
Covert Communications Despite Traffic Data

Retention

George Danezis

Microsoft Research,
Cambridge, UK

gdane@microsoft.com

Abstract. We show that Alice and Bob can communicate covertly and
anonymously, despite Eve having access to the traffic data of most ma-
chines on the Internet. Our protocols take advantage of small amounts
of shared state that exist in many TCP/IP stacks, and use them to
construct a covert channel. Techniques inspired from Direct Sequence
Spread Spectrum (DSSS) are used to make sure that the communica-
tion is covert and resistant to noise. We implement a prototype based on
ICMP Echo (ping) to illustrate the practicality of our approach and dis-
cuss how a more complex protocol would modulate information through
the use of TCP features to make communication detection very difficult.
The feasibility of covert communications despite stringent traffic data
retention, has far reaching policy consequences.

1 Introduction

This work contributes to the understanding of covert communications on de-
ployed networks such as the Internet. We show that if any shared state can be
accessed and influenced by two parties they can use it to communicate indirectly,
making it hard for observers to correlate senders and receivers of messages. We
also present a very common feature of the IP protocol [28, 27], based on the IPID
packet field, that can be used to implement such covert communications. As a
result our scheme does not require a dedicated infrastructure (as mix networks
do), but uses any of the large number of deployed machines to relay messages.

We further show that the ‘noise’ produced by other, innocuous users, can
be used to enhance covertness – given the observer does not know the shared
key it becomes difficult to assess whether there is a communication at all. To
achieve this we are inspired by techniques close to DSSS, that allow for low
power signals to be hidden and uncovered from high noise environment. Finally
we note that our scheme allows for covert communication despite, even stringent,
data retention. This is partly due to the low level mechanisms we rely on (raw
IP packets) and the very low signal power that would require prolonged, very
costly, observation to allow the identification of a communication.

We first introduce in Section 3 the requirements of a cover communication
systems, and discuss why established technologies only partially satisfy them. In
Section 4 we present the basic TCP/IP mechanisms on which we shall build two

systems: a basic one based on ICMP Echo requests (Section 4.2) and a second,
more covert one, based on TCP circuits (Section 4.3). We discuss extensions and
open issues in Section 5 and present our conclusions in Section 6.

2 Background and Related Work

Covert and jamming resistant communications are a well studied discipline in
the field of military and civilian radio communications. Low probability of in-

tercept and position fix techniques like frequency hopping and Direct Sequence
Spread Spectrum (DSSS) have been developed to force an adversary to spend
a lot of power to jam a signal, as well as to hide altogether the existence of a
communication from those that do not know a shared key [5]. Such technolo-
gies have been deployed in military tactical radios, but have also become part
of civilian communications with frequency hopping being used in GSM phones,
and CDMA (a variant of DSSS that uses orthogonal codes) being used in mobile
communications and high-speed modems.

Yet relatively little attention has been directly payed to the covertness of
communication in the context of the Internet. The field of anonymous communi-
cations, as started by David Chaum’s [13] proposal for mixes and mix networks,
attempts to provide unlinkability of senders and receiver. These anonymity prop-
erties fall short of full covertness, in that an observer is in a position to determine
that some form of communication is taking place. Jamming resistance is also dif-
ficult to achieve, since the anonymous communication infrastructure in deployed
systems [14, 23, 15], can easily be targeted and rendered inoperable by a pow-
erful adversary. A peer-to-peer approach [18, 29] to providing anonymity may
change this, but so far no such system was found to provide strong anonymity
properties.

Steganography [6], the embedding of ciphertext into innocuous data, also pro-
vides some form of covertness. An adversary observing a communication cannot
determine its content with certainty, and messages can be transferred under
the cover of ‘normal’ traffic. Yet steganography does not hide the acts of com-
munication themselves, or the communicating parties. Therefore traffic analysis
techniques that map social structures [30, 21] to extract information would still
be able to uncover information. Such techniques often ignore content and are un-
likely (in the absence of cover traffic – which would bring us back to anonymous
communications) to be affected by steganographic techniques.

Despite the little attention payed to covertness properties, traceability of
communications has become a policy hot topic. National legislatures, often af-
ter terrorist incidents, have imposed ‘traffic data retention’ requirements on the
telecommunications and Internet service provider industries [12, 20, 24], forcing
them to log call, information access and location data (not content). At a Eu-
ropean level EU Directive 2002/58/EC [3] (Directive on Privacy and Electronic
Communications) and its December 2005 amendment [4] respectively allowing
and making retention mandatory, replaced Dir. 1995/46/EC [1] (Data Protec-
tion Directive) and Dir. 97/66/EC [2] (Telecommunications Privacy Directive)

that prohibited such practices. The granularity of the retained data is variable,
and the directives and laws often refer to communications in an abstract man-
ner to allow for technology independence. As a rule of thumb for this work we
shall assume that everything that is routinely logged in deployed systems shall
be available for inspection. This requirement is much more stringent than the
most draconian data retention schemes proposed, that usually only require log-
ging high (application) level communication events and user identification events
(when the user is authenticating to an ISP). Relaxing the attacker models would
make covert communication more efficient, yet the principles to achieve a secure
scheme would be the same as presented in this paper.

There exist other, simpler, approaches to circumvent traffic data retention
and achieve covert communications in practice. The simplest approach would
be to use one of the many open relays documented in the SORBS list, for anti-
spam purposes. These include SMTP (email) and SOCKS (any TCP stream)
relays that would allow two parties to get in contact and talk. Another more
ambitious solution would be to establish a bot-net, composed of many compro-
mised machines, and deploy a parallel communication infrastructure that does
not log anything. These solutions rely on the assumption that the relays are
not observed by the adversary, which is most probably true. The solutions we
propose on the other hand allow covert communication even when under some
forms of surveillance. In this sense our techniques take advantage of the funda-
mental limits of traceability versus covertness, and raise significantly the cost of
surveillance.

3 Covert Communication Requirements

Alice and Bob would like to communicate without Eve, the adversary, being
able to observe them. They share a symmetric key K, unknown to Eve, and can
use established cryptography techniques to protect the secrecy and integrity of
exchanged messages. In addition to this they would like the mere act of commu-
nication to be unobservable to Eve: Eve should not learn that Alice or Bob are
communicating with each other, or engaging in an act of covert communication.

Hiding the fact that Alice and Bob are communicating with each other could
be achieved using anonymous communication protocols [13, 23, 14, 15]. Yet these
protocols (like encryption itself) are very easy to detect, therefore jeopardising
covertness. They use standard handshakes, fixed message sizes and formats, a
more or less fixed and public infrastructure. As a result, it is easy for Eve to
determine that Alice and Bob (along with many others) are taking part in an
anonymous communication protocol – which in many cases would give rise to
suspicion. Due to their dependence on mixing infrastructure such systems may
also be prone to legal compulsion (to log or reveal keys), targeted denial of
service attacks or blocking.

The straight forward composition of steganography and anonymous com-
munications comes also short of providing both anonymity and covertness. A
message, that possibly contains steganographic embedded information, that is

transported anonymously is already very suspicious, and a clear indication that
the sender and the receiver (although not linked) are taking part in some covert
communication. On the other hand a mere steganographic message might pro-
vide covertness of content, in that the true message is not revealed to Eve, but
also provides a clear link between Alice and Bob.

We therefore propose that covert communication mechanisms should have
certain characteristics.

Definition: A covert communication system has to make use of unintended

features of commonly used protocols, in a way that does not arise suspicion, in

order to unobservably relay messages between two users.

The use of common communication protocols is essential in not arousing sus-
picion, since any deviation from the norm may indicate an act of covert commu-
nication. The challenge is to find generic enough features of common protocols
that allows messages to be relayed through third party machines. Any direct
communication between Alice and Bob would create a link between them, that
may in the eyes of Eve contain a covert channel or steganographicaly embedded
information. On the other hand the use of an intended communication channel
provided by a third party can be subject to logging and interception. As a result
the only option for implementing covert communications is to use unintended
features that allow relaying of messages. Furthermore these features should be
exploitable without giving rise to suspicion to an observer (which again would
jeopardize covertness).

Given all these requirements it is surprising that such features, not only exist
in deployed communication protocols, but they are abundant.

The security of any covert communication scheme is dependent on the ob-
servation capabilities of the adversary. We wish to mostly consider an adversary
that observes the world through retained traffic data. Furthermore, we would
ideally want to provide security against a global passive observer, that has ac-
cess to any information transiting on the network. We present a spectrum of
systems, protecting Alice and Bob from an Eve with increasing surveillance ca-
pabilities. As we expect the more we bound and reduce Eve’s capabilities the
more efficient our systems can be, while still remaining covert.

There are also inherent advantages to finding and exploiting low level network
mechanisms to provide covert communications. First low level mechanisms are
likely to be used in a variety of ways, depending on the protocols that are
stacked on them. This adds variance to the network behavior that would allow
communications to be more effectively hidden. Secondly, low level mechanisms
are also more abundant – more machines run vanilla TCP/IP than a particular
version of a web-service. This allows for more choice when it comes to finding
a relay, which in turn increases the cost of an adversary that has to observe
all potential hosts for communication. Finally low level protocols produce high
granularity traffic data, the storage of which is orders of magnitude more costly
than storing high level network events – compare the cost of storing web access
logs versus the cost of storing the header of every single IP packet traversing a
network.

In the next sections we concentrate on a particular feature of many Internet
Protocol (IP) implementations, namely sequential IPID values, that is low level
and exhibits all the necessary characteristics to facilitate covert communications.

4 A Covert Communications System

Our key contribution is to show that there is a ubiquitous feature of deployed
IP networks that allows for covert communication. The Internet is a collection
of networks that ‘talk’ the same Internet Protocol (IP) [27] to exchange packets
containing information. Each packet starts with a header that contains routing
information, but also a special identification IPID field. The IPID field is 16 bits
long, and is used to detect duplicate packets and perform fragmentation and
reassembly of IP packets in the network. The creator of the IP packet sets its
identification field to “a value that must be unique for that source-destination
pair and protocol for the time the datagram will be active in the Internet sys-
tem.” [27]

Many deployed operating systems and TCP/IP stacks use a simple counter
to set the value of the IPID field on outgoing packets. This feature has been
used in the past to perform security sensitive monitoring in a manner of ways.
Steven Bellovin uses the serial nature of the IPID field to monitor the number of
different machines behind a Network Address Translation (NAT) gateway [10].
The IPID can be determined either by a global or a ‘per-host’ counter. The
availability of some machines with global counter makes possible a techniques
known as ‘idle scan’ or ‘dump scan’ [8], that determines which TCP [28] ports a
machine is listening to, without sending any direct traffic to it. This technique
is implemented in the Nmap [19] network scanner. Applications of serial IPID
fields to remote monitoring and traffic analysis have also been proposed [7, 9,
25].

We are going to use the serial nature of IPID fields of many Internet con-
nected computers in order to allow for covert communications. We explain how
to implement covert communications using an intermediary that uses a global
IPID counter.

Alice wants to talk to Bob, with whom she shares a key K, over an inter-
mediary called Charlie. Charlie implements an IP stack that selects IPID values
using a global counter. Note that if Alice an Bob can force Charlie to emit pack-
ets, and if they are able to observe any packet from charlie they will be able
to communicate. More concretely, Alice will at each time 2ti force Charlie to
emit n packets, while Bob will observe a packet from Charlie at times 2ti + 1 to
retrieve n. The number of packets n is the information that has been transferred
between Alice and Bob. By repeating this process Alice can transmit to Bob
arbitrary messages.

The first question that arises is: how can Alice and Bob force Charlie to emit
packets, and receive packets from him. We shall present two ways in which this
is possible based on ICMP Echo [26] and TCP [28], in subsections 4.2 and 4.3.

A second worry is that Charlie will also be generating traffic with third
parties, incrementing the IPID counter, and adding noise to the observation of
Bob. We note that this is a great opportunity for cover traffic: if Alice and
Bob were the only parties that Bob would be receiving and sending information
to, they may be linked easily by an observer. On the other hand if Charlie is
engaging in multiple conversation, including with Alice and Bob, it is difficult
for even a direct observer to establish who may be communicating with whom.
Furthermore we shall make it difficult for other clients to establish that there is
any signal in the IPID data, by using the shared key K to allow Alice and Bob
to communicate over that noisy channel.

4.1 Transmission over a noisy IPID counter

Assume that Alice and Bob want to communicate the binary symbols n0 = 0
or n1 = 1, over the channel. They use their secret key K in order to produce
two psedo-random traffic patterns v0 and v1 of length l corresponding to each
symbols n0 and n1 respectively:

v0i = H(0, i, K), ∀i ∈ [0, l − 1] (1)

v1i = H(1, i, K), ∀i ∈ [0, l − 1] (2)

We assume that H is a good hash function that takes bit strings and produces
uniform values in the interval [0, 2µ]. As a result each symbol is mapped into a
traffic pattern, which is a sequence of l values in the interval [0, 2µ]1. Alice sends
in each round the number of packets specified in the sequence of the symbol she
wishes to emit one value at each time period time. For example to transmit the
string ‘0110’, the sequence v0, v1, v1, v0 should transmitted, which would take 4 ·l
time periods.

Bob observes packets from Charlie with IPID increments, from one time
period to the next, of ui for i ∈ [0, l−1]. How does Bob determine the symbol sent
by Alice? Based on the knowledge of K, Bob can construct a filter to determine
if the traffic pattern v0 or v1 is embedded in the noise. To differentiate between
the two symbols Bob calculates the values r0 and r1, for each candidate symbol:

rj =
∑

i∈[0,l−1]

vjiui, j ∈ {0, 1} (3)

The difference between the value of r associated with the correct symbol,
versus the value of r associated with other symbols grows linearly with the
length of l. It can be shown (full derivation in Appendix A) that, if the selection

1 We will see that the hash function H should produce values indistinguishable from
any distribution D, that is a good model of ‘typical’ traffic (given the information
known to the adversary). The uniform distribution, used as an example here, is not
such a distribution, and is therefore insecure against an adversary that logs ICMP
Echo packets and events. Such events are considered too low level to be subject to
retention at the moment.

of traffic levels v follows a probability distribution D (in our example the uniform
distribution D = U(0, 2µ)), this difference is:E(∆r) = E (rcorrect − rincorrect) = l ·V(D) (4)

The function V denotes the variance of the distribution D.
It is therefore clear that, if the key K is known, Bob can reconstruct the

appropriate traffic patterns v to extract the correct symbols from the IPID in
the long run, despite any noise. Furthermore by increasing the length l of the
traffic pattern we can afford to keep the additional traffic injected by Alice low
and make it difficult for an observer to detect that any communication is taking
place.

Our results hold for any distribution D, and therefore we are also free to use
a traffic distribution that looks realistic i.e. that mimics the characteristics of
some type of innocuous traffic. In fact the covertness our this scheme depends
on the adversary’s ability to distinguish between the distribution D used and
‘normal’ traffic, not containing any covert information.

4.2 An ICMP Echo realization

We have established that if Alice can force Charlie to emit any packets, and
Bob can receive any packets from Charlie, Alice and Bob can communicate
through Charlie using information encoded in the IPID field. The simplest way
for Alice and Bob of achieving this is using the ICMP Echo [26] protocol, often
referred to as ‘ping’, that must be implemented by a compliant TCP/IP stack
(although some firewalls block it). ICMP Echo allows a host to send a packet to
a destination address, which in turn echos it back to the original sender. Alice
can therefore send ‘ping’ messages to force Charlie to increment his counter since
responding increases the counter by one. Bob can use the same facility to receive
messages from Charlie and determine the state of his IPID field.

This simple minded approach provides surprisingly good results, yet has some
security shortcomings as we shall see. Figures 1, 2 and 3 illustrate a single run
of our prototype in a low noise environment. For this experiment we used 30
second long traffic patterns of length 30 (which indicates a time interval of at
which Bob must observe the counter of one second) from a uniform distribution
U(0, 100), to transmit one symbol out of an 8 bit alphabet.

We first collect the data sent by Alice (figure 1). This data is likely to contain
some low frequency noise, that can be filtered out, since it is not likely to contain
any useful information. To eliminate its effects we calculate the predictors r using
a randomly generated traffic pattern, and use this as the baseline for detection
(this is equivalent to subtracting from rcorrect a random rincorrect providing us the
result we expected). The values of rincorrect for all times are shown in figure 2.
Note some patterns emerging, that are due to the traffic patterns not being
orthogonal. These might represent a security problem since they leak the message
content and their regularity would leak the existence of a message. We shall
discuss how to avoid them in the discussion section.

++

++

++

+

+

+

++

+

++

+

+

+

+

++

+

+

+

+

+

+

+

+

+

++

+

+

+

+

++

+

+

+

++

+

+

+

++

+

+

++

+

+

+

+

+

++

++

++

+

+

+

+

+

+++

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

++

+

+

+

+

+

+

++

+

+

+

+

+

+

++

+

++

+

++

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

++

+

+++

+

+

+

+

+

++++

+

+++

+

+++

+

++++

+

+++

+

+++

+

+

+

0 50 100 150 200

2
4

6
8

10
12

Collected Data through IPID observations.

Time

V
ol

um
e

Fig. 1. Raw data as collected using the ICMP Echo method.

+

+

+

+

+

+

+

+
+

+
+

++

++
+
+
+
+
+

+
+

+

+
+

++
+

++
++
+
+
+
+

+
+
++

+

+++
+

+
+

++
++

+

+
++

+

+

+
+
++
+
+
++
+
+

+

+
++

++
+++
+

+
+
+

++

+

+

+

+
+

+

++++

+

+
+
+
+
+
++

+

+

++
+

+
+

+
+
+
+
+
+
+
+

+

+

++
+

++

+++

++
+
+
++

+

+

+

++
+
+

+

+
+

++
+

++

+
+
++
+
+
+
+
+

+
++
+
+
+

+

++

+
+
+

+

+
+

+

+

+
+
+
+

+
+
+
+

+
+
+

+

+

+
+
+++

+

++

+
++
+

+

+
+
+++

+
++
+

+
+
+
++++
+

+

++++
+

+
+
+

+

+
+

+
+
+
+

+

++

+
+

+
+

++
+

++

+
+

+

+
++

+

+

+

+

++
+
+
+
+
+

+

+

+

+
+

+
+
+

++
++
+
+
+
+

+
+
++

+

+
+
+
+

+
+

+
+
++

+
+
++

+

+

+
+

++
++++
+
+

+

+
++

++
+++
+

+++

++

+

+

+

+
+

+

++++

+

+
+
+
+
+
++

+

+

++
+

+
+

+
+
+
+

+
+
+
+

+

+

++
+

++

+++

++
+
+
++

+

+

+

++
+
+

+

+
+

++
+

++

+
+
++
+
+
+
+
+

+
++
+
+
+

+

++
+
+
+

+

+
+

+

+

+
+
+
+

+
+
+
+

+
+
+

+

+

+
+
+++

+
+
+

++

0 100 200 300 400

13
00

00
14

00
00

15
00

00
16

00
00

17
00

00
18

00
00

Low frequency profile.

Time

Li
ke

lih
oo

d

Fig. 2. The low frequency profile of the collected data.

+

+

+

+

++

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

++

+

+

+

+

+

+
++

+

+

+
+

+

+

+

+

+
+
++
+

+
+
+

+

+

+

+

+

+

+

+

++

+

++

+

+

+

+

+
+

+

+

+

+
+

+

+

+

+

+++

+

++

+

+

+

+

+

+

+

++

+

+
+
+

+

+

+

+

+
+
+
++

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+
+
++

+

+

+

+

++

+

+

+

+++

+

+

+

+

+

+

+

+

+
++

+
+

+

+

+

+

+
+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+
+

+

+

+

+

+

+
+

+

++

+

++

+

+

+

+

+
+

+

++

+
+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+
+

+

+

+

+

++

+

+

+

+
+

+

+

+

+

+

+

+

+

++
++

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+
+
+
+

+
+
+

+

+

+

+

+

+

+

+

++

+

++

+

+

+

+

+
+

+

+

+

+
+

+

+

+

+

+++

+

++

+

+

+

+

+

+

+

+
+

+

++
+

+

+

+

+

+
+
+
++

+

+
+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+
+

+
+
++

+

+

+

+

+
+

+

+

+

+++

+

+

+

+

+

+

+

+

+
++

+

+

+

+

+

+

+
+

+

+
+
+

+

+

+

+

+

+

+

+

+

+

+

+

0 100 200 300 400

−
20

00
0

−
10

00
0

0
10

00
0

20
00

0
30

00
0

40
00

0

Recoginising "H" or "E" over time for string "HHEEHHEE".

Time

Li
ke

lih
oo

d

*
*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*
*
*

*
*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*
*

*

*

*

*

**
*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

**

*

*

*
*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*
*

*
*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

**

*

*

*

*
*

*

*

*
*

*

*
**
*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*
*

**

*

*

*

*

*

*

*

*

*
*
*

*

*

*

**

*

*

*

*

*

**
*

*
*

*

*

*

**

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*
*

*

*

*
*

**

*

*

*

*

*

*

*

*

**

*

*

*

*

**

*

*

*

*

*

*
*

*

*

*

*
*

**

*

**

*

*

**

*

*

*

*

*

*

*

*

*

*

*

**

*

*
*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*
*

*

*

*

*

*
**

*

*

*

*

*

*
*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*
*

*

*

*
*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

**

*

*

*

*
*

*

*

*
*

*

*
**
*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*
*

*

*

*

*
*
*

*

*

*

*
*

*

*

*

*

*

**
*

*
*

*

*

*

**

**

*

*

*

*

*

*

*

*

*

oo
o

o
o

oo

o

o

o

o

o

o

o

o

o
o

o

o

o

o
o

o
o

o

o

o

oo

o

o
o

o

o

o

o

o

o

o
oo

o
o

o

o

o

o

o

o

o
o

oo

o
o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o
o

o

o
o

o

oo

o
o

o

o

oo

o

o
o
o

o

o

o

o

o

oo
ooo

oo

o

o

o

o

o

o

o

o

o

ooo

o

o

o

o

o

o
o

o

oo
oo

o

oo
o

o

o
o

o

o
o

o

o

o

o

o

o

o
o

o

o

o

o
o

oo

o

o

o

o
o
o

o
o
oo
o

o

oo
o

o

o

o

o

o

o

o

o
o

o

o
oo

o

o

o

oo

oo
o
oo

o

o

o

o

o

oo

o
o

o

o

o

o
o

o

o

o

o

o

o

o

o

oo

oo

o

oo

o

o
o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o
o

o

o

o
o

o

o

o

o

o

o

oo

o

o

o

o

o

o
o

o

o

o

o
o

o

o
o
o

o

o

o

o

o

ooo

o
o

o

o

o

o
o

o

o

o
oo

o
o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o
o

o
o

o

o

o

o
o

o

oo

o

o
o

oo

o

o

oo

o

o
o
o

o

o

o

o

o

oo

ooo
oo

o

o

o

o

o

o

o

o

o

ooo

o

o

o

o

o

o
o

o

o
o
o
o

o

oo
o

o

o
o

o

o
o

o

o

o

o

o

o

oo

o

o

o

o
o

oo

o

o

o

oo

o

o
o
ooo

o

ooo

o

o

o

o

o

o

o
o
o

o

o
o
o

o

o

o

o

Fig. 3. Recognition of two different symbols.

Finally we calculate values of r for three candidate symbols in figure 3. The
value of r for ‘H’, ‘E’ and ‘A’ is denoted by ‘+’, ‘*’ and ‘o’ respectively. A spike
detection filter is also applied. The transmitted string can easily be extracted by
choosing the symbol with the highest peak at a 30 second interval. Furthermore
we can see that there is little danger of losing synchronization, as long as the
difference between a correct and an incorrect symbol is large enough.

The key drawback of the ICMP Echo based technique is that large volumes
of ICMP traffic from legitimate users is not common. Such traffic is often the
precursor of an attack, and indicative of hostile intentions. As a result standard
intrusion detection systems, such as SNORT [32] log information about high rate
of ping packets. To keep under the radar of such detection systems we would
need to limit ourselves to the transmission of a very low volume of ping packets
in time. As a result the variance of the distribution D would be lower, and the
rate at which we could transmit and correct for noise would be greatly reduced.

As a proof-of-concept ICMP Echo shows we can engineer covert communica-
tions using deployed mechanisms. Yet triggering intrusion detection systems, let
alone provoking logging, is not compatible with our requirements for covertness,
and the low rates that Alice would have to suffer to evade detection force us to
look for a different solution.

4.3 A TCP based realization

The Transmission Control Protocol (TCP) [28], provides multiplexed, reliable
and bidirectional stream communication between two Internet hosts. A session
is established between two hosts using a 3 way handshake, and then further

data can be exchanged in both directions between the hosts. TCP also provides
facilities for rate and congestion control, that we shall make use to provide covert
communications.

Two key concepts in TCP congestion control are acknowledgments and win-

dows. Each TCP packet contains a serial number, and an acknowledgment num-
ber. The acknowledgment number is set by the sender to be the serial number of
the last TCP packet received, which is part of a continuous sequence from the
beginning of the transmission. Conceptually this means that all previous pack-
ets, with smaller sequence number, have already been received. Packets that are
not acknowledged are re-sent at intervals according to some set algorithms [11,
17] (with exponential increase of the delay and linear reduction, to slow down
when there is congestion).

Each host also provides a hint about the amount of data it can hold in its
buffers at any time, which is called the window size, also included in each TCP
packet sent. The window size indicates the maximum number of unacknowledged
bytes that can be sent to that host. Using this mechanism the receiver has control
over the rate at which data is reaching him or her.

Alice and Bob, that want to communicate covertly, can use the congestion
control features of TCP to modulate a global IPID counter. To do this Alice es-
tablishes a TCP session with a third party, Charlie (that implements an IP stack
with serial IPID values), and so does Bob. An HTTP (web) request would be
perfectly adequate. During the setup of the TCP connection they both negotiate
a suitably small maximal payload size (using the Maximum Segment Size option
in TCP) to ensure that even if small amounts of data are transmitted many IP
packets are generated. Alice can control the rate at which the intermediary’s
IPID counter is increased by modulating the window size, and by only acknowl-
edging packets when more packet transmission is desirable. As a result Alice can
lead Charlie to transmit a set number of packets pet unit time, and increase
the IPID field by the amount dictated by the traffic pattern of the codeword
she wishes to transmit. Bob on his side keeps the windows very small, and only
acknowledges a packet at a time, forcing Charlie to only send one packet per
unit time. This allows Bob to read Charlie’s IPID counter contained in the TCP
packet, without adding too much noise, and recovering the codeword embedded
by Alice.

It is important to note that, even genuine, TCP traffic has quite a large
variance, and as a result the information encoded by Alice can be extracted by
Bob, despite shorter keywords and higher levels of traffic, without compromising
covertness. The degree to which the TCP traffic characteristics have to perfectly
match a typical TCP connection depends on the level of surveillance expected.
In case each and every packet is logged, it would be important to stick to the
degrees of freedom provided by standard TCP congestion control algorithms that
regulate traffic. This should make cover traffic indistinguishable from ‘normal’
traffic, but would reduce the bandwidth of the channel – the only parameters
of the traffic distribution that Alice could control are the random back-offs,
simulated congestion in links, full buffers, etc. On the other hand if we only

expect the connection establishment to be logged, and maybe even the content
of the stream, but not the packets themselves, Alice can modulate at will all the
window, acknowledgment and Maximum Segment Size parameters to maximize
the bandwidth of the channel.

5 Evaluation and Discussion

So far we have provided an overall framework within which Alice and Bob can
communicate covertly if they can modulate and read a shared counter. Yet, as
for most real-world security systems, the devil is in the details, and a lot of
details have to be carefully considered before such systems can be considered
secure.

5.1 Auto-correlation and synchronization

The first problem with our simple-minded traffic pattern design is illustrated in
figure 2, where an adversary can observe a traffic pattern forming (the different
parts of the message look the same). The reason for this is that we use the
same traffic pattern to transmit the same symbol. As a result an adversary
auto-correlating he traffic volume should be able to extract the full traffic code
book, and recover (or at least detect) signal transmitted. The solution to this
is to never use the same traffic pattern again. To do this we can include in the
generation of the traffic pattern the time, or sequence number of the symbol
(denoted t), and include this in the random generation of the traffic pattern for
each symbol:

v0it = H(0, i, t, K), ∀i ∈ [0, l − 1] (5)

v1it = H(1, i, t, K), ∀i ∈ [0, l − 1] (6)

This means that 0s and 1s will be represented with different traffic patterns
according to the time, or their position in the ciphertext.

The new approach for generating traffic patterns to encode symbols is se-
cure, but imposes an additional requirement on Alice and Bob to have some way
of synchronizing their clocks or their transmission. Off-the-shelf technology, like
GPS, can make this easier, and even cruder Network Time (NTP) based pro-
tocols should be able to provide an appropriate time resolution to synchronize
the traffic pattern code books. The design of self-synchronizing yet secure codes
would be an interesting potential avenue of research, which is beyond the scope
of this work.

5.2 Identification of Intermediate Hosts and Incentives

Alice and Bob need to find an intermediate host that implements its IPID using
a global counter to be able to use our techniques. During our experiments we
scanned our local sub-net (a /24 section of the global address space), and dis-
covered 50 machines responding to ICMP Echo requests. Out of those about 30

used a counter to determine the IPID values of IP packet. About 5 of these used
a global counter shared amongst all destinations, the others using only a per-
destination counter. An estimate of one machine in ten exhibiting this feature
gives hope that finding an appropriate host should not be too difficult.

The simplest approach would be for Alice and Bob to determine an appro-
priate host ahead of time, and use that for communication. This may not be
possible, and they may need to determine a host ‘on-the-fly’. A simple-minded
approach would be for Alice and Bob to seed a random number generator using
their shared key K and test random Internet hosts until they find the first one
that exhibits the right characteristics. The number of hosts that they will have
to try follows a geometric distribution, and if one in ten hosts is appropriate,
then we expect about ten hosts to be tested before finding a good one.

Sadly the simple-minded approach described above is not very covert. In case
the adversary controls even a small fraction of the Internet she will be able to
observe two parties attempting to connect to the controlled hosts simultane-
ously. The probability this happens repeatedly becomes quickly very small (the
probability of Alice and Bob both accessing l random hosts by chance becomes
O(2−32·(l−1))), and after even two observations the adversary can determine that
Alice and Bob are trying to find a good relay to talk to each other. This is far
from being merely a theoretical threat: large organizations control class A IP
address spaces (including MIT and IBM) and large portions of unused address
space is connected to Honey Nets [31] to detect automatic scanners – these real
world entities and projects would most definitely detect Alice and Bob.

Strategies to avoid detection while identifying appropriate intermediaries
would have to masquerade, once again, as legitimate traffic patterns. This might
include a random query to a search engine for a relatively common term, and
then using the shared key to select candidate hosts from the retrieved results.
Alice and Bob selecting hosts using a random (but popular) walk over web-sites
may also decrease the likelihood of suspicion or interception.

It is worth noting that unless a host in controlled by the adversary it has
very few incentives to stop providing a service as an intermediary. No security
properties of the intermediary host are affected at all by our scheme. Alice and
Bob communicating, particularly under low noise conditions, is only imposing
a very small burden (a few packets a second) – hardly noticeable for current
networking infrastructures. Logging such activity in comparison would be much
more expensive than bearing the cost of the transmission, and changing operating
system or applying a patch that changes the IPID behavior would not be worth
the inconvenience. As a result we do not expect this behavior to change any time
soon.

5.3 Reducing Noise and Adaptive Codes

It is clear from our constructions that both Alice and Bob can affect Charlie’s
IPID counter, and they can both observe it. This can prove invaluable for Alice
as she can determine the amount of noise present on Charlie and adjust the
‘traffic strength’ she uses to encode its symbols accordingly. This would involve

applying a set multiplicative factor to all the traffic patterns she induces so that
they are still detectable despite the noise.

Since she is receiving feedback, to the same degree as Bob, she can also
assess whether the pattern induced are easily detectable and vary their lengths
accordingly. This approach favors covertness, since the traffic strength induced
can be used by an adversary to detect the covert communication.

More efficient coding techniques may be developed to take into account all
the information that Alice and Bob are aware off, that will be undoubtedly
more efficient than our simple minded scheme. These are beyond the scope of
this work. At the same time our scheme has the advantage that it allows for very
simple interactions, where Alice induces the increase of Charlie’s counter, and
Bob only observes it, to be turned into a full covert communication medium.

5.4 One-Sided Covertness and Firewall Piercing

There is a body of literature concerned with censorship resistance [16, 22], and in
particular communication across a filtering firewall, that has a particular type of
covertness requirement. In this setting only one partner needs to remain hidden,
the one inside the firewall, and has to acquire a small amount of information to
communicate with the outside world. This information is usually a ‘fresh’ address
for an anonymizing proxy through which further unfiltered communication is
possible. This can be compared to a ‘bootstrapping’ problem for censorship
resistant technologies.

We note that our approach would be extremely effective in providing such
information through the firewall. Bob, who is inside the firewall, chooses hosts
outside in a pseudo-random way, according to some pre-determined key, until an
appropriate host is found to allow for covert communication. Then Alice sends
a small message (about 32 bits) that is the fresh address of a proxy, that is
not yet on the blacklist of the firewall. Bob retrieves the fresh address and can
communicate further through the proxy.

In this scenario we can optimize considerably our algorithms without fear of
compromise, since both Alice and Charlie are on the trusted side of the firewall,
and not subject to surveillance. The advantage that the covert communication
protocol offers to Alice is the ability to modulate the network address that Bob
has to access, so that the firewall cannot block the initial communication.

5.5 High level events and counters

For most of this work we have concentrated on low level events, since they are
unlikely to be the subject of logging and traffic data retention. Yet our techniques
maintain some covertness despite observation and logging (as long as the traffic
distribution that carries the covert message is indistinguishable from genuine
traffic). We can therefore consider using high level protocols to communicate
covertly.

The first approach is to use high level events to increment the IPID counter,
instead of low level ICMP Echo packets or TCP features. In this case Alice and

Bob find a suitable Web Server, with a global counter determining the IPID,
and simply perform a set of web requests, according to a common distribution
sampled using a pseudo-random number generator seeded with their shared key.
This will result in the IPID counter increasing, and (in the long run) information
flowing from Alice to Bob.

A second possibility is to ignore all together low level counters such as IPIDs
and only use high level counters such as counters measuring the number of
accesses to particular web pages, that many web-sites incorporate. It is clear that
Alice can influence the counter (by performing requests) and Bob can simply read
it, and as a result covert communication is possible. Shared counters can also be
found in abundance in on-line multi-player games. All the same algorithms for
transmission and error correction would also apply to these cases.

6 Conclusions

We have shown that covert communications, that allow Alice and Bob to com-
municate indirectly and covertly are possible despite widespread traffic data, or
even content retention. The bit rates we achieved easily with our prototypes are
of the order of 16 bits a second, but can be effortlessly increased using more sym-
bols of the same length. We expect a mature covert communication system to be
able to carry a few hundred characters in a few seconds, an amount comparable
to contemporary text messaging on mobile phones.

The covertness properties we provide are based on a key assumption: that
Alice and Bob are able to generate traffic out of a distribution that looks realistic
to the adversary. Very much like steganography and steganalysis relies on very
good models of what images ‘look like’, it is likely that the field of covert commu-
nications on the Internet will have to spend more time studying traffic models,
and finding efficient ways to tell apart real and synthetic traffic. Such models
exist, in the network measurements literature, but have not been designed or
used for such security purposes yet.

The model of the world of that adversary is crucially linked to the amount and
kind of traffic data retained – the less data, the more uncertainty the adversary
will have about the true distribution of the traffic, and higher rate covert com-
munications are possible. If all data transiting in the network are available, then
the inherent uncertainty of network traffic behavior can still be used to achieve
low rate covert communications. Widening the traffic data to be retained would,
of course, considerably raise the cost of the retention scheme.

Finally we can only hope that this study informs the debate about traffic
data retention, as to its effectiveness in tracing determined adversaries that wish
to communicate covertly. Many simple ‘hacks’ are possible to evade proposed
retention, yet we have demonstrated that there are fundamental limits to the
ability to trace, and well grounded ways to evade it. Widening the net of retention
to detect those would require logging at the IP level, with limited success, which
would make the policy even more expensive, for even lower returns in terms of
intelligence product.

Acknowledgments

Many thanks to Nick Feamster for suggesting having a look at the IPID mech-
anisms in IP. Klaus Kursawe suggested using shared state in on-line games for
covert communications. Richard Clayton has provided valuable early feedback.

References

1. Data protection directive (1995/46/EC). Official Journal of the European Com-
munities, 1995.

2. The data protection telecommunications directive (1997/66/EC). Official Journal
of the European Communities, 1997.

3. Directive on privacy and electronic communications (2002/58/EC). Official Journal
of the European Communities, July 12 2002.

4. Final data retention directive (COM(2005) 438 Final). Commission of the Euro-
pean Communities, 2005.

5. R. Anderson. Security engineering. Wiley, 2001.
6. R. J. Anderson. Stretching the limits of steganography. In R. J. Anderson, editor,

Information Hiding, volume 1174 of Lecture Notes in Computer Science, pages
39–48. Springer, 1996.

7. S. “antirez” Sanfilippo. about the ip header id. Personal communication, http:
//www.kyuzz.org/antirez/papers/ipid.html, December 14 1998.

8. S. “antirez” Sanfilippo. Dumbscan. Personal communication, http://www.kyuzz.
org/antirez/papers/dumbscan.html, December 18 1998.

9. S. “antirez” Sanfilippo. How to learn firewalling relations using the ip id
increment. Personal communication, http://www.kyuzz.org/antirez/papers/

moreipid.html, November 1999.
10. S. M. Bellovin. A technique for counting natted hosts. In Internet Measurement

Workshop, pages 267–272. ACM, 2002.

11. R. Braden. Requirements for Internet Hosts - Communication Layers. RFC 1122
(Standard), Oct. 1989. Updated by RFC 1349.

12. E. P. I. Center. Data retention. On-line, http://www.epic.org/privacy/intl/
data_retention.html, January 2006.

13. D. Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms.
Communications of the ACM, 24(2):84–88, February 1981.

14. G. Danezis, R. Dingledine, and N. Mathewson. Mixminion: Design of a Type III
Anonymous Remailer Protocol. In IEEE Symposium on Security and Privacy,
Berkeley, CA, 11-14 May 2003.

15. R. Dingledine, N. Mathewson, and P. Syverson. Tor: The second-generation onion
router. In Proceedings of the 13th USENIX Security Symposium, August 2004.

16. N. Feamster, M. Balazinska, G. Harfst, H. Balakrishnan, and D. Karger. Infranet:
Circumventing web censorship and surveillance. In Proceedings of the 11th USENIX
Security Symposium, August 2002.

17. S. Floyd and T. Henderson. The NewReno Modification to TCP’s Fast Recovery
Algorithm. RFC 2582 (Experimental), Apr. 1999. Obsoleted by RFC 3782.

18. M. J. Freedman and R. Morris. Tarzan: A peer-to-peer anonymizing network layer.
In V. Atluri, editor, ACM Conference on Computer and Communications Security
(CCS 2002), pages 193–206, Washington, DC, November 2002. ACM.

19. Fyodor. Nmap – free security scanner for network exploitation and security audit.
http://www.insecure.org/nmap/.

20. P. International. Data retention. On-line, http://www.privacyinternational.
org/index.shtml?cmd[342][]=c-1-Data+Retention&als[theme]=Data%

20Retention&conds[1][category........]=Data%20Retention&als[_parent_

]=Communication%20and%20electronic%20surveillance, January 2006.
21. P. Klerks. The network paradigm applied to criminal organisations. In Connections

24(3), 2001.
22. S. Köpsell and U. Hilling. How to achieve blocking resistance for existing systems

enabling anonymous web surfing. In Proceedings of the Workshop on Privacy in
the Electronic Society (WPES 2004), Washington, DC, USA, October 2004.

23. U. Moeller, L. Cottrell, P. Palfrader, and L. Sassaman. Mixmaster protocol version
2. Technical report, Network Working Group, May 25 2004. Internet-Draft.

24. S. Observatory. The surveillance of telecommunications in the eu. On-line, http:
//www.statewatch.org/eu-data-retention.htm, January 2006.

25. V. Paxson. About the ip header id. Personal communication, http://www.kyuzz.
org/antirez/papers/ipid.html, December 15 1998.

26. J. Postel. Internet Control Message Protocol. RFC 792 (Standard), Sept. 1981.
Updated by RFC 950.

27. J. Postel. Internet Protocol. RFC 791 (Standard), Sept. 1981. Updated by RFC
1349.

28. J. Postel. Transmission Control Protocol. RFC 793 (Standard), Sept. 1981. Up-
dated by RFC 3168.

29. M. Rennhard and B. Plattner. Introducing MorphMix: Peer-to-Peer based Anony-
mous Internet Usage with Collusion Detection. In Workshop on Privacy in the
Electronic Society (WPES 2002), Washington, DC, USA, November 2002.

30. M. K. Sparrow. The application of network analysis to criminal intelligence: An
assessment of the prospects. In Social Networks (13), 1991.

31. S. Sudaharan, S. Dhammalapati, S. Rai, and D. Wijesekera. Honeynet clusters as
an early warning system for production networks. In E. Fernández-Medina, J. C.
Hernández, and L. J. Garćıa, editors, WOSIS, pages 77–83. INSTICC Press, 2005.

32. S. team. Snort. http://www.snort.org/.

A Derivations

Here we prove that we can efficiently extract the symbols transmitted over a
noisy IPID counter (equation 4). We have defined the values r as:

rj =
∑

i∈[0,l−1]

vjiui, j ∈ 0, 1 (7)

The variable v denotes Bob’s guess about the traffic pattern used by Alice,
and the variable u the traffic pattern observed by Bob. We assume that Bob’s
observation contains some noise at each time i ∈ [0, l − 1] denoted n∗

i . So we
can rewrite ui = si + n∗

i , where si is the hidden traffic pattern actually used by
Alice, and n∗

i is the noise.
We want to calculate how well r differentiates between correct symbols, and

incorrect symbols. Therefore we define rcorrect = rj if vj = si (meaning the
equality of the traffic patterns), and rincorrect = rj if vj 6= si (meaning the
Independence of symbols at each time i).

We now calculate the expected value for rcorrect (we use extensivelly the
linearity of a distribution’s expectation E).E(r|n∗

i , ∀i.vji = si) = E(
∑

i∈[0,l−1]

vjiui|n
∗

i , ∀i.vji = si) (8)

= E(
∑

i∈[0,l−1]

vji(si + n∗

i)|n
∗

i , ∀i.vji = si) (9)

=
∑

i∈[0,l−1]

E(vji(si + n∗

i)|n
∗

i , ∀i.vji = si) (10)

= l(E(vjisi|n
∗

i , ∀i.vji = si) +E(vjin
∗

i |n
∗

i , ∀i.vji = si))
(11)

= l(E(v2
ji) +E(vji)n

∗

i) (12)

Similarly for rincorrect:E(r|n∗

i) =
∑

i∈[0,l−1]

E(vji(si + n∗

i)|n
∗

i)) (13)

= l(E(vjisi|n
∗

i , ∀i.vji = si) +E(vjin
∗

i |n
∗

i , ∀i.vji = si)) (14)

= l(E(vji)
2 +E(vji)n

∗

i) (15)

From the above two expressions we can show equation 4:E(∆r) = E (rcorrect − rincorrect) (16)

= l(E(v2
ji) +E(vji)E(n∗

i)) − l(E(vji)
2 +E(vji)E(n∗

i)) (17)

= l(E(v2
ji) −E(vji)

2) (18)

= lV(vji) (19)

