
Some Challenges for Software Testing Research (Invited Talk
Paper)

Nadia Alshahwan
Facebook Inc.
London, UK

Andrea Ciancone
Facebook Inc.
London, UK

Mark Harman
Mark.Harman@ucl.ac.uk
Facebook Inc., and UCL

London, UK

Yue Jia
Facebook Inc., and UCL

London, UK

Ke Mao
Facebook Inc.
London, UK

Alexandru Marginean
Facebook Inc., and UCL

London, UK

Alexander Mols
Facebook Inc.
London, UK

Hila Peleg
Technion - Israel Institute of

Technology
Haifa, Israel

Federica Sarro
Facebook Inc., and UCL

London, UK

Ilya Zorin
Facebook Inc.
London, UK

ABSTRACT
This paper1 outlines 4 open challenges for Software Testing in gen-
eral and Search Based Software Testing in particular, arising from
our experience with the Sapienz System Deployment at Facebook.
The challenges may also apply more generally, thereby represent-
ing opportunities for the research community to further benefit
from the growing interest in automated test design in industry.

CCS CONCEPTS
• Software and its engineering → Software verification and
validation; Software testing anddebugging; Search-based soft-
ware engineering.

KEYWORDS
Search Based Software Testing (SBST); Search Based Software En-
gineering (SBSE)

ACM Reference Format:
Nadia Alshahwan, Andrea Ciancone, MarkHarman, Yue Jia, KeMao, Alexan-
dru Marginean, Alexander Mols, Hila Peleg, Federica Sarro, and Ilya Zorin .
2019. Some Challenges for Software Testing Research (Invited Talk Paper).

1Brief 2-page paper to accompany Mark Harman’s at ISSTA 2019 keynote. The keynote
was given by Mark, but it reflects the work of the whole Sapienz team.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISSTA ’19, July 15–19, 2019, Beijing, China
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6224-5/19/07.
https://doi.org/10.1145/3293882.3338991

In Proceedings of the 28th ACM SIGSOFT International Symposium on Soft-
ware Testing and Analysis (ISSTA ’19), July 15–19, 2019, Beijing, China. ACM,
New York, NY, USA, 3 pages. https://doi.org/10.1145/3293882.3338991

1 INTRODUCTION
We recently deployed the Sapienz search-based software test data
generation system at Facebook [1]. Sapienz uses a Search Based
Software Testing approach [10] to generate and subsequently select
test inputs. It grew out of research prototype and now runs in
continuous production at Facebook, testing changes to mobile apps
as they are submitted [1]. Some of the crashes it reveals are also
automatically fixed [14].

To deploy Sapienz in reasonable time we necessarily resisted the
temptation to tackle many of the interesting research challenges
we encountered along the way. Many of these challenges have
already been set out in two previous papers [1, 11] that describe the
deployments of Infer and Sapienz at Facebook. The present paper
briefly recaps one (Flakiness) and provides three more.

1.1 Flakiness in Testing
When one consults a practising software developer about testing,
it is seldom long before the subject of flakiness arises [1, 11].

Many testers and developers regard test flakiness as the primary
concern for industrial software testing, particularly for Internet-
deployed systems. Previous research has considered the causes of
flakiness [12], and techniques for flakiness reduction/control [4, 16],
and more work is certainly required in these areas. Formulations
of previously well-established approaches to software testing, such
as regression testing, model-based testing and mutation testing
also need to be re-thought for flakiness. We need new formulations
that allow for the residual flakiness that cannot be cost-effectively
eliminated. Such ‘flakiness-resilient’ formulations would not rely
merely on flakiness minimisation, but would additionally seek to

1

https://doi.org/10.1145/3293882.3338991
https://doi.org/10.1145/3293882.3338991


ISSTA ’19, July 15–19, 2019, Beijing, China Alshahwan et al.

maximise the value of testing in the presence of inherent or unavoid-
able flakiness. Essentially, we need to design testing approaches
that survive and thrive in a world where we Assume Tests Are
Flaky; the ‘ATAFistic’ world [11].

1.2 Scalable Minimally-disruptive Fine Grained
Coverage

Techniques for collecting coverage information from the execution
of software systems remain a topic of current investigation [2].
Although the problem of collecting such coverage information is
trivial in theory (simply instrument the code to insert probes), the
technical challenge is to collect this information at arbitrary levels
of granularity while minimally disrupting execution behaviour of
the system under test; a far from trivial problem.

Such scalableminimally-disruptive fine-grained coverage is foun-
dational to much work on automated software testing. Indeed,
changes to execution properties can tend to elevate test flakiness
[12], thereby inhibiting the deployability of disruptive coverage
collection.

There is a further challenge in managing and curating the cover-
age data itself. Fine granularity comes with a storage cost, so smart
compact coverage representations are required, perhaps tailored
to their use cases, such as regression test coverage compaction
[3]. Large software intensive companies’ code bases also undergo
rapid change, with many code modifications landing into the code
base per minute [11]. Such high degrees of code churn also pose
coverage curation challenges; data collected from yesterday’s test
executions may need to be transformed to retain its applicability to
tomorrow’s version of the code base.

1.3 Maximal Realism with Minimal Test Bleed
Through

There is an inherent tension between test realism and the need
to avoid bleeding test information into production. When testing
is based on simulation there is little chance that the test activity
will bleed test behaviour to production. However, such artificially-
constructed test cases may suffer from positives and negatives and
may not adequately capture performance characteristics.

Another oft-deployed option is to replicate the production sys-
tem in a test system with its own back end services, thereby re-
ducing false positives that might arise from testing being too far
removed from reality.

In some cases it may be necessary to allow tests to run on produc-
tion systems, so back end services must be mocked out. However,
relying on developers to reliably mock such services may lead to
unwarranted bleed through from testing to production. One of the
advantages of Search Based Software Engineering is that fitness
can be computed directly from reality itself (the deployed software
system), whereas fitness is typically computed from a simulation of
a model of reality in applications of search to other (non software)
engineering disciplines [6]. In this regard, software is a unique
engineering material, able even to include its own self-adaptive op-
timisation [9], since the optimiser and the engineering artifact are
constructed from the same engineering material. Constructing tests
from artificial scenarios may sacrifice some of these advantages.

More work is therefore required to design test techniques that
can come arbitrarily close to the most realistic scenario of testing (in
production), while simultaneously minimising any risk of bleeding
test behaviours into production and thereby unduly impacting
user experience or other production system characteristics. One
possibility would be to define Testability Transformations [8] that
provide guarantees about bleed-free mocking.

Ideally, one would like verification to guarantee the absence of
any such bleed through of test behaviours, perhaps through for-
malisation of the semantics of (in this case, bleed-free mocking)
testability transformation [7]. Related problems concern the detec-
tion and minimisation of such testing bleed throughs. However,
neither the verification problem, nor the detection nor the min-
imisation problem have hitherto received any significant attention
from the software testing and verification research community.

1.4 Search Based Testing, Analysis and Fuzzing
Fuzz-based testing started life as a purely random search for test
inputs [17]. Nevertheless, this achieved surprisingly good fault rev-
elation potential, stimulating great interest in fuzzing techniques
[13]. Fuzzing has also proved to be highly scalable and easily appli-
cable, leading to uptake in industry [5].

More recently, research on fuzzing systems has produced in-
creasing sophistication, moving fuzzers beyond pure random test
data generation, and imbuing fuzzing technology with greater in-
telligence, through evolutionary computation and static analysis
[18]. Static analysis has also been shown to benefit search based
software testing [15]. There has also been a strong contribution
from random search to search-based software testing [1].

Despite the many, and over time the growing, similarities be-
tween fuzzing and search based testing, the two research commu-
nities appear to remain largely disjoint. As these two test design
approaches share increasingly levels of technical similarity and
common purpose, there is a consequent need for joint scientific
events to bring the communities together and to stimulate work on
joint projects. There may also be a need to draw in expertise from
static analysis, which has been used to support both fuzzing and
search based testing.

Many fuzzing advances have taken place in the practitioner
community, through the development of open source tools such as
AFL [19], leading to a wealth of re-usable tools (over 1000 fuzzing
repos are reportedly to be found onGithub alone [13]). However, the
scientific evaluation of fuzzing has lagged behind this considerable
practical advance.

More work is needed in the scientific research community to
underpin the practical advances and to address important scientific
questions that will allow the community to understand which tech-
niques work well, in which circumstances and why. Without this
necessary scientific evaluation, through both theoretical and empir-
ical study, we may risk entering a phase of the development of this
important technique in which it becomes impossible to define the
state of the art, thereby considerably hindering further progress.

This clarity would also help researchers to combine concepts,
ideas and techniques from search-based testing, dynamic symbolic
execution, model based, systematic and random testing and fuzzing,

2



Some Challenges for Software Testing Research (Invited Talk Paper) ISSTA ’19, July 15–19, 2019, Beijing, China

each of which has a unique set of characteristics that could con-
tribute well to an overall hybrid automated test case design ap-
proach.

ACKNOWLEDGMENTS
Thanks to Facebook engineers, management and leadership for
their support. Mark Harman and Federica Sarro are part supported
by the ERC advanced fellowship grant 741278 (EPIC: Evolutionary
Program Improvement Collaborators).

REFERENCES
[1] Nadia Alshahwan, Xinbo Gao, Mark Harman, Yue Jia, Ke Mao, Alexander Mols,

Taijin Tei, and Ilya Zorin. 2018. Deploying Search Based Software Engineering
with Sapienz at Facebook. In 10th International Symposium on Search Based
Software Engineering (SSBSE 2018). Montpellier, France, 3–45. Springer LNCS
11036.

[2] Stanislav Dashevskyi, Olga Gadyatskaya, Aleksandr Pilgun, and Yury Zhau-
niarovich. 2018. The Influence of Code Coverage Metrics on Automated Testing
Efficiency in Android Language. In 25th ACM Conference on Computer and Com-
munications Security. Toronto, Canada.

[3] Michael G. Epitropakis, Shin Yoo, Mark Harman, and Edmund K. Burke. 2015.
Empirical evaluation of pareto efficient multi-objective regression test case pri-
oritisation. In Proceedings of the 2015 International Symposium on Software Testing
and Analysis, ISSTA 2015, Baltimore, MD, USA, July 12-17, 2015. 234–245.

[4] Zebao Gao, Yalan Liang, Myra B. Cohen, Atif M. Memon, and Zhen Wang. 2015.
Making System User Interactive Tests Repeatable: When and What Should We
Control?. In 37th International Conference on Software Engineering (ICSE 2015),
Antonia Bertolino, Gerardo Canfora, and Sebastian G. Elbaum (Eds.). IEEE Com-
puter Society, Florence, Italy, 55–65.

[5] Patrice Godefroid, Michael Y. Levin, and David A. Molnar. 2012. SAGE: whitebox
fuzzing for security testing. Commun. ACM 55, 3 (2012), 40–44.

[6] Mark Harman. 2010. Why the Virtual Nature of Software Makes it Ideal for
Search Based Optimization. In 13th International Conference on Fundamental
Approaches to Software Engineering (FASE 2010). Paphos, Cyprus, 1–12.

[7] Mark Harman. 2018. We Need a Formal Semantics for Testability Transformation.
In 16th International Conference on Software Engineering and Formal Methods
(SEFM 2018). Toulouse, France, 3–17.

[8] Mark Harman, Lin Hu, Robert Mark Hierons, JoachimWegener, Harmen Sthamer,
André Baresel, and Marc Roper. 2004. Testability Transformation. IEEE Transac-
tions on Software Engineering 30, 1 (Jan. 2004), 3–16.

[9] Mark Harman, Yue Jia, William B. Langdon, Justyna Petke, Iman Hemati
Moghadam, Shin Yoo, and Fan Wu. 2014. Genetic Improvement for Adaptive
Software Engineering. In 9th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems (SEAMS 2014). ACM, New York, NY, USA,
1–4. https://doi.org/10.1145/2593929.2600116

[10] Mark Harman, Yue Jia, and Yuanyuan Zhang. 2015. Achievements, open problems
and challenges for search based software testing. In 8th IEEE International Con-
ference on Software Testing, Verification and Validation (ICST 2015). Graz, Austria,
1–12.

[11] Mark Harman and Peter O’Hearn. 2018. From Start-ups to Scale-ups: Opportu-
nities and Open Problems for Static and Dynamic Program Analysis. In 18th
IEEE International Working Conference on Source Code Analysis and Manipulation
(SCAM 2018). Madrid, Spain, 1–23.

[12] Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and Darko Marinov. 2014. An
empirical analysis of flaky tests. In 22nd International Symposium on Foundations
of Software Engineering (FSE 2014), Shing-Chi Cheung, Alessandro Orso, and
Margaret-Anne Storey (Eds.). ACM, Hong Kong, China, 643–653.

[13] Valentin J. M. Manès, HyungSeok Han, Choongwoo Han, Sang Kil Cha, Manuel
Egele, Edward J. Schwartz, and Maverick Woo. 2018. The Art, Science, and
Engineering of Fuzzing: A Survey. CoRR abs/1812.00140 (2018). arXiv:1812.00140
http://arxiv.org/abs/1812.00140

[14] Alexandru Marginean, Johannes Bader, Satish Chandra, Mark Harman, Yue Jia,
Ke Mao, Alexander Mols, and Andrew Scott. 2019. SapFix: Automated End-to-
End Repair at Scale. In International Conference on Software Engineering (ICSE)
Software Engineering in Practice (SEIP) track. Montreal, Canada.

[15] Phil McMinn, Mark Harman, Youssef Hassoun, Kiran Lakhotia, and Joachim
Wegener. 2012. Input Domain Reduction through Irrelevant Variable Removal
and its Effect on Local, Global and Hybrid Search-Based Structural Test Data
Generation. IEEE Transactions on Software Engineering 38, 2 (March&April 2012),
453 – 477.

[16] Atif M. Memon and Myra B. Cohen. 2013. Automated testing of GUI applications:
models, tools, and controlling flakiness. In 35th International Conference on
Software Engineering (ICSE 2013), David Notkin, Betty H. C. Cheng, and Klaus
Pohl (Eds.). IEEE Computer Society, San Francisco, CA, USA, 1479–1480.

[17] Barton P. Miller, Louis Fredrikson, and Bryan So. 1990. An Empirical Study of
the Reliability of UNIX Utilities. Commun. ACM 33, 12 (December 1990), 32.

[18] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuffrida,
and Herbert Bos. 2017. VUzzer: Application-aware Evolutionary Fuzzing. In 24th
Annual Network and Distributed System Security Symposium (NDSS) 2017, San
Diego, California, USA, February 26 - March 1, 2017. The Internet Society.

[19] Michal Zalewski. [n. d.]. American fuzzy lop. ([n. d.]). http://lcamtuf.coredump.
cx/afl/

3

https://doi.org/10.1145/2593929.2600116
http://arxiv.org/abs/1812.00140
http://arxiv.org/abs/1812.00140
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/

	Abstract
	1 Introduction
	1.1 Flakiness in Testing
	1.2 Scalable Minimally-disruptive Fine Grained Coverage
	1.3 Maximal Realism with Minimal Test Bleed Through
	1.4 Search Based Testing, Analysis and Fuzzing

	Acknowledgments
	References

