
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 1

Evaluating Automatic Program Repair
Capabilities to Repair API Misuses

Maria Kechagia, Sergey Mechtaev, Federica Sarro, and Mark Harman

Abstract—API misuses are well-known causes of software crashes and security vulnerabilities. However, their detection and repair is
challenging given that the correct usages of (third-party) APIs might be obscure to the developers of client programs.
This paper presents the first empirical study to assess the ability of existing automated bug repair tools to repair API misuses, which is
a class of bugs previously unexplored. Our study examines and compares 14 Java test-suite-based repair tools (11 proposed before
2018, and three afterwards) on a manually curated benchmark (APIREPBENCH) consisting of 101 API misuses. We develop an
extensible execution framework (APIARTY) to automatically execute multiple repair tools.
Our results show that the repair tools are able to generate patches for 28% of the API misuses considered. While the 11 less recent
tools are generally fast (the median execution time of the repair attempts is 3.87 minutes and the mean execution time is 30.79
minutes), the three most recent are less efficient (i.e., 98% slower) than their predecessors. The tools generate patches for API

misuses that mostly belong to the categories of missing null check, missing value, missing exception, and missing call. Most of the
patches generated by all tools are plausible (65%), but only few of these patches are semantically correct to human patches (25%).
Our findings suggest that the design of future repair tools should support the localisation of complex bugs, including different categories
of API misuses, handling of timeout issues, and ability to configure large software projects. Both APIREPBENCH and APIARTY have
been made publicly available for other researchers to evaluate the capabilities of repair tools on detecting and fixing API misuses.

Index Terms—Automatic Program Repair, Application Programming Interfaces, API Misuses, Bug Benchmarks.

F

1 INTRODUCTION

A LMOST all modern software systems (e.g., software
platforms, mobile, and web applications) depend

heavily on Application Programming Interfaces (APIs).1 As
new initiatives and trends emerge, APIs quickly follow,
thereby supporting reuse, component-driven development
and architectural encapsulation. For example, consider the
recently appeared blockchain applications.

While APIs accelerate software development and reduce
software production costs [1], violations of APIs’ explicit
or implicit usage constraints (i.e., their contracts) can have
detrimental effects (software crashes and security vulnera-
bilities) on the user experience of client programs [2], [3],
[4]. These incorrect usages of APIs by client applications
represent API misuses [2], [5]. An API misuse occurs, for
instance, when a client program calls an API method that
expects a non-null constrained formal parameter (based on
its specification) without validating (i.e., via null checks
or error handling) the inputs passed to its arguments.
Additionally, developers should be always aware of API-
versioning issues. As APIs are part of the software, APIs
themselves evolve, and the client programs that call them
need to be timely updated to new API versions to avoid
further API misuses [3].

Automatic program repair tools (hereafter, referred to as
repair tools) can be promising tools to address potential is-

• Maria Kechagia, Sergey Mechtaev, Federica Sarro, and Mark Harman
are affiliated with University College London, Department of Computer
Science. Mark Harman is also affiliated with Facebook London.
E-mail: m.kechagia@ucl.ac.uk, s.mechtaev@ucl.ac.uk, f.sarro@ucl.ac.uk,
mark.harman@ucl.ac.uk

1. With the term APIs we also refer to software libraries.

sues related to opaque APIs. These techniques automatically
detect bugs in the source code and generate corresponding
repair patches using oracles [6] (e.g., test cases, logic rules,
specification, historical data). Related work shows that re-
pair tools can reveal real bugs [7] and have been already
successfully used in industry [8].

However, the performance (effectiveness and efficiency)
of repair tools in automatically detecting and fixing API
misuses remains unknown. To the best of our knowledge,
this happens for two main reasons. First, there are no
available repair tools specifically designed to automatically
detect and fix API misuses that can be directly evaluated by
researchers. Second, even though API misuses may exist in
the benchmarks used for the evaluation of state-of-the-art
repair tools, previous research does not focus on whether
repair tools can detect and fix API misuses.

Therefore, in this paper, we conduct the first empirical
study that evaluates the capabilities of state-of-the-art repair
tools for automatically detecting and fixing API misuses.
Moreover, based on the results of our study, we derive
suggestions for aiding repair tools to effectively and effi-
ciently target API misuses. We believe that our study is vital
for researchers to understand and tackle the challenges for
designing API-repair tools in the future.

To this end, we design and carry out the first large-scale
empirical study on the performance of repair tools for API-
misuse repair, following the most recent best practices in the
field [2], [6], [9]. Specifically, our study compares the ability
of 14 Java test-suite-based repair tools to automatically de-
tect and fix API misuses in client Java programs. According
to Liu et al. [10], we categorise these tools into less recent
(introduced before 2018) and more recent (introduced after
2018) tools. In our study, we compare 11 earlier tools (first

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 2

11 tools in Table 4) and three more recent tools (last three
tools in Table 4).

As there is no available bug benchmark that can be
directly used for evaluating API-repair tools, we have man-
ually curated a benchmark of API misues, named APIREP-
BENCH. We derived this benchmark from three large and
diverse bug benchmarks to improve the generalisability of
our findings [9]. Two of the three benchmarks (namely,
BEARS [11], BUGS.JAR [12]) are for program repair, and one
benchmark (namely, MUBENCH [2]) is for static API-misuse
detection. APIREPBENCH contains 101 revisions of buggy
software projects with API misuses, along with test cases
(oracle) that can expose the API misuses.

Additionally, for a fair evaluation of the repair tools, we
consider the particular classes of bugs (i.e., targeted defect
classes) the tools are designed to work for, as recommended
by Monperrus [6]. We also take into account the categories
of API misuses as proposed by Amann et al. [2].

To carry out our experiments, we devise an execution
framework called APIARTY, which allows us to automati-
cally run multiple repair tools, and make it publicly avail-
able.2 APIARTY can be extended with additional buggy
project revisions with API misuses and repair tools, and it
is machine independent.

Our results show that all repair tools can generate
patches for 28% API misuses in our benchmark. The median
time of the repair attempts of the 11 less recent tools,
executed on the full APIREPBENCH, is 3.87 minutes and the
mean time 30.79 minutes. The three recent tools, examined
on a subset of APIREPBENCH, take significantly more time
(more than two hours median and mean time) to run. The
tools generate patches for API misuses that mostly belong to
the categories of missing null check, missing value, miss-
ing exception, and missing call. Even though for all tools
most of the generated patches are plausible (65%), only few
of the generated patches are semantically correct to human
patches (25%). Overall, recent tools are more effective for the
bugs examined, with AVATAR and TBAR generating more
than 60% plausible and semantically correct patches.

The contributions of this paper are the following:

• An empirical evaluation of 14 state-of-the-art Java
test-suite-based repair tools and insights on advanc-
ing existing repair tools concerning their capabilities
on API-misuse repair.

• A benchmark of 101 API misuses, APIREPBENCH,
which can be used as a robust foundation for evalu-
ating the capabilities of repair tools on detecting and
fixing API misuses. APIREPBENCH is used for the
present study but it can be also used for future work.
Thus, we make the benchmark publicly available.

• A software infrastructure, APIARTY, that facilitates
the systematic and reproducible evaluation of repair
tools targeting API misuses.

In the rest of the paper, we first outline the key defi-
nitions and background of our study (Section 2). We then
describe the used data sets and methods (Section 3). In

2. Our benchmark, platform, and results are publicly available at:
https://github.com/SOLAR-group/APIARTy, https://solar.cs.ucl.ac.
uk/os/apiarty.html.

TABLE 1
Java Repair Tools Available in Literature

Tool Type Benchmark

Heuristic-based

ARJA [13] Generic REPAIRTHEMALL
ARJA-GENPROG [7] Generic REPAIRTHEMALL
ARJA-KALIA [14] Functionality removal REPAIRTHEMALL
ARJA-RSREPAIR [15] Statement change REPAIRTHEMALL
ASTOR-CARDUMEN [16] Statement change REPAIRTHEMALL
ASTOR-GENPROG [17] Generic REPAIRTHEMALL
ASTOR-KALI [18] Functionality removal REPAIRTHEMALL
ASTOR-MUTREPAIR [18] Generic REPAIRTHEMALL
AVATAR [19] Static violations DEFECTS4J
CAPGEN [20] Generic DEFECTS4J
IFIXR [21] Template-based DEFECTS4J
SIMFIX [22] Similarity-based DEFECTS4J
SKETCHFIX [23] Generic DEFECTS4J
TBAR [24] Template-based DEFECTS4J

Constraint-based

ACS [25] if conditions DEFECTS4J
CLOTHO [26] Invalid String inputs Custom
DYNAMOTH [27] Method calls REPAIRTHEMALL
Exception repair [28] Incorrect assignments Custom
FOOTPATCH [29] Memory leaks Custom
JAID [30] Generic DEFECTS4J
JAVACC [31] Syntax errors Custom
JFIX [32] Generic DEFECTS4J
JIST [33] Branching-time logics Custom
LOOPFIX [34] Loop conditions DEFECTS4J
NOPOL [35] Conditional checks REPAIRTHEMALL
NPEFIX [36] Null pointer checks REPAIRTHEMALL
Timestamps [37] Timestamp overflows Custom
VFIX [38] Null pointer checks Custom

Learning-aided-based

ASTOR-DEEPREPAIR [18] Generic DEFECTS4J
CCA [39] AST changes DEFECTS4J
CONFIX [40] AST changes DEFECTS4J
ELIXIR [41] Method invocations Industrial
FIXMINER [42] Generic DEFECTS4J
GENPAT [43] Generic DEFECTS4J
GETAFIX [43] Static violations Industrial
HDREPAIR [44] Generic Custom
LASE [45] Systematic edits Custom
LSREPAIR [46] Similarity-based DEFECTS4J
PHOENIX [47] Static violations Custom
SEQUENCER [48] Sequence-to-sequence DEFECTS4J
SOFIX [49] Template-based DEFECTS4J
SSFIX [50] Generic DEFECTS4J
VURLE [51] Security vulnerabilities Custom

Section 4, we present and discuss the results on the effective-
ness and efficiency of the examined repair tools. We finally
mention our threats to validity in Section 5 and list related
work in Section 6. We conclude with an overview of our
study and future work in Section 7.

2 BACKGROUND AND DEFINITIONS

In this section, we describe the main concepts and defini-
tions regarding automatic program repair, API misuses, and
bug benchmarks broadly used in the rest of the study.

2.1 Automatic Program Repair
The following paragraphs explain the main concepts and
evaluation limitations of automatic program repair, and
review the existing Java repair tools available in literature.

Automatic program repair refers to the process of auto-
matically fixing software bugs without human intervention.
Program repair consists of two main phases. Initially, a

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 3

repair tool applies a fault localisation approach to identify
a bug, and, then, it generates patches (using one or more
of several approaches e.g., search-based software engineer-
ing [13], logic rules [29] etc.) that can possibly fix that
bug. Afterwards, the (usually manual) evaluation of the
correctness of the patches follows. An overview on the
fundamental concepts of automatic program repair can be
found in the surveys of Gazzola et al. [52], Monperrus [53],
and Le Goues et al. [54].

Fault localisation: Automated program repair tech-
niques receive as an input a buggy program and a cor-
rectness criterion (e.g., the program’s test suite for the
evaluation of the generated patches). Most repair tools start
by using fault localisation to identify those locations in the
source code that should be repaired. Such fault localisation
procedures typically rank locations in the source code that
are buggy. Popular fault localisation approaches for Java
program repair include GZOLTAR and OCHIAI [55].

Java repair tools: There is a plethora of available repair
tools. We conducted a survey on these tools that comprises
two passes. First, we systematically searched3 in the soft-
ware engineering literature for repair tools. This search
returned 332 results that we reviewed considering the title
and abstract of the research papers of the tools. From these
results, we found 115 papers that present novel repair
tools. Out of these, 61 refer to Java repair tools (excluding
Android). We have excluded working papers (e.g., tools that
are published only on ARXIV), duplicates (i.e., different ref-
erences for the same tool), and irrelevant papers to program
repair (e.g., debugging tools). We thereby arrived at a final
set that includes 43 repair tools (see Table 1).

We classified the 43 tools found into three categories,
(namely, heuristic repair, constraint-based repair, and learning-
aided repair), based on the repair approaches used. According
to Le Goues et al. [54], the techniques for constructing repair
patches can be divided into these three categories by consid-
ering two criteria: what types of patches are constructed and
how the search is conducted.

Specifically, “Heuristic-based” tools use a generate-and-
test methodology. First, the tools construct patches by it-
erating over a search space of syntactic program modifica-
tions. Second, the tools validate the generated patches by
calculating the number of tests that pass when a suggested
patch is applied to the program under examination. We
note that in this category we also include tools that use
template patterns since according to Liu et al. [10] techni-
cally these tools work similarly to “Heuristic-based”. Addi-
tionally, “Constraint-based” tools proceed by constructing
a repair constraint that the patched code should satisfy.
These tools use symbolic execution and other constraint-
solving techniques to extract properties for the functions
to be synthesised. Finally, “Learning-aid-based” tools lever-
age the availability of previously generated patches and
bug fixes to generate patches. These tools rely on machine
learning to learn patterns for patch generation. Learning-
aid-based techniques can be used by “Heuristic-based” and
“Constraint-based” repair tools to improve the performance
of these tools.

3. In particular, we used the following query in Google Scholar:
https://scholar.google.com/scholar?q=“patch generation”+“program
repair”+“synthesis”+“java”. Accessed on the 3rd of March 2020.

We also list the Java bug benchmarks that have been
used for the evaluation of the tools, in the related work,
as presented in the third column of Table 1. Note that
“REPAIRTHEMALL” refers to all the bug benchmarks used
by Durieux et al. [9], “Custom” means that a tool has been
evaluated on a non-standard bug benchmark (e.g., on the
ten most popular Java projects mined from GITHUB), and
“Industrial” means that a tool has been evaluated on a bug
benchmark from an industrial setting.

We further extracted repair tools that have comparable
characteristics (e.g., similar design, inputs, outputs) to each
other for studying the tools’ capabilities on repairing API
misuses (see Section 3.2). Additionally, there are several ap-
proaches (e.g., [56], [57], [58], [59]) that attempt to synthesise
client code and examples for a given API. However, these
approaches are evaluated on small programs. Here, we are
interested in repair tools that can be broadly applied to client
programs, and fix already written code with API misuses.

Evaluation limitations: Recent studies on automatic pro-
gram repair highlight the following limitations, in the eval-
uation, of state-of-the-art repair tools. First, these tools can
repair particular types of bugs (e.g., missing null check)
and should be evaluated based on the types of bugs that
the tools are designed to repair [6]. Second, these tools may
suffer from imprecision. The tools produce repair patches
that developers need to (manually) validate since may the
patches do not fix any bugs or should be updated. This can
happen for instance when a repair tool cannot identify a bug
to repair afterwards [55]. Finally, most tools are evaluated
based on bug benchmarks that do not necessarily reflect the
complexity of real systems’ bugs [9].

2.2 API misuses

An API can be considered as a bundle of interfaces, classes,
and methods that client programs call or implement. Ac-
cording to Fazzini et al. [3], an API usage is any call of
one or more methods of either old or new API versions, i.e.,
�%� = [<1, ..., <:]. An API misuse occurs when the clients
of an API violate an API specification (i.e., the implicit or
explicit usage constraints of an API).

In a recent work, Amann et al. [2] provide a taxonomy
of API misuses and evaluate static API-misuse detectors.
Table 2 lists representative categories of API misuses from
this survey [2]. API violations can have detrimental effects,
such as software crashes and security vulnerabilities, on
software and users [5]. Therefore, it is essential for develop-
ers to fix API misuses in client programs as early as possible
before releasing the software. Here, we use this taxonomy
and benchmark of API misuses (MUBENCH) to evaluate
the capabilities of repair tools on fixing API misuses. We
focus on the “Missing API-usage element” category referring
to the first seven rows of Table 2 as these elements come
from real projects (not synthetic), count a higher number of
projects (“Distribution”), and mostly lead to crashes.

To build software that complies with the usage con-
straints of called APIs in client programs, developers need to
read, and comprehend, APIs’ reference documentation. The
API reference documentation should list all the appropriate
usage constraints of an API, so that developers can correctly
use that API. Many empirical studies [60], [61], [62] have,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 4

TABLE 2
API-misuse Categories and Representative Examples Extracted From MUBENCH [2]

API-misuse Category Category Description Representative API Misuse API-Misuse Description Distribution (#)

Missing API-usage element

Method call (MC) Missing method call
sequence jackrabbit–5 Missing java.io.InputStream.close in

QValueFactoryImpl.BinaryQValue
30

Null check (MNC) Missing if condition for
null check aclang–1

Missing null check for
StringBuilder.getNullText called in
StringBuilder.appendFixedWidthPadLeft

25

Value or state (MV) Missing check for input
value or state minecraft–launcher–1

Passed unsafe input (PBEWithMD5AndDES) in
javax.crypto.Cipher called in class
BaseAuthenticationService

21

Synchronisation (MS) Missing synchronisation
element testng–17 Unsynchronized java.util.List.m_configIssues

collection in JUnitXMLReporter.generateReport
1

Context (MX) Component called from the
wrong context synthetic_directives–callondte UI component (javax.swing.JFrame) called within a

wrong context (CallOnDTE.main) 1

Iteration (MI) Missing condition for next
iteration in loop synthetic_directives–wait–loop Missing java.lang.Object.wait in

WaitWithoutLoop.misuse
1

Exception handling (ME) Missing try–catch
construct itext–1

Uncaught might-thrown InvalidKeyException by
javax.crypto.Cipher.init called in
PdfPublicKeySecurityHandler.-
computeRecipientInfo

10

Redundant API-usage element

Method call (RC)

Redundant method call
(possibly replaced by
another version of the
called overloaded method)

adempiere–1

Unspecified encoding when a String is converted to
bytes in Cipher.doFinal;
java.lang.String.getBytes() is replaced by
java.lang.String.getBytes("UTF8")

13

Null check (RNC) Redundant null check for
a non-null Object closure–1

Redundant null check for
com.google.javascript.rhino.jstype.-
UnionTypeBuilder.build() (non-null Object)
called in UnionType.meet

3

Value or state (RV) Restrictive condition for
value or state for iterations synthetic_directives–toorestrictive Restrictive iteration condition that skips the last element

of a java.util.List in Iterate.pattern
2

Synchronisation (RS) Redundant use of
synchronisation synthetic_directives–deadlock The same Object is needlessly synchronised twice

within (synchronised) block causing a deadlock 1

Context (RX)
Dispatched component to a
context where it is already
called

synthetic_directives–alreadyondte
Dispatched work of an UI element
(javax.swing.JButton) to a context (DTE), while the
current execution context is already the right one (DTE)

1

Iteration (RI) Incorrect initialisation
whithin iteration synthetic_jca–loop–init Reinitialised javax.crypto.Cipher with each

iteration in ReuseCipher.misuse
1

Exception handling (RE) Too generic caught
Exception types jigsaw–mudetect–12 Too generic caught Exception type (unrrelated to lock

conflicts) in ToolsListerFrame.handle
1

however, shown that API reference documentation is often
inadequate, outdated, or complicated. Thus, programmers
prefer instead to use informal references, such as STACK-
OVERFLOW, which can neither be accurate [4], [63], [64].
Therefore, the development of automatic tools that assists
developers to detect and repair API misuses is vital.

Listing 2 presents an illustrative API misuse, in the
itext Java project, of the Javax Cipher API displayed
in Listing 1. In particular, when an invalid key is given
for initialising a cipher, the init method of Listing 1 (line
14) will throw an InvalidKeyException. However, in
Listing 2 (line 7) there is not any check or error handling
for a possibly malformed passing value to the called init
method. To correct this issue, the developers of itext used,
in the revision 5091 of the project, a try–catch construct
to catch this might-thrown exception.4

2.3 Bug Benchmarks

Software engineers build benchmarks of real-world and
synthetic bugs to assess the performance of novel methods
and tools. A bug in such a benchmark for evaluating repair
tools typically includes: 1) a buggy project revision (e.g., the
last commit (SHA) in the project’s repository, where the bug
exists), 2) a fixed project revision, where the bug is fixed (e.g.,
the commit (SHA) in the project’s repository that fixes the

4. https://github.com/stg-tud/MUBench/blob/master/data/
itext/misuses/1/misuse.yml. All links have been accessed on the 16th
of January 2021.

Listing 1. Cipher API itext
1 public class Cipher {
2 ...
3 /**
4 * Initializes this cipher with a key.
5 * ...
6 * @exception InvalidKeyException if the given key is

inappropriate for
7 * initializing this cipher, or requires
8 * algorithm parameters that cannot be
9 * determined from the given key, or if the given key

has a keysize that
10 * exceeds the maximum allowable keysize (as

determined from the
11 * configured jurisdiction policy files).
12 * ...
13 */
14 public final void init(int opmode, Key key) throws

InvalidKeyException {
15 init(opmode, key, JceSecurity.RANDOM);
16 }
17 ...
18 }

bug), 3) a bug-related test case that triggers the bug (this test
case is usually provided in the fixed project revision).

We use the buggy project revisions from bug benchmarks
(BUGS.JAR [12] and BEARS [11]) for the evaluation of test-
suite-based repair tools, along with buggy project revisions
from a bug benchmark (MUBENCH [2]) originally designed
for the evaluation of static API-misuse detectors. Each buggy
project revision can contain zero or many API misuses; an
API misuse can belong to more than one API-misuse cate-
gories (Table 2). Namely, ' = [01, ..., 0:], where ' represents
a buggy project revision, and 0 an API misuse.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 5

Listing 2. Cipher.init misused in itext
1 public class PdfPublicKeySecurityHandler {
2 ...
3 private KeyTransRecipientInfo computeRecipientInfo(

X509Certificate x509certificate, byte[] abyte0)
4 throws GeneralSecurityException, IOException
5 {
6 ...
7 Cipher cipher = Cipher.getInstance(

algorithmidentifier.getAlgorithm().getId());
8 cipher.init(1, x509certificate);
9 ...

10 }
11 }

Following the guidelines of Amann et al. [2] for
MUBENCH, we consider an API misuse as a particular
instance of a buggy project revision. Therefore, we can have
different instances for the same buggy project revision.
Hereafter, we call these instances as API misuses.

As MUBENCH is not constructed for evaluating repair
tools, there are missing test cases for some buggy project
revisions. To address this issue, we add amendments to
its revisions (e.g., by constructing test cases), where it is
needed. Section 3.3 presents our approach in detail.

3 EXPERIMENTAL SETUP

To evaluate repair tools, while repairing API misuses, we
form three research questions that investigate the effective-
ness and efficiency of the examined tools, and the API-
misuse categories for which the tools can generate patches.
We gather, from the related work, existing state-of-the-art
Java test-suite-based repair tools and bug benchmarks that
include API misuses. For our experiments, we develop a
software infrastructure for the automatic execution of the
tools. In the following, we present our methods in detail.

3.1 Research Questions

While related work shows that repair tools fix real-world
bugs [9], [65], it remains unclear how these tools perform for
API misuses. We aim to shed some light on this unexplored
topic. We evaluate 14 state-of-the-art Java test-suite-based
repair tools to investigate their repairability on API misuses,
to understand any challenges and opportunities regarding
API repair, and to make relevant suggestions for future
repair tools. Our research questions (RQs) follow.

RQ1a): What percentage of API misuses can be au-
tomatically repaired by repair tools? With this RQ, we
investigate the effectiveness of the repair tools on generating
patches able to fix API misuses found in the bug benchmarks
used for our study. Addressing this RQ helps us to under-
stand the strengths and weaknesses of program repair on
fixing API misuses.

RQ1b): What are the causes of non-patch generation
in the context of API misuses? Following the guidelines of
the study of Durieux et al. [9], which examines the reasons
why tools may fail to generate patches, we systematically
identify the causes of non-patch generation in the context of
API misuses. This can help the repair community to evaluate
and improve practical limitations of existing repair tools.

RQ2: How efficient is a repair tool when it automati-
cally repairs an API misuse?

TABLE 3
Excluded Java Test-suite-based Repair Tools

Criterion Violated Repair Tools

Availability LOOPFIX, PHOENIX, VFIX, ELIXIR,
SOFIX, GETAFIX, LASE, VURLE

Executability CAPGEN, JFIX, LSREPAIR, ACS
FOOTPATCH, PHOENIX, SEQUENCER

Configurability DEEPREPAIR, SKETCHFIX, JAID,
IFIXIR, FIXMINER, CONFIX,
GENPAT, HDREPAIR, SSFIX

TABLE 4
Examined Java Test-suite-based Repair Tools

Tool Framework GITHUB Checked-out Evaluation
Repository SHA Data Set

ARJA

ARJA yyxhdy/arja 3e01305

APIREPBENCH

GENPROG
RSREPAIR
KALI
JGENPROG

ASTOR
SpoonLabs/astor da8a267JKALI

JMUTREPAIR
CARDUMEN
NOPOL NOPOL SpoonLabs/nopol bf4a92fDYNAMOTH
NPEFIX – SpoonLabs/npefix 80cfc38
AVATAR – SerVal-DTF/AVATAR 68a1386

APIREPBENCH-D4JTBAR – SerVal-DTF/TBar d1b1555
SIMFIX – xgdsmileboy/SimFix c2a5319

With this RQ, we examine the efficiency, i.e., the execution
time and the number of patch candidates (NPC), of the
repair tools while attempting to detect and fix API misuses.
Addressing RQ2 shows us the factors (if any) that may delay
the repair of certain API misuses. We assume that these
factors may refer to technical characteristics of the tools.

RQ3: For which classes of API misuses do repair tools
perform best? With this RQ, we reveal for which classes
of API misuses (Table 2) repair tools can most effectively
and efficiently generate patches able to fix API misuses.
Answering this RQ helps us to understand whether par-
ticular characteristics of API-misuse classes can affect the
performance of the tools. For instance, it may be more
challenging for a repair tool to generate correct patches for
misuses of missing API method calls rather than of incorrect
values in if conditions. Additionally, answering this RQ
help us to form suggestions for future repair tools.

3.2 Tool Selection
We systematically search the related work to find all the
available state-of-the-art Java repair tools (Section 2.1). To be
selected for inclusion in our study, a repair tool, from these
listed in Table 1, must use the test suite of a project under
examination for validation and meet the following inclusion
criteria according to the guidelines of the recent related
work [9], [10]. We exclude from the beginning CLOTHO [26],
Exception repair [28], JAVACC [31], JIST [33], and Times-
tamps [37] since they are not typical test-suite-based repair
tools.

• Availability: The repair tool should be publicly avail-
able. This is needed for supporting the reproducibil-
ity of our study since our study evolves the auto-
matic downloading and execution of repair tools.
Therefore, if the paper where the tool was presented

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 6

does not provide a link for the repository of this
tool or we are not able to locate a repository of the
tool in the internet (because for instance the tool has
confidentiality issues as in the case of ELIXIR [41]),
we exclude the tool from our study.

• Executability: The repair tool needs to be well-
documented and easy-to-use. This is essential be-
cause one needs to understand how the tools work,
to execute them, and to adapt them, so that they can
run on our execution platform (Section 3.4). Even
though some tools are publicly available, such as
CAPGEN [20], it has been shown that these tools
could not run due to technical issues [9]. Therefore,
such tools are excluded from our study. Furthermore,
the repair tool should be functional and able to
run on a basic execution environment as ours (see
Section 3.5). If a tool cannot run because of technical
issues, we exclude it. For instance, ACS [25] does not
allow programmed queries because of a change in
the GITHUB interface it uses.5

• Configurability: The evaluated tools are test-suite-
based, and, thus, these tools should use test cases
and source code (input) as an oracle for generating
repair patches [53]. However, there are tools such
as SKETCHFIX [23] that need as input extra infor-
mation regarding the faulty methods or classes that
one cannot automatically retrieve. At this stage of
our study, if a tool requires such extra inputs, we
exclude it. We opt for this for the fair comparison
of the tools, so that all tools receive similar inputs
as presented in Section 3.4. Therefore, our criteria
exclude all “Learning-aided-based” tools as they are
not standalone [10], but require extra data (e.g., from
GITHUB repositories for learning patterns).

Table 3 presents the repair tools excluded from our study
along with the inclusion criteria they violate (i.e., reasons
for their exclusion). Table 4 lists the tools and frameworks
finally selected. Except for NPEFIX, AVATAR, TBAR, and
SIMFIX, which are stand-alone repair tools, the remain-
ing tools belong to three frameworks (ARJA, ASTOR, and
NOPOL) as indicated in the second column of Table 4. For
instance, the ARJA framework includes ARJA, GENPROG,
KALI, and RSREPAIR.

In summary, we select all the tools that are publicly avail-
able, functional, and can run on the API-misuse benchmark
we manually curated (i.e., APIREPBENCH) as described in
Section 3.3. Additionally, we include three recently pro-
posed repair tools in our study, namely, AVATAR, TBAR, and
SIMFIX. These tools use novel repair approaches and have
shown promising results [10] on DEFECTS4J bugs. Thus,
it is also important to investigate their effectiveness and
efficiency on API misuses. Since the current implementation
of these tools does not allow the tools to directly run on non-
DEFECTS4J bugs, we could assess these tools only on the
DEFECTS4J API misuses contained in APIREPBENCH, and
we name this subset of API misues APIREPBENCH-D4J.

The first repair tools had been developed for repair-
ing C programs [7], [66], [67] and new versions of them
have been realised for Java program repair in the ARJA

5. https://github.com/Adobee/ACS

and ASTOR tools. These works rest on the Plastic Surgery
Hypothesis [68], that is, patches for a given software can be
assembled out of fragments of code found in the existing
code. In particular, GENPROG by Le Goues et al. [7] is a
program repair approach based on genetic programming. It
works at statement level and its repair operations include
insertion, removal, and replacement of statements. KALI
by Qi et al. [14] has operators that include removal of
statements, modification of if conditions, and insertion
of return statements. RSREPAIR by Qi et al. [15] is a
variation of GENPROG that uses random search; not genetic
programming as GENPROG.

ARJA by Yuan and Banzhaf [13] is a framework for
Java program repair that comprises of four approaches,
ARJA, and Java versions of GENPROG, KALI, and RSREPAIR.
ARJA is a genetic programming approach that optimises the
exploration of the search space by using several techniques
including multi-objective search optimisation.

ASTOR by Martinez and Monperrus [18] is a Java library
for program repair that provides implementations of C pro-
gram repair tools (GENPROG, KALI, MUTREPAIR) in Java.
It also includes CARDUMEN that refers to a repair approach
based on mined templates [16].

DYNAMOTH by Durieux and Monperrus [27] is a sub-
module of NOPOL. It targets buggy and missing if condi-
tions but it also fixes method calls. Contrary to NOPOL, it
uses the Java Debug Interface to collect information about
the runtime context, variables, and method calls.

NOPOL by Xuan et al. [35] is a semantics-based repair
tool that repairs if conditions. It is based on dynamic analy-
sis and code synthesis with Satisfiability Modulo Theory
(SMT). NOPOL uses angelic values (i.e., arbitrary values that
make the failing test cases from a program under repair
to pass) to determine the expected behavior of suspicious
statements. Then, it collects runtime data and compares the
expected with the actual values. Finally, using SMT, it finds
feasible solutions and translates them into patches.

NPEFIX by Durieux et al. [36] automatically generates
patches for fixing the NullPointerException. NPEFIX
explores the search space of possible patches by using
metaprogramming (i.e., automated code transformation).

AVATAR by Liu et al. [19] leverages fine-grained patterns
of static analysis violations mined from software projects.
Then, it uses these patterns as ingredients for automated
patch generation to fix semantic bugs exposed by the test
suites of the projects under examination.

TBAR by Liu et al. [24] considers a suspicious statement’s
AST, and tries to match this AST with the context AST of the
right fix pattern that can be found in the search space. TBAR
applies changes including Insert, Update, Delete, and
Move until it identifies the right fix patterns.

SIMFIX by Jiang et al. [22] uses both existing patches and
similar code to identify repair patches. Then, it validates the
patches against the test suites of the projects examined.

3.3 Benchmark Selection and Filtering (APIREPBENCH)

We search the related work to find available bug bench-
marks that can be used in the evaluation of repair tools
targeting API misuses. Since existing bug benchmarks do
not satisfy the criteria listed in Section 3.3.1, we derived,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 7

TABLE 5
Selected Bug Benchmarks

Total Total Checked Final Final
Sources Projects Revisions Revisions Revisions Projects

BEARS 72 251 251 19 10
BUGS.JAR 8 1,159 506 40 7
MUBENCH 68 280 244 42 12

Total 148 1,690 1,001 101 29

TABLE 6
Categories of API Misuses in APIREPBENCH

API-misuse Category Misuses (#)

Missing Method call (MC) 31
Missing Value or state (MV) 28
Missing Exception Handling (ME) 25
Missing Null Check (MNC) 19
Missing Context (MX) 4
Missing Iteration (MI) 3
Missing Synchronisation (MS) 0

Total 110

from these, a benchmark specific to the task of evaluating
API-repair tools. We followed an approach similar to the
one adopted by Amann et al. [2], who built MUBENCH
(a benchmark for static API-misuse detectors) by refin-
ing and filtering data from publicly available bug bench-
marks. Specifically, to build our API-misuse benchmark, we
manually extract and curate API-specific bugs from three
publicly available bug benchmarks, namely BEARS [11],
BUGS.JAR [12], and MUBENCH [2]. We opt for a benchmark
having highly diverse software projects since this helps in
strengthening the generability of the results of repair stud-
ies [9]. In the following, we describe the process we followed
to construct our benchmark, named as APIREPBENCH.

3.3.1 Selection
To identify the bug benchmarks that we include in our
study, we define the following inclusion criteria.

• Java related: The bug benchmarks must contain API-
related bugs in the Java programming language. In
particular, these bugs should involve misuses of APIs
that can lead to software crashes [2]. We currently do
not consider Android projects since the tools of our
study cannot repair bugs for Android.

• Documented: The bug benchmarks should provide
adequate information for one to easily find human
patches (bug fixes) to the API misuses.

• Test-suite availability: The bug benchmarks must
include test cases [55] (or bug fixes that can be used
for easily writing relevant test cases [21]) for each
API-related bug. Namely, for each API misuse, we
should have at least one failing test case.

• Public: The bug benchmarks should be publicly
available and presented in a research paper in the
software engineering literature. This is required for
supporting the reliability of our study.

• Buildable: The bug benchmarks should contain
projects that can be built using the ant, mvn, and
gradle building tools. We opt for these tools since

they facilitate the automatic building of software
projects, which is critical for our large-scale study.

• API misuses: The bug benchmarks should contain
projects with API misuses referring to misused APIs
that are called inside the main code of the projects
under examination; we do not currently consider
misuses located inside test code.6

• Under active development: The bug benchmarks
should contain real and active software projects. This
means that we exclude synthetic bug data sets. We
opt for real projects since we are interested in inves-
tigating the capabilities of the tools on live projects
and support the reproducibility of our study.

In the next paragraphs, we present the benchmarks
selected and their particular characteristics.

MUBENCH7 has been developed by Aman et al. [2],
[69] and refers to an extensible Java bug benchmark. It
contains 280 buggy project revisions all with API misuses
stemming from 68 open-source Java and Android software
projects. MUBENCH is made of previously available bug
benchmarks (including BUGCLASSIFY [70], DEFECTS4J [71],
QACRASHFIX [72]), newly constructed bug data sets for
evaluating static API-misuse detectors, and synthetic bug
data sets from developer studies. MUBENCH has been used
for assessing static API-misuse detectors.

BEARS8 has been introduced by Madeiral et al. [11]
and presents an extensible Java bug benchmark. It contains
251 buggy project revisions from 72 GITHUB projects. This
makes it the most well-known bug data set with bugs
from the highest number of different software projects. The
benchmark has been developed for the evaluation of Java
program repair.

BUGS.JAR9 has been published by Ripon et al. [12] and
represents a large-scale Java bug benchmark. It contains
1,158 buggy project revisions from eight large Apache
projects forming the largest known Java bug benchmark.
The benchmark has been developed for the evaluation of
Java repair tools.

3.3.2 Filtering and Refinement
MUBENCH contains 68 software projects in total. From those
projects, we initially kept only 40 that can be automatically
built using ant, mvn, and gradle commands. Accord-
ingly, from MUBENCH, we kept only the buggy project
revisions (that contain API misuses) of the projects selected
(i.e., 244 out of 280 from all the projects initially found
in MUBENCH). We further excluded Android projects and
projects with bugs only in test cases. Additionally, we kept
project revisions that contain tests that can trigger the API
misuses. Given that there were not available test cases for
all the buggy revisions, we created test cases that were
missing (for the WEIBO, CONFUCIUS, and ASTERISK projects
of Table 7). This is essential for benchmarks used in the
evaluation of test-suite-based repair tools [55].

BEARS and BUGS.JAR are two data sets for the evaluation
of repair tools. Thus, they already contain tests for relevant

6. For instance, cases such as https://github.com/stg-tud/
MUBench/blob/master/data/jodatime/misuses/280/misuse.yml.

7. https://github.com/stg-tud/MUBench/tree/master/data
8. https://github.com/bears-bugs/bears-benchmark
9. https://github.com/bugs-dot-jar/bugs-dot-jar

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 8

TABLE 7
Projects in APIREPBENCH

Project Name APIREPBENCH ID Revision (SHA) LOC Java Files (#) Misuses (#)

Activiti-activiti-cloud-app-service ACTIVITI d66c4337 952 22 1
apache-accumulo ACCUMULO 17344890 348,681 1,514 7
apache-camel CAMEL 62b2042b 1,381,397 17,072 5
apache-commons-lang LANG 1fe5439ba 143,989 488 2
apache-commons-math MATH 41f29780 477,725 2,572 7
apache-dubbo DUDDO c4dfc3ac 157,444 2,058 1
apache-flink FLINK 494212b3 340,036 3,313 4
apache-jackrabbit JACKRABBIT 56c328e9 278,741 2,851 1
apache-jackrabbit-oak OAK 56accddf 350,780 2,698 8
apache-logging-log4j2 LOG4J2 86d8944f 107,541 1,294 4
apache-lucene-solr LUCENE-SOLR 0cb96adf 172,230 1,368 1
apache-wicket WICKET 61122bab 195,507 2,971 7
asterisk-asterisk ASTERISK 41461b41 247,687 1,186 1
FasterXML-jackson-databind DATABIND 93f7e14d 99,729 797 3
google-closure-compiler CLOSURE d1cfe679 292,252 1,436 3
hoverruan-weiboclient4 WEIBO 18b596ad 45,273 470 7
HubSpot-Baragon BARAGON a4a9387a 14,851 202 1
INRIA-spoon SPOON 0e478718 80,660 1,189 1
IvanTrendafilov-confucius CONFUCIUS 2fefd5eb 3,887 32 9
jfree-jfreechart JFREE 2266 585,967 2,105 9
JodaOrg-joda-time JODA 76fa4373 85,511 329 3
jriecken-gae-java-mini-profiler PROFILER 30be3177 3,100 16 1
raphw-byte-buddy BUDDY f41aa877 149845 1089 1
spring-cloud-spring-cloud-gcp SPRING-GCP e35a0987 21,710 457 2
spring-projects-spring-data-commons SPRING-DATA cdbd0720 90,294 1,084 1
SzFMV2018-Tavasz-AutomatedCar CAR 6a656ea5 607 23 1
Thomas-S-B-visualee VISUALEE 58fbf0b8 10,309 90 3
traccar-traccar TRACCAR 3f5122cb 43,683 763 7

Total - - 5,730,388 49,489 101

Patches

Build
Client

Compile and run
source code

Run the test suite

client
classpaths/tool
configuration

Program
Repair

Set
classpaths

and
configuration

Tool
set up

Bug
detection

Patch
generation

Run
toolClient.jar

Tool.exe

APIARTy

Fig. 1. Approach overview.

code changes in project revisions and human commits. We
chose these bug benchmarks since they could be appropri-
ately built and are ready to be used for program repair
studies. However, contrary to MUBENCH, not all of the
bugs in BEARS and BUGS.JAR represent API misuses. For this
reason, we thoroughly manually examined the bugs from
these two bug benchmarks and distinguished API-related
bugs from general ones following the process below:

1) We observed and comprehended the taxonomy of
API misuses of MUBENCH [2].

2) We extracted one representative example per API-
misuse category as shown in Table 2.

3) The first two authors manually checked the buggy
project revisions that belong to the BEARS and

BUGS.JAR bug benchmarks to properly identify API-
related bugs.

4) In order to further validate whether a bug is an
API misuse, we used the SOOT framework [73] to
automatically check whether this bug includes a call
to an external API.10

5) The first two authors manually categorised the new
bugs from BEARS and BUGS.JAR having as a guiding
principle the representative examples of Table 2.

6) The first two authors discussed and reached on an

10. We used SOOT as it can analyse the byte code of Java projects
and reveal the full namespace (e.g., java.util.*) of the calls of each
statement in the source code. Thus, by revealing the namespace of these
calls, we can automatically check whether there is a call to an external
API (e.g., Java API, Apache libraries).

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 9

agreement regarding the category of each identified
API misuse in BEARS and BUGS.JAR.

Given a bug present in an existing benchmark, we de-
termine whether it is related to an API misuse by checking
whether it satisfies all the criteria listed in the following:

1) The source code in the buggy project revision under
examination contains a call to an external API (e.g.,
Java API, Apache libraries), and according to the test
case associated with the buggy project revision (as
described in Section 2.3), this call can lead to a crash.
We note that a buggy project revision can consist of
many lines of code. However, we are only interested
in those that contain API calls.

2) The API called in the source code of the buggy
project revision under examination is misused ac-
cording to the API’s reference documentation (e.g.,
there is a missing null check, which can lead to a
NullPointerException).

3) The API-misuse candidate can be classified accord-
ing to the categories of Table 2 from MUBENCH [2].

We note that since BUGS.JAR contains a large number of
bugs, 1,159 program revisions, it was not feasible for us to
manually check all these program revisions to distinguish
API misuses from general bugs, and categorise them into the
classes of Table 2. To address this issue, we applied twice
stratified sampling (each time balanced with the number of
bugs from BEARS), and extracted 506 revisions in total from
BUGS.JAR. The total number of the examined buggy project
revisions (i.e., “Revisions”) appears in Table 5.

Table 6 shows the distribution of the API misuses (of
the project revisions) extracted per API-misuse category.
Consider that, in APIREPBENCH, we have 101 unique API
misuses. However, in Table 6, we have in total 110 API
misuses, because an API misuse can belong to more than one
API-misuse categories (see “Misuse Category” in Table 8).

Table 7 lists 28 unique projects in APIREPBENCH, and
summarises the characteristics of the projects including the
project size (lines of code, LOC, and the number of the Java
files). Note that in Table 5, we have 29 projects as MATH
belongs both to BUGS.JAR and MUBENCH. For calculating
these project metrics, we consider the latest reversion (SHA)
of each project in APIREPBENCH.

3.4 Execution Framework (APIARTY)

For the evaluation of state-of-the-art Java test-suite-based
repair tools on benchmarks of API misuses, we introduce the
execution framework, APIARTY. The design of APIARTY
is based on the fact that these repair tools share similar inter-
faces that typically receive the following list of parameters
from the project revision that a bug belongs to:

• the path to the root directory of the source code;
• the path to the root directory of the test code;
• the path to the root directory of all the compiled

classes of the source code;
• the path to the root directory of all the compiled

classes of the test code;
• the paths to all the dependencies (.jar files).

The top level architecture of APIARTY is illustrated in
Figure 1. APIARTY provides users with two interfaces.
Users can run one (or more) repair tool(s) on the whole
benchmark of API misuses (APIREPBENCH) or they can
run one (or more) repair tool(s) on a project revision that
is associated with a specific API misuse. For each project
revision, APIARTY automatically builds the client program
and specifies the right classpath to be used in the next
phase by a repair tool. During the program repair phase,
the tool under examination should first consider any con-
figuration issue, and start the fault localisation. Then, the
tool generates patches that should be (manually) evaluated
afterwards. APIARTY stores the generated patches and any
execution report produced (execution time and errors) for
further investigation. APIARTY differs from REPAIRTHEM-
ALL by Durieux et al. [9] that also evaluates repair tools as it
works at project-revision level and not at benchmark level.
This is essential as a bug benchmark may contain bugs that
are not API misuses, and, then, that benchmark should be
curated before being used by APIARTY.

APIARTY receives as an input a set of buggy project
revisions that contain API misuses. Each buggy revision
refers to a specific API misuse and is represented by a
.json file that includes information such as: the project’s
name, the project’s repository, the project’s revision (SHA),
where an API misuse is fixed, the test case that triggers the
API misuse in that revision. APIARTY has already loaded
and processed 101 buggy project revisions (API misuses).
However, easily one can add more API misuses by providing
appropriate .json files. Furthermore, APIARTY currently
includes 14 Java test-suite-based repair tools. Users can also
configure the tools by providing particular attributes (e.g., a
timeout limit). APIARTY offers the following advantages:

• It is provided as a software image, and can run
on different machines, for replicability and reuse in
future work.

• Users can easily add more tools and benchmarks
based on the documentation of APIARTY.

• It stores the generated patches and execution reports
(execution time and errors) of the repair tools.

• It focuses on the evaluation of API-repair tools as it
can process benchmarks containing API misuses.

3.5 Experiments and Settings
Given the 101 buggy project revisions, from the 28 open-
source software projects presented in Table 7, we removed
eight duplicated project revisions with repeated bugs and
four project revisions with check-out issues and broken
dependencies. We run the 11 less recent repair tools on the
whole APIREPBENCH (89 unique buggy project revisions).
We run the most recent tools (AVATAR, TBAR, and SIMFIX)
on 12 out of 89 buggy project revisions that also exist
in DEFECTS4J (see Section 3.2). Namely, we consider the
following projects from Table 7: LANG, MATH, CLOSURE,
and, JFREE. Therefore, we performed 1,015 repair attempts
in total from all 14 repair tools. It took 36 days for all the
repair tools to complete all experiments. We used the default
tool settings of all tools. Also, we set the timeout to two
hours for the 11 less recent tools, following the guidelines
of the study of Durieux et al. [9]. For the most recent

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 10

Arja

Avatar

Cardumen

Dynamoth

GenProg

jGenProg

jKali

jMutRepair

Kali

Nopol

NPEFix

RSRepair

SimFix

TBar

0 5 10 15
Generated patches

R
ep

ai
r

To
ol

s

Patch Types Correct Localised Plausible

Fig. 2. RQ1a): Repairability of the repair tools based on the number of
the patches generated by the tools.

tools (AVATAR, TBAR, and SIMFIX), we set the timeout to
four hours, because we observed that these tools perform
more operations than the 11 less recent tools to evaluate
the generated patches against the whole test suite [19], [22],
[24], and we wish to run all tools under a fair execution. All
experiments run on an UBUNTU 16.04 LINUX docker image
of APIARTY deployed on a 2-core PC with 8 GB RAM and
3,1 GHz Intel Core i5 processor. We used Java 1.8 (amd64) of
the OPENJDK, allocating up to 4 GB for the JVM.

4 RESULTS

4.1 RQ1a): What percentage of API misuses can be
automatically repaired by repair tools?

To answer RQ1a) we count (per repair tool) the number of the
following elements:

1) Generated patches that each repair tool yields by
the end of its execution.

2) Plausible generated patches that pass the initially
failing API-related tests and all tests that were
initially passing. To find those test-suite-adequate
patches, given a patch generated by a repair tool,
we manually inject the patch in the buggy project
revision under examination and rerun the project’s
test suite. If the initially failing API-related test does
not happen again, and there are not any new failing
tests, we consider the generated patch as plausible.
The ARJA-based tools can generate more than 100
patches while repairing a software bug. For these
tools, we manually examine the first patch gener-
ated for plausibility and, then, correctness.

3) Semantically correct generated patches that are
plausible and semantically similar to the human
patches (correctness criterion). Since we have at our
disposal the commits (human patches) that correct
the buggy project revisions, we manually compare
the generated patches with the human patches. For
this comparison, we manually examine whether
the generated patches and the developer-provided
patches are identical (i.e., exactly same patches),
semantically-similar (i.e., not identical patches but
with the same effect on the program behaviour),

or incorrect (i.e., irrelevant patches without having
the same effect on the program behaviour) [10]. In
particular, to define semantically-similar patches as
correct, we considered the examples of semantic
similarity rules used by Liu et al. [10]. To strengthen
the validity of our results, the first two authors have
cross-checked the semantic correctness of the gener-
ated patches. For the purposes of our study, we con-
sider the identical and semantically-similar patches as
semantically correct patches, given that both (identical
and semantically-similar) have the same effect on the
program behaviour. The explanation of the patches
categorised as semantically correct and incorrect can
be found in our public repository.11

Table 8 presents our results for the projects that the repair
tools generate at least one patch. The results for the first 11
repair tools refer to the whole APIREPBENCH examined,
whereas for the last three repair tools the results refer to
the examination of a subset of projects that belong both to
APIREPBENCH and DEFECTS4J, as mentioned in Section 3.2
and Section 3.5.

For all tools, we found that the repair tools can generate
patches for 25 out of 89 unique API misuses (28%). In
terms of repair attempts, 80 attempts out of 1,015 (8%)
have generated patches. From these 80 generated patches,
52 patches are plausible (65%). The remaining generated
patches were classified as implausible via separate valida-
tion because they either did not compile or did not pass
the provided test suite. Additionally, from the generated
patches, 20 patches are semantically correct (25%) to human
patches. Even though the tools generate few semantically
correct patches, 30 of the generated patches are semanti-
cally incorrect patches (38%) yet generated for the right bug
locations in the source code.

Table 9 shows the overlap between each pair of repair
tools in number of bugs. We use the same semantics used
in previous work [9], [10]: The main diagonal, where the
column name and the line name are the same, shows the
number of unique bugs patched by a single tool, while
the other cells show the overlap between every pair of
tools. Specifically, bugs have been uniquely patched only by
DYNAMOTH (3), KALI (1), and TBAR (1). We observe that
there is a significant overlapping among those repair tools
that are based on a same framework (see Table 4). Consider
that ARJA has the highest overlap of > 40% with the ARJA-
based repair tools KALI, GENPROG, and RSREPAIR.

Furthermore, between NOPOL-based tools (NOPOL, DY-
NAMOTH) there is a high overlap of > 60%. Among ASTOR-
based tools there is also a high overlap ranging from 40%
to 100%. By contrast, NPEFIX notes the lowest overlapping
with the remaining tools, except for AVATAR, TBAR, and
SIMFIX (> 20%). AVATAR, TBAR, and SIMFIX have also over-
lapping with ASTOR-based and NOPOL-based tools. Finally,
ASTOR-based tools have high overlapping with ARJA-based
tools since they use similar repair approaches. This finding
comes in accordance with the observations of Durieux et
al. [9] for the repairability of the tools on “general bugs”.

11. Our benchmark, platform, and results are publicly available at:
https://github.com/SOLAR-group/APIARTy.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 11

TABLE 8
RQ1a): Summary of API Misuses From APIREPBENCH that Tools Generate Patches. 3 means that there is a generated patch, 7 means that there
is no generated patch, m means that the patch is plausible, l means that the patch is semantically correct, u means that the patch is semantically

incorrect yet localised, and — means that the tool has not run on that bug.

Misuse Misuse Repair Tools
ID Category ARJA KALI GENPROG RSREPAIR JGENPROG JKALI JMUTREPAIR CARDUMEN NOPOL DYNAMOTH NPEFIX AVATAR TBAR SIMFIX

Bears

SPRING-84 MC 7 3 u 7 7 7 7 7 7 7 7 7 — — —
TRACCAR-101 MV 3 m u 3 m u 7 7 3 u 3 u 7 3 m u 7 7 7 — — —
TRACCAR-104 MV 3 m u 3 m u 7 7 7 7 7 7 7 7 7 — — —
BUDDY-178 MI, ME 7 7 7 7 7 7 7 7 3 3 7 — — —
CAR-188 MC 3 m l 3 u 3 m l 3 m l 3 m l 3 m l 7 3 m u 7 7 7 — — —

Bugs.jar

ACCUMULO-844 ME 7 7 7 7 7 7 7 7 7 3 7 — — —
MATH-891 MV 7 7 7 7 7 7 7 7 7 3 7 — — —
FLINK-1761 MV 7 7 7 7 7 7 7 7 7 3 m 7 — — —
FLINK-2800 MC, ME 7 7 7 7 7 7 7 7 3 3 7 — — —
OAK-2465 MV, MI 7 7 7 7 7 7 7 7 3 m u 3 m u 7 — — —
LOG4J2-834 MC, ME 7 7 7 7 7 7 7 7 3 3 7 — — —
WICKET-5359 MV 3 m 3 m 3 m 3 m 3 3 3 3 3 m 3 m 7 — — —

MUBench

CLOSURE-3 MNC 7 7 7 7 7 7 7 7 3 m u 3 m u 7 7 7 7
LANG-1 MNC 7 7 7 7 7 7 7 7 7 7 7 7 3 m l 7
MATH-2 MNC 7 7 7 7 7 7 7 7 3 3 7 7 3 m l 7
VISUALEE-29 MV, MC 7 7 7 7 7 7 7 7 3 m l 3 m l 7 — — —
JFREE-3a MNC 7 7 7 7 3 m 3 m 3 m 7 3 m u 3 m u 7 3 m 3 m 3 m
JFREE-6 MNC 7 7 7 7 3 m u 3 m u 3 m l 3 m u 7 3 m l 7 3 m l 7 3 m l
JFREE-1 MC 7 7 7 7 7 7 7 3 m l 7 7 7 3 m l 3 m l 7
JFREE-2 MNC 7 7 7 7 7 7 7 7 3 m 3 m 7 3 m 7 7
JFREE-5 MNC 7 7 7 7 7 7 7 7 7 7 3 u 3 m l 7 7
JFREE-7a MNC 7 7 7 7 7 7 7 7 7 7 3 m l 7 3 m l 3 m u
CONFUCIUS-95 ME 3 u 3 u 7 3 u 7 7 7 7 7 7 7 — — —
CONFUCIUS-98 ME 3 u 3 u 3 u 7 7 7 7 7 7 3 m l 7 — — —
CONFUCIUS-101 ME 3 u 3 u 7 3 u 7 7 7 7 7 7 7 — — —

TABLE 9
RQ1a): Number of Overlapped Patched Bugs Per Repair Tool. Each row presents the percentage of bugs patched by a tool selected that were

also patched by the remaining tools. For instance, 43% of the bugs patched by ARJA (first row) are also patched by GENPROG (third column). By
contrast, 100% of the bugs patched by GENPROG (third row) are also patched by ARJA (first column). The percentages of bugs patched by
AVATAR, TBAR, and SIMFIX refer to the DEFECTS4J bugs examined in our study. For instance, 100% of the (DEFECTS4J) bugs patched by

JGENPROG (fifth row) are also patched by AVATAR (12th column).

ARJA KALI GENPROG RSREPAIR JGENPROG JKALI JMUTREPAIR CARDUMEN NOPOL DYNAMOTH NPEFIX AVATAR TBAR SIMFIX

ARJA 0% (0) 100% (7) 43% (3) 57% (4) 43% (3) 43% (3) 14% (1) 43% (3) 14% (1) 29% (2) 0% (0) — — —
KALI 88% (7) 13% (1) 38% (3) 50% (4) 38% (3) 38% (3) 13% (1) 38% (3) 13% (1) 25% (2) 0% (0) — — —
GENPROG 100% (3) 100% (3) 0% (0) 67% (2) 67% (2) 67% (2) 33% (1) 67% (2) 33% (1) 67% (2) 0% (0) — — —
RSREPAIR 100% (4) 100% (4) 50% (2) 0% (0) 50% (2) 50% (2) 25% (1) 50% (2) 25% (1) 25% (1) 0% (0) — — —
JGENPROG 60% (3) 60% (3) 40% (2) 40% (2) 0% (0) 100% (5) 60% (3) 80% (4) 40% (2) 60% (3) 0% (0) 100% (2) 50% (1) 100% (2)
JKALI 60% (3) 60% (3) 40% (2) 40% (2) 100% (5) 0% (0) 60% (3) 80% (4) 40% (2) 60% (3) 0% (0) 100% (2) 50% (1) 100% (2)
JMUTREPAIR 33% (1) 33% (1) 33% (1) 33% (1) 100% (3) 100% (3) 0% (0) 67% (2) 67% (2) 100% (3) 0% (0) 100% (2) 50% (1) 100% (2)
CARDUMEN 60% (3) 60% (3) 40% (2) 40% (2) 80% (4) 80% (4) 40% (2) 0% (0) 20% (1) 40% (2) 0% (0) 100% (2) 50% (1) 50% (1)
NOPOL 10% (1) 10% (1) 10% (1) 10% (1) 20% (2) 20% (2) 20% (2) 10% (1) 0% (0) 100% (10) 0% (0) 50% (2) 50% (2) 25% (1)
DYNAMOTH 13% (2) 13% (2) 13% (2) 7% (1) 20% (3) 20% (3) 20% (3) 13% (2) 67% (10) 20% (3) 0% (0) 60% (3) 40% (2) 40% (2)
NPEFIX 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 50% (1) 50% (1) 50% (1)

AVATAR — — — — 40% (2) 40% (2) 40% (2) 40% (2) 40% (2) 60% (3) 20% (1) 0% (0) 40% (2) 40% (2)
TBAR — — — — 20% (1) 20% (1) 20% (1) 20% (1) 40% (2) 40% (2) 20% (1) 40% (2) 20% (1) 40% (2)
SIMFIX — — — — 67% (2) 67% (2) 67% (2) 33% (1) 33% (1) 67% (2) 33% (1) 67% (2) 67% (2) 0% (0)

Figure 2 illustrates the capabilities of the repair tools
regarding their repairability on API misuses. For the re-
pair tools that run on APIREPBENCH, we observe that
DYNAMOTH along with NOPOL, KALI, and ARJA generate
the highest number of patches. By contrast, NPEFIX pro-
duces the lowest number of patches. Furthermore, all tools,
except for KALI, generate more than half of the patches as
plausible (“Plausible”). Specifically, CARDUMEN, GENPROG
and JMUTREPAIR generate the highest percentages (more
than 60%) of plausible patches, whereas KALI generates the
lowest percentage (38%) of plausible patches.

Also, for all tools, less than half of the generated patches
are semantically correct (“Correct”) when compared to the
human patches. For instance, even though DYNAMOTH,
NOPOL, KALI, and ARJA generate most of the patches, less
than 20% of the patches of DYNAMOTH, NOPOL, and ARJA
are semantically correct, and none of the patches of KALI.

The tools generate few semantically correct patches, but
correctly detect the locations of the API misuses in the source
code for almost half of the generated patches, given that
both the semantically correct and the semantically incorrect

patches are generated for the right bug locations (“Cor-
rect” and “Localised”). Finally, all the semantically correct
patches are also plausible. Namely, “Correct” 6 “Plausible”.

Additionally, Figure 2 shows that AVATAR and TBAR
generate the highest number of patches when they run on
the DEFECTS4J subset of APIREPBENCH. The generated
patches of AVATAR, TBAR, and SIMFIX are all plausible
and most of the generated patches are statically correct
(62%). Observing these results, one could say that possible
extensions of these tools, which can make them able to
run on diverse bug benchmarks, could increase the over-
all number of fixes by the tools. Furthermore, new API-
repair tools should leverage techniques (i.e., patterns of
static-analysis violations, fix-pattern templates, and code-
similarity scores) used by AVATAR, TBAR, and SIMFIX to
increase their effectiveness.

Overall, it seems promising that tools not originally
designed for repairing API misuses can generate patches
for almost one quarter (28%) of the API misuses examined.
In particular, NPEFIX, RSREPAIR, GENPROG, DYNAMOTH,
and the ASTOR-based tools (except for CARDUMEN)

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 12

Arja

Avatar

Cardumen

Dynamoth

GenProg

jGenProg

jKali

jMutRepair

Kali

Nopol

RSRepair

SimFix

TBar

0 25 50 75
Non Generated patches

R
ep

ai
r

To
ol

s

Issues Config issue Incorrect FL Other issues Timeout

Fig. 3. RQ1b): Non-patch generation cause categories.

generate a significant number of plausible patches that are
correct (more than 30%). By contrast, ARJA, CARDUMEN,
and NOPOL generate fewer plausible patches that are
correct (less than 30%). Finally, AVATAR, TBAR, and SIMFIX
generate few patches but a high number of plausible
patches that are also correct (62%).

Answer to RQ1a). The repair tools generate patches for
API misuses (28%). Most of the generated patches are
plausible (65%). Few of the generated patches are seman-
tically correct (25%). 38% of the generated patches are se-
mantically incorrect yet generated for the right API-misuse
locations. NOPOL-based tools, KALI, and ARJA generate
the highest number of patches. However, less than half of
their plausible patches are semantically correct. AVATAR
and TBAR have the highest number of plausible and
correct patches (> 60%). There is a significant overlap in
the API misuses identified by repair tools that are built
based on a same framework.

4.2 RQ1b): What are the causes of non-patch genera-
tion in the context of API misuses?

To answer RQ1b), we consider the categories of causes of
non-patch generation listed in the study of Durieux et al. [9].
Specifically, we manually examine 935 reports of failure to
generate patches produced by the 14 repair tools, label them,
and classify each into a non-patch generation category. For
the labelling, we examined the error messages of the non-
patch generation reports produced by the repair tools. In the
following, we explain each cause category.

• Cannot repair: Repair tools do not generate patches
for fixing bugs outside the search space they are
designed for. Specifically, NPEFIX is not designed
to generate patches for bugs that do not lead to a
NullPointerException. There are 70 such bugs
in our study. One of these, namely TRACCAR-10412

represents a missing value API misuse, and NPEFIX
failed to fix it. We also found that for 12 bugs the tools
are not able to generate patches that should import
new APIs into the source code, i.e., new import

12. https://github.com/traccar/traccar/commit/
c53feac38ec149fed84121704c620503bf1f7820

statements, such as in the case of CLOSURE-3.13

Future repair tools should be designed for repairing
different bug categories such as those presented in
Table 2. This implies that novel repair tools should
be also able to repair bugs related to missing APIs
required in the source code.

• Incorrect fault localisation (FL): The fault locali-
sation of repair tools does not successfully detect
the location of a bug, and the repair tools are not
able to generate any patch for this bug. This can
arise because of limitations of the fault localisation
approaches used by the repair tools, or to the sus-
piciousness threshold used. For instance, the tools
could not repair PROFILER-39.14 This can happen
because the tools do not consider the specification
of the API used. In total, 435 repair attempts belong
to this category.
To overcome such issues, future repair tools could
combine API-misuse detectors [2] with the fault lo-
calisation approaches used in current repair tools to
precisely identify and fix API misuses. New studies
could also evaluate the quality of test cases for detect-
ing API misuses, and equip novel repair tools with
more precise test-driven fault localisation.

• Multiple faulty locations: Repair tools are not able
to generate patches that can fix multi-location bugs
(i.e., bugs that require changes in more than one
location in the source code to be fixed). In the context
of API-misuses, we found for instance that for fixing
DATABIND-8,15 developers made an API change and a
change in the client code. Repair tools could suggest
a change for the client code but not for the API itself.
We found four such bugs in our study.
Therefore, future repair tools need to generate multi-
location patches to fix a single bug, and also be able
to suggest changes both for APIs and client code.

• Timeout: Repair tools are not able to generate
patches for fixing a bug within a given time budget.
In our study, 148 repair attempts failed by timeout.
Future studies need to evaluate in depth timeout is-
sues, and suggest solutions that can overcome bottle-
necks occurred by existing repair tools. For instance,
new repair tools can be faster if they use more precise
fault localisation for API-misuse detection [74]. Addi-
tionally, future studies need to devise and investigate
extra evaluation measures for the efficiency of repair
tools as investigated by Liu et al. [10].

• Configuration issues: Repair tools fail to generate
patches and fix bugs because of a failure to correctly
set up a project under examination and compila-
tion errors. In our study, 38 repair attempts failed
by missing dependencies and 52 repair attempts by
compilation errors during patch evaluation. Depen-
dency issues are mostly related to the structure of the
projects used, which can have many dependencies,

13. https://github.com/google/closure-compiler/commit/
d1cfe67977d8f3aaa85ec20c262171da394d5977

14. https://github.com/emopers/gae-java-mini-profiler/commit/
30be31776655f73487a59d443b30c7f7408f251b

15. https://github.com/FasterXML/jackson-databind/commit/
64967c410514ec8a94bb11bb26d6a37fafafc14b

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 13

and some of them could not be properly retrieved.
Configuration issues happen in large-scale empirical
studies, and, thus, new configuration tools constantly
aim at resolving such issues [9].

• Other issues: Repair tools cannot execute for some
projects under examination for technical reasons.
This could happen because of the length of com-
mand lines or because a dependency (e.g., the
fault localisation tool) of a repair tool cannot be
found. For instance, we found that ARJA failed to
fix ACCUMULO-84416 by the error=7, Argument
list too long and all ARJA-based tool failed to
fix SPOON-8017 by a NullPointerException re-
lated to GZOLTAR. Furthermore, in this category,
we have added repair attempts that failed by an
OutOfMemoryError, a killed process, or hanging
(e.g., the analysis never starts after having set up a
project). In total, we have 175 repair attempts in this
category.

Once we have manually categorised each of the non-
patch generation reports, we can count how many belong to
each category. Figure 3 illustrates our findings. Note that we
exclude NPEFIX since it can only repair bugs that lead to
the NullPointerException, and all bugs that it cannot
fix belong to the “Cannot repair” category. Furthermore,
we separately count the cases that belong to the “Cannot
repair” and “Multiple faulty location” (as previously
mentioned) since these categories refer to the characteristics
of the bugs themselves and not to the characteristics of the
tools as the remaining categories presented in Figure 3.

Answer to RQ1b). Half (51%) of the reports from all tools
are associated with “Incorrect FL”. A significant number of
reports is related to “Other issues” (21%) and “Timeout”
(17%), whereas only few reports refer to “Configuration
issues” (11%). Specific characteristics of API misuses can
contribute to the repairability of the tools since 86 repair
attempts failed by causes belonging to the “Cannot repair”
and “Multiple faulty locations” categories.

4.3 RQ2: How efficient is a repair tool when it automat-
ically repairs an API misuse?

To answer RQ2, we follow two strategies. First, as in most
empirical repair studies [9], [75], [76], we calculate the exe-
cution time per repair attempt for each repair tool. Second, we
use as an efficiency measure the number of patch candidates
(NPC) as recently introduced by Liu et al. [10]. According to
Liu et al., NPC shows the efficiency of a repair tool based
on the number of patch candidates generated by the tool
until the first valid (i.e., plausible) patch is found [10]. In
particular, Liu et al. [10] argue that NPC can be considered
as an accurate efficiency metric since the measurement of
execution time alone can be biased depending on the capa-
bilities of the execution environment, where repair tools run
on. In the following, we present our results in detail.

16. https://github.com/apache/accumulo/commit/
692efde2c24b2ec100b04ada0656079ef8f60fbf

17. https://github.com/INRIA/spoon/commit/
0e4787187d8d6192c43144de0fc91e5047fa867b

TABLE 10
RQ2: Execution Time of Repair Attempts

Repair Tool Median (Minutes) Mean (Minutes)

JGENPROG 66.18 61.61
ARJA 47.87 55.41
JKALI 9.17 29.56
CARDUMEN 6.00 36.03
JMUTREPAIR 5.75 27.83
GENPROG 3.87 26.52
RSREPAIR 3.37 27.05
KALI 3.02 16.44
NOPOL 2.82 23.26
NPEFIX 2.28 13.42
DYNAMOTH 2.08 21.61

3.87 30.79

AVATAR 104.5 124.17
TBAR 240 170.92
SIMFIX 240 203.5

240 166.19

A
rja K
al

i

G
en

P
ro

g

R
S

R
ep

ai
r

jG
en

P
ro

g

jK
al

i

jM
ut

R
ep

ai
r

C
ar

du
m

en

N
op

ol

D
yn

aM
ot

h

N
P

E
F

ix

A
va

ta
r

T
B

ar

S
im

F
ix

0
50

10
0

15
0

20
0

25
0

E
xe

cu
tio

n
T

im
e

(m
in

ut
es

)

Repair Tools

Fig. 4. RQ2: Execution time per repair tool. The timeout for AVATAR,
TBAR, and SIMFIX is four hours, whereas for the rest two hours.

0

200

400

50 100
Time

F
re

qu
en

cy

Fig. 5. RQ2: Overall trend of repair attempts from all tools.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 14

A
rja K
al

i

G
en

P
ro

g

R
S

R
ep

ai
r

jG
en

P
ro

g

jK
al

i

jM
ut

R
ep

ai
r

C
ar

du
m

en

N
op

ol

D
yn

aM
ot

h

N
P

E
F

ix

A
va

ta
r

T
B

ar

S
im

F
ix

0
20

0
40

0
60

0
80

0
10

00
12

00

P
at

ch
 C

an
di

da
te

s
(#

)

Repair Tools

Fig. 6. RQ2: Distribution of the NPC scores.

Execution time. Table 10 lists the median and mean exe-
cution time for the repair attempts per repair tool. Figure 4
illustrates the differences in the execution time among the
different repair tools by depicting the minimum, maximum,
sample median, and first and third quarterlies values.

Figure 5 graphically shows the overall trend of the repair
attempts. The graph considers the total time of each repair
attempt. In particular, 55% of the repair attempts take less
than ten minutes to execute. By contrast, 15% of the repair
attempts from all repair tools examined take > 120 minutes
to execute. The uptick at the end of the graph includes all
these repair attempts that would have taken more than two
hours if we had not set a timeout, which in our case is set to
120 and 240 minutes depending on the tool (see Section 3.5).

Overall, one could say that the earlier 11 tools are fast
since their median execution time for a repair attempt is
3.87 minutes (see Table 10), which is significantly lower than
the timeout (two hours) set for these tools. By contrast, the
three more recent tools, AVATAR, TBAR, and SIMFIX, are the
slowest since they mostly take more than two hours to run.

In particular, JGENPROG and ARJA perform much
slower than the remaining repair tools evaluated on the
whole APIREPBENCH. This may happen due to the tech-
nical characteristics of the tools. Specifically, JGENPROG is
quite slow having 66.18 minutes median repair time. This
comes in accordance with a related study by Martinez et
al. [75], and possibly happens because the search space of
JGENPROG is extremely large. Additionally, ARJA uses a
multi-objective approach [13], and executes the whole test
suite of each analysed project revision that could increase
the execution overhead of the tool. According to the study
of Yuan and Banzhaf [13], which evaluates ARJA-based tools
on DEFECTS4J, a successful repair attempt for ARJA lasts
maximum one hour. We find that the median repair time for

ARJA is 47.87 minutes. However, we run ARJA on different
types of bugs and projects. Also, we consider the time of
all ARJA repair attempts. Finally, DYNAMOTH is the fastest
tool possibly because its analysis is focused on specific test
case(s) given by the user and based on dynamic explo-
ration [27]. As it has been shown from the related work,
when trimming the search space using focused testing,
the analysis becomes significantly faster [54], [74]. Finally,
AVATAR, TBAR, and SIMFIX are slower than the remaining
tools. One possible reason for that is that these tools run the
whole test suite against each patch candidate.

Number of patch candidates. Figure 6 shows the dis-
tribution of the NPC scores among the repair tools under
examination. ARJA generates the highest number of patches
until it generates the first valid (plausible) patch. GENPROG,
RSREPAIR, JGENPROG, CARDUMEN AVATAR, and TBAR
also generate more than one patch, whereas the remaining
tools generate mostly one patch each time, and are faster.

Both Figure 4 (execution time) and Figure 6 (NPC) indeed
agree that ARJA, GENPROG, RSREPAIR, JGENPROG, and
CARDUMEN are the slowest tools, whereas KALI, NOPOL,
DYNAMOTH, and NPEFIX are the fastest tools. However,
in Figure 4, JKALI and JMUTREPAIR seem to perform
slower, whereas in Figure 6 perform faster. There are such
divergences between the two figures since in Figure 4 we
consider all repair attempts, whereas in Figure 6 only the
repair attempts of valid patches. Furthermore, AVATAR,
TBAR, and SIMFIX are among the slowest tools in Figure 4
and among the fastest tools in Figure 6. This difference
possibly occurs because we run these tools on a small data
set. Additional experiments on API misuses could further
show the efficiency of AVATAR, TBAR, and SIMFIX using
NPC.

Answer to RQ2. The 11 less recent repair tools have
a median execution time of 3.87 for a repair attempt
targeting an API misuse and a mean execution time of
30.79 minutes. The three more recent tools are the slowest
overall, exhibiting a much higher median execution time
(98% slower) than the earlier ones. Among the earlier
tools, JGENPROG, ARJA, and CARDUMEN are the slowest
tools based on execution time and NPC. Whereas NOPOL,
NPEFIX, and DYNAMOTH are the fastest ones.

4.4 RQ3: For which classes of API misuses do repair
tools perform best?

To answer RQ3, we examine the performance (effectiveness
and efficiency) of the repair tools per API-misuse category.
To measure the effectiveness, we calculate (per API-misuse
category) the number of: 1) the generated patches, 2) the
generated patches that are plausible, and 3) the generated
patches that are semantically correct to the human patches.
To measure the efficiency, we calculate the NPC and the
execution time each repair attempt takes per API-misuse
category. Figure 7 summarises, in heat maps, our results
on the effectiveness of the tools. Figure 8, Figure 9, and
Figure 10 give further information about the efficiency of
the tools.

Figure 7a shows that the repair tools mostly generate
patches for the missing call (MC), missing null check

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 15

17.00% 43.00% 0.00% 0.00% 43.00%

33.00% 43.00% 0.00% 0.00% 43.00%

17.00% 14.00% 0.00% 0.00% 14.00%

17.00% 29.00% 0.00% 0.00% 14.00%

17.00% 0.00% 0.00% 29.00% 29.00%

17.00% 0.00% 0.00% 29.00% 29.00%

0.00% 0.00% 0.00% 29.00% 14.00%

33.00% 0.00% 0.00% 14.00% 29.00%

50.00% 43.00% 100.00% 57.00% 43.00%

50.00% 71.00% 100.00% 71.00% 71.00%

0.00% 0.00% 0.00% 29.00% 0.00%

50.00% 0.00% 44.00% 0.00%

50.00% 0.00% 44.00% 0.00%

0.00% 0.00% 33.00% 0.00%

Arja

Avatar

Cardumen

Dynamoth

GenProg

jGenProg

jKali

jMutRepair

Kali

Nopol

NPEFix

RSRepair

SimFix

TBar

MC ME MI MNC MV
API−Misuse Categories

R
e

p
a

ir
 T

o
o

ls

0% 25% 50% 75% 100%
Generated Patches

(a) Generated patches

100.00% 0.00% 100.00%

0.00% 0.00% 100.00%

100.00% 0.00% 100.00%

100.00% 0.00% 100.00%

100.00% 100.00% 0.00%

100.00% 100.00% 0.00%

100.00% 0.00%

100.00% 100.00% 50.00%

33.00% 0.00% 50.00% 75.00% 100.00%

33.00% 20.00% 50.00% 80.00% 80.00%

50.00%

100.00% 100.00%

100.00% 100.00%

100.00%

Arja

Avatar

Cardumen

Dynamoth

GenProg

jGenProg

jKali

jMutRepair

Kali

Nopol

NPEFix

RSRepair

SimFix

TBar

MC ME MI MNC MV
API−Misuse Categories

R
e

p
a

ir
 T

o
o

ls

0% 25% 50% 75% 100%
Plausible Patches

(b) Plausible patches

100.00% 0.00% 0.00%

0.00% 0.00% 0.00%

100.00% 0.00% 0.00%

100.00% 0.00% 0.00%

100.00% 0.00% 0.00%

100.00% 0.00% 0.00%

50.00% 0.00%

50.00% 0.00% 0.00%

33.00% 0.00% 0.00% 0.00% 33.00%

33.00% 20.00% 0.00% 20.00% 20.00%

50.00%

100.00% 50.00%

100.00% 75.00%

33.00%

Arja

Avatar

Cardumen

Dynamoth

GenProg

jGenProg

jKali

jMutRepair

Kali

Nopol

NPEFix

RSRepair

SimFix

TBar

MC ME MI MNC MV
API−Misuse Categories

R
e

p
a

ir
 T

o
o

ls

0% 25% 50% 75% 100%
Correct Patches

(c) Correct patches

Fig. 7. RQ3: Repair tools, API-misuse categories, and patches. For instance, DYNAMOTH has generated 71% patches that belong to the ME
category. From these patches, 20% are plausible and 20% are semantically correct. The results for AVATAR, TBAR, and SIMFIX refer to the
categories of the DEFECTS4J projects examined (see Section 3.5).

(MNC), missing value (MV), and missing exception (ME)
API-misuse categories; no tool has generated any patches for
the missing context (MX) API-misuse category. This comes
in accordance with our initial expectations as the tools that
could repair these categories of API misuses are designed to
fix the aforementioned types of bugs. Furthermore, NOPOL-
based tools generate patches for all the considered API-
misuse categories, except for MX. ARJA-based tools generate
patches for the MC, ME, and MV API-misuse categories.
ASTOR-based tools generate patches for the MC, MNC,
and MV API-misuse categories. NPEFIX generates patches
only for the MNC category, as expected, since NPEFIX is
designed to only repair such bugs. Finally, AVATAR, TBAR,
and SIMFIX generate patches only for MC and MNC.

Figure 7b shows that most of the patches generated
by the repair tools are plausible. We observe that for the
ME category, only DYNAMOTH generates plausible patches,
whereas, for the MC category, only KALI does not generate
any plausible patch. Additionally, for the MV category,
all tools generate plausible patches except for JGENPROG,
JKALI, and JMUTREPAIR. Overall, only DYNAMOTH gen-
erates plausible patches for all categories. Furthermore,
CARDUMEN generates all patches as plausible for the MC
and MNC categories, and half patches as plausible for the
MV category. NPEFIX also generates half of the generated
patches for the MNC category as plausible. Finally, AVATAR,
TBAR, and SIMFIX generate only plausible patches.

Figure 7c reveals that most of the generated patches are
not semantically correct. This, with previous studies on over-
fitting, argues that only a few generated patches by program
repair are correct [71], [77]. Regarding the categories where
the tools generate most of the patches (i.e., MC, MNC, MV,
and ME), the tools generate the highest number of semanti-
cally correct patches for the MC category. Furthermore, only
DYNAMOTH generates semantically correct patches for all

categories except for MI. Additionally, AVATAR, TBAR, and
SIMFIX mostly generate patches (for MC and MNC) that are
plausible and correct (> 30%).

Since the repair tools examined are not originally de-
signed to fix API misuses, we expected that it would be
more challenging for a repair tool to generate correct patches
to fix misuses of missing API method calls rather than,
for instance, misuses due to incorrect values in if condi-
tions. However, we observe that the MC category exhibits
the highest number of semantically correct patches. This
may happen for the following reasons. First, repair tools
are designed to repair bugs that generally need a small
change (for example done via mutation analysis in just one
statement, one token, or one line) to be fixed, and such
bugs could belong to the MC category. Therefore, the tools
would be able to fix those MC bugs that require a single-
line change. Consider CAR-18818 and JFREE-119 that more
than one repair tool is able correctly fix them. Second, one
should consider that the percentages of semantically correct
patches in Figure 7c depend on the number of generated
patches in Figure 7a. For instance, even though RSREPAIR,
GENPROG, ARJA can repair a few API misuses of the MC
category (17%) presented in Figure 7a, all generated patches
are semantically correct. Therefore, these tools achieve a
high correctness score (100%) in Figure 7c.

Figure 8 illustrates the median and mean time (in min-
utes) that the tools spent to repair API misuses belonging
to the API-misuse categories. For the categories where the
tools generate most of the patches (i.e., MC, MNC, MV, and
ME), the repair tools perform as follows (see Figure 8a).
ARJA and JGENPROG spend most time to repair API misuses

18. https://github.com/SzFMV2018-Tavasz/AutomatedCar/
commit/6a656ea5686fa563e85754282f059264f3664471

19. https://sourceforge.net/p/jfreechart/code/1025/tree/
trunk/source/org/jfree/chart/util/ShapeUtilities.java?diff=
50b53b485fcbc92b6542a639:1024

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 16

72.85 1.27 120 43.42 70.25 114.29

4.27 0.93 11.6 7.42 6.53 7.55

3.87 0.7 10.15 11.65 4.65 3.33

3.37 0.72 2.15 11.72 4.99 3.53

114.25 67.03 0.63 19.93 78.95 56.87

42.38 7.38 0.83 2.75 9.69 32.77

42.73 4.97 0.67 2.65 9.16 62.68

15.13 17.62 0.7 1.47 14.68 3.56

3.9 2.82 22.78 5.87 1.88 18.66

3.88 1.47 7.8 5.8 1.03 16.47

2.6 1.53 1.2 5.28 2.68 8.75

55 240 137 38

145 240 240 240

240 240 240 240

Arja

Avatar

Cardumen

DynaMoth

GenProg

jGenProg

jKali

jMutRepair

Kali

Nopol

NPEFix

RSRepair

SimFix

TBar

MC ME MI MNC MV MX
API−Misuse Categories

R
ep

ai
r

To
ol

s

0 50 100 150 200
Median Time (minutes)

(a) Median time

72.42 16.93 80.42 51.34 68.56 87.25

23.28 1.49 44.31 19.28 15.85 7.48

29.93 17.63 43.82 23.24 27.69 32.2

28.9 15.21 4.12 31.32 29.87 32.05

86.5 63.03 40.34 47.28 64.86 58.52

49.28 19.87 21.4 24.64 26.93 46.47

47.57 15.19 6.57 29.55 27.16 57.35

34.77 48.81 8.62 27.55 42 13.68

28.58 8.04 31.58 36.41 14.31 39.41

28.52 6.72 8.54 32.9 17.23 38.31

13.53 5.16 4.82 18.08 13.8 7.11

55 240 126.67 38

145 240 169 240

240 240 191.33 240

Arja

Avatar

Cardumen

DynaMoth

GenProg

jGenProg

jKali

jMutRepair

Kali

Nopol

NPEFix

RSRepair

SimFix

TBar

MC ME MI MNC MV MX
API−Misuse Categories

R
ep

ai
r

To
ol

s

50 100 150 200
Mean Time (minutes)

(b) Mean time

Fig. 8. RQ3: Repair tools, API-misuse categories, and execution time.
For instance, ARJA needed 72.85 median time and 72.42 mean time
(in minutes) to repair API-misuses of the MC category. The results for
AVATAR, TBAR, and SIMFIX refer to the categories of the DEFECTS4J
projects examined (see Section 3.5). For these three tools the timeout
is four hours and for the rest two hours.

MC ME MI MNC MV MX

0
20

40
60

80
10

0
12

0

API−misuse Categories

E
xe

cu
tio

n
tim

e
(m

in
ut

es
)

Fig. 9. RQ3: Execution time for all tools per API-misuse category.

MC ME MI MNC MV

0
20

0
40

0
60

0
80

0
10

00
12

00

P
at

ch
 C

an
di

da
te

s
(#

)

API−misuse Categories

Fig. 10. RQ3: NPC scores for all tools per API-misuse category.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 17

of all categories. CARDUMEN spend a significant amount
of time to repair API misuses of the ME, MC, and MV
categories. Additionally, JMUTREPAIR and JKALI spend a lot
of time for the MC and MX categories, whereas RSREPAIR
and GENPROG for the MNC category. All tools, except for
ASTOR-based tools spend the least time on repairing API
misuses of ME. AVATAR, TBAR, and SIMFIX spend the most
time for all categories examined.

Figure 9 presents the execution time of all repair at-
tempts grouped by API-misuse category. To be able to unify
our results from AVATAR, TBAR, SIMFIX, and the remaining
tools, we group all repair attempts that take more than 120
minutes into a single category, where we assume that these
attempts spend 120 minutes. For the MC, MNC, and MX cat-
egories, the repair tools spend most of the time (more than
ten minutes median time), whereas repair attempts take the
least time for the ME category (2.84 minutes median time).
The reason why MNC has high median repair time is that
AVATAR, TBAR, and SIMFIX (the slowest tools according to
Section 4.3) mostly repair API misuses that belong to the
MNC category, and can affect the results. Furthermore, tools
that are not originally designed to repair API misuses that
belong to the MC and MX categories could spend more time
to repair these bugs. The tools spend the least time to repair
bugs belonging to the ME category, because possibly these
misuses throw specific exceptions that fault localisation can
identify fast. Note that even if most repair tools are designed
to repair bugs that belong to the MV and MNC categories,
the tools spend a significant amount of time (more than
seven minutes median time) to repair these categories.

Figure 10 shows the NPC scores per API-misuse category.
We observe that the highest number of patches generated
until the generation of a valid patch happens for the MC
and MV categories. However, this finding should be further
investigated in future work since NPC could be affected by
the high number of patches generated by ARJA, GENPROG,
JGENPROG, and CARDUMEN. Finally, both Figure 9 and
Figure 10 agree that tools take the most time to generate
patches for the MC category.

Answer to RQ3. The repair tools mostly generate patches
for the MNC, MV, ME, and MC API-misuse categories.
For all categories, the majority of the patches are plausible
but not semantically correct. Most semantically correct
patches exist for the MC and MNC categories. Overall, the
repair tools spend more time on repairing API misuses that
belong to the MC, MNC and MX categories. The highest
NPC refers to the MC and MV categories.

4.5 Discussion

From our investigation, we show that state-of-the-art Java
test-suite-based repair tools need to be improved in order
to be able to fix API misuses. In the following paragraphs,
we discuss the main challenges and opportunities we found
from our study for API-repair tools.

Focused design. Our study shows that only for 28%
API misuses the repair tools can generate patches. This may
happen for the following reasons. First, this limitation may
depend on the design of the tools. The tools are designed
to repair only specific types of bugs, including missing

null check (MNC) and missing value (MV). For instance,
tools that are not designed to repair missing exception (ME)
issues could not generate relevant patches. Namely, such
a patch does not exist in the search space [55]. Second,
this limitation could be related to space exploration issues.
This means that, although the solution does reside in the
search space, it remains unfound [78]. Third, this limitation
should derive from the configuration of the tools. As it is,
also, argued by Derieux et al. [9], possibly the tools can-
not generate a patch during a predefined timeout. Finally,
according to Le Goues et al. [54], project characteristics can
affect the effectiveness of the repair tools. Complex software
projects with large size, many sub projects and dependen-
cies require more time to be analysed. Thus, repair tools can
more easily reach the timeout without having generated any
patch. Addressing these open questions, the program-repair
community can make repair tools more precise and practical
for researchers and practitioners.

Synergy. Our study reveals that most of the gener-
ated patches are plausible (65%). However, the majority of
these patches are not correct (only 25% semantically correct
patches found). This refers to the so-called overfitting issue
of existing repair tools [77]. To address this issue, program
repair could combine static analysis and machine learning
techniques (e.g., based on historical data) [54]. Furthermore,
more precise fault-detection approaches [55], [78] (e.g., fo-
cused search spaces), and further filtering of the results can
lead to less false positives and human effort for the cross-
checking of the generated patches.

Scalability. In our study, we observed that, overall, it
takes time (Figure 5), for repair tools to analyse software
projects, detect bugs, and generate repair patches. Accord-
ing to Table 10, for 11 tools the median time is almost four
minutes and the mean time 31 minutes, per repair attempt.
The remaining three tools require much more time (more
than two hours median time).

There are several reasons for that. Initially, the efficiency
of program repair possibly varies depending on the tools’
design. For instance, ARJA-based tools take into account the
whole test suite of a project to trigger specific bugs, whereas
NOPOL-based tools use a more focused test-driven detection
approach, as the interesting test(s) are given by the user
as inputs. Therefore, it is expected for ARJA-tools to be
slower than NOPOL-based tools (Figure 4). Additionally,
the time the tools spend to repair API misuses can vary
based on targeted classes of bugs, i.e., here, the categories of
the API misuses (Figure 9). This possibly happens as each
repair tool is designed to repair different bug categories.
In particular, the repair attempts of NPEFIX, which targets
MNC bugs, take less time when detecting and fixing API
misuses of the MNC category than tools that target generic
bugs (e.g., GENPROG). Other reasons we observed that can
possibly affect the efficiency of repair tools include: the
given configuration (e.g., timeout) of the tools and the ca-
pabilities of the execution environment (e.g., available Virtual
Memory) [9], as well as the project characteristics of the anal-
ysed software [54]. As Marginean et al. [8] mention in their
industrial study, with the SAPFIX repair tool, practitioners
can be reluctant to use repair tools available in literature
since the sophistication of these tools might have inhibited
scalability. Therefore, solving performance issues, such as

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 18

the aforementioned, can further support the adoption of
repair tools by practitioners.

Adequate documentation. From our study on repair
tools, we observed that some repair tools lack publicly
available documentation. Specifically, 25 out of 43 (58%) of
the examined repair tools listed in Table 1 provide docu-
mentation. Since we were able to learn how to set up and
use only repair tools with documentation, we set as one
of the criteria for the selection of the 14 repair tools of
our study the existence of publicly available documentation
(Section 3.2). As previous studies have also focused on the
importance of the documentation of software tools [9], we
hope that future research on program repair will continue
supporting the documentation of repair tools.

Uniform outputs. In our study, we observed that each re-
pair framework, ASTOR, ARJA, and NOPOL (Table 4), gives
outputs of distinct formats. The remaining tools, also, give
outputs of their particular format. Therefore, we needed to
put some effort on understanding the results from the tools
of our study. One reason for developing APIARTY was,
indeed, to automatically handle these different formats and
provide summarised reports from all tools. Future research
may investigate, as Brittany et al. [79] have shown for static
analysis tools, whether guidelines on the presentation of
repair tools’ results can further support the use of repair
tools by researchers and practitioners.

5 THREATS TO VALIDITY

This section presents the threats to validity of our study. We
present the implementation issues that possibly exist in the
design of our study (internal validity), issues regarding the
generability of our results (external validity), and we argue
about the reproducibility of our experiments (reliability).

Internal validity. We acknowledge that APIARTY is an
artefact that cannot be free of bugs. This could affect the
results of our study presented in Section 4. For instance,
even though our scripts have been thoroughly tested, there
could be cases where the tools could not properly run
because of missing dependencies in the examined projects.
This is, however, a common issue that our community needs
to solve for studies that include large software projects [9].

Furthermore, since we have manually selected the API
misuses of our benchmark, APIREPBENCH, the reader
should be aware of any human error; although the first two
authors have cross-checked the API misuses (Section 3.3.2).
In future, the identification of API misuses in program
repair can be automated by extending existing API-misuse
detection tools such as MUDETECT [2], [69]. Adapting such
an API-misuse detector for program repair, API-repair tools
could achieve more precise fault localisation, and improve
their effectiveness and efficiency by pruning the search
space. Future studies could also examine whether different
fault localisation approaches can be biased while bench-
marking diverse repair tools [58].

Also, since the performance of the repair tools signifi-
cantly depends on the execution environment (e.g., available
Virtual Memory, used JDK)20 the experiments run on, the

20. https://github.com/program-repair/RepairThemAll_
experiment/issues/4

results and execution time of our experiments may differ
from platform to platform.

Additionally, due to the nature and design of tools such
as GENPROG (which is based on genetic programming) and
RSREPAIR (which is based on random search) the results of
these tools can vary among different executions.

Finally, the reader should consider that the number of
the found patches as semantically correct depends on the
authors best understanding of the bugs and the relevant
fixes. However, this is a common threat in overfitting stud-
ies that manually check the correctness of the generated
patches [75], [80]. This threat also applies to the manual
classification of the reports produced by the tools into non-
patch generation cause categories.

External validity. Regarding the generability of our find-
ings (Section 4), we acknowledge that our results regard
the specific API misuses of our benchmark, APIREPBENCH.
However, we argue, that APIREPBENCH is made of other
three benchmarks that include well-diversified and well-
known software projects as suggested by Durieux et al. [9].
Thus, we expect that our conclusions can also apply to other
sets of API misuses.

Reliability. For the reproducibility of our study, we have
developed an extensible execution framework, APIARTY,
and we have made its source code, as well as our bench-
mark, APIREPBENCH, publicly available. We also provide
the metadata of the bugs used in our experiments (input)
and the found patches (output).

6 RELATED WORK

In this section, we present related work to our study. We
discuss existing program repair approaches, research on
detecting API misuses, and available bug benchmarks for
evaluating repair tools.

6.1 Test-driven Program Repair Evaluation
Among the first research works on program repair, Le Goues
et al. [7] introduced and evaluated GENPROG on 105 defects
from eight open source programs. Additionally, Le Goues
et al. [76] evaluated three repair tools for the C program-
ming language using the MANYBUGS and INTROCLASS
benchmarks. Both studies refer to the repairability (patch
generation effectiveness) of repair tools. Qi et al. [14] first
evaluated repair tools, regarding the test-suite adequacy and
correctness of generated patches, showing that repair tools
produce only a small number of correct patches that can
fix software bugs. Smith et al. [77] introduced the notion
of overfitting and compared two C repair tools using the
INTROCLASS benchmark [76]. They found that even good
test suites can lead to patch overfitting. Qi et al. [15] de-
veloped a repair tool (RSREPAIR) for C programs based on
a random search approach, and they revealed that random
search repair approaches can be effective and efficient over
program repair that relies on genetic programming.

On the Java front, Martinez et al. empirically compared
three repair tools using the DEFECTS4J benchmark [71]
to evaluate the patch correctness and efficiency of the
tools [75]. Ye et al. [80] empirically compared the patch
correctness of five generate-and-validate repair tools, us-
ing the QUIXBUGS benchmark [81]. Both benchmarks have

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 19

TABLE 11
Empirical Evaluations Among Test-suite-based Repair Tools

Work Programming Tools Benchmarks Patch Patch Patch Benchmark Bug Class Repair
Language (#) (#) Generation Plausibility Correctness Overffiting Overfitting Efficiency

Goues et al. [76] C 3 2 3 7 7 7 7 3
Qi et al. [15] C 2 1 3 7 7 7 7 3
Smith et al. [77] C 2 1 3 7 3 7 7 7
Qi et al. [14] C 4 1 3 3 3 7 7 3
Motwani et al. [65] C, Java 9 2 3 7 7 7 7 7
Martinez et al. [75] Java 3 1 3 3 3 7 7 3
Xiong [25] Java 5 1 3 7 3 7 7 7
Ye et al. [80] Java 5 1 3 3 3 7 7 3
Hua et al. [23] Java 5 1 3 3 3 7 7 3
Yuan, Banzhaf [13] Java 7 1 3 7 3 7 7 3
Liu et al. [55] Java 14 1 3 3 3 7 7 7
Liu et al. [10] Java 16 1 3 3 3 7 7 3
Durieux et al. [9] Java 11 5 3 7 7 3 7 3
This study Java 14 3 3 3 3 7 3 3

highlighted the main challenges on the assessment of the
correctness of generated patches. Furthermore, Lui et al. [55]
compared 14 repair tools using the DEFECTS4J bug bench-
mark, and revealed that imprecision in the fault-localisation
step of program repair can lead to overfitting issues.

Additionally, several papers that introduce new repair
approaches compare novel techniques to the state-of-the-
art [13], [23], [25]. Recently, Durieux et al. conducted the
first large-scale empirical study on evaluating whether the
repairability of repair tools can be generalised over different
bug benchmarks [9]. Furthermore, Motwani et al. compared
nine automated repair techniques using the MANYBUGS
and DEFECTS4J benchmarks to show whether such tools can
repair hard and important bugs [65]. Finally, Lui et al. first
presented an empirical study that evaluates the efficiency
of 16 state-of-the-art repair tools using the DEFECTS4J bug
benchmark, and defined specific correctness criteria and a
new efficiency measure (i.e., NPC), which we have adopted
in this study [10].

Many empirical evaluations have been conducted on the
effectiveness and efficiency of repair tools using bug bench-
marks. Table 11 classifies these studies based on particular
evaluated parameters. Our study differs from the previous
studies in two primary ways: 1) it considers a previously
unexplored yet important class of bugs: API misuses, and 2)
it draws conclusions on multiple (three) and large bench-
marks for evaluating the performance (patch plausibility,
correctness, and repair efficiency) of repair tools.

6.2 API-Misuse Detectors

There are several available API-misuse detectors, static, dy-
namic, and hybrid. Amann et al. recently published the first
systematic evaluation of static API-misuse detectors [2]. The
main limitations of static detectors include the generation
of a high rate of false positives and the need for manual
assessment and confirmation of the discovered misuses. To
overcome the issues of static detectors, recent API-misuse
detection approaches combine both static and dynamic
analysis to increase their precision and performance, and
eliminate developers’ workload. Specifically, Wen et al.
developed MUTAPI that uses mutation analysis to expose
API misuses [82] and Kechagia et al. introduced a novel

approach, CATCHER, that combines static exception prop-
agation and search-based test case generation to effectively
and efficiently identify API misuses [74]. Additionally, there
are only a few research-oriented tools that can automatically
repair specific types of API misuses. For instance, consider
those that repair incorrect error handling [26], [83], [84].

Additionally, consider program synthesis approaches
that assist developers to avoid errors in sequences of
API method calls. Characteristically, Yang et al. introduced
EDSYNTH that synthesises API sequences with condition-
als and loops [58]. Feng et al. presented an approach for
component-based synthesis for complex APIs [57]. However,
these approaches have been currently evaluated only on
small programs.

6.3 Bug Benchmarks
Researchers have created benchmarks of real-world bugs to
evaluate the performance of novel methods and tools. Just
et al. introduced a database (DEFECTS4J) of programs, bugs,
and test suites extracted from well-known Java projects [71].
Recently, the BEARS [11] and BUG.JAR [12] Java bug bench-
marks were produced for the evaluation of repair tools. Le
Goues et al. developed benchmarks of C bugs (MANYBUGS
and INTROCLASS) for the evaluation of repair tools [76].
Lin et al. published the QUIXBUGS benchmark suite for
Python and Java [81]. Recently, Amann et al. introduced a
benchmark of Java API misuses, MUBENCH [69].

7 CONCLUSION

Several studies have compared repair tools, using bug
benchmarks, and argued that these tools suffer from im-
precision and can generate patches for only a few different
types of bugs. To advance program repair further, recent
work shows that repair tools should be evaluated based on
different bug benchmarks and on the types of bugs that the
tools are designed to work for. Our work presents the first
large-scale empirical study of repair tools concerning their
ability to repair an unexplored class of bugs, API misuses.

Our study includes 14 state-of-the-art Java test-suite-
based repair tools and a bug benchmark for program re-
pair (APIREPBENCH) that comprises 101 API misuses stem-
ming from three bug benchmarks (BEARS, BUGS.JAR, and

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 20

MUBENCH). For our experiments, we develop an execution
framework (APIARTY) that helps in the automatic execu-
tion of multiple repair tools.

Our results show that all repair tools can generate
patches for 28% API misuses in our benchmark. The repair
attempts of the 11 earlier tools take on average 3.87 minutes
(median execution time) and 30.79 minutes (mean execution
time). The three recent tools take significantly more time
(more than two hours on average) to run. The tools generate
patches for API misuses that mostly belong to the categories
of missing null check, missing value, missing exception,
and missing call. Most of the patches generated by all tools
are plausible (65%), but only few of the generated patches
are semantically correct to human patches (25%). Most cor-
rect patches belong to the missing call, missing null check,
and missing value categories. We also observe that recent
tools are more effective than their predecessors in repairing
the APIREPBENCH-D4J misuses, with AVATAR and TBAR
to have more than 60% plausible and semantically correct
patches generated.

Future research can explore building repair tools able
to generate patches for API misuses by focusing the search
space and targeting specific classes of API misuses. Another
aspect that could be tackled in future studies is the preven-
tion of overfitting while repairing API misuses. Finally, the
development of additional bug benchmarks can help us to
further study and address the challenges of API repair.

ACKNOWLEDGMENTS

This work is supported by the ERC Advanced fellowship
grant no. 741278 (EPIC). The authors would like to thank Dr.
Matias Martinez for responding promptly to our questions
about using ASTOR.

REFERENCES

[1] P. Mohagheghi and R. Conradi, “Quality, productivity and eco-
nomic benefits of software reuse: a review of industrial studies,”
Empirical Software Engineering, vol. 12, no. 5, pp. 471–516, 2007.

[2] S. Amann, H. A. Nguyen, S. Nadi, T. N. Nguyen, and M. Mezini,
“A systematic evaluation of static api-misuse detectors,” IEEE
Transactions on Software Engineering, vol. 45, no. 12, pp. 1170–1188,
2019.

[3] M. Fazzini, Q. Xin, and A. Orso, “Automated API-usage update
for Android apps,” in Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA).
ACM, 2019, pp. 204–215.

[4] S. Nadi, S. Krüger, M. Mezini, and E. Bodden, “Jumping through
hoops: Why do Java developers struggle with cryptography
APIs?” in Proceedings of the 38th International Conference on Software
Engineering, ser. ICSE ’16. ACM, 2016, pp. 935–946.

[5] A. Reinking and R. Piskac, “A type-directed approach to program
repair,” in Computer Aided Verification, D. Kroening and C. S.
Păsăreanu, Eds. Cham: Springer International Publishing, 2015,
pp. 511–517.

[6] M. Monperrus, “A critical review of “automatic patch generation
learned from human-written patches”: Essay on the problem
statement and the evaluation of automatic software repair,” in Pro-
ceedings of the 36th International Conference on Software Engineering
(ICSE). ACM, 2014, pp. 234–242.

[7] C. L. Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer, “A
systematic study of automated program repair: Fixing 55 out
of 105 bugs for $8 each,” in Proceedings of the 34th International
Conference on Software Engineering (ICSE), 2012, pp. 3–13.

[8] A. Marginean, J. Bader, S. Chandra, M. Harman, Y. Jia, K. Mao,
A. Mols, and A. Scott, “SapFix: Automated end-to-end repair
at scale,” in IEEE/ACM 41st International Conference on Software
Engineering: Software Engineering in Practice (ICSE-SEIP), 2019, pp.
269–278.

[9] T. Durieux, F. Madeiral, M. Martinez, and R. Abreu, “Empirical
review of Java program repair tools: A large-scale experiment on
2,141 bugs and 23,551 repair attempts,” ser. FSE, 2019.

[10] K. Liu, S. Wang, A. Koyuncu, K. Kim, T. F. Bissyandé, D. Kim,
P. Wu, J. Klein, X. Mao, and Y. Le Traon, “On the efficiency of test
suite based program repair,” in Proceedings of ICSE, 2020.

[11] F. Madeiral, S. Urli, M. Maia, and M. Monperrus, “Bears: An
Extensible Java Bug Benchmark for Automatic Program Repair
Studies,” in Proceedings of the 26th IEEE International Conference on
Software Analysis, Evolution and Reengineering (SANER ’19), 2019,
pp. 468–478. [Online]. Available: https://arxiv.org/abs/1901.
06024

[12] R. K. Saha, Y. Lyu, W. Lam, H. Yoshida, and M. R. Prasad,
“Bugs.Jar: A large-scale, diverse dataset of real-world Java bugs,”
in Proceedings of the 15th International Conference on Mining Software
Repositories (MSR). ACM, 2018, pp. 10–13.

[13] Y. Yuan and W. Banzhaf, “ARJA: Automated repair of Java pro-
grams via multi-objective genetic programming,” IEEE Transac-
tions on Software Engineering, pp. 1–1, 2018.

[14] Z. Qi, F. Long, S. Achour, and M. Rinard, “An analysis of patch
plausibility and correctness for generate-and-validate patch gen-
eration systems,” in Proceedings of the 2015 International Symposium
on Software Testing and Analysis (ISSTA). ACM, 2015, pp. 24–36.

[15] Y. Qi, X. Mao, Y. Lei, Z. Dai, and C. Wang, “The strength of random
search on automated program repair,” in Proceedings of the 36th
International Conference on Software Engineering (ICSE). ACM, 2014,
pp. 254–265.

[16] M. Martinez and M. Monperrus, “Ultra-large repair search space
with automatically mined templates: The Cardumen mode of
Astor,” in International Symposium on Search Based Software Engi-
neering. Springer, 2018, pp. 65–86.

[17] ——, “Astor: Exploring the design space of generate-and-validate
program repair beyond GenProg,” Journal of Systems and Software,
vol. 151, pp. 65–80, 2019.

[18] ——, “ASTOR: A program repair library for Java (demo),” in
Proceedings of the 25th International Symposium on Software Testing
and Analysis (ISSTA). ACM, 2016, pp. 441–444.

[19] K. Liu, A. Koyuncu, D. Kim, and T. F. Bissyandé, “AVATAR: Fixing
semantic bugs with fix patterns of static analysis violations,” IEEE
26th International Conference on Software Analysis, Evolution and
Reengineering (SANER), pp. 1–12, 2018.

[20] M. Wen, J. Chen, R. Wu, D. Hao, and S.-C. Cheung, “Context-
aware patch generation for better automated program repair,” in
Proceedings of the 40th International Conference on Software Engineer-
ing, ser. ICSE ’18. ACM, 2018, pp. 1–11.

[21] A. Koyuncu, K. Liu, T. F. Bissyandé, D. Kim, M. Monperrus,
J. Klein, and Y. Le Traon, “IFixR: Bug report driven program
repair,” in Proceedings of the 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of
Software Engineering (ESEC/FSE). ACM, 2019.

[22] J. Jiang, Y. Xiong, H. Zhang, Q. Gao, and X. Chen, “Shaping
program repair space with existing patches and similar code,” in
Proceedings of the 27th ACM SIGSOFT International Symposium on
Software Testing and Analysis, ser. ISSTA. ACM, 2018, pp. 298–309.

[23] J. Hua, M. Zhang, K. Wang, and S. Khurshid, “Towards practical
program repair with on-demand candidate generation,” in Pro-
ceedings of the 40th International Conference on Software Engineering,
ser. ICSE ’18. ACM, 2018, pp. 12–23.

[24] K. Liu, A. Koyuncu, D. Kim, and T. F. Bissyandé, “TBar: Revisiting
template-based automated program repair,” in Proceedings of the
28th ACM SIGSOFT International Symposium on Software Testing and
Analysis, ser. ISSTA. ACM, 2019, pp. 31—-42.

[25] Y. Xiong, J. Wang, R. Yan, J. Zhang, S. Han, G. Huang, and
L. Zhang, “Precise condition synthesis for program repair,” in Pro-
ceedings of the 39th International Conference on Software Engineering,
ser. ICSE. IEEE Press, 2017, pp. 416–426.

[26] A. Dhar, R. Purandare, M. Dhawan, and S. Rangaswamy,
“CLOTHO: Saving programs from malformed strings and incor-
rect string-handling,” in Proceedings of the 10th Joint Meeting on
Foundations of Software Engineering (ESEC/FSE). ACM, 2015, pp.
555–566.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 21

[27] T. Durieux and M. Monperrus, “DynaMoth: Dynamic code syn-
thesis for automatic program repair,” in 2016 IEEE/ACM 11th
International Workshop in Automation of Software Test (AST), 2016,
pp. 85–91.

[28] S. Sinha, H. Shah, C. Görg, S. Jiang, M. Kim, and M. J. Harrold,
“Fault localization and repair for Java runtime exceptions,” in
Proceedings of the Eighteenth International Symposium on Software
Testing and Analysis, ser. ISSTA. ACM, 2009, pp. 153—-164.

[29] R. van Tonder and C. L. Goues, “Static automated program repair
for heap properties,” in Proceedings of the 40th International Confer-
ence on Software Engineering (ICSE). ACM, 2018, pp. 151–162.

[30] L. Chen, Y. Pei, and C. A. Furia, “Contract-based program repair
without the contracts,” in 32nd IEEE/ACM International Conference
on Automated Software Engineering (ASE), 2017, pp. 637–647.

[31] P. van der Spek, N. Plat, and C. Pronk, “Syntax error repair for
a Java-based parser generator,” SIGPLAN Not., vol. 40, no. 4, pp.
47–50, 2005.

[32] X.-B. D. Le, D.-H. Chu, D. Lo, C. Le Goues, and W. Visser, “JFIX:
Semantics-based repair of Java programs via symbolic pathfinder,”
in Proceedings of the 26th ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA). ACM, 2017, pp. 376—-379.

[33] R. Alur, P. Černý, P. Madhusudan, and W. Nam, “Synthesis of
interface specifications for Java classes,” in Proceedings of the 32nd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, ser. POPL ’05. ACM, 2005, p. 98–109.

[34] W. Wang, Z. Meng, Z. Wang, S. Liu, and J. Hao, “LoopFix: an
approach to automatic repair of buggy loops,” Journal of Systems
and Software, vol. 156, pp. 100–112, 2019.

[35] J. Xuan, M. Martinez, F. DeMarco, M. Clément, S. L. Marcote,
T. Durieux, D. L. Berre, and M., “Nopol: Automatic repair of
conditional statement bugs in Java programs,” IEEE Transactions
on Software Engineering, vol. 43, no. 1, pp. 34–55, 2017.

[36] T. Durieux, B. Cornu, L. Seinturier, and M. Monperrus, “Dynamic
patch generation for null pointer exceptions using metaprogram-
ming,” in 2017 IEEE 24th International Conference on Software Analy-
sis, Evolution and Reengineering (SANER), 2017, pp. 349–358.

[37] G. Liva, M. T. Khan, M. Pinzger, F. Spegni, and L. Spalazzi,
“Automatic repair of timestamp comparisons,” IEEE Transactions
on Software Engineering, pp. 1–1, 2019.

[38] X. Xu, Y. Sui, H. Yan, and J. Xue, “VFix: Value-flow-guided precise
program repair for Null pointer dereferences,” in IEEE/ACM 41st
International Conference on Software Engineering (ICSE), 2019, pp.
512–523.

[39] J. Kim, J. Kim, E. Lee, and S. Kim, “The effectiveness of context-
based change application on automatic program repair,” Empirical
Software Engineering, vol. 25, no. 1, pp. 719–754, 2020.

[40] J. Kim and S. Kim, “Automatic patch generation with context-
based change application,” Empirical Software Engineering, vol. 24,
no. 6, pp. 4071–4106, 2019.

[41] R. K. Saha, H. Yoshida, M. R. Prasad, S. Tokumoto, K. Takayama,
and I. Nanba, “Elixir: An automated repair tool for java pro-
grams,” in Proceedings of the 40th International Conference on Software
Engineering: Companion Proceeedings, ser. ICSE. ACM, 2018, pp.
77–80.

[42] A. Koyuncu, K. Liu, T. F. Bissyandé, D. Kim, J. Klein, M. Mon-
perrus, and Y. Le Traon, “FixMiner: Mining relevant fix patterns
for automated program repair,” Empirical Software Engineering, pp.
1–45, 2020.

[43] J. Jiang, L. Ren, Y. Xiong, and L. Zhang, “Inferring program
transformations from singular examples via big code,” in 34th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE), 2019, pp. 255–266.

[44] X. B. D. Le, D. Lo, and C. L. Goues, “History driven program
repair,” in IEEE 23rd International Conference on Software Analysis,
Evolution, and Reengineering (SANER), 2016, pp. 213–224.

[45] N. Meng, M. Kim, and K. S. McKinley, “Lase: Locating and
applying systematic edits by learning from examples,” in 35th
International Conference on Software Engineering (ICSE), 2013, pp.
502–511.

[46] K. Liu, A. Koyuncu, K. Kim, D. Kim, and T. F. Bissyandé, “LSRe-
pair: Live search of fix ingredients for automated program repair,”
in 25th Asia-Pacific Software Engineering Conference (APSEC), 2018,
pp. 658–662.

[47] R. Bavishi, H. Yoshida, and M. R. Prasad, “Phoenix: Automated
data-driven synthesis of repairs for static analysis violations,” in
Proceedings of the 27th ACM Joint Meeting on European Software

Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE). ACM, 2019, p. 613–624.

[48] Z. Chen, S. J. Kommrusch, M. Tufano, L. Pouchet, D. Poshyvanyk,
and M. Monperrus, “SEQUENCER: Sequence-to-sequence learn-
ing for end-to-end program repair,” IEEE Transactions on Software
Engineering, pp. 1–1, 2019.

[49] X. Liu and H. Zhong, “Mining StackOverflow for program repair,”
in IEEE 25th International Conference on Software Analysis, Evolution
and Reengineering (SANER), 2018, pp. 118–129.

[50] Q. Xin and S. P. Reiss, “Leveraging syntax-related code for auto-
mated program repair,” in 32nd IEEE/ACM International Conference
on Automated Software Engineering (ASE), 2017, pp. 660–670.

[51] S. Ma, F. Thung, D. Lo, C. Sun, and R. H. Deng, “VuRLE:
Automatic vulnerability detection and repair by learning from
examples,” in Computer Security – ESORICS 2017, S. N. Foley,
D. Gollmann, and E. Snekkenes, Eds. Cham: Springer Interna-
tional Publishing, 2017, pp. 229–246.

[52] L. Gazzola, D. Micucci, and L. Mariani, “Automatic software
repair: A survey,” IEEE Transactions on Software Engineering, vol. 45,
no. 1, pp. 34–67, 2019.

[53] M. Monperrus, “Automatic software repair: A bibliography,”
ACM Comput. Surv., vol. 51, no. 1, pp. 17:1–17:24, 2018.

[54] C. L. Goues, M. Pradel, and A. Roychoudhury, “Automated pro-
gram repair,” Commun. ACM, vol. 62, no. 12, pp. 56—-65, 2019.

[55] K. Liu, A. Koyuncu, T. F. Bissyandé, D. Kim, J. Klein, and Y. Le
Traon, “You cannot fix what you cannot find! an investigation of
fault localization bias in benchmarking automated program repair
systems,” in Proceedings of the 12th IEEE Conference on Software
Testing, Validation and Verification (ICST), 2019, pp. 102–113.

[56] R. P. L. Buse and W. Weimer, “Synthesizing API usage examples,”
in 34th International Conference on Software Engineering (ICSE), 2012,
pp. 782–792.

[57] Y. Feng, R. Martins, Y. Wang, I. Dillig, and T. W. Reps,
“Component-based synthesis for complex APIs,” in Proceedings of
the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages, ser. POPL 2017. ACM, 2017, pp. 599–612.

[58] Z. Yang, J. Hua, K. Wang, and S. Khurshid, “EdSynth: Synthesizing
API sequences with conditionals and loops,” in Proceedings of the
11th International Conference on Software Testing, Verification and
Validation (ICST), 2018, pp. 161–171.

[59] T. Nguyen, P. C. Rigby, A. T. Nguyen, M. Karanfil, and T. N.
Nguyen, “T2API: Synthesizing API code usage templates from
english texts with statistical translation,” in Proceedings of the 24th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering (FSE). ACM, 2016, p. 1013–1017.

[60] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest, “Automati-
cally finding patches using genetic programming,” in Proceedings
of the 31st International Conference on Software Engineering, ser. ICSE
’09. Washington, DC, USA: IEEE Computer Society, 2009, pp.
364–374.

[61] M. P. Robillard and R. Deline, “A field study of API learning
obstacles,” Empirical Software Engineering, vol. 16, no. 6, pp. 703–
732, 2011.

[62] M. Kechagia, D. Mitropoulos, and D. Spinellis, “Charting the
API minefield using software telemetry data,” Empirical Software
Engineering, vol. 20, no. 6, pp. 1785–1830, 2015.

[63] Y. Acar, M. Backes, S. Fahl, D. Kim, M. L. Mazurek, and C. Stran-
sky, “You get where you’re looking for: The impact of information
sources on code security,” in IEEE Symposium on Security and
Privacy (SP), 2016, pp. 289–305.

[64] T. Zhang, G. Upadhyaya, A. Reinhardt, H. Rajan, and M. Kim,
“Are code examples on an online Q&A forum reliable?: A study
of API misuse on Stack Overflow,” in 2018 IEEE/ACM 40th Inter-
national Conference on Software Engineering (ICSE), 2018.

[65] M. Motwani, S. Sankaranarayanan, R. Just, and Y. Brun, “Do
automated program repair techniques repair hard and important
bugs?” Empirical Software Engineering, vol. 23, no. 5, pp. 2901–2947,
2018.

[66] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest, “Automati-
cally finding patches using genetic programming,” in ICSE. IEEE,
2009, pp. 364–374.

[67] S. Forrest, W. Weimer, T. Nguyen, and C. Le Goues, “A genetic
programming approach to automated software repair,” in Genetic
and Evolutionary Computation Conference, F. Rothlauf, Ed. ACM,
2009, pp. 947–954.

[68] E. T. Barr, Y. Brun, P. T. Devanbu, M. Harman, and F. Sarro,
“The plastic surgery hypothesis,” in Proceedings of the 22nd ACM

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 22

SIGSOFT International Symposium on Foundations of Software Engi-
neering, (FSE). ACM, 2014, pp. 306–317.

[69] S. Amann, S. Nadi, H. A. Nguyen, T. N. Nguyen, and M. Mezini,
“MUBench: A benchmark for API-misuse detectors,” in 2016
IEEE/ACM 13th Working Conference on Mining Software Repositories
(MSR), 2016, pp. 464–467.

[70] K. Herzig, S. Just, and A. Zeller, “It’s not a bug, it’s a feature:
How misclassification impacts bug prediction,” in 2013 35th Inter-
national Conference on Software Engineering (ICSE), 2013, pp. 392–
401.

[71] R. Just, D. Jalali, and M. D. Ernst, “Defects4J: A database of existing
faults to enable controlled testing studies for java programs,” in
Proceedings of the 2014 International Symposium on Software Testing
and Analysis, ser. ISSTA 2014. ACM, 2014, pp. 437–440.

[72] Q. Gao, H. Zhang, J. Wang, Y. Xiong, L. Zhang, and H. Mei,
“Fixing recurring crash bugs via analyzing Q&A sites (T),” in 30th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE), 2015, pp. 307–318.

[73] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sun-
daresan, “Soot: A Java bytecode optimization framework,” in
CASCON First Decade High Impact Papers. Riverton, NJ, USA:
IBM Corp., 2010, pp. 214–224.

[74] M. Kechagia, X. Devroey, A. Panichella, G. Gousios, and A. van
Deursen, “Effective and efficient API misuse detection via excep-
tion propagation and search-based testing,” ser. ISSTA ’19, 2019.

[75] M. Martinez, T. Durieux, R. Sommerard, J. Xuan, and M. , “Auto-
matic repair of real bugs in Java: a large-scale experiment on the
Defects4J dataset,” Empirical Software Engineering, vol. 22, no. 4,
pp. 1936–1964, 2017.

[76] C. Le Goues, N. Holtschulte, E. K. Smith, Y. Brun, P. Devanbu,
S. Forrest, and W. Weimer, “The ManyBugs and IntroClass bench-
marks for automated repair of C programs,” IEEE Transactions on
Software Engineering, vol. 41, no. 12, pp. 1236–1256, 2015.

[77] E. K. Smith, E. T. Barr, C. Le Goues, and Y. Brun, “Is the cure
worse than the disease? overfitting in automated program repair,”
in Proceedings of the 10th Joint Meeting on Foundations of Software
Engineering, ser. ESEC/FSE. ACM, 2015, pp. 532—-543.

[78] F. Long and M. Rinard, “An analysis of the search spaces for
generate and validate patch generation systems,” in Proceedings of
the 38th International Conference on Software Engineering, ser. ICSE.
ACM, 2016, pp. 702—-713.

[79] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why
don’t software developers use static analysis tools to find bugs?”
in 35th International Conference on Software Engineering (ICSE), 2013,
pp. 672–681.

[80] H. Ye, M. Martinez, T. Durieux, and M. , “A comprehensive study
of automatic program repair on the QuixBugs benchmark,” in
IEEE 1st International Workshop on Intelligent Bug Fixing (IBF), 2019,
pp. 1–10.

[81] D. Lin, J. Koppel, A. Chen, and A. Solar-Lezama, “QuixBugs: A
multi-lingual program repair benchmark set based on the Quixey
challenge,” in Proceedings Companion of the 2017 ACM SIGPLAN
International Conference on Systems, Programming, Languages, and
Applications: Software for Humanity, ser. SPLASH Companion 2017.
ACM, 2017, pp. 55–56.

[82] M. Wen, Y. Liu, R. Wu, X. Xie, S.-C. Cheung, and Z. Su, “Exposing
library API misuses via mutation analysis,” in Proceedings of the
41st International Conference on Software Engineering, ser. ICSE ’19.
Piscataway, NJ, USA: IEEE Press, 2019, pp. 866–877.

[83] S. H. Tan, Z. Dong, X. Gao, and A. Roychoudhury, “Repairing
crashes in Android apps,” in Proceedings of the 40th International
Conference on Software Engineering (ICSE). ACM, 2018, pp. 187–
198.

[84] Y. Tian and B. Ray, “Automatically diagnosing and repairing error
handling bugs in C,” in Proceedings of the 11th Joint Meeting on
Foundations of Software Engineering (ESEC/FSE). ACM, 2017, pp.
752–762.

Maria Kechagia is a Research Fellow at Uni-
versity College London. Previously, she was a
postdoctoral researcher at the Delft University of
Technology. She obtained a PhD degree from
the Athens University of Economics and Busi-
ness and a MSc degree from Imperial College
London. Her research interests include program
analysis, software testing, automated program
repair, and software analytics. She has been a
programme committee member of ASE, MSR,
and ICSME, and a reviewer for TSE, EMSE,

JSS. Web page: http://www0.cs.ucl.ac.uk/staff/M.Kechagia/

Sergey Mechtaev is a Lecturer at University
College London. Previously, he obtained a PhD
degree from the National University of Singa-
pore. His research interests include automated
program repair, program synthesis and symbolic
execution. He has received ACM SIGSOFT Out-
standing Dissertation Award for his PhD thesis
on semantic program repair. He has been a
programme committee member of ASE, and a
reviewer of TSE, TOSEM and EMSE. Web page:
http://mechtaev.com

Federica Sarro is a Professor of Software En-
gineering at University College London. Her re-
search covers Predictive Analytics for Software
Engineering (SE), Empirical SE and Search-
Based SE. On these topics she has co-authored
over 80 papers and has also received several
international awards including the FSE’19 ACM
Distinguished Paper Award. She is an active
member of the SE community: She has served
on several steering, organisation, programme
committees, and has been awarded several ser-

vice awards including the ACM Distinguished Reviewer Award at
ICSE’18 and ICSE’20. Web page: http://www0.cs.ucl.ac.uk/staff/F.Sarro/

Mark Harman works full time at Facebook Lon-
don as a Research Scientist in a team focussing
in AI for scalable software engineering. He also
holds a part-time professorship at UCL. Previ-
ously, Mark was the manager of the Facebook
team that deployed Sapienz to test mobile apps,
which grew out of Majicke, a start up co-founded
by Mark and acquired by Facebook in 2017. In
his more purely scientific work, Mark co-founded
the field Search Based Software Engineering
(SBSE), and is also known for scientific research

on source code analysis, software testing, app store analysis and em-
pirical software engineering. He received the IEEE Harlan Mills Award
and the ACM Outstanding Research Award in 2019 for this work. In
addition to Facebook itself, Mark’s scientific work is also supported by
the European Research Council (ERC), with an advanced fellowship
grant, and has also been regularly and generously supported by the
UK Engineering and Physical Sciences Research Council (EPSRC),
with regular grants, a platform and a programme grant. Web page:
http://www0.cs.ucl.ac.uk/staff/M.Harman/

