
A Further Analysis on the Use of Genetic Algorithm to
Configure Support Vector Machines

for Inter-Release Fault Prediction
F. Sarro

University of Salerno
Via Ponte Don Melillo,

84084 Fisciano (SA), Italy
{fsarro@unisa.it}

S. Di Martino
University of Naples “Federico II”

Via Cintia
80127 Naples, Italy

sergio.dimartino@unina.it

F. Ferrucci, C. Gravino
University of Salerno

Via Ponte Don Melillo,
84084 Fisciano (SA), Italy

{fferrucci | gravino@unisa.it}

ABSTRACT
Some studies have reported promising results on the use of
Support Vector Machines (SVMs) for predicting fault-prone
software components. Nevertheless, the performance of the
method heavily depends on the setting of some parameters. To
address this issue, we investigated the use of a Genetic Algorithm
(GA) to search for a suitable configuration of SVMs to be used
for inter-release fault prediction. In particular, we report on an
assessment of the method on five software systems. As
benchmarks we exploited SVMs with random and Grid-search
configuration strategies and several other machine learning
techniques. The results show that the combined use of GA and
SVMs is effective for inter-release fault prediction.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Management, Experimentation.

Keywords
Fault prediction, Genetic Algorithm, Support Vector Machines

1. INTRODUCTION
In the last decades, considerable efforts have been aimed at
developing methods able to predict the components of a software
system that more likely will contain faults [1]. The research is
motivated by the need to improve the efficiency of software
testing, that is one of the most expensive phases of the software
development effort. Indeed, knowing in advance the potentially
defective components, project managers can better decide how
allocate resources to test the system concentrating their efforts on
fault-prone components. This can allow them to improve the
dependability, the quality, and the cost/effectiveness of the
software product. Two main research directions can be outlined in
this context. One aims at understanding what are the most
explicative metrics for the phenomenon at the hand. Typical
employed metrics are the Lines of Code and the Chidamber and

Kemerer metrics for Object-Oriented systems [6]. A second
research direction aims at defining techniques able to provide a
more accurate identification of the faulty components. To this
end, several machine learning approaches have been investigated
[8][10][20]. Usually they construct prediction models able to
relate software metrics with the presence of faults in a component.
In this context, recent studies have reported a good performance
of Support Vector Machines (SVMs) (e.g., [8][10]). SVMs are
supervised learning methods that can be exploited for binary
classification tasks; i.e., given a set of data, each marked as
belonging to one of two groups, a model is constructed to predict
whether a new item falls into one group or the other.
Nevertheless, the use of SVMs is not straightforward since some
parameters must be carefully set to get more accurate
classifications. Moreover, such setting depends on the
characteristics of the dataset, and thus no rule of thumb can be
defined but a search strategy has to be adopted. To address the
problem, several approaches have been proposed in the different
applications of SVMs. As for fault prediction a “Grid-search” [5]
approach, with a very coarse grain, has been usually applied. A
more sophisticated approach based on a meta-heuristic search
technique was proposed in [7] where a preliminary assessment
was also provided. In particular, a Genetic Algorithm (GA) was
defined to search for suitable SVM parameter settings. Promising
results - especially in terms of Recall and F-measure - were
obtained highlighting that GA can be effective to configure
SVMs. Nevertheless, the assessment was carried out employing
data related to only one software project. Motivated by the
observation that several studies are necessary to get better
confidence on the generalizability of the results, in this paper we
report on a further assessment of the performance of the method.
To this end, we employed data related to 5 software projects from
the PROMISE repository [18], containing more than one release.
This let us analyze the inter-release performance of the proposed
method, exploiting data from the former releases of a software
project to build the prediction model to be used for predicting
faults for the last release [17]. This kind of analysis reflects a real
software development context, where a project manager exploits
knowledge from previous releases of a system for a more
conscious management of a subsequent version. As benchmark
several techniques were taken into account: SVMs configured
with random settings, that is a natural benchmark when using
meta-heuristic search techniques; SVMs configured with Grid-
search; and other classification methods widely used in previous
work for fault prediction (e.g., [8]), namely Logistic Regression,
Decision Tree Algorithm C4.5, Naïve Bayes, Multi-Layer
Perceptrons, K-Nearest Neighbor, and Random Forest. As
measures to compare performance, Accuracy, Precision, Recall,
and F-Measure were employed.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ACM SAC’12, March 26-30, 2012, Riva del Garda, Italy.
Copyright 2012 ACM 978-1-4503-0857-1/12/03…$10.00.

1215

The remainder of the paper is structured as follows: in Section 2
we present SVMs and the GA used to configure them. Section 3
describes the planning of the empirical study, while in Section 4
we report and discuss the achieved results. Section 5 analyzes the
threats to the validity of the empirical study. A review of the
related work is presented in Section 6. Final remarks and future
work conclude the paper.

2. SUPPORT VECTOR MACHINES AND
GENETIC ALGORITHM
We provide a brief description of Support Vector Machines and
the proposed Genetic Algorithm to configure them.

2.1 Support Vector Machines
Support Vector Machines (SVMs) are a maximum-margin linear
classification technique [19], since they find the optimal
hyperplane between two classes defined by a number of support
vectors [19]. This technique turns out to be very flexible, since it
has good generalization ability, thanks to the introduction of a
penalty factor, named C, which allows us to cope with the effects
of outliers, permitting a certain amount of misclassification errors.
Moreover, the use of a kernel function to map the data points into
a higher-dimensional feature space allows SVMs to handle also
non-linear problems [19].

This flexibility of SVMs needs to be suitably managed. Indeed,
the selection of appropriate values for C is crucial to obtain good
classification performance and avoid over- or under-fitting
phenomena. As for the kernel function, we employed the most
used and advised in the literature, namely the Radial Basis
Functions (RBF) kernel, previously also used in the fault
prediction context [7][11]. Besides C, we had to accurately set
also the parameter  that represents the radius of the RBF kernel
and so can impact on the SVMs accuracy.

To address the problem, several approaches have been proposed
in the different applications of SVMs. As an example, the use of
the meta-heuristics Tabu Search has been investigated in [4] to
configure Support Vector Regression, i.e., the regression version
of SVMs, for software development effort estimation. However,
in the context of fault prediction the most common approach used
to set SVMs parameters is based on a Grid-search with a fixed
exponentially growing sequence of values, as the one provided by
LibSVM [5], one of the most employed, freely available library
for SVMs. However, this approach has a twofold problem: 1) it
has a very coarse grain, and thus it is likely to miss optimal
values; 2) always the same couples of values for C and γ are
explored, without taking into account the dataset at the hand. A
more sophisticated approach based on the use of GA to configure
SVMs for fault prediction was proposed in [7]. In the next
subsection we summarize this approach since we empirically
analyze it in the present paper.

2.2 A Genetic Algorithm to Configure SVMs
Genetic Algorithm (GA) [9] is a meta-heuristic search technique
belonging to the class of evolutionary algorithms which, inspired
by natural evolution, create consecutive populations of
individuals, considered as feasible solutions for a given problem,
to search for an optimal solution for the problem under
investigation guided by a fitness function.

The idea of exploiting GA to configure SVMs for fault prediction
is based on the observation that such problem can be formulated
as an optimisation problem: among the possible configurations,

we have to identify the one which leads to the optimal SVMs
performance.

Despite of a number of variations, the elementary process of a GA
is the follows: (i) a random initial population is generated; (ii)
new individuals (i.e., offspring) are created by applying genetic
operators (i.e., crossover and mutation) and a selection based on
individual’s fitness value is applied to determine who will survive
among the offspring and their parents; (iii) the second step is
repeated until some stopping criteria hold. The individual that
gives the best solution in the final population is taken in order to
define the best approximation to the optimum for the problem
under investigation. The analysis of this process suggests that the
following design choices have to be made for tailoring a GA to a
given optimization problem: 1. defining the chromosome for
representing a solution (i.e., solution encoding) and the number of
initial solutions (i.e., population size); 2. choosing the criterion
(i.e., fitness function) to measure the goodness of a chromosome;
3. defining the combination of genetic operators to explore the
search space; 4. defining the stopping criteria.

In the following we provide the details regarding the choices
made for points 1-4 to design a GA for configuring SVMs.

A solution to our problem is an SVM configuration consisting of
two parameters (C and ) that can be encoded as a chromosome
composed by two genes whose values vary in the ranges [0.01,
32000] and [1.0E-6, 8] for the genes representing C and 
respectively. Let us note that these ranges are the same adopted in
the Grid-search provided by LibSVM [5] to allow for comparison.
An initial population of n=100 chromosomes is created by
assigning random values to each gene. To compute the fitness of a
chromosome representing an SVM configuration, we execute
SVM with such a configuration thus obtaining the fault
predictions. Such predictions are then evaluated using F-measure
as performance criterion. F-measure is widely used in the fault
prediction context and will be described in Section 3.3. To create
the new offspring, genetic operators (i.e., crossover and mutation)
are applied within a certain probability to a current population. In
particular, a single point crossover is employed to combine two
individuals (i.e., parents) forming new individuals by randomly
selecting a point of cut and swapping all genes beyond that point
in either parent. As for the mutation operator, it modifies with
probability 1/2 each gene of a chromosome, randomly changing
its value. Crossover and mutation rates are fixed to 0.5 and 0.1,
respectively. To determine which individuals will take part of the
next generation a tournament selector is employed, where only
the best n solutions take part to the next generation. The
evolutionary process is terminated according to two stopping
criteria, i.e., after 300 generations or if the fitness value of the
best solution does not change after 30 generations. The population
size, stopping criteria, crossover and mutation rates were
empirically determined as it is usual when no guidelines are
available. In particular, we observed that increasing them did not
allow us to improve the estimation accuracy while wasting
computation time. Moreover, to cope with the non-deterministic
nature of GA, 10 executions were done and it was retained as
final solution the one providing fitness value closest to the mean
of the fitness values obtained in the 10 executions.

3. CASE STUDY PLANNING
We investigated the combination of GA and SVM (in the
following GA+SVM) for inter-release fault prediction by

1216

exploiting five software projects, aiming at addressing the
following research questions:

(RQ1): Is the proposed GA able to effectively configure SVMs
parameters for inter-release fault prediction?

(RQ2): Is GA+SVM an effective technique for inter-release fault
prediction?

To address RQ1 we first compare the performance of GA+SVM
with respect to SVM configured with a simpler approach
consisting of the generation of random configurations (SVM-
Rand, in the following), which is a usual benchmark when using
meta-heuristic search techniques. To be fair, the same number of
solutions exploited by GA+SVM (i.e., 300*100 SVM
configurations) were generated in a totally random fashion within
the same ranges used for GA (see Section 2.2) and among them
the best one was selected according to the same criteria employed
for GA+SVM but without guiding the search in any way.
Moreover, we also compared the performance of GA+SVM with
the ones obtained using the Grid-search algorithm provided by
LibSVM [5] (SVM-Grid in the following), which is the strategy
usually employed in defect prediction context to configure SVMs.

To address RQ2 we compared the performance of GA+SVM with
respect to the performances of six techniques widely used in the
literature and available in the Weka tool [12], namely Logistic
Regression (LR), Decision Tree Algorithm C4.5 (C4.5), Naïve
Bayes (NB), Multi-Layer Perceptrons (MLP), K-Nearest
Neighbor (KNN), and Random Forest (RF). These are
representative of different classes of techniques for fault
prediction, indeed LR and NB are two statistical classifiers, KNN
is an instance-based learning algorithm, MLP is a Neural Network
method, C4.5 is a decision tree approach and RF is an ensemble
method. For sake of space we refer the reader to [3][15] for
details on these techniques. In the following, we summarize the
design of our empirical study by presenting the employed
datasets, the validation method, and the evaluation criteria.

3.1 Datasets
We exploited data from the PROMISE repository [18], which
contains several datasets for fault prediction and we chose among
them the software projects with more than two releases, in order
to perform the inter-release analysis. Thus, we retained 5 datasets
for a total of 18 releases: Log4j (vv. 1.0, 1.1, 1.2), Lucene (vv.
2.0, 2.2, 2.4), POI (vv.1.5, 2.0, 2.5, 3.0), Xalan (vv. 2.4, 2.5, 2.6,
2.7), Xerces (vv. init, 1.2,1.3,1.4). Each release contained a set of
components (i.e., Java classes) described in terms of Chidamber
and Kemerer (CK) metrics [6], Number of Public Methods
(NPM), and Lines of Code (LOC). Details about those software
projects and how the data was collected can be found in [13].

3.2 Validation Method
To assess the effectiveness of the considered techniques for inter-
release fault prediction, we employed a hold-out validation. In
particular, given a software project having n releases, we used as
training set the data collected in the first n-1 releases of the
project and as test set the data collected for the last release. This
kind of validation allowed us to simulate the situation that
typically arises in real software development contexts, where a
project manager can learn some phenomena and/or patterns from
previous releases and exploit this knowledge for a more conscious
management of the development of a subsequent version.
Moreover, if he/she uses a fault prediction model, the typical
setting is that data from the former releases are exploited to build

the model to predict faults for a new release [17]. The fault data
for the employed training and test sets is reported in Table 1
together with the percentage of faulty and non faulty components.
We can observe that for Lucene and POI projects, the training sets
and the corresponding test sets have quite similar percentages of
faulty and no faulty components. On the contrary, the number of
non faulty components contained in Log4j, Xalan, and Xerces
training sets is much higher than the number of the faulty ones
and viceversa the number of faulty components contained in the
corresponding test sets is much higher than the number of the non
faulty ones. In particular, for Log4j and Xalan test sets the
percentage of faulty classes is more than 90%.

Table 1. Existence of faults on training and test sets

Dataset
Training Set Test Set

Non faulty
classes

Faulty
classes

Non faulty
classes

Faulty
classes

Log4j 173 (71%) 71 (29%) 16 (8%) 189 (92%)
Lucene 207 (47%) 235 (53%) 137 (40%) 203 (60%)

POI 510 (54%) 426 (46%) 161 (36%) 281 (64%)
Xalan 1503 (62%) 908 (38%) 11 (1%) 898 (99%)
Xerces 838 (79%) 217 (21%) 151 (27%) 437 (74%)

3.3 Evaluation Criteria
To evaluate the predictions we employed four widely used
performance measures (i.e., Accuracy, Precision, Recall, and F-
measure [2]) which leverage on the concepts reported in the
confusion matrix of Table 2 and are defined as follows.

Accuracy is the ratio between the number of components correctly
predicted (i.e., classified as TP and TN) and the total number of
components (i.e., the sum of TP, TN, FP, FN).

Precision is the ratio between the number of components
classified as TP and the number of those classified as TP or FP.

Recall is the ratio between the number of components classified
as TP and the number of those classified as TP or FN.

Table 2. The confusion matrix

 Predicted
 Faulty Non Faulty

Actual
Faulty True Positive (TP) False Negative (FN)

Non Faulty False Positive (FP) True Negative (TN)
These definitions suggest that Precision concerns with the
correctness of the responses provided by a method, while Recall
allows us to measure the completeness of the responses. We can
easily understand that in the context of fault prediction the
consequences of low Recall are far more important than the ones
of low Precision [17], since it is essential to identify all the
potentially faulty modules. Thus, the use of a technique able to
maximize Recall is fundamental in this context [17]. To avoid
missing potential faulty components, the prediction method has to
detect all the potential faulty components, even at the cost of a
lower Precision. In this scenario, a subsequent manual check is
responsible of deleting false positives. However, a too low
Precision requires an excessive post-processing, making the
technique useless. A measure that provides an indication of a
balance between correctness and completeness is the harmonic
mean of Precision and Recall (or F-measure), defined as follow:

callecision

callecision
measureF

RePr

Re*Pr
*2




.
Let us recall that we employed F-measure as fitness function for
the proposed GA aiming at taking into accounts both correctness
and completeness.

1217

4. RESULTS AND DISCUSSION
In this section, we present the results of the empirical study.

4.1 Research Question RQ1
To assess whether the proposed GA is able to effectively
configure SVMs parameters for fault prediction (i.e., RQ1) we
compared the predictions obtained using GA+SVM with those
obtained by using random SVM configurations (i.e., SVM-Rand)
and by applying SVMs configured with Grid-search of LibSVM
[5] (i.e., SVM-Grid). Table 3 reports on the results achieved by
these techniques in terms of the performance measures Accuracy,
Precision, Recall, and F-measure. We can observe that GA+SVM
obtained better results than SVM-Rand on all the datasets. In
particular, using GA+SVM we obtained high relative
improvements1 with respect to SMV-Rand in terms of the
Accuracy, Recall, and F-measure values averaged on all the
datasets (i.e., 35%, 80%, and 48%, respectively), paying back
only 4 percentage points with respect to the Precision obtained by
SVM-Rand.

Table 3. Results for RQ1

Dataset Technique
Results

Accuracy Precision Recall F-measure

 GA+SVM 0.35 0.94 0.31 0.47

Log4j SVM-Rand 0.18 0.86 0.12 0.21

 SVM-Grid 0.31 0.94 0.26 0.41

 GA+SVM 0.61 0.62 0.90 0.73

Lucene SVM-Rand 0.61 0.68 0.65 0.66

 SVM-Grid 0.67 0.74 0.68 0.71

 GA+SVM 0.67 0.69 0.86 0.77

POI SVM-Rand 0.62 0.76 0.59 0.66

 SVM-Grid 0.74 0.92 0.63 0.75

 GA+SVM 0.43 1.00 0.43 0.60

Xalan SVM-Rand 0.35 1.00 0.34 0.50

 SVM-Grid - - - -

 GA+SVM 0.47 0.94 0.30 0.46

Xerces SVM-Rand 0.32 0.87 0.11 0.19

 SVM-Grid - - - -

Concerning the comparison with SVM-Grid, first of all we
observe that for dataset Log4j, GA+SVM provided better
predictions than SVM-Grid in terms of Accuracy, Recall, and F-
measures (with an improvement of 13%, 19%, and 14%,
respectively) and same Precision. As for Lucene and POI datasets,
GA+SVM provided better performance than SVM-Grid in terms
of Recall and F-measure, while SVM-Grid provided better
Accuracy and Precision. Indeed, on these datasets the relative
improvement of GA+SVM with respect to the use of SVM-Grid
was high in terms of Recall (i.e., 33% and 36% for Lucene and
POI, respectively) and good in terms of F-measure (i.e., 14% and
3%, for Lucene and POI, respectively). On the other hand, the
Accuracy slightly decreased by 9 and 10 percentage points for
Lucene and POI, respectively, while a higher decreasing was
observed for Precision, i.e., 17% and 25%, for Lucene and POI,

1 To compute the relative improvement of a technique A with respect to a

technique B for a measure M we compare the values achieved with A
and B (i.e., MA and MB, respectively) as follows: ((MA - MB) / MB)*100.

respectively. However, the obtained Recall improvement of
GA+SVM with respect to SVM-Grid is higher than the relative
improvement of Precision and Accuracy of SVM-Grid with
respect to GA+SVM. Finally, we observe that on the Xalan and
Xerces projects SVM-Grid classified all the observations in the
test set as non faulty, thus failing to provide its predictions.
Obviously this is due to the fact that the Grid-search was not able
in these cases to identify suitable SVR parameters. On the
contrary, GA+SVM did never exhibit a similar behavior, thus
performing better than SVM-Grid on those datasets.

The above analysis suggests that the use of GA to configure
SVMs allowed us to obtain better results with respect to the ones
obtained using SVM-Rand and SVM-Grid, especially in terms of
Recall and F-Measure. This is particularly interesting since the
consequences of low Recall are far more important than the ones
of low Precision in the context of fault prediction [17]. Thus, we
can positively answer research question RQ1 and confirm the
result achieved in [7], i.e., GA is able to effectively set SVM
configuration parameters for fault prediction.

4.2 Research Question RQ2
Table 4 reports on the performance measures related to the
considered techniques, namely LR, C4.5, NB, MLP, KNN, and
RF, taken into account as benchmarks to address RQ2. For sake
of readability we report the results for GA+SVM as well.
Moreover, we provide also the coefficient of variation2 (CV) for
each performance measure to have an indication about the
dispersion of the distribution of each measure over all the
employed techniques. Let us observe that for all datasets, the
highest values of CV are related to Recall and F-measure thus
highlighting that the performance of the considered techniques is
more different in terms of these measures. This difference is
especially evident for some datasets (i.e., POI and Xerces). Let us
observe also that the smallest CV values are in 4 out 5 cases
related to Precision. Moreover, these values are very small thus
showing that the performances of the considered techniques are
generally quite similar in terms of Precision. In particular, in three
cases (i.e., Log4j, Xalan, and Xerces datasets) several techniques
provided optimal Precision values (1 or close to 1). This is due to
the fact that the percentage of faulty components contained in
Log4j, Xalan, and Xerces test sets (i.e., 92%, 99%, and 74%,
respectively) is higher than the percentage of non faulty ones (i.e.,
8%, 1%, and 26%, respectively), thus limiting the number of
possible False Positives. As for Accuracy, quite small CV values
were obtained for Log4j and Lucene datasets, while higher values
were got for the other datasets indicating for them a superior
dispersion. Taking into account these observations, in the
following we carry out the comparison among GA+SVM and the
other techniques for each dataset focusing our attention on the
measures showing higher dispersion. Concerning Log4j dataset
we observe that the performance of GA+SVM is comparable with
the ones of the other techniques with respect to all measures. As
for Lucene dataset, among the benchmark techniques the best
performances were obtained by LR, KNN, and RF. With respect
to these techniques GA+SVM got a high improvement in terms of
Recall (50%, 38%, and 186% over LR, KNN, and RF,
respectively) and similar values in terms of the other measures.

2 The coefficient of variation is defined as the ratio of the standard

deviation to the mean of a distribution and provides a normalized
measure of the dispersion of the distribution.

1218

Also on POI dataset, GA+SVM got the best Recall with a relative
improvement of 17% over the best benchmark technique (i.e.,
C4.5).

Table 4. Results for RQ2

Dataset Technique
Results

Accuracy Precision Recall F-measure

 GA+SVM 0.35 0.94 0.31 0.47

Log4j LR 0.31 0.98 0.26 0.41

 C4.5 0.35 0.97 0.30 0.46

 NB 0.32 0.98 0.27 0.42

 MLP 0.31 0.98 0.25 0.40

 KNN 0.34 0.95 0.30 0.46

 RF 0.35 0.95 0.31 0.46

 CV 0.06 0.02 0.09 0.07

 GA+SVM 0.61 0.62 0.90 0.73

 LR 0.63 0.73 0.60 0.66

Lucene C4.5 0.62 0.74 0.55 0.63

 NB 0.56 0.87 0.32 0.46

 MLP 0.57 0.80 0.38 0.52

 KNN 0.62 0.67 0.66 0.67

 RF 0.60 0.67 0.65 0.66

 CV 0.04 0.12 0.33 0.15

 GA+SVM 0.67 0.69 0.86 0.77

POI LR 0.55 0.73 0.47 0.57

 C4.5 0.67 0.74 0.74 0.74

 NB 0.45 0.85 0.16 0.28

 MLP 0.39 0.59 0.12 0.20

 KNN 0.64 0.74 0.67 0.70

 RF 0.62 0.75 0.60 0.67

 CV 0.20 0.11 0.55 0.41

 GA+SVM 0.43 1.00 0.43 0.60

 LR 0.19 1.00 0.18 0.31

 C4.5 0.30 1.00 0.29 0.45

Xalan NB 0.17 1.00 0.16 0.27

 MLP 0.28 1.00 0.27 0.42

 KNN 0.42 1.00 0.41 0.58

 RF 0.42 1.00 0.42 0.59

 CV 0.35 0.00 0.37 0.30

 GA+SVM 0.47 0.94 0.30 0.46

 LR 0.28 0.92 0.03 0.05

 C4.5 0.31 0.90 0.08 0.15

Xerces NB 0.32 0.88 0.10 0.18

 MLP 0.27 1.00 0.02 0.04

 KNN 0.36 0.90 0.15 0.26

 RF 0.35 0.88 0.15 0.27

 CV 0.20 0.05 0.80 0.72

Concerning Xalan dataset, GA+SVM provided comparable results
with respect to the best benchmark techniques (i.e., KNN and
RF), while on Xerces dataset, GA+SVM obtained better
performance with respect to the best benchmarks (i.e., KNN and
RF) providing a high improvement in terms of Recall and F-

measure (up to 104% and 80%, respectively). Finally, we can
observe that, in average over all datasets, GA+SVM allowed us to
obtain high relative improvements in terms of Accuracy, Recall,
and F-measures (i.e., 31%, 180%, 113%, respectively) with
respect to the mean of the results provided by the other
techniques, paying back only 4 percentage points in terms of
Precision. Nevertheless, some differences can be observed over
the datasets. Indeed the performance of GA+SVM is better for
Lucene and POI datasets and not so good for the others where we
observe low Accuracy and Recall. The main reason for that could
be related to the opposite distribution of percentage of faulty and
non faulty components between the training and test sets for
Log4j, Xalan, and Xerces datasets. Indeed, the high percentages
of non faulty components in the training sets could lead the model
to predict more components as non faulty. This, together with the
fact that in the corresponding test sets the percentages of non
faulty components are very low, increases the probability to have
False Negatives, thus affecting Recall and Accuracy. On the other
hand, it is worth noting that for Xerces dataset some techniques
got a Recall near 0, making the performance of GA+SVM (i.e.,
0.30) especially remarkable.

The above analysis suggests that GA+SVM behaves consistently
well over the considered datasets performing similarly or better
than the other techniques and often providing a great
improvement in terms of Recall and F-measure. Thus, we can
positively answer research question RQ2, i.e., GA+SVM is an
effective technique for fault prediction.

5. VALIDITY EVALUATION
The validity of our empirical studies can be biased by different
factors. First of all, threats to construct validity can be due to the
way the defect and the CK metrics were collected. We tried to
mitigate such a threat employing publicly available datasets from
the PROMISE repository [18] that have also been used in
previous case studies on fault prediction. Threats to internal
validity can be due to the bias introduced by the intrinsic
randomness of GA. We mitigate such a threat by executing GA
ten times and using the average results as detailed in Section 2.2.
As for the external validity, it can be affected by the fact that all
the employed projects were open-source. Indeed, there could be
some differences between open-source and industrial
development (e.g., some industrial settings enforce standards of
code quality). However, this threat is mitigated by the fact that the
employed projects are related to the Apache community, thus,
while being open-source, they have a strong industrial
background. A second threat concerns the language. Since all
considered systems are written in Java, the obtained results cannot
be generalized to non-Java software projects. Moreover, each
project is related to a different type of software, was developed by
an independent development team, and differs from others for
size, percentage of faulty and non faulty components, and
magnitude of CK metrics. Thus, we are confident that our results
can promptly apply to software systems having similar
characteristics, however further studies are desiderable to
corroborate the obtained results.

6. RELATED WORK
Many studies have addressed the fault prediction issue using a
variety of different methods. Arisholm et al. [1] provides an
interesting literature review. For sake of space, we limit our
description to the research that employed Support Vector
Machines (SVMs). Apart from [6] we do not know other studies

1219

that have addressed the problem of configuring SVMs parameters
for fault prediction; usually the Grid-search feature included in
LibSVM has been employed (e.g., [11]). We recall that this
feature represented the baseline for our experimental study. As for
SVMs they have been used in many works together with other
classification techniques, obtaining different results. In [8] SVMs
were compared against eight modeling techniques in terms of the
performance measures Accuracy, Recall, Precision, and F-
measure, using four datasets from the NASA Metrics Data
Program Repository (MDPR) [16]. The results revealed that none
of the employed techniques was significantly better than the
others. On the other hand, Gondra [10] reported that, on the JM1
dataset in the NASA MDPR [16], SVMs significantly
outperformed an Artificial Neural Network, thus suggesting that
SVMs could be a promising technique for predicting fault-
proneness software components. Gray et al. [11] also carried out
an empirical study employing SVMs on eleven NASA datasets
[16] to analyze the performance of this technique when only static
code metrics were used. The obtained results, evaluated only in
terms of Accuracy, showed that SVMs yielded at an average
Accuracy of 70%. It is worth noting that the above works
employed data from the NASA MDPR [16]. This is a useful
database for fault prediction empirical analyses, but all the
contained projects refer to only one release, thus making
impossible for us to employ them in our inter-release analysis.

7. CONCLUSIONS
We have investigated the use of a Genetic Algorithm (GA) to
configure Support Vector Machines (SVMs) for inter-release fault
prediction. A first assessment of the approach was performed in
[7] by employing information from two releases of the software
jEdit included in the PROMISE repository. The results were
interesting, since using GA to configure SVMs improved the
performances of SVMs with respect to the use of SVM-Grid and
other six techniques, namely LR, C4.5, NB, MLP, KNN, and RF,
especially in terms of Recall. In this paper, we have further
investigated the combination of GA and SVMs by considering
other 5 datasets from the PROMISE repository, namely Log4j,
Lucene, POI, Xalan, and Xerces. The performed empirical
analysis has confirmed that: (i) GA is able to effectively set
SVMs parameters in order to improve fault predictions; (ii)
GA+SVM is an effective technique for inter-release fault
prediction. Indeed the approach behaved consistently well over
the considered datasets performing similarly or better than the
other techniques and often providing a great improvement in
terms of Recall and F-measure. Nevertheless, it is worth noting
that the time performance of GA+SVM is slightly lower than the
other benchmarks (although similar to SMV-Grid). However, we
realized a tool that automatically extracts the necessary data from
software releases and allows project managers to exploit
GA+SVM and evaluate the obtained predictions in terms of
Accuracy, Precision, Recall, and F-measures. Thus, time
performance costs are negligible with respect to the prediction
improvements provided by GA+SVM. As future work we will
assess the effectiveness of the proposed technique also for cross-
project fault prediction, i.e., transferring prediction models from
one software project to another [20].

8. REFERENCES
[1] Arisholm, E., Briand, L., Johannessen, B.: A systematic and

comprehensive investigation of methods to build and

evaluate fault prediction models. Journal of Systems and
Software 83, (2010), 2–17.

[2] Witten, I., Frank, E.: Data Mining: Practical Machine
Learning Tools and Techniques. Morgan Kaufmann, 2nd
Ed., San Francisco (2005).

[3] Breiman, L.: Random Forests. Machine Learning 45 (1),
(2001), 5–32.

[4] Corazza, A., Di Martino, S., Ferrucci, F., Gravino, C., Sarro,
F., Mendes, E.: How Effective is Tabu Search to Configure
Support Vector Regression for Effort Estimation?. In
PROMISE Procs, ACM NY, (2010), 4.

[5] Chang, C.C., Lin, C.-J.: LIBSVM: a library for support
vector machines, 2001. Software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[6] Chidamber, S.R., Kemerer, C. F.: A metrics suite for object
oriented design. IEEE TSE, 20(6), (1994), 476–493.

[7] Di Martino, S., Ferrucci, F., Gravino, C., Sarro: A Genetic
Algorithm to Configure Support Vector Machines for
Predicting Fault-Prone Components. In PROFES Procs,
LNCS Springer vol. 6759, (2011), 186-201.

[8] Elish, K.O., Elish, M.O.: Predicting defect-prone software
modules using support vector machines. Journal of Systems
and Software 81(5), (2008), 649-660.

[9] Goldberg, E.: Genetic Algorithms in Search, Optimization,
and Machine Learning. Addison-Wesley, (1989)

[10] Gondra, I.: Applying machine learning to software fault-
proneness prediction. Journal of Systems and Software 81
(2008), 186–195.

[11] Gray, D., Bowes, D., Davey, N., Sun, Y., Christianson, B.:
Using the Support Vector Machine as a Classification
Method for Software Defect Prediction with Static Code
Metrics. Communications in Computer and Information
Science, 43 (2009), 223-234.

[12] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann,
P., Witten, I. H.: The WEKA Data Mining Software: An
Update. SIGKDD Explorations, 11(1), (2009).

[13] Jureczko, M, Madeyski, L.: Towards identifying software
project clusters with regard to defect prediction. In the
PROMISE Procs., ACM NY, (2010), 9.

[14] Kitchenham, B., Pickard, L., Peeger, S.: Case studies for
method and tool evaluation. IEEE Software 12(4), (1995),
52-62.

[15] Kotsiantis, S. B.: Supervised Machine Learning: A Review
of Classification Techniques. Informatica 31 (2007) 249-268

[16] NASA – Metrics data program. http://mdp.ivv.nasa.gov/

[17] Ostrand, T. J., Weyuker, E. J.: How to measure success of
fault prediction models. In the WSQA Procs, (2007), 25-30.

[18] PROMISE Repository of empirical software engineering
data, http://promisedata.org.

[19] Vapnik, V.: The nature of Statistical Learning Theory.
Springer-Verlag, (1995).

[20] Watanabe, S., Kaiya, H., Kaijiri, K.: Adapting a Fault
Prediction Model to Allow Inter Language Reuse. In the
PROMISE Procs, ACM NY, (2008), 19-24.

1220

