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1 Early Measures

Measuring the quality of protection offered by secu-
rity mechanisms, including anonymous channels, is of
paramount importance. It allows architects to com-
pare designs, and reliably improve them. It also al-
lows them to understand the impact improvements
in other aspects of a design, for reliability, perfor-
mance or usability, may have on the overall security
of systems. In the absence of security measures, fea-
tures that have a demonstrable impact, such as per-
formance, will be prioritised and the security of the
system may be inadvertently undermined.

How to measure the anonymity of large deployed
system, has been for a long time, and still is an open
problem. This is the case despite a surge of interest
in the topic shortly after 2002, when entropy based
measures were proposed [41, 15]. The most popu-
lar early measure of anonymity was the “anonymity
set size” [39], a design parameter of a system that
roughly denotes amongst how many possible actors
an action is hidden, or conversely how many possi-
ble actions a specific actor may have performed. The
downside of this measure is its lack of subtlety in tak-
ing into account the relative likelihood of the relation-
ships. This was first noted by Dogan Kestogan, when
analyzing sg-mixes [29], which are implemented using
inherently probabilistic mechanisms, and do not pro-
duce “clean” anonymity uniformly likely anonymity
sets.

Another early measure of anonymity is used in the
Crowds system [40], to compute the probability an
observed action was performed by a specific actor.
Interestingly, Crowds threat model is very weak and

might be an inspiration for metrics relating to onion
routing as we will see. With hindsight the quantita-
tive element of the measure was very influential, while
its qualitative interpretation seems rather arbitrary.

2 Entropy Measures

At PETS 2002 Diaz et al. [15] and Serjantov and
Danezis [41] concurrently suggested that information
theoretic measures, such as entropy or normalized en-
tropy, may be a good measure for anonymity. This is
in line with uses of entropy to compute the security
of symmetric key primitives, and its meaning denot-
ing uncertainty about a measured quantity. When
applied to the belief of an adversary over who per-
formed an action, or which action was performed it
is a summary of their uncertainty.

One of the reasons these works became influen-
tial is the use of the metrics to reason about sys-
tems that could not be measured accurately before
using anonymity sets, namely pool mixes [12] and
Crowds [40]. A simple composition theorem was
also provided to combine primitive anonymity build-
ing blocks – as long as all actors or actions were
distinct. This proves to be a very serious limita-
tion. The use of pool mixes as examples to illus-
trate the metric spurred a long line of research relat-
ing to measuring the anonymity of different mixing
strategies [12, 14, 43], with and without dummy mes-
sages [13], and their susceptibility to blending and
(n − 1) attacks [42]. To some extent this is a bit of
a “red herring”, since any strategy with a bounded
mean latency will have an upper bound on uncer-
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tainty, and probing attacks by the adversary, in what
is inherently an open system, defeat most attempts
to protect single mixes from blending attacks [36].

The practice of using Entropy based measures suf-
fered over the next 10 years from three fundamental
difficulties:

• Shannon Entropy is inherently an average mea-
sure. It is not very good at providing intuition
about the worse case. Shmatikov first pointed
this out, and suggested that min-entropy may
be a better measure as a result [44]. This pro-
posal is important, but still suffers from the next
two difficulties.

• For the measure to make any sense, one needs to
compute the Shannon entropy of the posterior
distribution of actions or actors. This includes
the prior belief of the adversary and all informa-
tion they can infer from observing the operation
of the anonymity system. It turns out this is
very hard for complex systems, and furthermore
it only informs the adversary about the qual-
ity of one particular run of a system. Getting a
lower bound for any possible or likely attacker
observation is very hard indeed.

• Finally, it is rather uninteresting to reason about
the existence or absence of single interactions
between a target actor and actions. Anony-
mous channels need to provide a robust service
to higher level applications that will use them
for long term, systematic, persistent patterns of
communication. Thus it is imperative for a mea-
sure to provide good intuitions about the secu-
rity of repeated uses of the channel. The entropy
measures are very poor at this.

3 Getting to the Posterior

Real anonymous communication channels are com-
plex engineering artefacts. As a result they are both
constrained in a variety of ways, and they inevitably
leak information about their internal workings, in-
cluding their handling of secrets, to various classes

of adversaries. The task of processing this informa-
tion to define proper posterior distributions over ac-
tions or actors, is necessary to apply any entropy met-
rics in a sound manner. Interestingly, this distribu-
tion is also necessary for measuring the anonymity
of the system using the Bayesian probability of er-
ror of the adversary [5], or even mutual information
metrics [4, 45].

Deriving those for various systems, took a very long
time and uses advanced techniques in Bayesian infer-
ence. This has led to some notable results, but with
important limitations:

• A full Bayesian treatment of Crowds, under its
original very weak threat model, and for a sin-
gle observation of the adversary (again as in the
original work), is a success story [7]. One can
derive an analytic form for the posterior belief
of the adversary; this posterior can be bound
to show a minimum over any observation; and
finally this minimum can be used to demon-
strate that the distribution of latency imposed
by Crowds provides the optimal anonymity for
a certain mean latency. This is very exciting,
if not for the fact that no one considers imple-
menting Crowds, due to its susceptibility to long
terms attacks [50] (related to its very weak threat
model).

• A Bayesian treatment of a complex network of
perfect threshold mixes has provided a simu-
lator that takes traces from an adversary and
produces distributions [49]. The framework is
flexible enough to accommodate any number of
path selection strategies and priors. One could
even stretch it to accommodate other types of
mixes (even thought it is questionable why this
would be interesting). Extending this model to
non-global adversaries will require some key con-
ceptual advances, and is a topic likely to re-
quire about a PhD’s worth of work. The down-
side is that the distributions are derived through
Markov-Chain Monte Carlo (MCMC) simula-
tions, and thus no analytic form is available. As
a result there is no lower bound on the security of
the systems, and the job of measuring anonymity
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really becomes an empirical discipline, that re-
quires architects to test different types of param-
eters against different types of adversaries to find
appropriate sweet spots.

• Finally the Bayesian paradigm has been applied
to long-term attacks against perfect mixes [10],
following the Disclosure attack models [1]. This
performs as well as any other long term attack,
and is much more flexible to accommodate other
models of user behaviour or system behaviour.
Yet it relies on MCMC to provide a measure
of anonymity for a single observation trace, and
thus little intuition about lowed bounds on secu-
rity.

What has become clear for this line of work, is that
deriving the posterior belief of the adversary, or even
the likelihood of a particular trace, from a complex
system is a very hard task. It is very unlikely that
there will be any systematic improvement or success,
unless systems are designed from the ground up to fa-
cilitate this task [8]. In those cases MCMC techniques
could be used for the experimental evaluation of de-
signs. The constraints necessary for deriving analytic
expressions seem incompatible with the complexities
and systems constraints of real systems.

4 Degradation Over Time

Dogan Kestogan was one of the first to point out
that repeated use of an anonymity channel, even if it
is perfect will eventually leak any persistent patterns
of communications [3, 27]. From there, two schools of
thought developed: the first extends the original Dis-
closure attacks, into Hitting set attacks and their ap-
proximations [30, 31]; the second, based on statistical
disclosure attacks, takes a fast and loose approach to
the model (and linearises it based on expectations),
to infer long-term patterns [6, 9, 32]. It turns out
that the entropy based metrics do not provide any
insight into how fast these attacks lead to the de-
anonymization of a specific message, that has to go
through the inference of a persistent relationship. In-
tuitively, even if the entropy metrics give some idea
about the relationship between a specific action and

a specific actor, they are poor that extending this to
a relationship between a specific action and a inter-
nal profile of persistent sending. In this particular
case we have to conclude that even correctly applied
the entropy metrics are simply measuring the wrong
thing.

It should be a bit of an embarrassment to our com-
munity that we do not have clear, generic bounds,
on how quickly we expect a relationship to be dis-
closed, given the repeated use of a perfect anonymity
channel. We have bounds on the performance of spe-
cific attacks including the Hitting Set Attack and the
vanilla Statistical Disclosure attack, but those are
tied to the techniques, and do not represent a fun-
damental limit (attempts include [28, 37]). This gap
in the literature is partly due to the fact that the
measures we have used for anonymity, simply do not
compose under sequential execution of the channel.

One key question that has been posed by Matt
Wright and Nikita Borisov, is whether differential
privacy (DP) [19] could be used as a measure of
anonymity. So, we present here a first differentially
private bound on the security of a perfect anonymous
channel, that composes nicely to allow us to reason
about long term attacks (this differs from [2] that
reasons about a single round). We note that the ap-
plication of DP in this context is a massive departure
from orthodoxy in either communities, and its mean-
ing will have to be scrutinised quite closely.

Theorem 1. Consider a user Alice that sends a
single message through a perfect anonymous channel
along with Vo other honest users. Alice sends a mes-
sage to Bob with probability 0 ≤ pAB < ε

1+ε , and
others send messages to Bob each independently with
probability pOB. For any valid values of pAB and
p′AB, and for any number of observed messages VB
from the channel to Bob (where 0 ≤ VB ≤ Vo + 1) it
holds that:

Pr[VB |pAB ] ≤ eε Pr[VB |p′AB ] + δ,

where δ = ε·e2pOB(1+ε)

(1+ε)2VopOB(1−pOB)

Proof. See appendix for full proof, and to discover
that ε is tight for small pOB , but meaningless for
larger ones; and that the bound on δ is very loose
indeed.
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The upper bound on pAB is key to interpreting
the theorem. It basically provides a bound on the
likelihood ratios of observed events, when it comes to
distinguishing whether Alice sends to Bob with any
two rates below that known bound 0 ≤ pAB < ε

1+ε .
As Smith [26] shows this relates directly to a bound
over the ratio of posterior distributions.

One could interpret this theorem as stating that
a perfect channel provides (ε, δ)-differential privacy.
Yet there is a caveat: we have assumed that the ad-
versary has no side information about who others are
sending messages to, besides the known probability
pOB they send to Bob. This restriction goes away
if we modify the perfect anonymity channel in the
following manner: it receives one message from Al-
ice, and any number of messages from other users;
then it generates internally Vo dummy messages, each
with a probability pOB of being sent to Bob. Since
now the “noise” is internal to the security mecha-
nism, any side information (such as who others are
sending to) cannot violate the given bound. We can
further modify the protocol to ensure that Alice sends
to Bob with at most probability ε

1+ε through the use
of source cover traffic. Thus, if we assume in the
spirit of differential private mechanism that the ad-
versary has arbitrary side information the above the-
orem guide us as to how much cover traffic is needed
to achieve a lever of privacy equivalent to using an
honest mix.

The standard differential privacy composition
property applies. A number k of repeated commu-
nications through the channel compose to provide a
(k · ε, k · δ) differentially private mechanism. It is in-
teresting to note that the ε depends only on the range
of probabilities pAB , and only δ depends on the secu-
rity parameter of the mix, or the sending probability
of other users. A quick peak in the proof illuminates
this apparent paradox: a lot of information leaks in
case VB = 0, which is likely in common configura-
tions of anonymity systems (a lot of information also
leaks when VB = Vo+ 1 is maximized, but that is ex-
tremely unlikely). We note that the bound that yields
δ is very loose, and could be seriously improved.

5 Onion Routing

Onion routing [47] has so far presented a unique chal-
lenge when it comes to measuring the quality of pro-
tection it offers, as aptly described in Syverson’s pa-
per “Why I’m not an Entropist” [46]. While there are
many reasons (see above) to consider entropy met-
rics inadequate, we believe the reasons they cannot
be easily applied to Onion Routing seems to be as
much a weakness in Onion Routing as the poverty of
the metrics themselves.

From the very start Onion Routing security has
been defined by what it is not secure against: if an
adversary is able to “observe” the start and the end
of a circuit, then they can link them together and
trivially infer who is communicating with whom [48].
Thus the security of onion routing is based on making
this unlikely, either through distributing entry and
exit points [20] or doing path selection [25] using trust
metrics. Yet, those counter measures cannot protect,
with certainty, against even a trivial attacker: If Al-
ice wants to browse Bob’s website, she is absolutely
vulnerable to Charlie that happens to observer only
her internet connection and Bob’s internet connec-
tion. In this case the onion routing system can do
nothing to protect the communication. Given this, it
is clear that conventional measures of security that
attempt to hide actions using a mechanism tuned by
some security parameter are just not applicable, mak-
ing even the definition, let alone the measurement, of
the security of onion routing difficult.

Besides the above sticking point, a plethora of pa-
pers have studied the susceptibility of onion routing
to different entities having some access to large frac-
tions of input-output links, through AS topology [20]
or sampling flows in the core of the network [35].
Tragedy turns into farce, since even very distorted ob-
servations such as indirect measurements of load [34],
temperature-induced clock skew [33], or remote DoS
attacks on network routers [23] can in fact induce
“observations”, and be vectors for attack. In fact the
adversary learning any function of the organic or in-
duced load on the two ends of an onion routing link
will eventually lead to some compromises.

Now, besides the above fundamental limit the
internal engineering of current onion routing sys-
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tems [17] in itself may facilitate attacks. For ex-
ample Tor currently uses three semi-stable mid-term
“guards” for each client to mitigate some of the above
attacks. These three guards act as an internal finger-
print for the client: if an adversary has discovered a
client’s guards (by observing their hotel room connec-
tion for example), they can re-identify that client if
they assume a different network address (for example
at home). These semi-stable guards therefore make
partial tracing attacks, where an adversary only dis-
covers the guards of a node, very dangerous. Other
vectors of attacks include denial of service, the selec-
tion of paths, and the scheduling of circuits.

In brief, one of the key reasons that measuring the
anonymity of Tor is hard is that under many, very
common, circumstances it is just not secure. Fur-
thermore the cases under which it is secure are con-
ditioned not on security parameters, but instead on
the inherent variability of web usage patterns, phys-
ical assumptions about network leakage, web con-
tent dynamics, or the adversary not concentrating
resources around targets. These are outside the con-
trol of the security designer, and should traditionally
not be considered strong sources of uncertainty or
replied upon for security.

6 An Inescapable Fact

Syverson is right that entropy, as a summary of the
inferences of an attacker has serious shortcomings.
But this must not be extended to a deeper argu-
ment about not quantifying anonymity systems on
the basis of probabilistic models. In fact designers of
anonymity systems must accept an inescapable fact:
to reason about the security of an anonymity system
it must be possible and efficient to compute the likeli-
hood function of the adversary observation given the
secrets and other security parameters of the system.
All metrics require this: entropy, min-entropy, proba-
bility of error, bayesian inference based analysis, and
differential privacy.

In many cases computing this likelihood function is
hard due to incidental noise in the system; such as the
exact timing of messages, the exact timing of the co-
occurrence of correlated events, etc. In such cases it

is prudent to analyze systems under the assumption
that the adversary can trivially recover any unpro-
tected information. For example, since Tor does not
protect against timing correlations, one should as-
sume they they always work instantly (as they may).
Similarly, since it is impossible to exclude the pre-
dictable use of multiple Tor circuits to access the
same resource, the security of the system under such
known patterns of access must be assessed.

Finally, as it is argued in [8], it is unlikely that an
arbitrary anonymous channel construction will nat-
urally have an easy to extract likelihood function.
Therefore I am looking forward to the next 10 years
of engineering involving collaborations to co-design
efficient channels that are also easy to analyse from
the ground up.
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A Proof of theorems

Theorem 1. Consider a user Alice that sends a single message through a perfect anonymous channel along
with Vo other honest users. Alice sends a message to Bob with probability 0 ≤ pAB < ε

1+ε , and others send
messages to Bob each independently with probability pOB. For any valid values of pAB and p′AB, and for
any number of observed messages VB from the channel to Bob (where 0 ≤ VB ≤ Vo + 1) it holds that:

Pr[VB |pAB ] ≤ eε Pr[VB |p′AB ] + δ,

where δ = ε·e2pOB(1+ε)

(1+ε)2VopOB(1−pOB)

Proof. Consider the distribution over the number of messages destined to Bob resulting from a single use
of the perfect anonymity system. It is the result of the sum of the potential message from Alice, and the
remaining messages from others. Both are random variables and we can derive the distribution of the sum
through the convolution of the distribution of the separate random variables:

Pr[VB |pAB , . . .] =

min(1,VB)∑
VAB=max(0,VB−Vo)

pVABAB p̄
(1−VAB)
AB

(
Vo

VB − VAB

)
p

(VB−VAB)
OB p̄

(Vo−VB+VAB)
OB (1)

where p̄AB = 1− pAB and p̄OB = 1− pOB .
We want to determine ε and δ an such that Pr[VB |pAB ] ≤ eε Pr[VB |p′AB ] + δ for all 0 ≤ VB ≤ Vo + 1 and

for any two possible pAB , p′AB subject to the constraint pAB , p
′
AB < ε

1+ε . We will do this by considering the
cases where VB = 0, 0 < VB < Vo + 1, and VB = Vo + 1 separately.

In the case VB = 0, it must be that VAB = 0 (reducing the sum to a single element independent of pAB)
and the ratio becomes:

Pr[VB = 0|pAB , . . .]
Pr[VB = 0|p′AB , . . .]

=
p̄AB
p̄′AB

≤ 1

p̄′AB
=

1

1− ε
1+ε

= 1 + ε ≤ eε (2)

In case 0 < VB < Vo + 1 we note that the probability of VB becomes:

Pr[VB |pAB , . . .] =

(
Vo
VB

)
pVBOB p̄

(Vo−VB)
OB

[
1 +

(
VB

Vo − VB + 1

p̄OB
pOB

− 1

)
pAB

]
(3)

We define x as x = VB
Vo−VB+1

p̄OB
pOB

, and split two cases, when x− 1 ≤ 0 and when x− 1 > 0.

When x−1 < 0, it implies that VB > (Vo+1)pOB , and we can bound the ratio of probabilities for different
pAB , p

′
AB . We note that this ratio is minimized when VB = 1, and substitute it into x:

Pr[VB |pAB , . . .]
Pr[VB |p′AB , . . .]

≤ 1

1 + (x− 1)pAB
=

Vo

Vo − VopAB +
(

1
pOB
− 1
)
pAB

≤ Vo
Vo − Vo · pAB

(4)

= 1 + e ≤ eε (5)

When x − 1 ≥ 0, it implies that VB < (Vo + 1)pOB and things get tricky. We can show that if VB <
pOB(Vo+1)(2+ε)

1+pOB(1+ε) the ratio of likelihoods can be bound as:

Pr[VB |pAB , . . .]
Pr[VB |p′AB , . . .]

≤ 1 + (x− 1)pAB ≤ 1 + ε < eε (6)
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because

1 + (1− x)pAB ≤ 1 + ε⇔ x ≤ 1 + ε⇔ VB <
pOB(Vo + 1)(2 + ε)

1 + pOB(1 + ε)
(7)

This bound does not hold if VB is larger, and thus we need to bound the statistical difference in this case:

Pr[VB |pAB , . . .]− eε Pr[VB |p′AB , . . .] ≤ Pr[VB |pAB , . . .]− Pr[VB |p′AB , . . .] = (8)

=

(
Vo
VB

)
pVBOB p̄

(Vo−VB)
OB (x− 1)(pAB − p′AB) (9)

≤
(
Vo
VB

)
pVBOB p̄

(Vo−VB)
OB (x− 1)(

ε

1 + ε
) (10)

≤
(
Vo
VB

)
pVBOB p̄

(Vo−VB)
OB · ε (11)

Since this is maximized when VB = pOB(Vo+1)(2+ε)
1+pOB(1+ε) , at which point x − 1 = 1 + ε. At this point we could

just plug this VB into the expression above to get an accurate value for δ. Instead we will opt for having
an “elegant” theorem, and bound this expression using Chebyshev bounds on the tails of the binomial
distribution.

We note that the binomial distribution could be bound by its tail:(
Vo
VB

)
pVBOB p̄

(Vo−VB)
OB · ε = Pr[VB = a|Vo, pOB ] · ε ≤ Pr[VB > b|Vo, pOB ] · ε (12)

if a ∈ (b, Vo). We define b = pOBVo(2+ε)
1+pOB(1+ε) <

pOB(Vo+1)(2+ε)
1+pOB(1+ε) . The Chebyshev bound on the tails of the binomial

distribution only depends on its mean µ = VopOB and variance σ2 = VopOB p̄OB .

Pr[VB > b] · ε ≤ σ2

(µ− b)2
· ε (13)

=
ε

VopOB p̄OB

[
1 + pOB(1 + ε

1 + ε

]2

(14)

≤ ε · e2pOB(1+ε)

VopOB p̄OB(1 + ε)2
(15)

This becomes our value for δ.
The very final case of the proof concerns VB = Vo+1. The probability of this happening is small, therefore:

Pr[VB |pAB , . . .]− eε Pr[VB |p′AB , . . .] ≤ Pr[VB |pAB , . . .]− Pr[VB |p′AB , . . .] (16)

= (pAB − p′AB)pVoOB (17)

≤ ε

1 + ε
pVoOB < δ (18)

This concludes the proof since in all cases either we have bound the ratio of likelihoods by eε or we have
shown that the differences of probabilities are less than δ.

10


