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Abstract—Many papers on App Store Mining are susceptible
to the App Sampling Problem, which exists when only a subset
of apps are studied, resulting in potential sampling bias. We
introduce the App Sampling Problem, and study its effects on
sets of user review data. We investigate the effects of sampling
bias, and techniques for its amelioration in App Store Mining
and Analysis, where sampling bias is often unavoidable. We mine
106,891 requests from 2,729,103 user reviews and investigate the
properties of apps and reviews from 3 different partitions: the sets
with fully complete review data, partially complete review data,
and no review data at all. We find that app metrics such as price,
rating, and download rank are significantly different between the
three completeness levels. We show that correlation analysis can
find trends in the data that prevail across the partitions, offering
one possible approach to App Store Analysis in the presence of
sampling bias.

I. INTRODUCTION

Data availability from App Stores is prone to change: be-

tween January and September 2014 we observed two changes

to ranked app availability from the Windows store: a major

change, increasing the difficulty of mining information by

refusing automated HTTP requests; and a minor change,

extending the number of apps available. Google and Apple

stores enabled mining of a large number of ranked apps during

2012 [1][2], but far fewer are currently available. At the time

of mining in February 2014, we observed that the availability

of app data was incomplete in all stores except for Blackberry.

This paper is concerned with reviews: user-submitted app

evaluations that combine an ordinal rating and text body.

Table I shows the availability of reviews at the time of writing,

as well as a summarisation of the quantity of data. Availability

of reviews presents a challenge to researchers working on

App Store Review Mining and Analysis, because it affects

generalisability. If we are only able to collect sets of the

most recent data, i.e. from Google Play and Windows Phone

Store, then we can only answer questions concerning this most

recent data. For instance, the research question “What is the

type of feedback most talked about in app reviews?” could

not be answered using a data subset, but could be reasonably

answered by collecting a random sample from all published

reviews.

Recent work in App Store Review Mining and Analysis has

analysed app review content and sentiment [1][3][4][5][6], ex-

tracted requirements [7][8] and devices used [9], and produced

summarisation tools [2][10]. It is apparent, however, that the

literature on App Store Review Mining and Analysis, with the

exception of three related studies by Hoon et al. [1][11][12]

and one by Fu et al. [2], uses only a subset of all reviews

submitted. We therefore question whether the data provided is

sufficient to draw reasonable conclusions.

TABLE I
REVIEW AVAILABILITY. NO. APPS, MOST REVIEWS FOR SINGLE APP,

REVIEW AVAILABILITY AND ACCESS FOR 4 POPULAR APP STORES.

Store Apps
Most Review Method

reviews availability of access

Apple 1,200,000 600,000 Last release RSS feed
Blackberry 130,000 1,200,000 Full Web
Google 1,300,000 22,000,000 2,400 Web
Windows 300,000 44,000 36 Web
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Fig. 1. Venn diagram showing the datasets we define.

As a way of exploring the issue empirically, we assess the

level of representation an app review subset can provide. For

this a full set of user reviews is needed, and so we study the

Blackberry World App Store, where the full published history

is available.

The contributions of this paper are as follows:

1) We survey the literature in the field of App Store Review

Mining and Analysis, and identify the prevalent problem of

partial datasets.

2) We present empirical results that highlight the pitfalls of

partial datasets and consequent sampling bias.

3) We mine and analyse a dataset of apps and user requests,

using manually validated automatic extraction. We illustrate

the way correlation analysis may potentially ameliorate sam-

pling issues in App Store Review Mining and Analysis.

II. THE APP SAMPLING PROBLEM

We define the following sets, shown in Fig. 1, in order to

describe different levels of data completeness.

(Pa) Partial: The set of apps and their reviews for which the

dataset contains only a proper subset of the reviews submitted

to the App Store.

(F) Full: The set of apps and their reviews for which the

dataset contains all of the reviews submitted to the App Store.

(Z) Zero: The set of apps which have no reviews. Strictly

speaking Z may intersect F, as some apps have never been

reviewed by a user.

(A) All: The combination of the above datasets; includes all

mined data (A = Pa ∪ F ∪ Z).



TABLE II
SUMMARY OF RELATED WORK ON APP STORE REVIEW MINING AND

ANALYSIS. ABBREVIATIONS: (A)PPLE, (G)OOGLE AND (B)LACKBERRY.

Authors [Ref], Year Store
No. No.

Type
apps reviews

Hoon et al. [11] 2012 A 17,330 8,701,198 F

Vasa et al. [12] 2012 A 17,330 8,701,198 F

Hoon et al. [1] 2013 A 17,330 8,701,198 F

Iacob et al. [7] 2013 G 270 137,000 Pa

Galvis Carreño et al. [8] ’13 G 3 327 Pa

Khalid [3] 2013 A 20 6,390 Pa

Fu et al. [2] 2013 G 171,493 13,286,706 F

Pagano et al. [4] 2013 A 1,100 1,100,000 Pa

Iacob et al. [5] 2013 G 161 3,279 Pa

Khalid [13] 2014 A 20 6,390 Pa

Chen et al. [10] 2014 G 4 241,656 Pa

Guzman et al. [6] 2014 A,G 7 32,210 Pa

Khalid et al. [9] 2014 G 99 144,689 Pa

This paper 2015 B 15,095 2,729,103 A

There has been a surge of work recently in the field of

App Store Mining and Analysis, much of which is focussed

on app reviews. 9 out of 13 past studies we found on App

Store Review Mining and Analysis use Pa sets of data, drawn

from the most recent reviews of the most popular apps at the

time of sampling. A summary of the work to date on App

Review Mining and Analysis is presented in Table II, and a

further discussion of related App Store research is presented

in Section VII.

Following from the data accessibility summarised in Table I

in the four App Stores, sets are available under the following

conditions at the time of writing:

Apple App Store: F set available for apps with one release,

or where only the most recent release has been reviewed; Pa

set available for apps with multiple reviewed releases.

Blackberry World App Store: F set available for all apps.

Google Play: Data available for a maximum of 480 reviews

under each star rating via web page (2,400 total) per app;

hence F set available for apps with fewer than 481 reviews

under each star rating, Pa set available otherwise.

Windows Phone Store: Data available for a maximum of 36

reviews per app; hence F set available for apps with less than

37 reviews, Pa set available otherwise.

Historically, greater access appears to have been available.

Further data access is also available through 3rd party data

collections, subject to their individual pricing plans, terms and

conditions; such collections are out of the scope of this paper

as they are not freely available, and have not been used in the

literature.

Availability of App Store data is likely to become a pressing

problem for research if we cannot find ways to mitigate the

effects of “enforced” sampling bias: sampling in which sample

size and content are put outside of experimental control. This

may be for reasons unavoidable (App Store data availability),

pragmatic (memory or framework limitations on loading large

dynamic web pages), or otherwise. We call this the App

Sampling Problem.
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Fig. 2. Process for comparing data subsets. The boxes indicate the phases
of RQ1 that each part of the diagram corresponds with.

III. METHODOLOGY

In this section we provide details of the metrics used,

research questions, algorithms used for collecting the dataset,

steps for preprocessing the text, and topic modelling applica-

tion details.

A. Metrics

The goal of this paper is to compare the datasets defined

in Section II, and for this comparison the following app

properties are used:

(P)rice: The amount a user pays for the app in USD in order

to download it. This value does not take into account in-app-

purchases and subscription fees, thus it is the ‘up front’ price

of the app.

(R)ating: The average of user ratings made of the app since

its release.

(D)ownload rank: Indicates the app’s popularity. The specifics

of the calculation of download rank vary between App Stores

and are not released to the public, but we might reasonably

assume the rank approximates popularity, at least on an ordinal

scale. The rank is in descending order, that is it increases

as the popularity of the app decreases: from a developer’s

perspective, the lower the download rank the better.

(L)ength of description: The length in characters of the

description, after first processing the text as detailed in Sec-

tion III-E, and further removing whitespace in order to count

text characters only.

(N)umber of ratings: The total number of ratings that the app

has received. A rating is the numerical component of a review,

where a user selects i.e. a number from 1 to 5.

B. Research Questions

RQ1: How are trends in apps affected by varying dataset

completeness?

To answer this question we follow the illustration in Fig. 2

in which Phase 1 in the figure corresponds with RQ1.1 and

Phase 2 in the figure corresponds with RQ1.2.

RQ1.1: Do the subsets Pa, F and Z differ? The mined

dataset will first be separated into the subsets of Pa, F and Z,

as illustrated in Fig. 2.



We will then compare the datasets using the metrics

(P)rice, (R)ating, (D)ownload rank, (L)ength of description

and (N)umber of ratings with a 2-tailed, unpaired Wilcoxon

test [14]. The Wilcoxon test is appropriate because the metrics

we are investigating are ordinal data, and we therefore need

a non-parametric statistical test that makes few assumptions

about the underlying data distribution. We make no assumption

about which dataset median will be higher and so the test is 2-

tailed; the test is unpaired because the datasets contain entirely

different sets of apps. We test against the Null Hypothesis

that the datasets in question are sampled from distributions of

the same median, and a p-value of less than 0.05 indicates

that there is sufficient evidence to reject this null hypothesis

with a maximum of 5% chance of a Type 1 error. Because

multiple tests are performed, we apply Benjamini-Hochberg

correction [15] to ensure we retain only a 5% chance of a

Type 1 error.

We investigate the effect size difference of the datasets using

the Vargha-Delaney Â12 metric [16]. Like the Wilcoxon test,

the Vargha-Delaney Â12 test makes few assumptions and is

suited to ordinal data such as ours. It is also highly intuitive:

for a given app metric (P, R, D, L or N), Â12(A, B) is

an estimate of the probability that the value of a randomly

chosen app metric from Group A will be higher than that of

a randomly chosen app metric from Group B.

RQ1.2: Are there trends within subsets Pa, F and Z?

We will compare the trends within datasets Pa, F, Z and

A using three correlation analysis methods: Spearman’s rank

correlation coefficient, Pearson’s correlation coefficient and

Kendall’s Tau rank correlation coefficient. These methods will

be run on each pair of the metrics P, R, D, L and N to check

for correlations in subsets of the data, which we can compare

with the overall trends from the A set.

RQ2: What proportion of reviews in each dataset are

requests?

Once a set of app reviews has been obtained, some appli-

cations of App Store Analysis involve focussing on a well-

defined subset of these reviews. For example, this is useful

for development prioritisation, bug finding, inspiration and

otherwise requirements engineering ([2][3][5][6][7][8][10]).

We explore the subset of reviews that contain user requests,

as this is the most studied in the literature.

RQ2.1: What proportion of user reviews does the Iacob

& Harrison [7] algorithm identify? We use the algorithm

proposed by Iacob and Harrison [7] to identify requests in

the set of mined reviews. Reviews are treated to the text pre-

processing algorithm detailed in Section III-E. The algorithm

detects requests on a per-sentence basis by matching key words

in a set of linguistic rules; in this case the sentences are the

entire review bodies as we remove punctuation as part of the

text pre-processing. This does not affect the matching except

to reduce the number of possible matches per review to 1.

RQ2.2: What is the Precision and Recall of the extraction

algorithm? We assess the Precision and Recall of the request

extraction algorithm, as well as random guessing.

We sample 1000 random reviews from each of 4 sets: Pa

(all reviews; requests), F (all reviews; requests). The sample

of 1000 is representative at the 99% confidence level with a

4% confidence interval [17]. Under the criterion that “the user

asks for (‘requests’) some action to be taken”, each sampled

review is manually assessed as either a valid request or an

invalid request.

RQ3: How are trends in requests affected by varying dataset

completeness?

RQ1 seeks to establish an experimental approach to han-

dling partial data, which we now apply to an instance, specif-

ically request analysis. To answer RQ3 we will compare user

requests from data subsets of varying completeness. We will

then compare the trends in each group of requests using

correlation analysis.

We use the requests and try to learn about their content. The

set of requests contains raw text data, and so to compare them

we first train a topic model on the set of app descriptions

and identified requests, as detailed in Section III-F. It is

advantageous to use a topic modelling approach as the output

of such algorithms is a probabilistic distribution of latent

‘topics’ for each input ‘document’. Such output allows for

intersections of app descriptions and user requests that share

content to be computed through use of a threshold probability

value. Topic modelling is used throughout the literature in

app analysis for categorisation ([18]), summarisation ([2][10]),

data extraction ([6][8]), and API threat detection ([19]).

A topic’s ‘strong contribution’ to an app description or user

request indicates that the topic falls above the topic likelihood

threshold for that particular document. Experiments in this

section use a topic likelihood threshold of t = 0.05, as is the

standard in the literature. For comparison, we define 3 metrics

at the topic level:

Ta: App prevalence: the number of app descriptions to which

the topic strongly contributes.

Tr: Request prevalence: the number of requests to which the

topic strongly contributes.

Td: Download rank: the median download rank of the apps to

which the topic strongly contributes.

Results in this section use a topic likelihood threshold of

t = 0.02 to ensure a large enough set of topics for the

statistical set comparison tests Wilcoxon and Â12. Using the

set of topics from RQ2.2, we compare requests between Pa, F

and A datasets using both the topics themselves and the three

topic metrics. Because RQ3 concerns request properties and

trends, we exclude the Z set for this question, since it cannot

contain requests.

RQ3.1: Do the request sets from Pa, F and A differ?

To answer this question we run the same 2-tailed, unpaired

Wilcoxon test and Â12 metric used in RQ1.1. We apply the

statistical tests to the Ta, Tr and Td distributions between Pa,

F and A datasets. This shows us the difference between the

dataset distributions, and indicates how the effect size differs.

We apply Benjamini-Hochberg [15] correction for multiple

tests to ensure we retain only a 5% chance of a Type 1 error.



RQ3.2: Are there trends within the request sets of Pa,

F and A? We compare the trends of requests within each

set by applying correlation methods to each pair of the topic

metrics app prevalence, request prevalence and download rank,

which are formally defined in Section III-F. We run the three

correlation methods (Spearman, Pearson and Kendall) as used

in RQ1.2, on the topic metrics Ta, Tr and Td. This allows

us to identify how requests are affected by varying dataset

completeness, and to establish whether we can learn anything

from incomplete datasets.

C. Mining Process

We use a process for mining apps that is similar to the 4-step

approach used by Harman et al. [20], as shown in Fig. 3. The

first phase extracts the list data for the most popular apps in

the store, providing locations from which to download app and

review data for each individual app. In the second phase we

download the raw html data for apps and reviews for each app,

and proceed to use data mining in the third phase to extract

quantitative data, such as price and rating; and qualitative data

such as the name and description (or review) body. In the

fourth phase we record the extracted information in databases

to enable further analysis. The rest of this section explains the

first three steps of our extraction process in more detail.

Data Mining Phase 1 (Extraction of App List): We use

the spynner1 framework to continually load more apps to the

‘most popular’ list, but available memory becomes a limiting

factor as the page size grows rapidly. On a machine with 4GB

of RAM, we are able to capture a list of between 20k and 24k

apps before the framework runs of out memory. We therefore

set a limit on the number of captured apps of 20k. Since 2011

the number of apps in the store has grown from around 60k

to 230k [17], and we are therefore unable to capture the full

list.

Data Mining Phase 2 (Raw App and Review Data

Download): We visit each app in the list extracted by Phase 1,

and download the html page which holds the app metadata. For

review data, we use the spynner framework to continually

load more reviews from the page. This has the same memory

limitation as Phase 1, allowing us to capture between 4k

and 4.5k reviews per app before the framework runs out of

memory; we therefore limit the number of captured reviews

to 4k per app, and it is this limitation that causes us to have

a Pa dataset; the set of apps for which we have mined only a

subset of the available reviews.

Spam is common in app reviews, and can occur for reasons

of competition i.e. to boost one’s own app, or to negate a

competitor’s app. Some App Stores have methods in place

to help prevent spam, but these methods are not publicly

available, and they can never be 100% effective. Jindal and

Liu [21] found that online reviews that are identical to another

review are almost certainly spam, and are also the largest

portion of spam by type. We therefore filter the reviews for

duplicates, including only one copy of each unique review.

1https://pypi.python.org/pypi/spynner
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Fig. 3. App and Review mining process showing the 4-phase approach
to data collection used as part of this study. The boxes indicate data mining
phases which are described in Section III-C.

A unique review is defined by the rating, review body and

author name. We do not use more sophisticated spam detec-

tion and filtering methods in this paper because there is no

prescribed standard, and spam detection is not the aim of our

study.

Data Mining Phase 3 (Parsing): We parse the raw

data for a set of unique searchable signatures, each of

which specifies an attribute of interest. These patterns en-

able us to capture app information such as price, rating,

category, description, while other information such as the

rank of downloads and the identifier were established in

Phase 1. The unique searchable signature for rating is as

follows: awwsProductDetailsContentItemRating.

The mined review data is parsed in the same way, to capture

each review’s rating, body and author attributes; although the

author information is only used to ensure that no duplicates

are recorded as a means of reducing spam.

Data Mining Phase 4 (Database): We store the parsed app

data in an app database, and the parsed review data in a review

database in which each entry refers to an app identifier.

The approach is applicable to any App Store, with sufficient

changes to the sections parsing the web pages. However in

other App Stores the initial list popularity information from

Phase 1 would need to be adapted, as other stores do not

provide a global popularity ranking, but instead separate free

and paid, or by category.

D. Dataset

The dataset used in this study was mined during February

2014, and is presented in Table III. Using the process detailed

in Section III-C, a snapshot of the top 20,256 most popular

apps was taken, and the corresponding web pages were sub-

sequently parsed for descriptions and metadata such as price

and average rating.

https://pypi.python.org/pypi/spynner


TABLE III
DATASETS USED THROUGHOUT STUDY, MINED FROM BLACKBERRY

WORLD APP STORE AND PARTITIONED INTO THE SETS Pa, F, Z AND A .

Dataset Apps Reviews

Pa 5,422 1,034,151
F 6,919 1,694,952
Z 2,754 0

A 15,095 2,729,103

Raw Text Filtered 
Text

Processed 
Text

Text Preprocessing
Phase 1

Text Preprocessing
Phase 2

Fig. 4. Text pre-processing process. Shows the 2-phase approach to text pre-
processing used throughout this study. The boxes indicate text pre-processing
phases which are detailed in Section III-E.

Errors in app pages such as negative ratings, negative

number of ratings and empty app ids, led to the exclusion of

a number of apps. We judged that the anomalies would affect

the results of our experiments. The final number of apps used

in the study is therefore 15,0952.

This full set of apps is the A set. As detailed in Table III, it

is split into Pa, F and Z subsets according to the definitions

in Section II.

E. Text Preprocessing

Through this study, the mined qualitative data including app

description text and review body text, is treated to the pre-

processing steps shown in Fig. 4.

Text Preprocessing Phase 1 (Filtering): Text is filtered

for punctuation and the list of words in the English language

stopwords set in the Python NLTK data package3, and is

cast to lower case.

Text Preprocessing Phase 2 (Lemmatisation): Each word

is transformed into its ‘lemma form’ using the Python NLTK

WordNetLemmatizer. This process homogenises singu-

lar/plural, gerund endings and other non-germane grammatical

details, yet words retain a readable form.

F. Topic Modelling

This section describes the topic modelling process used in

the study, and defines terms used later on. The main process

is illustrated in Fig. 5, and will be further described below.

Topic Modelling Phase 1: The text from each app descrip-

tion and user review that has been identified as a request is

processed as described in Section III-E. This text is fed into

a modified version of Latent Dirichlet Allocation (LDA) [22],

which enhances performance through parallelisation [23]. This

is applied using Mallet [24], a Java tool for applying machine

learning and language processing algorithms.

2Data from this paper is available at http://www0.cs.ucl.ac.uk/staff/W.
Martin/projects/app sampling problem/.

3nltk.corpus.stopwords.words(’english’)

TABLE IV
TOPIC MODELLING SETTINGS APPLIED THROUGHOUT THE STUDY.

Setting Value

Number of latent topics K 100
Prior on per-document topic distribution α 50
Prior on per-topic word distribution β 0.01
Number of Gibbs sampling iterations 1000
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Fig. 5. Topic modelling process. Illustration of the topic modelling process
used in this study. The boxes indicate topic modelling phases which are
detailed in III-F.

We chose settings commonly used in the literature as the

goal of this study is not to find optimal topic modelling

settings for such a study, but to provide the means to easily

replicate the study. With the exception of the threshold on

per-document likelihood, which is chosen on a per-experiment

basis, the fixed settings specified in Table IV were used. We

experimented with settings of K = 100, 200, 500 and 1000

topics, and found that the settings of K = 500 and K = 1000

led to over-specialised topics which reflected the descriptions

of individual apps. The settings of K = 100 and K = 200

enabled more generalisation throughout the topics, and we

selected K = 100 as we judged that it was the lowest setting

without any app-specific topics.

Topic Modelling Phase 2: The output of LDA includes a

list of topic likelihoods for each document (in this case an app

description or user request). From this we compute a list for

each topic, of the app descriptions and user requests for which

the topic-document likelihood exceeds a threshold.

Topic modelling with LDA leads to topics that reflect the

source corpus, and so inevitably if spam exists in any of

the user requests or app descriptions, it will also appear

in some topics. For this reason we manually verified the

100 trained topics and classified them as valid or invalid,

with the criteria that “the top 5 terms should refer to some

functional or non-functional app property or properties”. Clas-

sification results are presented in Table V. An example valid

topic includes the top terms: {gps, speed, location,

track, distance...}, and an example invalid topic

includes the topic includes the top: terms {great, much,

awesome, worth, well...}. Henceforth only the 80

valid topics are used for comparison.

http://www0.cs.ucl.ac.uk/staff/W.Martin/projects/app_sampling_problem/
http://www0.cs.ucl.ac.uk/staff/W.Martin/projects/app_sampling_problem/


TABLE V
MANUAL TOPIC CLASSIFICATION RESULTS. ONLY TOPICS THAT ARE

CLASSIFIED AS VALID ARE USED IN THIS STUDY.

Class Description Count

Valid Defines one or more functional or non-
functional properties of an app.

80

Review Words highly coupled to review text such as
[error,load,sometimes].

8

App Words highly coupled to app description text
such as [please,review,feedback].

6

Spam Highlights spam in app descriptions and re-
views used for advertising.

1

Other Does not fit into another category but is not
valid.

5

Total All topics 100

TABLE VI
RQ1.1: COMPARISON RESULTS BETWEEN APP DATASETS. WE

COMPARE (P)RICE, (R)ATING, (D)OWNLOAD RANK, (L)ENGTH OF

DESCRIPTION AND (N)UMBER OF RATINGS IN SETS Pa, F AND Z USING

VARGHA AND DELANEY’S Â12 EFFECT SIZE COMPARISON. LARGE

EFFECT SIZES FROM THE Â12 TEST (≥ 0.8) ARE MARKED IN BOLD.

Datasets P R D L N

Pa - F 0.533 0.529 0.564 0.554 0.630
Pa - Z 0.514 0.965 0.834 0.718 1.000

F - Z 0.547 0.966 0.811 0.763 1.000

IV. RESULTS

RQ1: How are trends in apps affected by varying dataset

completeness?

RQ1.1: Do the subsets Pa, F and Z differ?

The Wilcoxon test results for metrics P, R, D, N and N

between the sets Pa, F and Z were all < 0.001, and remained

below 0.05 after we applied Benjamini-Hochberg correction

for multiple tests. This shows that there is a significant

difference between sets Pa, F and Z. The Â12 effect size

comparison results in Table VI show that the Pa and F sets

have a small effect size difference: hence, Pa and F are

unlikely to yield different results for the metrics tested.

This result is a contrast to the comparisons between sets

Pa and Z, and F and Z. The Z set contains only apps that

have not been reviewed and therefore have no rating, and

hence have a large effect size difference with the N (number

of ratings) metric. However, there is also a large effect size

difference between the rating, download rank and description

length between Z and the other sets. This shows that the Z

set is very different from the other sets and indicates that it

should be treated separately when analysing App Store data.

All sets have a small effect size difference when comparing

P (price), which might be expected because 90% of the apps

in the set A are free.

RQ1.2: Are there trends within subsets Pa, F and Z?

The results in Table VII serve to further distinguish the

need to separate the Z set when performing app studies, as it

possesses almost none of the trends of the other sets.
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Fig. 6. RQ1.2: Scatter plots for for (A)ll dataset for strong and significant
results. Points are clustered in cells whose darkness represents their density.

Indeed, almost all correlation results from the Z set were

not statistically significant (marked with ‘-’ in the table).

Conversely, most results from the other sets were statistically

significant, and the following (marked in bold), were strong:

a) Inverse RD correlation: This indicates that as the

(R)ating of apps increases, the (D)ownload rank decreases.

This result was not particularly strong, but we notice that it

was present in the A and Z sets only. This result is caused by

large numbers of non-rated apps in the Z dataset.

b) Positive NR correlation: This indicates that as the

(N)umber of ratings increases, the (R)ating of apps increases.

The trend was present in the A set only, and non-existent in the

Pa, F or Z sets. Similar to the RD correlation result, this result

is caused by the combination of non-rated and rated apps.

c) Inverse ND correlation: This indicates that as the

(N)umber of ratings increases, the (D)ownload rank decreases,

which means that the app is more popular.

d) Positive LN correlation: This indicates that as the

(L)ength of descriptions increases, the (N)umber of ratings

for the app increases. This result was consistent across both

Pa and F datasets, and stronger overall, perhaps making an

argument to also look for trends across all mined data.

We analyse these correlations in more detail by examin-

ing Fig. 6, which shows that the RD and NR correlations exist

only because of a large number of non-rated, and therefore

zero-rated, apps from the Z dataset. Results such as these

emphasise the need to consider Pa, F and Z datasets separately.



TABLE VII
RQ1.2: CORRELATION RESULTS IN EACH OF THE 4 DATASETS BETWEEN (P)RICE, (R)ATING, (D)OWNLOAD RANK, (N)UMBER OF RATINGS AND

(L)ENGTH OF DESCRIPTION. DATASETS ARE DEFINED IN TERMS OF REVIEW SET COMPLETENESS: (Pa)RTIAL, (F)ULL, (Z)ERO AND (A)LL. RESULTS ARE

PRESENTED FOR SPEARMAN’S, PEARSON’S AND KENDALL’S TAU CORRELATION COEFFICIENTS, IN EACH CASE ONLY WHERE THE P-VALUE IS LESS

THAN 0.05. RESULTS IN BOLD HAVE STRONG CORRELATION COEFFICIENTS.

Dataset Correlation PR PD RD NP NR ND LP LR LD LN

Pa

Spearman 0.163 0.120 -0.062 0.107 0.035 -0.641 0.234 0.094 -0.213 0.391
Pearson 0.097 0.083 -0.077 - - -0.116 0.199 0.068 -0.149 0.082
Kendall 0.140 0.096 -0.044 0.089 0.031 -0.471 0.190 0.069 -0.141 0.272

F

Spearman 0.253 0.385 -0.029 0.117 0.057 -0.352 0.254 0.147 -0.056 0.317
Pearson 0.104 0.231 -0.035 - 0.082 -0.234 0.162 0.131 - 0.095
Kendall 0.216 0.309 -0.023 0.094 0.047 -0.239 0.204 0.107 -0.038 0.215

Z

Spearman -0.063 - -0.228 - - - 0.260 -0.200 - -
Pearson - - -0.220 - - - 0.277 -0.116 - -
Kendall -0.062 - -0.184 - - - 0.214 -0.163 - -

A

Spearman 0.200 0.220 -0.307 0.141 0.452 -0.568 0.268 0.272 -0.223 0.456
Pearson 0.086 0.129 -0.391 - 0.025 -0.078 0.185 0.223 -0.158 0.057
Kendall 0.17 0.177 -0.224 0.116 0.336 -0.439 0.217 0.197 -0.152 0.320

TABLE VIII
RQ2.1: REQUEST DATASETS EXTRACTED FROM Pa, F AND A REVIEW

SETS USING THE IACOB & HARRISON [7] ALGORITHM. REQUESTS

INDICATES THE NUMBER OF REVIEWS MATCHING A REQUEST RULE, AND

PROPORTION INDICATES THE NUMBER OF REQUESTS RELATIVE TO THE

REVIEW SET THEY WERE EXTRACTED FROM.

Dataset Apps Reviews Requests Proportion

Pa 5,422 1,034,151 32,453 3.14%
F 6,919 1,694,952 74,438 4.39%
Z 2,754 0 0 0%

A 15,095 2,729,103 106,891 3.92%

RQ1: How are trends in apps affected by varying

dataset completeness? There is a significant difference

between Pa, F and Z datasets, in some cases with a large

effect size; the trends observed differ between datasets,

especially when Z is included.

RQ2: What proportion of reviews in each dataset type are

requests?

RQ2.1: What proportion of user reviews does the Iacob

& Harrison [7] algorithm identify?

Details of the extracted requests can be found in Table VIII.

The proportion of extracted requests is lower than that re-

ported by the previous study of Iacob & Harrison [7], which

can be attributed to two major differences in this study: 1)

Blackberry World App Store is used in this study instead

of Google Play. It may be that user behaviour in reviews is

different, manifesting in less requests. It may also be that users

use different words or phrases when making requests, and so

the request extraction algorithm’s recall is diminished. 2) Our

dataset contains 19 times more reviews and 56 times more

apps. It therefore includes many more lower ranked and less

popular apps; it is possible that users make fewer requests in

their reviews of such apps.

RQ2.2: What is the Precision and Recall of the extraction

algorithm? The assessment was completed by one author in

two days. Results from the assessment can be found in Ta-

ble IX, and the computed Precision, Recall and F-Measure are

found in Table X. The resulting Precision is low, yet Recall is

very high; the Iacob & Harrison algorithm [7] performs over

11 times better than random guessing.

An example TP (true positive) request and FP (false posi-

tive) request can be read below.

TP request: “Would be nice to be able to access your account

and rate the movies. Please include for next update.”

FP request: “Amazing app every thing u need to know about

real madrid is in this app and it deserve more than five stars”

A general observation from the sampling process was that

the ‘identified as requests’ reviews were not short, and always

contained ‘request-like’ words. However, there was a large

proportion of (FP) reviews which contained words like ‘need’,

but did not ask for any action to be taken by the developers.

Handling such cases is a challenge for content analysis of

user reviews such as Iacob & Harrison algorithm [7], and may

require more sophisticated analysis, and perhaps the inclusion

of sentiment, to properly deal with.

The set of FN (false negative) reviews, which were not

identified as requests but were manually assessed to contain a

request, asked for work to be done in different ways. Linguistic

rules could be added to encompass the FN cases, but this

would run the risk of further lowering the Precision. An

example FN request can be read below.

FN request: “Sharp, but layout can be worked on!”

The high Recall result shows that we are able to reduce the

set of all reviews to a much smaller set that is more likely to

contain requests, and this process excludes very few requests

falsely. We suggest that without a proven better performing

method for data reduction of user reviews, it is sufficient to

use the set of all requests identified by the Iacob & Harrison

algorithm [7] for analysis.



TABLE IX
RQ2.2: MANUAL ASSESSMENT OF REVIEWS. A SAMPLE OF 1000
RANDOM REVIEWS WAS TAKEN FROM EACH OF 4 SETS, AND EACH

REVIEW WAS MANUALLY CLASSIFIED AS CONTAINING A REQUEST FOR

ACTION TO BE TAKEN OR NOT. THE SETS USED WERE THE REVIEWS AND

REQUESTS FROM EACH OF THE (Pa)RTIALLY COMPLETE DATASET AND

THE (F)ULLY COMPLETE DATASET.

Dataset Type Population Sample TP FP Precision

Pa Request 32,453 1000 279 721 0.279
Pa Review 1,034,151 1000 14 986 0.014
F Request 74,438 1000 347 653 0.347
F Review 1,694,952 1000 29 971 0.029

TABLE X
RQ2.2: ASSESSMENT OF REQUEST ALGORITHM. USING THE RESULTS

FROM THE MANUAL ASSESSMENT IN TABLE IX, WE COMPUTE THE

PRECISION, RECALL AND F-MEASURE FOR THE (Pa)RTIALLY COMPLETE

DATASET AND THE (F)ULLY COMPLETE DATASET.

Dataset TP FP FN Precision Recall F-Measure

Pa 279 721 10 0.279 0.965 0.433
F 347 653 9 0.347 0.975 0.512

TABLE XI
RQ3.1: COMPARISON RESULTS BETWEEN REQUEST SETS. WE

COMPARE TOPIC APP PREVALENCE, REQUEST PREVALENCE AND MEDIAN

DOWNLOAD RANK BETWEEN SETS Pa, F AND A USING VARGHA AND

DELANEY’S Â12 EFFECT SIZE COMPARISON. LARGE EFFECT SIZES FROM

THE Â12 TEST (≥ 0.8) ARE MARKED IN BOLD.

Datasets Ta Tr Td

Pa - F 0.794 0.974 0.999

A - F 0.831 0.839 0.874

A - Pa 0.914 0.998 0.971

RQ2: What proportion of reviews in each dataset type

are requests? Less than 3.92% of A, 3.14% of Pa and

4.39% of F reviews are requests in the Blackberry dataset,

as we have found the algorithm to have a Recall > 0.96

and Precision < 0.350.

RQ3: How are trends in requests affected by varying dataset

completeness?

RQ3.1: Do the request sets from Pa, F and A differ? The

Wilcoxon test results for metrics Ta (topic app prevalence),

Tr (topic request prevalence) and Td (topic median download

rank) between the sets Pa, F and A show that there is a

significant difference between sets Pa, F and A. The Â12 test

results in Table XI also show that there is a large effect size

difference for Ta, Tr and Td between the three sets.

We have seen from the results for RQ1.1 in Table VI that

there is a significant distribution difference, but a small effect

size difference between the description lengths in Pa and F.

This means that Pa and F are unlikely to yield different

description lengths. It can seem surprising, therefore, that there

is a large effect size difference between the app prevalence for

topics between the Pa and F sets.

Recall that app prevalence for a topic means the number

of app descriptions to which the topic strongly contributes.

However, this result is explained by the size difference of the

sets: it stands to reason that in a set with more apps, a topic

would be featured in more app descriptions than in the smaller

set. This effect can be seen in greater magnitude with the larger

request prevalence effect size difference. The Pa set has a large

effect size difference in Tr from both the A set and the F set.

These results again show that topics are used more frequently

in the larger of the sets, an expected result.

What is more surprising are the results for Td. Table XI

shows that the distributions of topic download rank in the three

sets are very different, and have a large effect size difference.

Bearing in mind that the A set is the combination of apps

from Pa, F and Z, the A - Pa result suggests that the Pa set’s

median download rank is different from the overall median,

while the F set’s median is closer. However, the Pa - F results

are surprising as they mean that for the same topics, one set

leads to apps with greater median download ranks than the

other; yet the results for RQ1.1 in Table VI showed a small

effect size difference in download rank for Pa - F.

One possible explanation is that the topic download ranks

are exaggerating the difference in distribution medians. Be-

cause of the way the topic model is trained, each app de-

scription must have at least one assigned topic; likely more

than one as the Dirichlet prior α is set to 50 [22]. Therefore,

the entire set of app descriptions must be represented by

only the 100 topics (80 of which are used here as explained

in Section III-F). It is not hard to imagine that the median

download rank of apps in these 80 topics could be very

different for Pa, F and A, even if the distributions of apps

have small effect size differences in D.

RQ3.2: Are there trends within the request sets of Pa, F

and A? We can see from Fig. 7 that the F set has a higher

median app prevalence and request prevalence for topics. That

is, topics contribute in a greater number of apps and requests

on average in the F set than the Pa set.

The results presented in Table XII show that there is a

strong negative correlation between the prevalence of topics in

apps and requests. This is evidence that users tend to request

things to a greater extent when they are present in a smaller

proportion of apps; a linear relationship is suggested, because

the correlation coefficient is strong with Pearson’s method. We

can see from the graphs in Fig. 7 that the scatter plot of Ta-Tr

from the F set resembles the Pa set, but appears more stretched

out and higher due to the greater number of apps and requests

in the F set.

One might expect there to be a strong correlation between

popularity and request prevalence, indicating that users request

things present in more popular apps, but this is not the case, as

there was no significant correlation between the two metrics.

An interpretation of this result is that while users do not

discriminate in terms of popularity, they do value diversity,

hence the results of the negative prevalence correlation.



TABLE XII
RQ3.2: REQUEST METRIC CORRELATION RESULTS. SPEARMAN’S,

PEARSON’S AND KENDALL’S TAU CORRELATION RESULTS FOR Pa, F AND

A COMPARING APP PREVALENCE, REQUEST PREVALENCE AND MEDIAN

DOWNLOAD RANK FOR EACH OF 80 VALID TOPICS.

Dataset Correlation Ta - Tr Ta - Td Tr - Td

Pa

Spearman -0.341 -0.230 -
Pearson -0.642 -0.253 -
Kendall -0.243 -0.166 -

F

Spearman -0.596 - -
Pearson -0.719 - -
Kendall -0.446 - -

A

Spearman -0.554 - -
Pearson -0.749 - -
Kendall -0.407 - -
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Fig. 7. RQ3.2: Scatter plots for App Prevalence (Ta) against Request

Prevalence (Tr) for Pa and F datasets. Points are clustered in cells whose
darkness indicates their density.

An important finding from these results is that the correla-

tion between app and request prevalence exists not only in Pa

and F datasets, but is actually stronger overall in the A dataset.

This demonstrates that although the Pa dataset is incomplete

and has different properties, the trends are consistent showing

that we are still able to learn things from the data.

RQ3: How are trends in requests affected by varying

dataset completeness? Trends in requests appear more

robust to app sample bias than trends in apps; we have

found a strong inverse linear correlation between topic

prevalence in apps and requests, that is consistent in Pa,

F and A datasets.

V. ACTIONABLE FINDINGS FOR FUTURE APP STORE

ANALYSIS

In this paper we have presented empirical evidence that

indicates that the partial nature of data available on App Stores

can pose an important threat to the validity of findings of

App Store Analysis. We show that inferential statistical tests

yield different results when conducted on samples from partial

datasets compared to samples from full data sets; even if we

were to exhaustively study the entire partial data set available,

we will be studying a potentially biased sample.

The findings reported in this paper suggest that this will

be a potent threat to validity. Naturally, where researchers

have full data sets available they should sample (randomly)

from these or base their results on the exhaustive study of the

entire dataset. However, this raises the uncomfortable question:

“What should we do when only a partial dataset is available?”.

This question is uncomfortable, because partial datasets are so

prevalent in App Store Analysis, as the survey in this paper

indicates.

Clearly, researchers need to augment their research findings

with an argument to convince the reader that any enforced

sampling bias is unlikely to affect their research conclusions

and findings. This may be possible in some cases, since

the sampling bias is often at least known, and sometimes

quantifiable. For example there may be simply a bias on

either recency or on popularity. Alternatively, researchers may

choose to constrain study scope, making claims only about

populations for which the sample is unbiased (e.g., all recent

or popular apps on the store(s) studied).

These are rather generic and standard approaches to han-

dling sampling bias. Our analysis of partial and complete

data from the Blackberry World App Store indicates a further

possibility. Tentatively, our results suggest that correlation

analysis may prove to be less sensitive to biasing effects of

enforced sampling, compared to inferential statistical testing

for significant differences between biased samples.

Ideally, one would like to see further studies of other

App Stores to confirm these results. Unfortunately, many

App Stores do not make full information available, as the

Blackberry World App Store did at the time we studied

it. Nevertheless, where full information is available, further

replication studies are desirable: correlation analysis of App

Stores provides a potential tool to understand the relationship

between the technical software engineering properties of apps,

and the users’ perceptions of these apps. Understanding such

relationships is one of the motivations for the excitement and

rapid uptake of App Store Analysis.

VI. THREATS TO VALIDITY

Our paper is primarily concerned with addressing threats to

validity, yet it also may have some of its own. In this section

we discuss the threats to the validity of our experiments based

on construct, conclusion and external validity.

Our construct validity could be affected by issues with the

data we used in our experiments, which was gathered from

the Blackberry World App Store. We therefore rely on the

maintainers of the store for the reliability and availability of

raw data. Due to the large-scale and automated nature of

data collection, there may be some degree of inaccuracies

and imprecisions in the data. However, we have focussed our

observations across large sets of data, rather than detailed

observations from individual apps, which provides some ro-

bustness to the presence of inaccuracies in the data. We also

make the assumption when processing the (N)umber of ratings

for an app, that reviews are not removed from the store. This

would cause an app that is reviewed to appear non-rated.



Were an app with many reviews to have some removed, it

is unlikely that this would impact the overall findings, as the

scale of the number of ratings provides some robustness to

small changes. To the best of our knowledge, however, reviews

are neither removed nor changed.

Our conclusion validity could be affected by the human

assessment of topics and requests in answer to RQ2. To

mitigate this threat, we plan to conduct replications using a

larger number of participants.

With regard to external threats, we return once again to the

dataset. We mined a large collection of app and review data

from the Blackberry World App Store, but we cannot claim

that our results generalise to other stores such as those owned

by Google or Apple. Rather, our study discusses the issues

that can arise from using biased subsets of reviews, such as

the kind available from App Stores; and we use the Blackberry

dataset to demonstrate our approach at mitigating the bias, in

order that we can learn from the data.

VII. RELATED WORK

App Store Repository Mining is a recently introduced field

that treats data mining and analysis of App Stores as a form

of software repository mining. Information is readily available

in the form of pricing and review data; Harman et al. [20]

analysed this information and found a correlation between

app rating and rank of downloads. Some studies have used

open source apps in order to circumvent lack of available

code: Syer et al. [25] compared Blackberry and Google’s App

Stores using feature equivalent apps, analysing source code,

dependencies and code churn; Ruiz et al. [26] studied code

reuse in Android apps; Minelli and Lanza produced a tool to

mine and analyse apps [27]; Syer et al. [28] studied the effect

of platform independence on source code quality.

Other studies extract and use API or other information

from Android apps: Linares-Vásquez et al. [29][30] found

that more popular apps use more stable APIs, and analysed

API usage to detect energy greedy APIs; Gorla et al. [19]

clustered apps by category to identify potentially malicious

outliers in terms of API usage; Ruiz et al. [31] studied the

effect of ad-libraries on rating; and Avdiienko et al. [32] used

extracted data flow information to detect potentially malicious

apps through abnormal data flow.

User reviews are a rich source of information concerning

features users want to see, as well as bug and issue reports.

They can serve as a communication channel between users and

developers. Several studies have utilised (F)ully complete user

review datasets, and these analyse many more user reviews

than those using (Pa)artially complete user review datasets: a

mean of 9.8 million reviews are used by studies on F datasets,

which starkly contrasts with a mean of 0.2 million reviews

used by studies on Pa datasets. A summary of recent work on

App Review Mining and Analysis can be found in Table II.

In 2012 Hoon et al. [11] and Vasa et al. [12] collected an

F dataset containing 8.7 million reviews from the Apple App

Store and analysed the reviews and vocabulary used.

Hoon et al. [1] then further analysed the reviews in 2013,

finding that the majority of mobile apps reviews are short in

length, and that rating and category influences the length of

reviews. Another F sample was used in the 2013 study by Fu

et al. [2], which analysed over 13 million Google Play reviews

for summarisation.

Studies on Pa datasets use smaller sets of reviews, yet have

produced useful and actionable findings. In 2013 Iacob and

Harrison [7] presented an automated system for extracting and

analysing app reviews in order to identify feature requests.

The system is particularly useful because it offers a simple

and intuitive approach to identifying requests. Iacob et al. [5]

then studied how the price and rating of an app influence the

type and amount of user feedback it receives through reviews.

Khalid [3], [13] used a small sample of reviews in order to

identify the main user complaint types in iOS apps. Pagano

and Maalej [4] gathered a sample of 1.1 million reviews from

the Apple App Store in order to provide an empirical summary

of user reviewing behaviour, and Khalid et al. [9] studied the

devices used to submit app reviews, in order to determine the

optimal devices for testing.

Several authors have incorporated sentiment in their study

of reviews. Galvis Carreño and Winbladh [8] extracted user

requirements from comments using the ASUM model [33],

a sentiment-aware topic model. In 2014 Chen et al. [10]

produced a system for extracting the most informative reviews,

placing weight on negative sentiment reviews. Guzman and

Maalej [6] studied user sentiments towards app features from a

small multi-store sample, which also distinguished differences

of user sentiments in Google Play from Apple App Store.

Research on app reviews is recent at the time of writ-

ing, but much work has been done on online reviews

(e.g. [21][34][35][36]), all built upon by the papers mentioned.

Morstatter et al. [37] carried out a similar study to ours on

Twitter data, finding that the subset of tweets available through

the Twitter Streaming API is variable in its representation of

the full set, available via the Twitter Firehose dataset.

VIII. CONCLUSIONS

Sampling bias presents a problem for research generalisabil-

ity, and has the potential to affect results. We partition app and

review data into three sets of varying completeness. The results

from a Wilcoxon test between observable metrics such as

price, rating and download rank between these partitions show

that the sets differ significantly. We show that by appropriate

data reduction of user reviews to a subset of user requests, we

can learn important results through correlation analysis. For

example, we find a strong inverse linear correlation between

the prevalence of topics in apps and user requests. Our results

suggest that user requests are more robust to the App Sampling

Problem than apps, and that correlation analysis can ameliorate

the effects of sample bias in the study of partially complete

app review data. We build on the methods used by Iacob &

Harrison [7] to extract requests from app reviews, in addition

to using topic modelling to identify prevalent themes in apps

and requests as a basis for analysis.
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