
Smart Meter Aggregation via Secret-Sharing

George Danezis, Cédric Fournet, Markulf Kohlweiss, Santiago Zanella-Béguelin
Microsoft Research, Cambridge, UK

{gdane,fournet,markulf,santiago}@microsoft.com

ABSTRACT
We design and prototype protocols for processing smart-
meter readings while preserving user privacy. We provide
support for computing non-linear functions on encrypted
readings, implemented by adapting to our setting efficient
secret-sharing-based secure multi-party computation tech-
niques. Meter readings are jointly processed by a (public)
storage service and a few independent authorities, each own-
ing an additive share of the readings. For non-linear process-
ing, these parties consume pre-shared materials, produced
by an off-line trusted third party. This party never processes
private readings; it may be implemented using trusted hard-
ware or somewhat homomorphic encryption. The protocol
involves minimal, off-line support from the meters—a few
keyed hash computations and no communication overhead.

Categories and Subject Descriptors
K.4.1 [Public Policy Issues]: Privacy

Keywords
Secure multi-party computation; secret-sharing; smart me-
tering; privacy

1. INTRODUCTION
Smart metering deployments have been plagued with pri-

vacy concerns [9, 10]. As a result, data protection authorities
have recognized that fine grained readings are personal in-
formation, and as such should be processed in line with data
protection principles, such as “data minimization” [14] that
dictates the minimal amount of information should be col-
lected or made available to third parties to fulfill their busi-
ness needs. Specific privacy technologies have been devel-
oped in the context of smart metering architectures, to min-
imize the information necessary to perform common tasks
such as generating aggregate statistics [15, 22] or computing
bills [12, 21] (see [13] for a survey).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SEGS’13, November 8, 2013, Berlin, Germany.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2492-2/13/11 ...$15.00.
http://dx.doi.org/10.1145/2516930.2516944.

This work aims to expand the reach of these privacy tech-
nologies significantly, by allowing the computation of com-
plex, non-linear functions on encrypted meter readings. This
functionality goes beyond linear bills and aggregates [15, 21,
22], and does not require interaction with a user device, as
prior work did [21]. Yet, it uses a similar security model as
previous mechanisms [11, 15, 17] with multiple honest-but-
curious parties. Our solution is based on extending these
mechanisms with ideas from modern secret-sharing-based
secure multi-party computation literature [4, 6].

Throughout this paper we use motivating examples di-
rectly inspired by problems related to smart metering [8]:
• Line Fraud detection. Given encrypted readings of

the voltage across the meters of two homes adjacent on a
power line, a utility company wishes to determine if the volt-
age drop is suspiciously large. This may indicate someone
stealing electricity directly from the line. Yet, ideally, the
exact voltage at each meter or their exact difference should
not be made available, unless there is a significant drop.
• Meter short-cut detection. In a normal setting,

households adjacent on a power line should see a decreasing
voltage across their meters. Yet, when someone shorts their
meter to commit fraud, the reading will be lower than the
two households on either side. This check needs to be made
without revealing any other information about voltages.
• Non-linear billing. Demand-response systems direct

or broadcast“back-off”signals to households at times of peak
demand. Following such a signal, energy consumed above a
predetermined threshold is billed at a very high tariff, to
provide incentives to reduce demand. We show how such a
non-linear billing mechanism can be implemented.
• Advanced statistics. Current aggregation schemes

provide linear statistics, in the form of weighted sums over
collections of readings. We show how to extract higher order
statistics such as the variance of a collection of readings.

We will describe all building blocks we use to support the
applications above, and evaluate their specific performance.

In the rest of this paper, we first review related work, on
which we heavily rely; we then go on describing our system
assumptions, adversary models, and security assumptions;
we then give a description of the types of computations we
support, their cost and how they compose; finally we present
our preliminary experimental results.

2. BACKGROUND & RELATED WORK
A thorough survey of privacy technologies applicable to

smart metering exists [13], so here we limit ourselves to
works that are directly relevant to the problem at hand.

75

Smart metering privacy protocols. Privacy-friendly ag-
gregation has received a lot of attention: the aim of those
protocols is for a utility to reveal the sum of readings from
multiple meters without learning the readings themselves.
Kursawe et al. [15] concurrently with Shi et al. [22] have
presented a set of efficient aggregation protocols. In both
schemes, meters generate readings (ri) that are blinded by
additive shares (si) summing to zero (i.e.

∑
i si = 0, where

all arithmetic is done modulo 232). Thus when the blinded
readings (bi = si + ri) are revealed and summed, shares
cancel out and the sum of the readings is revealed (i.e.∑

i bi =
∑

i ri). These protocols are very efficient but suffer
from inflexibility: the groups of meters that can be aggre-
gated are static, and missing readings prevent the computa-
tion of the aggregate. Furthermore, the details of computing
the shares at each meter require some data per other me-
ter in each group, and thus the size of groups is restricted
and their membership is static. Finally, only simple sums of
readings can be computed, which is a valuable but restricted
statistic. Yet, this protocol is advantageous enough to form
the basis of a mid-size trial in the Netherlands [8].

A number of protocols attempt to improve the robustness
of aggregation, and allow for missing readings without jeop-
ardizing computations. Jawurek and Kerschbaum [11] pro-
pose a novel model for such protocols, which also forms the
basis of our threat model and security assumptions. They
consider the participation of additional “authorities” that
facilitate the protocol, but do not learn any secrets (or read-
ings) in the process. The key trust assumption is that at
least one of the authorities is honest—if they are all corrupt
and collude, then the protocol does not provide any privacy.

Also in a security model with authorities, Barthe et al. [1]
propose an efficient robust aggregation protocol, as follows:
for each reading ri, the meter and each authority compute
a set of shares that sum up to zero (i.e.

∑
j sij = 0). The

meter then simply outputs a version of the reading blinded
with its share (i.e. bi = ri+si0). With the help of all author-
ities, any linear aggregate of readings can be computed. For
example, if the utility wishes to compute R = α · r1 + β · r2,
it would compute the linear sum on the blinded readings
B = α · b1 + β · b2, and request from each authority the
same linear sum on the shares they hold for these readings
Sa = α·s1a+β ·s2a, where a ranges over the authorities. The
aggregate can then be computed as R = B +

∑
a Sa, and

their approach generalizes to computing any weighted sum.
The selection of readings to be summed can be dynamic,
and thus missing readings can simply be omitted (or implic-
itly be assigned a weight of zero). Furthermore, multiple
readings per meter can be used, leading to a very efficient
implementation of a linear time-of-use billing mechanism.
All values exchanged are small, computations are linear and
on small integers, and the contributions from the authorities
can be collected ahead of time. Finally, additive noise can
be added to make the aggregate differentially private [1].

The obvious limitation of these protocols is their inabil-
ity to compute anything non-linear, for instance involving
multiplications of secret readings, thresholds, comparisons
between secret readings, etc. Three broad approaches have
been proposed to run arbitrary computations on encrypted
readings. The obvious approach is to provide all necessary
readings to a trusted third party, and allow them to be de-
crypted to compute any function in clear. Relying on a
single fully-trusted party is dangerous since implementing

them well is expensive, and they could be compromised,
collude with an adversary, or be compelled to reveal secrets.
A second approach is to rely on fully homomorphic encryp-
tion [23] but, in practice, such schemes remain too expensive
for industrial applications, and still rely on the controlled
decryption of final results [7]. The final approach is to re-
flect the encrypted readings to a user device, decrypt them
there, compute any function, and return the result alongside
a zero-knowledge proof of correctness [21]. This approach is
surprisingly general, but its proofs can be expensive, it is
only available for computing on data from a single house-
hold, and it requires interaction with some user device.

Computations using secret shares. The approach for per-
forming computations on “encrypted” readings we present
consists of a cut-down and optimized set of protocols in-
spired by recent work on secure multi-party computation
using secret shares. In this setting, a user splits a secret into
shares adding up to the secret value, i.e. ri =

∑
j sij , where

the shares are usually denoted as 〈ri〉, and distributes them
to a number of authorities. Unless all authorities collude,
the secret remains confidential. The aim of those authorities
is to use their shares to jointly compute on the secret val-
ues, without revealing any intermediate results—a general
problem in the realm of secure multi-party computation.

Applying linear functions in the secrets shared is a rela-
tively easy task, that relates with the efficient aggregation
protocol of Barthe et al. [1]. It can be easily derived that the
share of the sum of two secrets is simply the sum of shares of
each secret (i.e. 〈v+w〉 = 〈v〉+ 〈w〉). Similarly, the share of
a secret multiplied with a public value is simply the product
of the share of the secret multiplied by the same value, i.e.
〈α · v〉 = α · 〈v〉. While linear functions can be computed
by each authority using only local shares of secrets that are
combined to reveal the result, as in the linear sum example
above, the same does not hold for multiplications of secrets.

The multiplication of two secrets requires some interaction
between the parties that hold shares, as well as pre-shared
state [5]. First of all, we assume that all authorities have pre-
shared, ahead of time and independently of the computation
to be performed, a large number of triplets of shares 〈a〉, 〈b〉
and 〈c〉 where a and b are random and c = a · b. We call
those secrets “multiplication triplets”; §6 discusses options
for deriving them in a smart metering setting. Using one
of those triplets makes multiplication of two shared secrets
possible through a single round of interaction: to multiply
〈x〉 and 〈y〉, all authorities first compute and reveal their
shares of 〈ε〉 = 〈x〉+〈a〉 and 〈δ〉 = 〈y〉+〈b〉, enabling them to
reconstruct ε and δ (which are statistically independent of x
and y). The authorities then privately compute their shares
of the product 〈x ·y〉 = 〈c〉−ε ·〈b〉−δ ·〈a〉+ε ·δ. This enables
us to evaluate general arithmetic circuits, consuming a pre-
shared triplet for each multiplication, with as many rounds
of interaction as the multiplicative depth of the circuit.

In particular, the availability of multiplication on shared
secrets enables the computation of any boolean circuit. As-
suming secrets ranging over {0, 1} we can express NOT,
AND, NAND, NOR and XOR gates directly as NOT(a) =
1−a; AND(a, b) = a · b; NAND(a, b) = 1−a · b; NOR(a, b) =
(1− a)(1− b) [20] and XOR(a, b) = (a− b)2. Each of these
gates uses (at most) one multiplication, together with lin-
ear operations; thus evaluating a boolean circuit on shared

76

secrets requires as many triplets as gates, and requires as
many rounds of interaction as the depth of the circuit.

Boolean circuits operate on secret bits, but readings are
usually larger integers. It is trivial to convert a vector of bit
shares to an integer share using linear operations (i.e., 〈v〉 =∑

i 2i〈bi〉). The converse decomposition of an integer into
its binary representation is a more complex operation, for
which we use a variant of the protocol by Damg̊ard et al. [4].
This protocol relies on pre-shared random bits 〈bi〉. These,
like the multiplication triplets, can be generated and shared
before the computation takes place. Converting an n-bit
shared number v to shares of its constituent n bits requires
n pre-shared bits bi. The protocol proceed as follows: all
authorities compute and reveal their share of 〈d〉 = 〈v〉 −∑

i 2i〈bi〉 (which is statistically independent from v), then

decompose d into bits ui (d =
∑

i 2iui). The authorities use
these bits, together with the secret bits 〈bi〉, as inputs to a
boolean circuit performing addition (implemented using any
logic gates available). This circuit outputs shared bits 〈hi〉
such that v =

∑
i 2ihi. The choice of the addition circuit can

have profound implications on the efficiency of this protocol;
we use a variant of Ladner and Fischer’s adder with parallel
prefix computation [16] that minimizes the circuit depth,
while increasing the fan out (which is not an issue for us).

Other general-purpose implementations of secret-sharing
schemes and multi-party computation [2, 18] also embed
integrity-protection mechanisms, and sometimes support
faster comparisons. We are investigating how to integrate
and adapt their features to the context of smart metering.

3. SYSTEM MODEL

Protocol participants & goals. Smart metering infras-
tructures involve the installation of next generation energy
meters in user homes, to serve diverse needs. In our pro-
tocols, we assume that each smart meter is installed in a
specific household (or user) and monitors a number of vari-
ables such as volume of energy consumed, or voltage across
the supply line regularly (e.g. 2 times per hour) to generate
fine grained readings. Optionally, we assume that users have
access to some form of modern computing device connected
to the Internet. This user device can be a computer, a smart
phone, a set-top box, a game console, or a user controlled on-
line server or service. Meter readings are periodically (e.g.
once a day) collected and uploaded to a storage service. This
service can be a traditional large scale distributed database
that keeps track of readings and their meta-data.

Queries can be submitted to the storage service, request-
ing the computation of certain statistics on the stored data,
by a number of entities in the energy industry (producers,
suppliers, distributors, or the grid). The storage service is in
charge of initiating and orchestrating all protocols required
to answer a query. It is useful to split queries into two cate-
gories: single-household and multi-household. Single house-
hold queries are executed on data from a single household,
for example to compute its time-of-use bill, or to profile a
single household’s consumption pattern into one of many
categories. A multi-household query, such as the total vol-
ume of energy consumed in an area, or by the customers of
a single supplier, uses data from many households.

Our protocols are concerned with privacy-friendly com-
putations. Thus the storage service will need to enlist the

help of a number of other parties to authorize and compute
queries. We assume the availability of a small number of
authorities that help answer queries. Those authorities are
only interacting with the storage service and, given a query,
release just enough information to allow the result to be com-
puted. We assume that the authorities are connected to the
storage service through a low-latency high-bandwidth net-
work. In addition to the authorities, our protocols option-
ally uses one or multiple randomness services with specific
properties—we discuss these in some depth later.

Security properties, assumptions & threat model. Our
fundamental aim relates to privacy: to answer authorized
queries without leaking any other information about stored
readings. More precisely, we assume that meters are certified
devices that act honestly in accordance to our protocols—
this is an inherent limitation of any technology in this space.

If the meter acts outside the policy, or could be controlled
by an adversary, they could bypass any protection for their
readings. (This important security assumption may not hold
in practice, inasmuch as current architectures allow meters
to be remotely re-configured and reprogrammed, and their
software security is rather poor [19].) We also assume that
the meters are tamper evident through passive or active
triggers, to ensure the correctness of the readings. We do
not suggest obscuring in any way the reporting of tamper
switches—we aim to protect only the privacy of readings
of energy consumption and associated information. Finally,
we assume that meters are capable of storing and secur-
ing long-term keys for signing readings as well as protecting
their privacy.

The storage service is entrusted to reliably store readings,
but should not be in a position to access them in clear. We
consider a storage service that is honest but curious, namely
it follows the protocol but attempts to draw inferences from
its observations. Such a service should not learn anything
besides the result of authorized queries. There are a number
of ways of extending the protocols of this paper to fully
malicious storage services, but we leave this to future work.
Yet, to practically discourage malicious behaviour, we design
the storage service protocols to be auditable: the service
does not hold any secret keys, and thus any transcript of its
interactions can be verified for compliance to the protocol
by anyone. Such a transcript does not violate privacy.

Authorities are entrusted to be honest but curious, i.e., to
follow the protocol and not deviate from it. Some colluding
authorities can, however, pool their shares. As long as all au-
thorities follow the protocol and at least one authority does
not collude privacy is not violated. More specifically, all op-
erations an authority performs are parameterized by secret
keys, and these long term secrets must not be divulged.

The integrity and availability of the protocols also depends
on the authorities executing the protocol faithfully. In this
paper we assume the authorities to be reputable enough to
not deviate from the protocol. We are exploring a number of
avenues to relax this “honest-but-curious” assumption that
permeates the threat model of this work.

Optionally, our protocols will make use of random data
from user devices or randomness services. We assume those
to keep the random data confidential. Still, this data does
not depend on the readings or queries, so it can be generated
and distributed ahead of the shared-secret computation.

77

4. PROTOCOLS
The protocol involves meters Mm, authorities Aa, a stor-

age service S, and a randomness service R. For simplicity,
we assume a single, fixed series of authorities for all readings.

Cryptographic set-up. The set-up ensures that, upon com-
pletion, every meter m shares a secret symmetric key sm,a

with every authority a. Although any means can be used to
establish such secrets for privacy-friendly computations (see
e.g. [1]), we present a technique that minimizes key manage-
ment for the authorities, allowing them to potentially handle
a very large number of meters.

Upon initialization, each meter generates a key pair of a
suitable public-key-encryption scheme. The public key is
then certified, by the manufacturer or through a public-key
infrastructure, as belonging to a meter with fixed, unique
identifier m. Upon initialization, every authority a generates
a master secret key sa, that will be used to derive all other
keys, and a key pair for a suitable signature scheme.

To pair a meter m with authorities, each authority a com-
putes their shared secret sm,a = H1(sa|m), where H1 is a
key derivation function (modelled as a pseudo-random func-
tion or PRF), then it encrypts it under the public key of m
and signs it using the public key of a. The message can be
relayed through any channel; the meter will check the signa-
ture, ensure it corresponds to a valid authority (presumably
through a root certificate from the manufacturer or certifier)
and then decrypt and install sm,a. As a result, each meter
stores one symmetric key for each authority, whereas each
authority only needs to store a single master key sa. (In the
following for simplicity we assume that the keys sm,a are
communicated over a secure channel.)

Producing readings. Meters use the keys shared with au-
thorities to ‘blind’ their readings, in a way that requires
the cooperation of every authority to recover any informa-
tion about them (as in [1]). We assume each reading rm,`

from meter m is associated with a unique, public label `
(the sensor identifier and the time period, for example); the
corresponding blinded reading is computed as:

cm,` = rm,` −
∑

aH2(sm,a|`) mod p (1)

where p is the native machine word size (e.g. 232 for a 32 bit
processor) and H2 is a keyed hash function (also modelled
as a PRF) that returns values in 0 . . . p−1. The meter, upon
request, then transmits series of pairs (`, cm,`) to the storage
service, using whichever authenticated channel is available.

Importantly, the label ` must never be used for blinding
any other reading. A safe implementation may for instance
rely on a hardware counter included in `.

By construction, the integers {cm,`, H2(sm,a|`) for a ∈ ~a}
form shares of an additive secret-sharing scheme: their sum
modulo p yields the secret reading rm,`. Yet, as long as one
share remains secret, the others do not leak any information
about the secret reading. The shared keys have allowed us
to reduce the cost of transporting a share to a single integer
modulo p (while sacrificing perfect secrecy and reducing it
to the security of two PRFs and the master keys).

Preparing random values. The randomness source uses
the same approach to efficiently distribute and store multi-
plication triplets and random bits. Like meters, it follows the

shares
A0 H2(sm,a0 |`) H2(sr,a0 |`x) H2(sr,a0 |`z) H2(sr,a0 |`d) 0
A1 H2(sm,a1 |`) H2(sr,a1 |`x) H2(sr,a1 |`z) H2(sr,a1 |`d) 0
. . .
S cm,` 0 c`,z c`,d v∑

rm,` x xy d v

Table 1: Shares for private readings rm,`, random
values x, y, products z, bits d, and public values v.

setup protocol and shares a symmetric key sr,a with each au-
thority. To share a triplet x, y, z = xy with labels `x, `y, `z, it
sets x =

∑
aH2(sr,a|`x) and y =

∑
aH2(sr,a|`y), and com-

putes the blinded value for z as: c`,z = xy−
∑

aH2(sr,a|`z).
Similarly, to share a random bit d ∈ {0, 1} with label `d, it
computes the blinded value c`,d = d −

∑
aH2(sr,a|`d). As

x and y are random secrets, the storage service does not
require values for them and instead uses 0 as its share.

The whole distribution of random shares is summarized
in Table 1. The last column lets the storage service S add
public values only to its local share. We note that the cost
of transporting a reading, a random bit, or a whole triplet is
merely a single element in p. We are now ready to apply all
the techniques from §2 to compute on these secret shares.

Computations. Upon receiving a query, the storage ser-
vice communicates it to all authorities. A query consists
of instructions on secret shares with specific labels—these
instructions are executed on the stored shares by the stor-
age service, and on the derived shares by each authority.
The instruction set consists merely of linear weighted sums
of shares, revelation of shares, and loading of pre-computed
values. Revelation is done through the storage service, which
gathers all shares revealed at a specific stage, adds them and
broadcasts the result in clear to all authorities. Those few
instructions allow us to execute interesting high level compu-
tations, using previously discussed techniques, in particular:
• Weighted sums of shared secrets and public values.
• Multiplications of shared secrets, at the cost of a shared

triplet and a round of revelation.
• All boolean operations, including OR, AND, NAND,

XOR, at the cost of a single multiplication each.
• Conversions between shares of integers mod p and vec-

tors of shares of their binary representation, which requires
pre-shared bits and triplets.

This set of operations allows us to express any boolean
circuit and therefore support any fixed-depth computation.
The cost of computing on shares is in terms of the number of
rounds of revelation of shares (latency), the number of shares
to be revealed (bandwidth), and the number of pre-shared
values needed to facilitate operations. Careful arithmetic
and circuit optimizations are applied to minimize those.

Main results. We outline the main properties of our pro-
tocol, but refer to prior work for detailed proofs.

Correctness: the protocol returns the same results as those
returned by the source query on the readings.

Privacy: provided at least one authority is securely imple-
mented, the protocol leaks no other information on the
readings. More precisely, consider the following game

1. After set-up, given the private states for some meters
and for all-but-one authorities, the adversary chooses two

78

Sample query mea
nva

r

co
mpare

co
mpare3

way

dem
res

pbill

Round-trips 1 11 12 12
Revealed shares 200 117 236 8,700
Pre-shared triplets 100 58 117 4,300
Pre-shared bits 0 32 64 3,200

Table 2: Performance evaluation

collections of readings that (1) coincide on corrupted meters;
and (2) yield the same query result;

2. Given the trace of the protocol for one of these two
collections, the adversary wins if it guesses which of the two
is used. The advantage of the adversary reduces to those of
H1 and H2 being PRFs.

5. APPLICATIONS & COST
We illustrate the feasibility and practicality of using com-

putations on secret shares on the four sample applications
discussed in §1. To this end we have implemented the key
distribution and secret-sharing-based computation engine in
1,600 lines of Python. Table 2 summarizes the performance
for each of the protocols, detailed next. The number of round
trips of revelations of intermediate shares measures the im-
pact of network latency between authorities and the storage
service (this latency can be shared between many runs of the
same protocol on different readings); the number of revealed
shares indicates the volume of data transferred between au-
thorities and the storage service (4 bytes per share); finally,
the numbers of pre-shared triplets and pre-shared bits gives
the intensity of use of the randomness service.

def meanvar(c, readings):
rsum = c.linear([1] ∗ 100, readings)
rsquares = [c.mult(x, x) for x in readings]
rsumsquares = c.linear([1] ∗ 100, rsquares)
return [rsum, rsumsquares]

The first protocol meanvar computes and reveals all neces-
sary values to extract the mean and the variance or standard
deviation of a set of 100 readings. It consists of a linear sum
of all readings, then 100 squarings of each of the readings,
followed by the sum of all squares. From these the variance
can be publicly computed as Var[X] = E[X2] − (E[X])2.
Since the squarings do not depend on one another, a shal-
low multiplication circuit of depth one minimizes latency.
Hence, only 200 shares need to be exchanged, in a single
800-byte message from each A. The same number of pre-
shared triplets as multiplications are needed, and each only
squares the reading from a single meter.

def compare(c, rA, rB, Thld):
diff = c.linear([1, −1], [rA, rB], −Thld)
bits, _ = c.tobits(diff)
return c.gneg(bits[−16])

The second protocol compare implements a simple theft
prevention mechanism. It accepts readings of the voltage
across meters of two consecutive houses on the same distri-
bution line, and checks whether the voltage drop is above
a threshold. If the drop is too high, it might indicate that
someone is absconding electricity from the line between the
two homes. The comparison is performed by subtracting
the second reading and the threshold from the first one, and
comparing the result with zero. Currently, this is done by

decomposing the difference into bits, and testing the high-
end bit to determine the sign of the number (assuming that
the difference fits within 16 bits). We are aware of more effi-
cient comparison protocols [3]. The resulting protocol takes
11 rounds of communication within which 117 shares are ex-
changed by each authority and the storage service. The bit
decomposition protocol uses 32 pre-shared bits as expected.

def compare3way(c, rA, rB, rC):
diff1 = c.linear([1, −1], [rA, rB])
diff2 = c.linear([1, −1], [rB, rC])
bits1, _ = c.tobits(diff1)
bits2, _ = c.tobits(diff2)
return c.gxor(bits1[−16], bits2[−16])

Another theft prevention protocol compare3way is designed
to detect abnormal sequences of voltages cross consecutive
households. It takes readings from three consecutive homes
on the same line and ensures they are ordered, either in in-
creasing or decreasing order. According to this use case,
described in [8], if the middle household is shorting the me-
ter, its reading will be lower than the two readings on either
side. The protocol compares the difference between the ad-
jacent pairs of households to zero, and requires their sign to
be the same (through an XOR illustrating boolean gates).
The two comparisons are run in parallel, and the XOR gate
requires one round of interaction, resulting in 12 rounds of
communication, and 236 shares being exchanged.

def greaterthan(c, readingA , cutoff):
diff = c.linear([1], [readingA], −cutoff)
bits, _ = c.tobits(diff)
return c.gneg(bits[−16])

def demrespbill(c, readings , cutoff, penalty):
free, cut = penalty ∗ cutoff, []
for r in readings:

gt = greaterthan(c, r, cutoff)
excess = c.linear([penalty], [r], −free)
cut += [c.mult(excess, gt)]

return c.linear([1] ∗ 100, cut)

Finally, demrespbill implements a time-of-use billing mech-
anism to support demand-response. It takes readings from
a single household during 100 overloaded periods for which
a “back-off” signal was sent. Each reading is compared with
a cut-off consumption and any units of over consumption
are billed at a punitive tariff. The sum of all bills over all
periods is returned, to further hide when over-consumption
occurred. This is achieved by building a binary vector in-
dicating whether there is over-consumption in each period,
and multiplying it with the amount to be paid. In case of
no over consumption this yields zero, otherwise the amount
to be billed. The computation is repeated for 100 periods,
and the results summed. All comparisons are run in paral-
lel leading to only 12 rounds of computation. In total 8700
shares are exchanged, and there is a need for 4300 pre-shared
triplets and 3200 pre-shared bits. The pre-shared informa-
tion is used only to blind readings from a single household.

6. SOURCES OF RANDOMNESS
The availability of pre-shared“multiplication triplets”and

random bits makes the multi-party protocols efficient and
straightforward. Yet, the efficient provision of such values is
a key open problem. A corrupt source of randomness that
reveals values to the adversary can seriously harm privacy
(and less so integrity, since their correctness can be checked

79

at some cost). Here we somewhat depart from the ortho-
doxy that uses secret-sharing-based multiplication protocols
and somewhat homomorphic encryption schemes to compute
those values, and consider other available options:

For single household computations, such as the demand-
response billing protocol, any user device (laptop, mobile
phone, game console, or even the meter itself) can provide
ahead of time a large number of random values for use in
subsequent computations on the household data. Thus we
can very cheaply acquire a supply of randomness to cover all
use-cases where in past proposals computation was offloaded
to a user device [21]. This option is also applicable to the
computation of variance, since the squaring of each meter
reading involves only data from a single household.

A second option is to rely on one or many secure hardware
solutions to provide random data. This can be done ahead
of time and efficiently. All opportunities, but also worries
associated with hardware secure modules would apply.

Finally, we are exploring a collaborative approach to gen-
erating random data, whereas a number of users (or maybe
their meters) collaborate to create a pool of randomness to
be used across diverse applications. The probability of at-
tack is minimized by making it unlikely that a single ad-
versary can learn a significant or targeted amount of infor-
mation. We are also working on ways of combining random
sources to create a single high-quality random source.

7. CONCLUSIONS
We have demonstrated that complex privacy-friendly com-

putations on smart meter readings are practical, resolving a
number of open challenges in billing, statistics and fraud de-
tection. Furthermore, the cost on the meters and the storage
required are minimal, and similar to the cost of producing
and storing plain unprotected readings. Evaluating linear
functions is simple. Thanks to offline sources of correlated
randomness, evaluating more complex functions is compa-
rable in terms of computation, but incurs communications
bandwidth and latency overheads proportional to the num-
ber and depth of multiplications in the circuit, respectively.

We argued that, for smart metering, user devices can pro-
duce cheaply random values needed to fuel some protocols
that compute on a single household. This pattern of private
outsourced computation is likely to apply to other settings.
Yet, how to acquire secure random values efficiently in gen-
eral remains an open problem. Similarly, extending the pro-
tocols to the setting where the storage service or authorities
are actively dishonest is left for future work. For both, recent
progress in implementation of general-purpose multi-party
computation offers valuable insights and reasons for opti-
mism. Given sufficient business interest, there is evidence of
a Moore’s law for privacy-friendly secure computations.

References
[1] G. Barthe, G. Danezis, B. Grégoire, C. Kunz, and

S. Zanella-Béguelin. Verified computational differential
privacy with applications to smart metering. In 26th IEEE
Computer Security Foundations Symposium, CSF 2013.
IEEE, 2013.

[2] D. Bogdanov, S. Laur, and J. Willemson. Sharemind: A
framework for fast privacy-preserving computations. In
Computer Security – ESORICS 2008, volume 5283 of
LNCS, pages 192–206. Springer, 2008.

[3] O. Catrina and S. De Hoogh. Improved primitives for
secure multiparty integer computation. In Security and

Cryptography for Networks, SCN 2010, volume 6280 of
LNCS, pages 182–199. Springer, 2010.

[4] I. Damg̊ard, M. Fitzi, E. Kiltz, J. B. Nielsen, and T. Toft.
Unconditionally secure constant-rounds multi-party
computation for equality, comparison, bits and
exponentiation. In 3rd Theory of Cryptography Conference,
TCC 2006, volume 3876 of LNCS, pages 285–304. 2006.

[5] I. Damg̊ard, M. Keller, E. Larraia, V. Pastro, P. Scholl, and
N. P. Smart. Practical covertly secure MPC for dishonest
majority — or: Breaking the SPDZ limits. IACR
Cryptology ePrint Archive, 2012:642, 2012.

[6] I. Damg̊ard, V. Pastro, N. P. Smart, and S. Zakarias.
Multiparty computation from somewhat homomorphic
encryption. In Advances in Cryptology – CRYPTO 2012,
volume 7417 of LNCS, pages 643–662. Springer, 2012.

[7] G. Danezis and B. Livshits. Towards ensuring client-side
computational integrity. In 3rd ACM Cloud Computing
Security Workshop, pages 125–130. ACM, 2011.

[8] B. Defend and K. Kursawe. Implementation of
privacy-friendly aggregation for the smart grid. In
HotPETS, 2013.

[9] Future of privacy summary of California public utilities
commission proposed decision on smart grid privacy and
security. Online
http://www.futureofprivacy.org/issues/smart-grid/,
May 9, 2011.

[10] W. Heck. Smart energy meter will not be compulsory. NRC
Handelsblad, April 2009.

[11] M. Jawurek and F. Kerschbaum. Fault-tolerant
privacy-preserving statistics. In 12th Intl. Symp. on
Privacy Enhancing Technologies, PETS 2012, volume 7384
of LNCS, pages 221–238. Springer, 2012.

[12] M. Jawurek, M. Johns, and F. Kerschbaum. Plug-in
privacy for smart metering billing. In 11th Intl. Symp. on
Privacy Enhancing Technologies, PETS 2011, volume 6794
of LNCS, pages 192–210. Springer, 2011.

[13] M. Jawurek, F. Kerschbaum, and G. Danezis. Privacy
technologies for smart grids - a survey of options. Online
http://research.microsoft.com/apps/pubs/?id=178055,
2012.

[14] R. Knyrim and G. Trieb. Smart metering under EU data
protection law. Intl. Data Privacy Law, 1(2):121–128, 2011.

[15] K. Kursawe, G. Danezis, and M. Kohlweiss.
Privacy-friendly aggregation for the smart-grid. In 11th
Intl. Symp. on Privacy Enhancing Technologies, PETS
2011, volume 6794 of LNCS, pages 175–191. Springer, 2011.

[16] R. E. Ladner and M. J. Fischer. Parallel prefix
computation. J. ACM, 27(4):831–838, 1980.

[17] Q. Li and G. Cao. Efficient privacy-preserving stream
aggregation in mobile sensing with low aggregation error.
In 13th Intl. Symp. on Privacy Enhancing Technologies,
PETS 2013, volume 7981 of LNCS, pages 60–81. 2013.

[18] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella.
Fairplay-secure two-party computation system. In USENIX
Security Symposium, pages 287–302, 2004.

[19] P. McDaniel and S. McLaughlin. Security and privacy
challenges in the smart grid. Security & Privacy, IEEE, 7
(3):75–77, 2009.

[20] B. Parno, C. Gentry, J. Howell, and M. Raykova.
Pinocchio: Nearly practical verifiable computation. In 2013
IEEE Symp. on Security and Privacy, pages 238–252.
IEEE, 2013.

[21] A. Rial and G. Danezis. Privacy-preserving smart
metering. In 10th annual ACM workshop on Privacy in the
electronic society, WPES 2011, pages 49–60. ACM, 2011.

[22] E. Shi, T.-H. H. Chan, E. G. Rieffel, R. Chow, and
D. Song. Privacy-preserving aggregation of time-series
data. In 2011 Network and Distributed System Security
Symposium, NDSS 2011. The Internet Society, 2011.

[23] N. P. Smart and F. Vercauteren. Fully homomorphic
encryption with relatively small key and ciphertext sizes. In
Public Key Cryptography – PKC 2010, volume 6056 of
LNCS, pages 420–443. Springer, 2010.

80

