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ABSTRACT
This paper1 outlines 4 open challenges for Software Testing in gen-
eral and Search Based Software Testing in particular, arising from
our experience with the Sapienz System Deployment at Facebook.
The challenges may also apply more generally, thereby represent-
ing opportunities for the research community to further benefit
from the growing interest in automated test design in industry.
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1Brief 2-page paper to accompany Mark Harman’s at ISSTA 2019 keynote. The keynote
was given by Mark, but it reflects the work of the whole Sapienz team.
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1 INTRODUCTION
We recently deployed the Sapienz search-based software test data
generation system at Facebook [1]. Sapienz uses a Search Based
Software Testing approach [10] to generate and subsequently select
test inputs. It grew out of research prototype and now runs in
continuous production at Facebook, testing changes to mobile apps
as they are submitted [1]. Some of the crashes it reveals are also
automatically fixed [14].

To deploy Sapienz in reasonable time we necessarily resisted the
temptation to tackle many of the interesting research challenges
we encountered along the way. Many of these challenges have
already been set out in two previous papers [1, 11] that describe the
deployments of Infer and Sapienz at Facebook. The present paper
briefly recaps one (Flakiness) and provides three more.

1.1 Flakiness in Testing
When one consults a practising software developer about testing,
it is seldom long before the subject of flakiness arises [1, 11].

Many testers and developers regard test flakiness as the primary
concern for industrial software testing, particularly for Internet-
deployed systems. Previous research has considered the causes of
flakiness [12], and techniques for flakiness reduction/control [4, 16],
and more work is certainly required in these areas. Formulations
of previously well-established approaches to software testing, such
as regression testing, model-based testing and mutation testing
also need to be re-thought for flakiness. We need new formulations
that allow for the residual flakiness that cannot be cost-effectively
eliminated. Such ‘flakiness-resilient’ formulations would not rely
merely on flakiness minimisation, but would additionally seek to
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maximise the value of testing in the presence of inherent or unavoid-
able flakiness. Essentially, we need to design testing approaches
that survive and thrive in a world where we Assume Tests Are
Flaky; the ‘ATAFistic’ world [11].

1.2 Scalable Minimally-disruptive Fine Grained
Coverage

Techniques for collecting coverage information from the execution
of software systems remain a topic of current investigation [2].
Although the problem of collecting such coverage information is
trivial in theory (simply instrument the code to insert probes), the
technical challenge is to collect this information at arbitrary levels
of granularity while minimally disrupting execution behaviour of
the system under test; a far from trivial problem.

Such scalableminimally-disruptive fine-grained coverage is foun-
dational to much work on automated software testing. Indeed,
changes to execution properties can tend to elevate test flakiness
[12], thereby inhibiting the deployability of disruptive coverage
collection.

There is a further challenge in managing and curating the cover-
age data itself. Fine granularity comes with a storage cost, so smart
compact coverage representations are required, perhaps tailored
to their use cases, such as regression test coverage compaction
[3]. Large software intensive companies’ code bases also undergo
rapid change, with many code modifications landing into the code
base per minute [11]. Such high degrees of code churn also pose
coverage curation challenges; data collected from yesterday’s test
executions may need to be transformed to retain its applicability to
tomorrow’s version of the code base.

1.3 Maximal Realism with Minimal Test Bleed
Through

There is an inherent tension between test realism and the need
to avoid bleeding test information into production. When testing
is based on simulation there is little chance that the test activity
will bleed test behaviour to production. However, such artificially-
constructed test cases may suffer from positives and negatives and
may not adequately capture performance characteristics.

Another oft-deployed option is to replicate the production sys-
tem in a test system with its own back end services, thereby re-
ducing false positives that might arise from testing being too far
removed from reality.

In some cases it may be necessary to allow tests to run on produc-
tion systems, so back end services must be mocked out. However,
relying on developers to reliably mock such services may lead to
unwarranted bleed through from testing to production. One of the
advantages of Search Based Software Engineering is that fitness
can be computed directly from reality itself (the deployed software
system), whereas fitness is typically computed from a simulation of
a model of reality in applications of search to other (non software)
engineering disciplines [6]. In this regard, software is a unique
engineering material, able even to include its own self-adaptive op-
timisation [9], since the optimiser and the engineering artifact are
constructed from the same engineering material. Constructing tests
from artificial scenarios may sacrifice some of these advantages.

More work is therefore required to design test techniques that
can come arbitrarily close to the most realistic scenario of testing (in
production), while simultaneously minimising any risk of bleeding
test behaviours into production and thereby unduly impacting
user experience or other production system characteristics. One
possibility would be to define Testability Transformations [8] that
provide guarantees about bleed-free mocking.

Ideally, one would like verification to guarantee the absence of
any such bleed through of test behaviours, perhaps through for-
malisation of the semantics of (in this case, bleed-free mocking)
testability transformation [7]. Related problems concern the detec-
tion and minimisation of such testing bleed throughs. However,
neither the verification problem, nor the detection nor the min-
imisation problem have hitherto received any significant attention
from the software testing and verification research community.

1.4 Search Based Testing, Analysis and Fuzzing
Fuzz-based testing started life as a purely random search for test
inputs [17]. Nevertheless, this achieved surprisingly good fault rev-
elation potential, stimulating great interest in fuzzing techniques
[13]. Fuzzing has also proved to be highly scalable and easily appli-
cable, leading to uptake in industry [5].

More recently, research on fuzzing systems has produced in-
creasing sophistication, moving fuzzers beyond pure random test
data generation, and imbuing fuzzing technology with greater in-
telligence, through evolutionary computation and static analysis
[18]. Static analysis has also been shown to benefit search based
software testing [15]. There has also been a strong contribution
from random search to search-based software testing [1].

Despite the many, and over time the growing, similarities be-
tween fuzzing and search based testing, the two research commu-
nities appear to remain largely disjoint. As these two test design
approaches share increasingly levels of technical similarity and
common purpose, there is a consequent need for joint scientific
events to bring the communities together and to stimulate work on
joint projects. There may also be a need to draw in expertise from
static analysis, which has been used to support both fuzzing and
search based testing.

Many fuzzing advances have taken place in the practitioner
community, through the development of open source tools such as
AFL [19], leading to a wealth of re-usable tools (over 1000 fuzzing
repos are reportedly to be found onGithub alone [13]). However, the
scientific evaluation of fuzzing has lagged behind this considerable
practical advance.

More work is needed in the scientific research community to
underpin the practical advances and to address important scientific
questions that will allow the community to understand which tech-
niques work well, in which circumstances and why. Without this
necessary scientific evaluation, through both theoretical and empir-
ical study, we may risk entering a phase of the development of this
important technique in which it becomes impossible to define the
state of the art, thereby considerably hindering further progress.

This clarity would also help researchers to combine concepts,
ideas and techniques from search-based testing, dynamic symbolic
execution, model based, systematic and random testing and fuzzing,
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each of which has a unique set of characteristics that could con-
tribute well to an overall hybrid automated test case design ap-
proach.
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