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Abstract. Software companies exploit data about completed projects to estimate
the development effort required for new projects. Software size is one of the most
important information used to this end. However, different methods for sizing
software exist and companies may require to migrate to a new method at a certain
point. In this case, in order to exploit historical data they need to resize the past
projects with the new method. Besides to be expensive, resizing is also often not
possible due to the lack of adequate documentation. To support size measurement
migration, we propose a transfer learning approach that allows to avoid resizing
and is able to estimate the effort of new projects based on the combined use
of data about past projects measured with the previous measurement method and
projects measured with the new one. To assess our proposal, an empirical analysis
is carried out using an industrial dataset of 25 projects. Function Point Analysis
and COSMIC are the measurement methods taken into account in the study.

Keywords: Effort estimation; COSMIC; Function Points; Transfer learning

1 Introduction

Software development effort estimation represents a crucial management activity. Soft-
ware companies exploit data about completed projects to estimate the effort required
to develop new projects. Besides the actual effort needed to develop past projects, soft-
ware size is one of the most important information employed to this end. In this context,
Functional Size Measurement (FSM) methods are especially important since they are
meant to provide an early software size estimation based on the Functional User Re-
quirements (FURs). Several FSMs exist that differ in several aspects. Function Point
Analysis (FPA) [1] was the first FSM method; conceived in the era of transactional
systems, it is meant to size a software product by identifying the set of ”features” it pro-
vides. COSMIC, initially conceived for real time systems, sizes a software depending



on the data movements from/to persistent storage and users, that can be deducted from
FURs [2] needed to realize each requirement. COSMIC is considered a 2nd generation
FSM method to distinguish it from other previous FSM methods (including FPA) that
represent 1st generation FSM. Software companies choose an FSM method based on
several criteria, e.g., know-how, customers measurement requirements, organizational
policies or also effectiveness. So, the migration from a method to another might be mo-
tivated by the changes in one or more of those criteria. Nevertheless, a company that
wants to migrate from a measurement method to another and use the new method for
effort estimation needs to face the lack of historical data in terms of the new measure.
This happens for example to the software companies that would like to migrate from a
1st generation FSM method (e.g., FPA) to a 2nd generation FSM method (COSMIC).

To address the problem, a company could re-measure the past projects with the
new measurement method. Besides being expensive, often resizing is also not possi-
ble due to the lack of adequate documentation. Another solution could be sizing only
the new projects and use public data from other companies (i.e., without-company)
until the company builds its own database (i.e., within-company) to predict software
development effort. However, there is no evidence in literature that without-company
models perform as well as within-company models to predict the effort of new projects
[3]. Therefore, the use of statistical conversion equations from FPA to COSMIC has
been proposed to automatically re-size past projects (e.g. [4], [5]). Several conversion
equations have been proposed, based on the use of different datasets and regression
methods. Nevertheless, the effectiveness of this approach strongly depends on the em-
ployed conversion equations [6], especially when the conversion equation is obtained
from without-company data [7].

In this paper we propose a different approach, based on transfer learning and able
to estimate the effort of new projects exploiting and adjusting the information gath-
ered about past projects over the time. The approach proposed herein builds adaptive
regression models based on the combined use of data on past projects sized with the
previous measurement method (source domain) and incoming data about new projects
sized with the new measurement method (target domain). In particular, to estimate the
effort of new projects sized with COSMIC, we start by applying Least Squares Regres-
sion (LSR) to the projects measured with FPA. Then we apply the LSR on the (few)
COSMIC points, in combination with a regularization factor that allows the estimator
to start from the source initial solution and smoothly adapt to the target domain, until
enough information is available in terms of projects measured with COSMIC. In other
words, we exploit the knowledge acquired from the source domain as long as we do not
have enough points in the target domain.

To assess the effectiveness of the proposal, we carried out an empirical study using
an industrial dataset of 25 projects. We use as baseline the predictions obtained with the
LSR estimation model based only on FPA sizes. Furthermore, we compare the predic-
tions provided by the proposed approach with respect to those obtained by using only
COSMIC sizes. Finally, we also perform a comparison with the predictions obtained by
a simple conversion equation.

In the remainder of the paper, Section 2 provides background information on the
employed FSM methods and on the conversion equations from FPA to COSMIC. Sec-



tion 3 introduces the proposed transfer learning approach. Section 4 explains the design
of the empirical study and reports its results, while Section 5 discusses the threats to its
validity. Related work are presented in Section 6. Section 7 concludes the paper.

2 Functional Size Measures: 1st and 2nd Generation

In the following, we first provide a brief history of FSM methods and then the main no-
tions of FPA and COSMIC methods. We also present the related work on the migration
from FPA to COSMIC.

2.1 Functional Measurement Methods

In our investigation we focused on Functional Size Measures, because, differently from
dimensional measures, such as Lines of Code, they are particularly suitable to be ap-
plied in the early phases of the development lifecycle, when only Functional User Re-
quirements (FURs) are available, being the typical choice for tasks such as estimating
a project development effort.

The first FSM method proposed in the literature was FPA, introduced by Albrecht
in 1979 [1] as a measure to quantify the functionalities provided by a software from
the end-user point of view. Since 1986 FPA is managed by the International Function
Point Users Group (IFPUG) [8] and it is named IFPUG FPA (or IFPUG, for short),
which has been standardized by ISO as ISO/IEC 20926:2009. FPA has evolved in many
different ways (e.g., MkII Function Point, the Boeing 3D Function Points, or the Full
Function Point (FFP) [9]). Since these methods are all based on the original formulation
by Albrecht, they are also known as 1st generation FSM methods.

At the end of the 90’s a group of software measurers formed the Common Software
Measurement International Consortium (COSMIC) to define a new FSM method to
overcome some limitations of the original formulation. The result was the COSMIC-
FFP method, which is considered the first “2nd generation FSM method”. To highlight
this concept, the first version of the method is the 2.0. Important refinements were
introduced in 2007 in the version 3.0, named simply COSMIC and standardized as
ISO/IEC 19761:2011. The current version of COSMIC is 4.0.1, introduced in April
2015.

In the following we describe the main concepts underlying the IFPUG and COSMIC
methods. Among the 1st generation methods, we analyze IFPUG since it is still the most
widely used by software practitioners.

2.2 The IFPUG Method

IFPUG sizes an application usually using its FURs. Indeed, to identify the set of “fea-
tures” provided by the software, each FUR is functionally decomposed into Base Func-
tional Components (BFC), and each BFC is categorized into one of the five Data or
Transactional BFC Types. The Data BFC are defined as follows:

– Internal Logical Files (ILF) are logical, persistent entities maintained by the appli-
cation to store information of interest.



– External Interface Files (EIF) are logical, persistent entities referenced by the ap-
plication, but are maintained by another software application.

While the Transactional BFC are defined as follows:

– External Inputs (EI) are logical, elementary business processes crossing the appli-
cation boundary to maintain the data on an Internal Logical File.

– External Outputs (EO) are logical, elementary business processes that result in
data leaving the application boundary to meet a user requirements (e.g., reports,
screens).

– External Inquires (EQ) are logical, elementary business processes that consist of
a data trigger followed by a retrieval of data that leaves the application boundary
(e.g., browsing of data).

Then, the “complexity” of each BFC is assessed through the identification of further
attributes (such as the number of data fields to be processed). Once derived this in-
formation, a table provided in the IFPUG method [8] specifies the complexity of each
function, in terms of Unadjusted Function Points (UFP). The sum of all these UFPs
gives the functional size of the application. Subsequently, a Value Adjustment Factor
(VAF) can be computed to take into account some non-functional requirements, such as
Performances, Reusability, and so on. The final size of the application in terms of Func-
tion Points is given by FP = UFP · V AF . For more details on the IFPUG method,
readers may refer to the counting manual [8].

2.3 The COSMIC Method

The basic idea underlying the COSMIC method is that, for many types of software,
most of the development effort is devoted to handle data movements from/to persistent
storage and users. Thus, the number of these data movements can provide a meaningful
sight of the system size [2]. To identify and count these data movements, the measure-
ment process consists of three phases [2]:

1. The Measurement Strategy phase is meant to define, among others, the purpose of
the measurement, the scope (i.e. the set of FUR to be included in the measurement),
and the functional users of each piece of software.

2. The Mapping Phase requires to express each FUR in the form required by the COS-
MIC Generic Software Model. This model, necessary to identify the key elements
to be measured, assumes that (i) each FUR can be mapped into a unique functional
process, meant as a cohesive and independently executable set of data movements,
(ii) each functional process consists of sub-processes, and (iii) each sub-process
may be either a data movement or a data manipulation.
As depicted in Figure 1, data movements are defined as follows:

– An Entry (E) moves a data group from a functional user across the boundary
into the functional process where it is required.

– An Exit (X) moves a data group from a functional process across the boundary
to the functional user that requires it.

– A Read (R) moves a data group from persistent storage within each of the
functional process that requires it.



Fig. 1: The four types of COSMIC Data Movements, and their relationship with a Func-
tional Process [2]

– A Write (W) moves a data group lying inside a functional process to persistent
storage.

3. The Measurement Phase, where the data movements of each functional process
have to be identified and counted. Each of them is counted as 1 COSMIC Function
Point (CFP) that is the COSMIC measurement unit. Thus, the size of an applica-
tion within a defined scope is obtained by summing the sizes of all the functional
processes within the scope.

For more details about the COSMIC method, readers are referred to the COSMIC Mea-
surement Manual [2].

2.4 Converting Function Points into COSMIC

From the brief descriptions of the two FSM methods reported in the previous sections,
we can see that FPA and COSMIC consider different aspects of a software system for its
size measurement, since they are based on different basic functional components [10].
Thus, “exact conversion formulae from sizes measured with a 1st generation method to
COSMIC sizes are impossible” [11].

A possible way to address the problem, also suggested in the COSMIC documen-
tation [11], is to search for some “statistically-based conversion formulae”. Some re-
searchers have been investigating the suitability and the effectiveness of such an ap-
proach by building conversion equations for different data sets. In particular, linear and
non-linear equations have been built by applying the linear regression analysis on the
raw data and on the log-transformed data, respectively [4]. Also, more sophisticated
techniques, such as piecewise regression, have been used to build non-linear models
[12].

The results reported in the literature [4] [12] [13] [14] [15] [16] [17] [18] [19] [20]
reveal that a statistical conversion is possible, thus supporting the suggestions provided
in the COSMIC documentation [11]. The studies also showed that both linear and non-
linear models should be analyzed to identify the best correlation. Furthermore, more



complex techniques, such as piecewise regression [12], did not provide significantly
better results, being at the same time hardly applicable.

As results of these investigations different conversion equations have been pro-
posed, that might be exploited to convert historical FP based data sets into COSMIC
based data sets. Among them, empirical evidence seem to suggest that a trivial 1 CFP
∼= 1 FP conversion could be applied to have a quick and dirty approximation of the size
in terms of COSMIC [4], even if authors pointed out that ”‘1 to 1 conversion cannot be
attributed to anything other than an influential coincidence”’ [4], as FPA and COSMIC
are meant to measure different attributes of the software.

In [6] we analyzed the effectiveness of all the conversion equations proposed in the
literature for effort estimation purposes. The obtained results revealed that the effec-
tiveness depends on the employed conversion equations. No guidelines can be provided
to the software company on how to carry out the selection. Furthermore, the use of
without-company conversion equations resulted to be worse than within-company con-
version equations [7].

For this reason, we decided to investigate a different strategy based on the idea of
transfer learning that has been successfully applied in other contexts [21].

3 The Proposed Trasfer Learning Approach

To support a company in the migration from a size measure to another, we would like
to find a solution aiming at transferring the knowledge about the relationship between
software size and development effort, extracted from a Source Domain (SD), where
each past project is sized in terms of Function Points, to a Target Domain (TD), where
the size measure is COSMIC. Let us note that, given this problem definition, the SD
and the TD have different feature space and distribution. As a consequence, the most of
the traditional machine learning methods cannot be applied [21].

Since this is a kind of problem arising in many scenarios, also outside software
engineering, the research community has provided a new family of approaches, known
as transfer learning [21]. Indeed, transfer learning is a general framework including
several techniques to bring some knowledge from an SD into a TD on a given task
that could be classification, regression or clustering. More formally, given an SD with
a Source Task (ST) and a TD with a Target Task (TT), a transfer learner is aimed at
improving the effectiveness of the prediction function in the TD using the knowledge
of SD and ST [21].

Given the combinations of differences among Domains and among Tasks, there is
a taxonomy of transfer learning approaches, as extensively discussed in [21]. In our
case, like the most of transfer learning problems in software engineering [22], we are
in the so-called transductive transfer learning scenario, where ST and TT are the same
(to build an effort estimation model), while SD and TD are different [23]. Moreover, in
our case, also the feature spaces between the SD and TD are different, since based on
different size measures (Function Points in the SD and COSMIC in the TD).

The goal of our proposal is to transfer the knowledge from an SD based on FP to
a TS based on COSMIC, to build an effort estimation model in the TD. This model
will be built incrementally, using any new project developed by the company during the



migration, and sized only with the new measure. More in details, as we want to learn
from both the domains SD and TD, we consider a training set composed by two parts,
the source training set TFP, whose points are expressed in terms of FP, and the target
training set TCFP, in terms of CFP. The former is composed by mFP = |TFP| points
represented by a feature vector xFP, the latter by mCFP = |TCFP| points in the target
domain, corresponding to the feature vector xCFP. Clearly, since FPA and COSMIC
are able to express the size of a software with one number, the dimension of feature
vectors in both domains is equal to 1. Furthermore, in both domains a real number
y is associated to each item, representing the actual development effort, expressed in
person/hours. In conclusion, we adopt the following notation: TFP = {(xiFP, y

i), 1 ≤
i ≤ mFP} and TCFP = {(xiCFP, y

i), 1 ≤ i ≤ mCFP}.
In the proposed approach we use as estimation technique the Least Square Regres-

sion (LSR), since it is a simple but effective technique widely and successfully em-
ployed in the industrial context and in several researches to estimate development effort
(see e.g., [24] [25] [26]). If we had enough previous projects measured with COSMIC,
we could simply disregard the dataset based on Function Point and apply LSR to con-
struct an effort estimation equation directly in the target domain. In this case, the LSR
equation can be written as follows:

(a∗CFP, b
∗
CFP) = argmin

a,b

∑
xi

CFP∈TCFP

(
axiCFP + b− yi

)2
(1)

where a∗CFP and b∗CFP represent the coefficient and the intercept of the linear equation
minimizing the sum of the squares of the errors.

However, since the proposed approach is meant to support a company at the begin-
ning of the migration when the number of examples in TCFP (i.e. completed projects
whose size is measured in CFP) is not sufficient for an effective learning of the relation-
ship between software size and development effort, we extract as much information as
possible from the source domain to improve regression in the target domain.

To this aim, we apply LSR to estimate the solution in the source domain:

(a∗FP, b
∗
FP) = argmin

a,b

∑
xi

FP∈TFP

(
axiFP + b− yi

)2
. (2)

Parameters (a∗FP, b
∗
FP) represent the information that we extract from the SD and will

inject in the final estimator.
Now, starting from the observation that a relationship 1 to 1 between FP and COM-

SIC could be a basic approximation [4], we want that this estimator considers these
parameters as a good approximation until enough information is available in terms of
projects measured with COSMIC. Better than that, we want that, starting from this ini-
tial estimation, it smoothly adapts to the new COSMIC-based domain.

Regularization factors are often used in machine learning to minimize the value
of parameters. In our case, however, the introduction of such a factor aims to pushing
the parameters of the LSR models we are trying to learn in the TD to be as similar as
possible to the ones trained in the SD. A similar idea is considered in [27] to generalize
an approach proposed by [28] for maximum entropy classification. In that case, the



approach is considered among the baselines and more complex approaches outperform
it. However, in the natural language processing field both the number of features and
the source domain training set are much larger than in the case of effort estimation. On
the other hand, a crucial aspect of the effort estimation domain is the usual scarcity of
past information: in fact usually a software company has just a limited number of both
points (past projects) and features (software size) with respect to most machine learning
problems, and such approaches would risk overfitting. Therefore, we need to find a good
compromise between the effectiveness of the approach and the risk of overfitting.

Thus, we propose a modification of the LSR equation in the TD by introducing a
regularization factor that has the effect of favoring the solution which is as similar as
possible to the parameters (a∗FP, b

∗
FP) found in the SD:

(a∗C , b
∗
C) = argmin

a,b(1− λ)
∑

xi
CFP∈TCFP

(
axiCFP + b− yi

)2
+ λ

(
(a− a∗FP)

2 + (b− b∗FP)
2
) . (3)

The weight of the regularization factor is controlled by the value of λ: when its
value is large, the resulting parameters will be more similar to the optimal SD solution,
due to the effect of the regularization factor. On the contrary, when its value is lower,
the resulting parameters will depend more on the new projects in the target training set.
At the limit, for a null value of λ, the estimation will be only based on the projects
measured with COSMIC, which is the ideal situation when enough observations with
the new measures have been collected. After some experiments, we found that a simple
way to define this factor is λ = 1

mCFP+ε
, where ε is a small number which avoids that

λ goes to infinity in the initial situation, that is when mCFP approaches to zero. The
rationale behind this definition of λ is that the more CFP points we get, the less is the
importance of the knowledge extracted from the FP source domain.

4 Empirical Study

In this section we present the design and the results of the empirical study we performed
to assess the effectiveness of our transfer learning based approach for effort estimation.
To this aim, we defined the following research question:

RQ : Is the proposed transfer learning based approach good for effort estimation
when migrating from Function Points to COSMIC?

4.1 Data Set

The data set considered in our study includes information about 25 Web applications
developed by an Italian medium-sized software company, whose core business is the
development of enterprise information systems, mainly for local and central govern-
ment. In particular, the set of Web applications includes e-government, e-banking, Web
portals, and Intranet applications. All the projects were developed with SUN J2EE or



Table 1: Descriptive statistics of EFF, CFP and FP

.

Var Obs Min Max Mean Median Std Dev
EFF 25 782 4537 2577.00 2686 988.14
CFP 25 163 1090 602.04 611 268.47
FP 25 89 915 366.76 304 208.65

Microsoft .NET technologies. Oracle has been the most commonly adopted DBMS, but
also SQL Server, Access and MySQL were employed in some of these projects.

As for the collection of the information, the software company used timesheets to
keep track of the Web application development effort. In particular, each team mem-
ber annotated the information about his/her development effort on each project every
day, and weekly each project manager stored the sum of the efforts for the team. Fur-
thermore, to collect all the significant information to calculate the values of the size
measure in terms of COSMIC, we defined a template to be filled in by the project man-
agers. All the project managers were trained on the use of the questionnaires. One of the
authors analyzed the filled templates and the analysis and design documents, in order to
cross-check the provided information. The same author calculated the values of the size
measure. As for the calculation of the size in terms of IFPUG, the company has always
applied this FSM method to measure its past applications.

Table 1 reports on some summary statistics related to the 25 Web applications em-
ployed in our study4. The variables are EFF, i.e., the actual effort expressed in terms of
person-hours, CFP, expressed in terms of number of COSMIC Function Points, and FP,
expressed in terms of number of Function Points.

4.2 Validation Method

To assess the prediction models we performed a cross validation, by considering a train-
ing set made of N points for which we have both Function Points and COSMIC mea-
sures (i.e., FP and CFP variables). We wanted to evaluate the performance of the pro-
posed approach as a function of the dimension of the source training set mFP: that is,
we took the FP for mFP points, and the CFP for the remaining training points, which
formed the target training set.

Although the dimension of our data set is reasonable for the task, it is quite small for
evaluation. In order to exploit it as much as possible, for each value of mFP, we adopted
the Leave-One-Out (LOO) protocol: at each iteration we kept a point for testing, while
we split the remainingN−1 points in source and target training sets, built the estimator
and applied it to the test point. All in all, as the dimension of the source training set is
mFP, the target training set had size mCFP = N − mFP − 1. The performance on the
single test points was then merged to obtain the performance on the complete data set.

In the proposed solution, the sequence in which projects are considered (being in
mFP or inmCFP) may strongly impact the results. In order to avoid the chance of obtain-
ing an extremely favorable or unfavorable disposition of points between the two training

4 Raw data cannot be revealed because of a Non Disclosure Agreement with the software com-
pany.



sets, we randomized the experiment by repeating the LOO procedure on 100 random
permutations of the data set for each value of mFP, and then considering the average of
the performance. Furthermore, on the basis of the standard deviation of performance,
we can also estimate its confidence interval.

4.3 Employed Benchmarks

Since we wanted to verify whether the proposed transfer learning approach can support
the companies in the migration from FPA to COSMIC for development effort estima-
tion, as baseline we considered the predictions obtained with the estimation model ob-
tained from the Function Points sizes (named FP model in the following). The rationale
is that the company should achieve effort predictions that are at least not significantly
worse than those it would obtain going on with FPA. Furthermore, we compared the pre-
dictions obtained by the model built with the transfer learning based approach (named
CFPTL model in the following) with those obtained by exploiting the estimation model
based on the measured COSMIC sizes (named CFP model in the following). Indeed,
this represent the accuracy the company could obtain by a dataset whose points are all
measured in COSMIC. Finally, we consider also the 1 CFP ∼= 1 FP conversion, since
it is the starting point of our transfer learner. In the following we denote by CFPFP

this model. It is important to note that the FP and CFPFP models provide different size
predictions because in the application of the LOO for the former we measured the ob-
servations in the training and test sets in terms of FP while for the latter the observation
in the test set is measured in terms of CFP.

The three estimation models for the three baselines were built using LSR employing
FP, CFP, and CFPFP as independent variables, respectively. The dependent variable was
EFF for all the three models.

4.4 Evaluation Criteria

The accuracy of the obtained prediction was evaluated exploiting Absolute Residuals
(AR), i.e., |Actual - Predicted|, where Actual and Predicted are the actual and the es-
timated efforts, respectively. To have a summary measure for comparing the different
estimation approaches we employed Mean of AR (MAR)[29]. In particular the results
are presented through a graphical representation, namely a simple plot. A method X is
better than another method Y if the MAR value obtained with X is less than the one of
obtained with Y.

Moreover, we tested whether there was a statistically significant difference between
the absolute residuals achieved with the CFPTL model and those obtained with the
FP, CFP, and CFPFP models. The results were intended as statistically significant at
α = 0.05. In order to have also an indication of the practical/managerial significance
of the results, we verified the effect size, which is a simple way of quantifying the
standardized difference between two groups. In particular, we employed the Cliffs d
non-parametric effect size measure because it is suitable to compute the magnitude of
the difference when a non parametric test is used. In the empirical software engineering
field, the magnitude of the effect sizes measured using the Cliffs d can be classified



Fig. 2: Results of the study in terms of MAR

as follows: negligible (d <0.147), small (0.147 to 0.33), medium (0.33 to 0.474), and
large (d >0.474) [30].

4.5 Results

Figure 2 shows the main results we obtained in the study. In particular, we have reported
the MAR values plus the standard deviation we got over 100 random sequences of
projects using the CFPTL estimation model. This is done on a range from 2 to 24 projects
measured with COSMIC. This because we cannot perform LSR on less than 2 points.
The figure also shows the MAR values we obtained using the FP, CFPFP, and CFP
models. For these three models, we exploited the leave-one-out cross validation on the
entire data set of 25 projects to obtain the effort predictions and the corresponding mean
of the absolute residuals.

We can observe that the MAR values achieved with the CFPTL estimation model
are lower than those obtained with the FP and CFPFP models. Thus, the effort predic-
tions obtained with the proposed transfer learning based approach are better than those
obtained with the model based on Function Points sizes and those achieved using the
estimated COSMIC sizes (i.e., those considering the assumption 1 CFP ∼= 1 FP). In
particular, the MAR value achieved with the CFPFP model is about three times higher
than the one obtained with the CFPTL model, thus highlighting much better results with
the transfer learning approach. The values of MAR achieved with the CFPTL model are
about two times lower than the MAR value obtained with the FP model.

The results achieved in terms of MAR are confirmed by the performed statistical
tests. Indeed, the performed Mann-Whitney test revealed that the absolute residuals
obtained with the CFPTL models are significantly lower than those obtained with the FP



model (p-value = 0.008) with a medium effect size (d=0.443). Similarly, the predictions
obtained with the CFPTL model are significantly better than those obtained with the
CFPFP model (p-value < 0.001) with a large effect size (d=0.917).

These results clearly reveal that the company involved in our study can abandon the
FP based model and employ the CFPTL model for effort estimation during the migration
(from Function Points) to COSMIC as method for sizing their applications since their
second project in COSMIC.

To further highlight the potential of the proposed transfer learning based approach
we have also compared the effort predictions obtained with the CFPTL model with those
achieved using the CFP model. The results reported in Figure 2 show that after measur-
ing 8-9 Web applications with COSMIC and using the obtained sizes in the proposed
transfer learning based approach the obtained effort predictions are very close to the
ones achieved using the model based only on the measured COSMIC sizes.

The results in Figure 2 also show that for several points (i.e., from 13 to 24) the effort
predictions obtained with CFPTL model are even slightly better that those achieved with
the CFP model, since the corresponding MAR values are lower than those achieved
with CFP model. This is a rather surpising results that can be justified as follows. While
usually the Absolute Residuals with COSMIC are by far lower than those with FPA,
on one specific project the Absolute Residuals with COSMIC are much higher, being
almost double of FPA. This of course has a strong impact on the cumulative measure
MAR. Probably, when using the transfer learner equation, this problem is mitigated
by the 100 runs. However, the difference achieved in the predictions is not statistically
significant (p-value = 0.122) with a small effect size (d=0.267). We think that this point
deserves further investigation in the future.

The results presented and discussed above allow us to positively answer our research
question: the proposed transfer learning based approach is good for effort estimation
when migrating from Function Points to COSMIC.

5 Threats to Validity

It is widely recognized that several factors can bias the construct, internal, external, and
conclusion validity of empirical studies [31].

As for the construct validity, how to collect information to determine size measures
and actual effort represents a crucial aspect [32]. As described in Section 4, we have su-
pervised the procedure employed by the involved software company to carefully collect
the information we needed for the empirical analysis. In particular, we tried to perform
the data collection task in a controlled and uniform fashion. Of course we have to take
into account that empirical studies do not ensure the level of confidence achieved with
controlled experiments.

Some factors should be taken into account for the internal validity: subjects’ au-
thoring and reliability of the data and lack of standardization [31, 33, 34]. The man-
agers involved in the study were professionals who worked in the software company.
No initial selection of the subjects was carried out, so no bias has been apparently in-
troduced. Moreover, the software applications were developed with technologies and
methodologies that subjects had experienced. Consequently, confounding effects from



the employed methods and tools should be excluded. As for the reliability of the data
and lack of standardization, the used questionnaires were the same for all the Web ap-
plications, and the project managers were instructed on how to fill them in, to correctly
provide the required information. Instrumentation effects in general did not occur in
this kind of studies.

As for the conclusion validity, we carefully applied the estimation methods and the
statistical tests, verifying all the required assumptions (e.g., the hypotheses underlying
the application of linear regression analysis).

With regard to the external validity, we are confident that the type of the analyzed
Web applications did not bias the validity of the achieved results, since for their func-
tionalities, target platforms, and complexity they can be considered representative sam-
ples of typical current Web applications. Another threat could be the fact that we ex-
ploited only applications from one company. To the best of our knowledge, there is only
one data set that contains (Web and non-Web) applications from different company, i.e.,
ISBSG. However, in our analysis we were interested in analyzing the experience and
the possibilities for the migration among size measures for a single company develop-
ing Web applications. Nevertheless, it is recognized that the results obtained for a given
company might not hold for others. Indeed, each development context might be char-
acterized by some specific project and human factors, such as development process,
developer experience, application domain, tools, technologies used, time, and budget
constraints that could influence the results [35].

6 Related Work on Transfer Learning in Software Engineering

Transfer learning techniques have been already applied in software engineering in the
last years, showing their potential. Some studies applied them in the field of defect pre-
diction. Among them, Zimmermann et al. [36] found that defect predictors performed
worse when trained on cross-application data than from within-application data. Other
recent studies on the use of TL for defect predictions are those by Ma et al. [37] and
Nam et al. [38].

Focusing in the field of effort estimation, some studies have been done in the past to
migrate estimation models among companies. A survey can be found in [3, 24]. More
recently, transfer learning approaches have also been proposed for effort estimation [22,
39–41], as a suitable way to integrate data from different companies and different time
frames (which is a different problem from the one we are willing to address). To the best
of our knowledge, no one has ever proposed a migration strategy from a size measure
to another, using transfer learning approaches.

7 Conclusion

We have investigated the problem of migrating from a measurement method to another
and use the new size measure for effort estimation purposes. The subject of our study
was a company that decided to migrate from FPA [1] to COSMIC [2], which represents
one of the most recent and common transitions we are observing in the context of soft-
ware measurement. The problem for a company mainly consists in the lack of enough



data (in terms of the new measurement method) to build an estimation model. A sim-
ple way to overcome this problem could be re-sizing the past projects with the new
measurement method. However, besides to be expensive, resizing is also not always
possible due to the lack of adequate documentation. As alternative, in the paper we pro-
pose to exploit a transfer learning approach able to estimate the effort of new projects
exploiting and adjusting the information gathered about past projects over the time. In
particular, we aimed at transferring the knowledge extracted from a source domain, in
this case represented by projects for which we have the Function Points metrics, to the
target domain, where points are represented by COSMIC. As estimation technique we
applied the LSR, adapted by using a regularization factor that allows the estimator to
start from an initial estimation in terms of Function Points sizes and smoothly adapt to
the new COSMIC domain, until enough information is available in terms of projects
measured with COSMIC.

To assess the proposed transfer learning approach, we have performed an empiri-
cal study using an industrial dataset of 25 projects and employing leave-one-out cross
validation as validation strategy. The results have revealed that the effort estimations
obtained with the proposed transfer learning approach are significant better than those
achieved with a Function Points based estimation model. Furthermore, the predictions
achieved with the proposed approach are quite close with those achieved by employing
an estimation model exploiting only COSMIC sizes. Thus, the proposed transfer learn-
ing based approach is good for effort estimation and the company involved in our study
can employ it for effort estimation purposes during for migration from a 1st generation
FSM method (i.e., Function Points Analysis) to a 2nd generation FSM method (i.e.,
COSMIC).

Concerning future work, several directions could be consider for our research. First
of all, we intend to replicate the study with further datasets, also considering different
types of software projects and a larger number of points. Moreover, we intend to verify
whether conversion equations built on external datasets could be employed in the ap-
plication of the method to perform the adaptation towards the COSMIC domain more
rapidly. Besides the COSMIC and Functions Points based measurement methods, the
migration problem could regard other size measurement approaches, e.g., extension of
Function Points [9]. So, in the future we could consider the applicability of the proposed
transfer learning approaches in other measurement contexts.
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19. Çigdem Gencel, Bideau, C.: Exploring the Convertibility between IFPUG and COSMIC
Function Points: Preliminary Findings. In: Proceedings of International Conference on Soft-
ware Process and Product Measurement. (2012) 170–177

20. Lavazza, L., Bianco, V.D., Liu, G.: Analytical convertibility of functional size measures: A
tool-based approach. In: Proceedings of International Conference on Software Process and
Product Measurement. (2012) 160–169

21. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Transactions on Knowledge and
Data Engineering 22(10) (2010) 1345–1359

22. Kocaguneli, E., Menzies, T., Mendes, E.: Transfer learning in effort estimation. Empirical
Softw. Engg. 20(3) (June 2015) 813–843



23. Arnold, A., Nallapati, R., Cohen, W.W.: A comparative study of methods for transductive
transfer learning. In: Data Mining Workshops, 2007. ICDM Workshops 2007. Seventh IEEE
International Conference on, IEEE (2007) 77–82

24. Kitchenham, B., Mendes, E., Travassos, G.: Cross versus Within-Company Cost Estimation
Studies: A systematic Review. IEEE Transaction on Software Engineering 33(5) (2007)
316–329

25. Mendes, E., Di Martino, S., Ferrucci, F., Gravino, C.: Effort estimation: how valuable is it for
a Web company to use a cross-company data set, compared to using its own single-company
data set? In: Proceedings of the 6th International World Wide Web Conference, ACM press
(2007) 83–93

26. Menzies, T., Chen, Z., Hihn, J., Lum, K.: Selecting Best Practices for Effort Estimation.
IEEE Transaction on Software Engineering 32(11) (2006) 883–895
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