssm.

— On input (reg.retrieve.ini, (sid, M;)) from Sggq, S creates a fresh ssid. If (skg i, pks 1) and (sk; 1, pk; ;) are not stored, S stores
(ssid, L) and sends (reg.retrieve.sim, (sid, M), ssid, L) to Sggq, else stores (ssid, (pks i, pky 1)) and sends (reg.retrieve.sim, (sid,
M]'>, ssid, <pk3yk,pk47k>) to SREG-

— On input (reg.retrieve.rep, (sid, M;), ssid) from Sgrq, S ignores the message if there is no tuple (ssid,...) stored. If there is a
tuple (ssid, L) stored, S sends (reg.retrieve.end, (sid, M;), L) to Sreq. If there is a tuple (ssid, (pks i, pk; 1)) stored, S sends
(reg.retrieve.end, (sid, M;), (pks i, pk; 1)) 10 SREG.

- On input (bil.period.sim, sid, ssid, M;,U;) from Fgir,, S sets sidsmt <+ (M, U;, sid) and sends (smt.send.sim, sidsm, ssid, 1)
to Sgm, where [ is the length of the message (U;, bp, ctm[bp, M;], s).

— Oninput (bil.period.end, sid, bp, M;, N[Mj, bp]) from Fg1r,, S proceeds as follows. If (sks i, pks i) and (sk; i, pk; 1) are not stored
for M;, S runs (sks i, pks i) < KeyGens(1F) and (sky i, pk; 1) < KeyGens(1%), and stores (sks i, pks ) and (sk; x, pky ). S
recovers sidgyrr from the last (smt.send.rep, sidsmT, ssid) message sent by Ssyr. S gets sidsy and U; from sidgyr. S runs
s < Signa(sky i, (Ui, bp, N[M;, bp])). S sends (smt.send.end, sidsm, (Ui, bp, N[M;, bp], s)) to Ssm-

— On input (bil.payment.sim, sid, ssid,U;, P) from Fp1r,, S sets sidsmt < (Ui, P, sid) and sends (smt.send.sim, sidsm, ssid, 1) to
SsmT, where [ is the length of the message (p, open, com, bp, M, , ..., M, s, ins, 7).

— On input (bil.payment.end, sid,U;, bp, p[bp], M, , N[M;,, bp], ..., M, ., N[M,, , bp]) from Fgir,, S proceeds as in the case where
V is corrupt, except that S replaces V by the identity of the corrupt user that acts as verifying party.

Fig. 7 Simulator S: case U corrupt (I).
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Simulator S: case U/ corrupt (II)

- On input (smt.send.ini, sidsm, (p, open, com, bp, M, , ..., M, s,ins, 7)) from SsmT, S proceeds as follows.
- & ignores the message if (sko, pka) or (sks, pks) are not stored, or if (sks i, pks i) or (sky i, pky i) are not stored for any meter

M, (for k = 1tom), orif| POL: pary, | par. and paryy, are not stored.
— 8 parses sidgnvT as (Ui, P, sid).
— & checks if the values | POL: paryp, | pare, pki, pks, i, and pky j stored are equal to those in the instance ins = (| POL: pary, |pare,

pk1,U;, com, bp, [pks 1, pky i, ctm[bp, M, ]]7_ ). If not, S ignores the message. S also checks that, for & = 1 to m, the instance
includes a counter ctm[bp, M, ] of meter readings and that the proof proves possession of ctm[bp, M}, ] meter readings numbered
from 1 to ctm[bp, M, ].

— &S ignores the message if 1 # VfCom(parc, com, p, open).

- S ignores the message if 1 # VfSiga(pks, s, (bp, Ui, My, ..., M, ).

— S aborts if the adversary did not receive any signature s on (bp,U;, M, ..., M;, ).

— & ignores the message if 1 # PKVerify(parpy, ins, ).

- S aborts if, for k = 1 to m, the adversary did not receive a signature sy, on the tuple {bp,U;, ctm[bp, M]k])

— & performs the computation of the price p’ to be paid by U; at the billing period bp using as input the meter readings sent to U; by the
meters (M, , ..., M;, ) and the tariff policy for that billing period. If p’ # p, S aborts.

— &8 gets the verifying party identifier P from sidsyT and sends (bil.payment.ini, sid, P, bp) to Frr-

— On input (smt.send.rep, sidsnm, ssid) from Ssnvr, S proceeds as follows.

— If a message (smt.send.sim, sidgypp, ssid’, . ..) such that (sidgm, ssid) = (sidgy T, ssid”) was not sent to Sgv, S ignores
the message.

— Else, if the message (smt.send.sim, sidsn, ssid, . ..) was sent after receiving a message (bil.listmeters.sim, sid, ssid, ;) from
FBIL, S sends (bil.listmeters.rep, sid, ssid) to Fpir,.

- Else, if the message (smt.send.sim, sidgm, ssid, . ..) was sent after receiving a message (bil.consumption.sim, sid, ssid, M;,U;)
from the functionality Fg1r,, the simulator S sends the message (bil.consumption.rep, sid, ssid) to the functionality Fgry,.

- Else, if the message (smt.send.sim, sidsm, ssid, . . .) was sent after receiving a message (bil.period.sim, sid, ssid, M;,U;) from
the functionality Fgry,, the simulator S sends the message (bil.period.rep, sid, ssid) to the functionality Fgry,.

— Else, if the message (smt.send.sim, sidsm, ssid, . . .) was sent after receiving a message (bil.payment.sim, sid, ssid,U;, P) from
FBIL, the simulator S sends the message (bil.payment.rep, sid, ssid) to the functionality Fgry,.

Fig. 8 Simulator S: case U corrupt (II).

M, ..., M, s, ins,m)), after extracting the witness in the signed policy Y sent to the adversary. The tuple
wit, Game 4 aborts if any of the signatures s; in the is of one of the following forms.

witness wit signs a tuple (bp, U, ctm[bp, M, ]) such Linear Policy. The tuple is of the form (bp, 7% 4, tmin k. ds
that no signature on that tuple was sent to the adver- tmaw k.d)-

sary. Thanks to the existential unforgeability of the sig- Cumulative Policy. The tuple is of the form (bp, r 4,

nature scheme (KeyGeny, Signg, VfSig,), Game 4 aborts
with negligible probability. Therefore,
Pr [Game 3]| < Adv'y" &

Game 5: Game 5 follows Game 4, except that, when the
adversary sends a message (smt.send.ini, sidsmT, (p,
open, com, bp, M, ..., M, s, ins, 7)), after extract-
ing the witness wit, S aborts if any of the signatures sy, 4
in the witness wit signs a tuple (U, bp, d, ci 4, t,4) such

Fk,d, tmin,k,dv tmax,k,d7 Cmin,k,d> Cmax,k,d>~
Pr [Game 4] — Polynomial Policy. The tuple is of the form (bp, Cy 4,

tmin,k,dv tma:c,k,da Cmin,k,d> Cmam,k,d>-

Thanks to the existential unforgeability of the signature
scheme (KeyGengy, Signy, VfSig;), Game 6 aborts with
negligible probability. Therefore, we have that |Pr [Game 6]—
Pr [Game 5]| < Advy" €.

that a signature on that tuple was not sent to the adver-

sary. Thanks to the existential unforgeability of the sig- Polynomial policy only:

nature scheme (KeyGens, Signs, VfSigs), Game 5 aborts Game 7: Game 7 follows Game 6, except that, when

with negligible probability. Therefore, |Pr [Game 5] — the adversary sends a message (smt.send