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ABSTRACT 
Some studies have reported promising results on the use of 
Support Vector Machines (SVMs) for predicting fault-prone 
software components. Nevertheless, the performance of the 
method heavily depends on the setting of some parameters. To 
address this issue, we investigated the use of a Genetic Algorithm 
(GA) to search for a suitable configuration of SVMs to be used 
for inter-release fault prediction. In particular, we report on an 
assessment of the method on five software systems. As 
benchmarks we exploited SVMs with random and Grid-search 
configuration strategies and several other machine learning 
techniques. The results show that the combined use of GA and 
SVMs is effective for inter-release fault prediction. 

Categories and Subject Descriptors 
D.2.5 [Software Engineering]: Testing and Debugging 

General Terms 
Management, Experimentation. 

Keywords 
Fault prediction, Genetic Algorithm, Support Vector Machines 

1. INTRODUCTION 
In the last decades, considerable efforts have been aimed at 
developing methods able to predict the components of a software 
system that more likely will contain faults [1]. The research is 
motivated by the need to improve the efficiency of software 
testing, that is one of the most expensive phases of the software 
development effort. Indeed, knowing in advance the potentially 
defective components, project managers can better decide how 
allocate resources to test the system concentrating their efforts on 
fault-prone components. This can allow them to improve the 
dependability, the quality, and the cost/effectiveness of the 
software product. Two main research directions can be outlined in 
this context. One aims at understanding what are the most 
explicative metrics for the phenomenon at the hand. Typical 
employed metrics are the Lines of Code and the Chidamber and 

Kemerer metrics for Object-Oriented systems [6]. A second 
research direction aims at defining techniques able to provide a 
more accurate identification of the faulty components. To this 
end, several machine learning approaches have been investigated 
[8][10][20]. Usually they construct prediction models able to 
relate software metrics with the presence of faults in a component. 
In this context, recent studies have reported a good performance 
of Support Vector Machines (SVMs) (e.g., [8][10]). SVMs are 
supervised learning methods that can be exploited for binary 
classification tasks; i.e., given a set of data, each marked as 
belonging to one of two groups, a model is constructed to predict 
whether a new item falls into one group or the other. 
Nevertheless, the use of SVMs is not straightforward since some 
parameters must be carefully set to get more accurate 
classifications. Moreover, such setting depends on the 
characteristics of the dataset, and thus no rule of thumb can be 
defined but a search strategy has to be adopted. To address the 
problem, several approaches have been proposed in the different 
applications of SVMs. As for fault prediction a “Grid-search” [5] 
approach, with a very coarse grain, has been usually applied. A 
more sophisticated approach based on a meta-heuristic search 
technique was proposed in [7] where a preliminary assessment 
was also provided. In particular, a Genetic Algorithm (GA) was 
defined to search for suitable SVM parameter settings. Promising 
results - especially in terms of Recall and F-measure - were 
obtained highlighting that GA can be effective to configure 
SVMs. Nevertheless, the assessment was carried out employing 
data related to only one software project. Motivated by the 
observation that several studies are necessary to get better 
confidence on the generalizability of the results, in this paper we 
report on a further assessment of the performance of the method. 
To this end, we employed data related to 5 software projects from 
the PROMISE repository [18], containing more than one release. 
This let us analyze the inter-release performance of the proposed 
method, exploiting data from the former releases of a software 
project to build the prediction model to be used for predicting 
faults for the last release [17]. This kind of analysis reflects a real 
software development context, where a project manager exploits 
knowledge from previous releases of a system for a more 
conscious management of a subsequent version. As benchmark 
several techniques were taken into account: SVMs configured 
with random settings, that is a natural benchmark when using 
meta-heuristic search techniques; SVMs configured with Grid-
search; and other classification methods widely used in previous 
work for fault prediction (e.g., [8]), namely Logistic Regression, 
Decision Tree Algorithm C4.5, Naïve Bayes, Multi-Layer 
Perceptrons, K-Nearest Neighbor, and Random Forest. As 
measures to compare performance, Accuracy, Precision, Recall, 
and F-Measure were employed.  
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The remainder of the paper is structured as follows: in Section 2 
we present SVMs and the GA used to configure them. Section 3 
describes the planning of the empirical study, while in Section 4 
we report and discuss the achieved results. Section 5 analyzes the 
threats to the validity of the empirical study. A review of the 
related work is presented in Section 6. Final remarks and future 
work conclude the paper. 

2. SUPPORT VECTOR MACHINES AND 
GENETIC ALGORITHM 
We provide a brief description of Support Vector Machines and 
the proposed Genetic Algorithm to configure them. 

2.1   Support Vector Machines 
Support Vector Machines (SVMs) are a maximum-margin linear 
classification technique [19], since they find the optimal 
hyperplane between two classes defined by a number of support 
vectors [19]. This technique turns out to be very flexible, since it 
has good generalization ability, thanks to the introduction of a 
penalty factor, named C, which allows us to cope with the effects 
of outliers, permitting a certain amount of misclassification errors. 
Moreover, the use of a kernel function to map the data points into 
a higher-dimensional feature space allows SVMs to handle also 
non-linear problems [19]. 

This flexibility of SVMs needs to be suitably managed. Indeed, 
the selection of appropriate values for C is crucial to obtain good 
classification performance and avoid over- or under-fitting 
phenomena. As for the kernel function, we employed the most 
used and advised in the literature, namely the Radial Basis 
Functions (RBF) kernel, previously also used in the fault 
prediction context [7][11]. Besides C, we had to accurately set 
also the parameter  that represents the radius of the RBF kernel 
and so can impact on the SVMs accuracy. 

To address the problem, several approaches have been proposed 
in the different applications of SVMs. As an example, the use of 
the meta-heuristics Tabu Search has been investigated in [4] to 
configure Support Vector Regression, i.e., the regression version 
of SVMs, for software development effort estimation. However, 
in the context of fault prediction the most common approach used 
to set SVMs parameters is based on a Grid-search with a fixed 
exponentially growing sequence of values, as the one provided by 
LibSVM [5], one of the most employed, freely available library 
for SVMs. However, this approach has a twofold problem: 1) it 
has a very coarse grain, and thus it is likely to miss optimal 
values; 2) always the same couples of values for C and γ are 
explored, without taking into account the dataset at the hand. A 
more sophisticated approach based on the use of GA to configure 
SVMs for fault prediction was proposed in [7]. In the next 
subsection we summarize this approach since we empirically 
analyze it in the present paper. 

2.2  A Genetic Algorithm to Configure SVMs 
Genetic Algorithm (GA) [9] is a meta-heuristic search technique 
belonging to the class of evolutionary algorithms which, inspired 
by natural evolution, create consecutive populations of 
individuals, considered as feasible solutions for a given problem, 
to search for an optimal solution for the problem under 
investigation guided by a fitness function.  

The idea of exploiting GA to configure SVMs for fault prediction 
is based on the observation that such problem can be formulated 
as an optimisation problem: among the possible configurations, 

we have to identify the one which leads to the optimal SVMs 
performance. 

Despite of a number of variations, the elementary process of a GA 
is the follows: (i) a random initial population is generated; (ii) 
new individuals (i.e., offspring) are created by applying genetic 
operators (i.e., crossover and mutation) and a selection based on 
individual’s fitness value is applied to determine who will survive 
among the offspring and their parents; (iii) the second step is 
repeated until some stopping criteria hold. The individual that 
gives the best solution in the final population is taken in order to 
define the best approximation to the optimum for the problem 
under investigation. The analysis of this process suggests that the 
following design choices have to be made for tailoring a GA to a 
given optimization problem: 1. defining the chromosome for 
representing a solution (i.e., solution encoding) and the number of 
initial solutions (i.e., population size); 2. choosing the criterion 
(i.e., fitness function) to measure the goodness of a chromosome; 
3. defining the combination of genetic operators to explore the 
search space; 4. defining the stopping criteria. 

In the following we provide the details regarding the choices 
made for points 1-4 to design a GA for configuring SVMs. 

A solution to our problem is an SVM configuration consisting of 
two parameters (C and ) that can be encoded as a chromosome 
composed by two genes whose values vary in the ranges [0.01, 
32000] and [1.0E-6, 8] for the genes representing C and  
respectively. Let us note that these ranges are the same adopted in 
the Grid-search provided by LibSVM [5] to allow for comparison. 
An initial population of n=100 chromosomes is created by 
assigning random values to each gene. To compute the fitness of a 
chromosome representing an SVM configuration, we execute 
SVM with such a configuration thus obtaining the fault 
predictions. Such predictions are then evaluated using F-measure 
as performance criterion. F-measure is widely used in the fault 
prediction context and will be described in Section 3.3. To create 
the new offspring, genetic operators (i.e., crossover and mutation) 
are applied within a certain probability to a current population. In 
particular, a single point crossover is employed to combine two 
individuals (i.e., parents) forming new individuals by randomly 
selecting a point of cut and swapping all genes beyond that point 
in either parent. As for the mutation operator, it modifies with 
probability 1/2 each gene of a chromosome, randomly changing 
its value. Crossover and mutation rates are fixed to 0.5 and 0.1, 
respectively. To determine which individuals will take part of the 
next generation a tournament selector is employed, where only 
the best n solutions take part to the next generation. The 
evolutionary process is terminated according to two stopping 
criteria, i.e., after 300 generations or if the fitness value of the 
best solution does not change after 30 generations. The population 
size, stopping criteria, crossover and mutation rates were 
empirically determined as it is usual when no guidelines are 
available. In particular, we observed that increasing them did not 
allow us to improve the estimation accuracy while wasting 
computation time. Moreover, to cope with the non-deterministic 
nature of GA, 10 executions were done and it was retained as 
final solution the one providing fitness value closest to the mean 
of the fitness values obtained in the 10 executions. 

3. CASE STUDY PLANNING 
We investigated the combination of GA and SVM (in the 
following GA+SVM) for inter-release fault prediction by 
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exploiting five software projects, aiming at addressing the 
following research questions: 

(RQ1): Is the proposed GA able to effectively configure SVMs 
parameters for inter-release fault prediction?  

(RQ2): Is GA+SVM an effective technique for inter-release fault 
prediction? 

To address RQ1 we first compare the performance of GA+SVM 
with respect to SVM configured with a simpler approach 
consisting of the generation of random configurations (SVM-
Rand, in the following), which is a usual benchmark when using 
meta-heuristic search techniques. To be fair, the same number of 
solutions exploited by GA+SVM (i.e., 300*100 SVM 
configurations) were generated in a totally random fashion within 
the same ranges used for GA (see Section 2.2) and among them 
the best one was selected according to the same criteria employed 
for GA+SVM but without guiding the search in any way. 
Moreover, we also compared the performance of GA+SVM with 
the ones obtained using the Grid-search algorithm provided by 
LibSVM [5] (SVM-Grid in the following), which is the strategy 
usually employed in defect prediction context to configure SVMs. 

To address RQ2 we compared the performance of GA+SVM with 
respect to the performances of six techniques widely used in the 
literature and available in the Weka tool [12], namely Logistic 
Regression (LR), Decision Tree Algorithm C4.5 (C4.5), Naïve 
Bayes (NB), Multi-Layer Perceptrons (MLP), K-Nearest 
Neighbor (KNN), and Random Forest (RF). These are 
representative of different classes of techniques for fault 
prediction, indeed LR and NB are two statistical classifiers, KNN 
is an instance-based learning algorithm, MLP is a Neural Network 
method, C4.5 is a decision tree approach and RF is an ensemble 
method. For sake of space we refer the reader to [3][15] for 
details on these techniques. In the following, we summarize the 
design of our empirical study by presenting the employed 
datasets, the validation method, and the evaluation criteria. 

3.1 Datasets 
We exploited data from the PROMISE repository [18], which 
contains several datasets for fault prediction and we chose among 
them the software projects with more than two releases, in order 
to perform the inter-release analysis. Thus, we retained 5 datasets 
for a total of 18 releases: Log4j (vv. 1.0, 1.1, 1.2), Lucene (vv. 
2.0, 2.2, 2.4), POI (vv.1.5, 2.0, 2.5, 3.0), Xalan (vv. 2.4, 2.5, 2.6, 
2.7), Xerces (vv. init, 1.2,1.3,1.4). Each release contained a set of 
components (i.e., Java classes) described in terms of Chidamber 
and Kemerer (CK) metrics [6], Number of Public Methods 
(NPM), and Lines of Code (LOC). Details about those software 
projects and how the data was collected can be found in [13]. 

3.2 Validation Method 
To assess the effectiveness of the considered techniques for inter-
release fault prediction, we employed a hold-out validation. In 
particular, given a software project having n releases, we used as 
training set the data collected in the first n-1 releases of the 
project and as test set the data collected for the last release. This 
kind of validation allowed us to simulate the situation that 
typically arises in real software development contexts, where a 
project manager can learn some phenomena and/or patterns from 
previous releases and exploit this knowledge for a more conscious 
management of the development of a subsequent version. 
Moreover, if he/she uses a fault prediction model, the typical 
setting is that data from the former releases are exploited to build 

the model to predict faults for a new release [17]. The fault data 
for the employed training and test sets is reported in Table 1 
together with the percentage of faulty and non faulty components. 
We can observe that for Lucene and POI projects, the training sets 
and the corresponding test sets have quite similar percentages of 
faulty and no faulty components. On the contrary, the number of 
non faulty components contained in Log4j, Xalan, and Xerces 
training sets is much higher than the number of the faulty ones 
and viceversa the number of faulty components contained in the 
corresponding test sets is much higher than the number of the non 
faulty ones. In particular, for Log4j and Xalan test sets the 
percentage of faulty classes is more than 90%. 

Table 1. Existence of faults on training and test sets 

Dataset 
Training Set Test Set 

Non faulty 
classes 

Faulty 
classes 

Non faulty 
classes 

Faulty 
classes 

Log4j 173 (71%) 71 (29%) 16 (8%) 189 (92%) 
Lucene 207 (47%) 235 (53%) 137 (40%) 203 (60%) 

POI 510 (54%) 426 (46%) 161 (36%) 281 (64%) 
Xalan 1503 (62%) 908 (38%) 11 (1%) 898 (99%) 
Xerces 838 (79%) 217 (21%) 151 (27%) 437 (74%) 

3.3 Evaluation Criteria 
To evaluate the predictions we employed four widely used 
performance measures (i.e., Accuracy, Precision, Recall, and F-
measure [2]) which leverage on the concepts reported in the 
confusion matrix of Table 2 and are defined as follows. 

Accuracy is the ratio between the number of components correctly 
predicted (i.e., classified as TP and TN) and the total number of 
components (i.e., the sum of TP, TN, FP, FN).  

Precision is the ratio between the number of components 
classified as TP and the number of those classified as TP or FP. 

Recall is the ratio between the number of components classified 
as TP and the number of those classified as TP or FN.  

Table 2. The confusion matrix 

  Predicted 
  Faulty Non Faulty

Actual 
Faulty True Positive (TP) False Negative (FN) 

Non Faulty False Positive (FP) True Negative (TN) 
These definitions suggest that Precision concerns with the 
correctness of the responses provided by a method, while Recall 
allows us to measure the completeness of the responses. We can 
easily understand that in the context of fault prediction the 
consequences of low Recall are far more important than the ones 
of low Precision [17], since it is essential to identify all the 
potentially faulty modules. Thus, the use of a technique able to 
maximize Recall is fundamental in this context [17]. To avoid 
missing potential faulty components, the prediction method has to 
detect all the potential faulty components, even at the cost of a 
lower Precision. In this scenario, a subsequent manual check is 
responsible of deleting false positives. However, a too low 
Precision requires an excessive post-processing, making the 
technique useless. A measure that provides an indication of a 
balance between correctness and completeness is the harmonic 
mean of Precision and Recall (or F-measure), defined as follow: 

callecision

callecision
measureF

RePr

Re*Pr
*2




. 
Let us recall that we employed F-measure as fitness function for 
the proposed GA aiming at taking into accounts both correctness 
and completeness. 
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4. RESULTS AND DISCUSSION 
In this section, we present the results of the empirical study.  

4.1 Research Question RQ1 
To assess whether the proposed GA is able to effectively 
configure SVMs parameters for fault prediction (i.e., RQ1) we 
compared the predictions obtained using GA+SVM with those 
obtained by using random SVM configurations (i.e., SVM-Rand) 
and by applying SVMs configured with Grid-search of LibSVM 
[5] (i.e., SVM-Grid). Table 3 reports on the results achieved by 
these techniques in terms of the performance measures Accuracy, 
Precision, Recall, and F-measure. We can observe that GA+SVM 
obtained better results than SVM-Rand on all the datasets. In 
particular, using GA+SVM we obtained high relative 
improvements1 with respect to SMV-Rand in terms of the 
Accuracy, Recall, and F-measure values averaged on all the 
datasets (i.e., 35%, 80%, and 48%, respectively), paying back 
only 4 percentage points with respect to the Precision obtained by 
SVM-Rand. 

Table 3. Results for RQ1 

Dataset Technique 
Results 

Accuracy Precision Recall F-measure

 GA+SVM 0.35 0.94 0.31 0.47 

Log4j SVM-Rand 0.18 0.86 0.12 0.21 

 SVM-Grid 0.31 0.94 0.26 0.41 

 GA+SVM 0.61 0.62 0.90 0.73 

Lucene SVM-Rand 0.61 0.68 0.65 0.66 

 SVM-Grid 0.67 0.74 0.68 0.71 

 GA+SVM 0.67 0.69 0.86 0.77 

POI SVM-Rand 0.62 0.76 0.59 0.66 

 SVM-Grid 0.74 0.92 0.63 0.75 

 GA+SVM 0.43 1.00 0.43 0.60 

Xalan SVM-Rand 0.35 1.00 0.34 0.50 

 SVM-Grid - - - - 

 GA+SVM 0.47 0.94 0.30 0.46 

Xerces SVM-Rand 0.32 0.87 0.11 0.19 

 SVM-Grid - - - - 

Concerning the comparison with SVM-Grid, first of all we 
observe that for dataset Log4j, GA+SVM provided better 
predictions than SVM-Grid in terms of Accuracy, Recall, and F-
measures (with an improvement of 13%, 19%, and 14%, 
respectively) and same Precision. As for Lucene and POI datasets, 
GA+SVM provided better performance than SVM-Grid in terms 
of Recall and F-measure, while SVM-Grid provided better 
Accuracy and Precision. Indeed, on these datasets the relative 
improvement of GA+SVM with respect to the use of SVM-Grid 
was high in terms of Recall (i.e., 33% and 36% for Lucene and 
POI, respectively) and good in terms of F-measure (i.e., 14% and 
3%, for Lucene and POI, respectively). On the other hand, the 
Accuracy slightly decreased by 9 and 10 percentage points for 
Lucene and POI, respectively, while a higher decreasing was 
observed for Precision, i.e., 17% and 25%, for Lucene and POI, 

                                                                 
1 To compute the relative improvement of a technique A with respect to a 

technique B for a measure M we compare the values achieved with A 
and B (i.e., MA and MB, respectively) as follows: ((MA - MB) / MB)*100. 

respectively. However, the obtained Recall improvement of 
GA+SVM with respect to SVM-Grid is higher than the relative 
improvement of Precision and Accuracy of SVM-Grid with 
respect to GA+SVM. Finally, we observe that on the Xalan and 
Xerces projects SVM-Grid classified all the observations in the 
test set as non faulty, thus failing to provide its predictions. 
Obviously this is due to the fact that the Grid-search was not able 
in these cases to identify suitable SVR parameters. On the 
contrary, GA+SVM did never exhibit a similar behavior, thus 
performing better than SVM-Grid on those datasets.  

The above analysis suggests that the use of GA to configure 
SVMs allowed us to obtain better results with respect to the ones 
obtained using SVM-Rand and SVM-Grid, especially in terms of 
Recall and F-Measure. This is particularly interesting since the 
consequences of low Recall are far more important than the ones 
of low Precision in the context of fault prediction [17]. Thus, we 
can positively answer research question RQ1 and confirm the 
result achieved in [7], i.e., GA is able to effectively set SVM 
configuration parameters for fault prediction. 

4.2 Research Question RQ2 
Table 4 reports on the performance measures related to the 
considered techniques, namely LR, C4.5, NB, MLP, KNN, and 
RF, taken into account as benchmarks to address RQ2. For sake 
of readability we report the results for GA+SVM as well. 
Moreover, we provide also the coefficient of variation2 (CV) for 
each performance measure to have an indication about the 
dispersion of the distribution of each measure over all the 
employed techniques. Let us observe that for all datasets, the 
highest values of CV are related to Recall and F-measure thus 
highlighting that the performance of the considered techniques is 
more different in terms of these measures. This difference is 
especially evident for some datasets (i.e., POI and Xerces). Let us 
observe also that the smallest CV values are in 4 out 5 cases 
related to Precision. Moreover, these values are very small thus 
showing that the performances of the considered techniques are 
generally quite similar in terms of Precision. In particular, in three 
cases (i.e., Log4j, Xalan, and Xerces datasets) several techniques 
provided optimal Precision values (1 or close to 1). This is due to 
the fact that the percentage of faulty components contained in 
Log4j, Xalan, and Xerces test sets (i.e., 92%, 99%, and 74%, 
respectively) is higher than the percentage of non faulty ones (i.e., 
8%, 1%, and 26%, respectively), thus limiting the number of 
possible False Positives. As for Accuracy, quite small CV values 
were obtained for Log4j and Lucene datasets, while higher values 
were got for the other datasets indicating for them a superior 
dispersion. Taking into account these observations, in the 
following we carry out the comparison among GA+SVM and the 
other techniques for each dataset focusing our attention on the 
measures showing higher dispersion. Concerning Log4j dataset 
we observe that the performance of GA+SVM is comparable with 
the ones of the other techniques with respect to all measures. As 
for Lucene dataset, among the benchmark techniques the best 
performances were obtained by LR, KNN, and RF. With respect 
to these techniques GA+SVM got a high improvement in terms of 
Recall (50%, 38%, and 186% over LR, KNN, and RF, 
respectively) and similar values in terms of the other measures. 

                                                                 
2 The coefficient of variation is defined as the ratio of the standard 

deviation to the mean of a distribution and provides a normalized 
measure of the dispersion of the distribution. 
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Also on POI dataset, GA+SVM got the best Recall with a relative 
improvement of 17% over the best benchmark technique (i.e., 
C4.5).  

Table 4. Results for RQ2 

Dataset Technique 
Results 

Accuracy Precision Recall F-measure 

 GA+SVM 0.35 0.94 0.31 0.47 

Log4j LR 0.31 0.98 0.26 0.41 

 C4.5 0.35 0.97 0.30 0.46 

 NB 0.32 0.98 0.27 0.42 

 MLP 0.31 0.98 0.25 0.40 

 KNN 0.34 0.95 0.30 0.46 

 RF 0.35 0.95 0.31 0.46 

 CV 0.06 0.02 0.09 0.07 

 GA+SVM 0.61 0.62 0.90 0.73 

 LR 0.63 0.73 0.60 0.66 

Lucene C4.5 0.62 0.74 0.55 0.63 

 NB 0.56 0.87 0.32 0.46 

 MLP 0.57 0.80 0.38 0.52 

 KNN 0.62 0.67 0.66 0.67 

 RF 0.60 0.67 0.65 0.66 

 CV 0.04 0.12 0.33 0.15 

 GA+SVM 0.67 0.69 0.86 0.77 

POI LR 0.55 0.73 0.47 0.57 

 C4.5 0.67 0.74 0.74 0.74 

 NB 0.45 0.85 0.16 0.28 

 MLP 0.39 0.59 0.12 0.20 

 KNN 0.64 0.74 0.67 0.70 

 RF 0.62 0.75 0.60 0.67 

 CV 0.20 0.11 0.55 0.41 

 GA+SVM 0.43 1.00 0.43 0.60 

 LR 0.19 1.00 0.18 0.31 

 C4.5 0.30 1.00 0.29 0.45 

Xalan NB 0.17 1.00 0.16 0.27 

 MLP 0.28 1.00 0.27 0.42 

 KNN 0.42 1.00 0.41 0.58 

 RF 0.42 1.00 0.42 0.59 

 CV 0.35 0.00 0.37 0.30 

 GA+SVM 0.47 0.94 0.30 0.46 

 LR 0.28 0.92 0.03 0.05 

 C4.5 0.31 0.90 0.08 0.15 

Xerces NB 0.32 0.88 0.10 0.18 

 MLP 0.27 1.00 0.02 0.04 

 KNN 0.36 0.90 0.15 0.26 

 RF 0.35 0.88 0.15 0.27 

 CV 0.20 0.05 0.80 0.72 

Concerning Xalan dataset, GA+SVM provided comparable results 
with respect to the best benchmark techniques (i.e., KNN and 
RF), while on Xerces dataset, GA+SVM obtained better 
performance with respect to the best benchmarks (i.e., KNN and 
RF) providing a high improvement in terms of Recall and F-

measure (up to 104% and 80%, respectively). Finally, we can 
observe that, in average over all datasets, GA+SVM allowed us to 
obtain high relative improvements in terms of Accuracy, Recall, 
and F-measures (i.e., 31%, 180%, 113%, respectively) with 
respect to the mean of the results provided by the other 
techniques, paying back only 4 percentage points in terms of 
Precision. Nevertheless, some differences can be observed over 
the datasets. Indeed the performance of GA+SVM is better for 
Lucene and POI datasets and not so good for the others where we 
observe low Accuracy and Recall. The main reason for that could 
be related to the opposite distribution of percentage of faulty and 
non faulty components between the training and test sets for 
Log4j, Xalan, and Xerces datasets. Indeed, the high percentages 
of non faulty components in the training sets could lead the model 
to predict more components as non faulty. This, together with the 
fact that in the corresponding test sets the percentages of non 
faulty components are very low, increases the probability to have 
False Negatives, thus affecting Recall and Accuracy. On the other 
hand, it is worth noting that for Xerces dataset some techniques 
got a Recall near 0, making the performance of GA+SVM (i.e., 
0.30) especially remarkable. 

The above analysis suggests that GA+SVM behaves consistently 
well over the considered datasets performing similarly or better 
than the other techniques and often providing a great 
improvement in terms of Recall and F-measure. Thus, we can 
positively answer research question RQ2, i.e., GA+SVM is an 
effective technique for fault prediction. 

5. VALIDITY EVALUATION 
The validity of our empirical studies can be biased by different 
factors. First of all, threats to construct validity can be due to the 
way the defect and the CK metrics were collected. We tried to 
mitigate such a threat employing publicly available datasets from 
the PROMISE repository [18] that have also been used in 
previous case studies on fault prediction. Threats to internal 
validity can be due to the bias introduced by the intrinsic 
randomness of GA. We mitigate such a threat by executing GA 
ten times and using the average results as detailed in Section 2.2. 
As for the external validity, it can be affected by the fact that all 
the employed projects were open-source. Indeed, there could be 
some differences between open-source and industrial 
development (e.g., some industrial settings enforce standards of 
code quality). However, this threat is mitigated by the fact that the 
employed projects are related to the Apache community, thus, 
while being open-source, they have a strong industrial 
background. A second threat concerns the language. Since all 
considered systems are written in Java, the obtained results cannot 
be generalized to non-Java software projects. Moreover, each 
project is related to a different type of software, was developed by 
an independent development team, and differs from others for 
size, percentage of faulty and non faulty components, and 
magnitude of CK metrics. Thus, we are confident that our results 
can promptly apply to software systems having similar 
characteristics, however further studies are desiderable to 
corroborate the obtained results. 

6. RELATED WORK 
Many studies have addressed the fault prediction issue using a 
variety of different methods. Arisholm et al. [1] provides an 
interesting literature review. For sake of space, we limit our 
description to the research that employed Support Vector 
Machines (SVMs). Apart from [6] we do not know other studies 
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that have addressed the problem of configuring SVMs parameters 
for fault prediction; usually the Grid-search feature included in 
LibSVM has been employed (e.g., [11]). We recall that this 
feature represented the baseline for our experimental study. As for 
SVMs they have been used in many works together with other 
classification techniques, obtaining different results. In [8] SVMs 
were compared against eight modeling techniques in terms of the 
performance measures Accuracy, Recall, Precision, and F-
measure, using four datasets from the NASA Metrics Data 
Program Repository (MDPR) [16]. The results revealed that none 
of the employed techniques was significantly better than the 
others. On the other hand, Gondra [10] reported that, on the JM1 
dataset in the NASA MDPR [16], SVMs significantly 
outperformed an Artificial Neural Network, thus suggesting that 
SVMs could be a promising technique for predicting fault-
proneness software components. Gray et al. [11] also carried out 
an empirical study employing SVMs on eleven NASA datasets 
[16] to analyze the performance of this technique when only static 
code metrics were used. The obtained results, evaluated only in 
terms of Accuracy, showed that SVMs yielded at an average 
Accuracy of 70%. It is worth noting that the above works 
employed data from the NASA MDPR [16]. This is a useful 
database for fault prediction empirical analyses, but all the 
contained projects refer to only one release, thus making 
impossible for us to employ them in our inter-release analysis.  

7. CONCLUSIONS 
We have investigated the use of a Genetic Algorithm (GA) to 
configure Support Vector Machines (SVMs) for inter-release fault 
prediction. A first assessment of the approach was performed in 
[7] by employing information from two releases of the software 
jEdit included in the PROMISE repository. The results were 
interesting, since using GA to configure SVMs improved the 
performances of SVMs with respect to the use of SVM-Grid and 
other six techniques, namely LR, C4.5, NB, MLP, KNN, and RF, 
especially in terms of Recall. In this paper, we have further 
investigated the combination of GA and SVMs by considering 
other 5 datasets from the PROMISE repository, namely Log4j, 
Lucene, POI, Xalan, and Xerces. The performed empirical 
analysis has confirmed that: (i) GA is able to effectively set 
SVMs parameters in order to improve fault predictions; (ii) 
GA+SVM is an effective technique for inter-release fault 
prediction. Indeed the approach behaved consistently well over 
the considered datasets performing similarly or better than the 
other techniques and often providing a great improvement in 
terms of Recall and F-measure. Nevertheless, it is worth noting 
that the time performance of GA+SVM is slightly lower than the 
other benchmarks (although similar to SMV-Grid). However, we 
realized a tool that automatically extracts the necessary data from 
software releases and allows project managers to exploit 
GA+SVM and evaluate the obtained predictions in terms of 
Accuracy, Precision, Recall, and F-measures. Thus, time 
performance costs are negligible with respect to the prediction 
improvements provided by GA+SVM. As future work we will 
assess the effectiveness of the proposed technique also for cross-
project fault prediction, i.e., transferring prediction models from 
one software project to another [20]. 
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