
Develop, Deploy and Execute
Parallel Genetic Algorithms in the Cloud

Pasquale Salza1, Filomena Ferrucci1, Federica Sarro2

1University of Salerno, Italy – 2University College London, United Kingdom
psalza@unisa.it, fferrucci@unisa.it, f.sarro@ucl.ac.uk

ABSTRACT
Making Genetic Algorithms (GAs) distributed in an on-
demand fashion involves different phases from resources al-
location to actual deployment and execution. We propose a
cloud architecture with a conceptual workflow able to cover
each GAs distribution phase.

CCS Concepts
•Computing methodologies → Genetic algorithms;
Massively parallel algorithms; •Networks → Cloud com-
puting;

Keywords
Parallel Genetic Algorithms; Cloud Computing; DevOps;
Container Virtualisation

1. INTRODUCTION
Parallelism may allow reducing the computational time

of Genetic Algorithms (GAs) addressing the scalability is-
sue posed by real-world problems. Nevertheless, suitable
technologies are needed to ensure both reliability and good
performance, considering that GAs require continuous data
exchange. Previous proposals for distributed GAs exploited
well known technologies such as Hadoop MapReduce [3, 5]
and AppEngine MapReduce [2], however these technologies
exchange data through a distributed file system or datastore,
which may slow down the entire execution [1]. Other imple-
mentations consist of ad hoc solutions that reduce the com-
munication to the minimum [4]. All these solutions are not
designed to take advantage from the most appealing features
of cloud computing, namely the on-demand resources alloc-
ation. Cloud also eases the development and deployment
processes if used as the environment for the DevOps (‘de-
velopment’ and ‘operations’) methodology. This approach
suits well those cases in which the deployment of an applica-
tion in a distributed and multi-component system is needed .
Moreover, it drastically reduces the activities of installation

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

GECCO’16 Companion July 20-24, 2016, Denver, CO, USA
c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4323-7/16/07.

DOI: http://dx.doi.org/10.1145/2908961.2909024

DigitalOcean Amazon

Cloud Providers

OpenStack

Private Cloud

etcd fleet

CoreOS

Docker

master slave

Parallel GA
RabbitMQ

Figure 1: The architecture layers.

and maintenance: the environments can be defined by con-
figuration management methodologies and the application
can be tested during the process from the development to
the actual execution. From a developer perspective, which
aims to distribute a parallel GA, it is crucial that the ex-
ecution environment allows him/her to define the genetic
operators in any programming language.

In this work we design an architecture for parallel GAs
(see Section 2) based on two technologies specifically de-
vised for the cloud (i.e., Docker and CoreOS) that allow us
to use isolated application environments (i.e., containers).
This architecture is part of a conceptual workflow (see Sec-
tion 3) devised to support both developers and users from
the development phase to the deployment and execution of
distributed GAs.

2. THE PROPOSED ARCHITECTURE
Figure 1 shows the architecture of the system. The bot-

tom layer consists of the cloud infrastructure. On top of it
there is the cluster manager CoreOS, an open source light-
weight operating system that allows us to easily build large
and scalable deployments on different infrastructures, focus-
ing on security, consistency and reliability. We exploit two
main CoreOS components: fleet as deployment manager
and etcd as central configuration point, which allows dis-
tributed applications to see each other.

CoreOS provides only the minimal functionalities required
by Docker to execute the applications at the above level.
Docker is an open source container orchestration engine that
separates applications from the underlying operating system
(in our case CoreOS). It allows us to instantiate ‘application
containers’, which are intended to contain all the compon-
ents of an application. For the application, there is no differ-

mailto:psalza@unisa.it
mailto:fferrucci@unisa.it
mailto:f.sarro@ucl.ac.uk
http://dx.doi.org/10.1145/2908961.2909024


Cloud
Provider

CoreOS 
Cluster

Git
Repository

Continuous
Integration

User

Developer

Fleet

Docker
Registry

Parallel
Genetic

Algorithm

request allocate invoke
orchestrate and execute

push trigger push

pull update
testing and build report

demand

1 2 3

1 3

2

4

Figure 2: Genetic Algorithms development, deployment and execution workflow.

ence between an execution on a dedicated machine or inside
the container, because the application is quickly executed in
a full isolated environment and it can discover others con-
tainers by relying on the communication network. If Docker
is able to orchestrate containers in a single hosting machine,
CoreOS enables us to do it on a distributed cluster. Docker
creates containers out of images (i.e., read-only templates)
and provides an on-line registry called Docker Hub where
to push/pull these images. Images and registry are fun-
damental components within the deployment process, since
they permit instantiating containers without repeating in-
stallation and build operations. The powerful feature of
Docker to execute an entire environment (i.e., virtual Linux
instances) allows the GAs developers to implement the ge-
netic operators in their preferred programming language.

The top layer of our architecture contains the two main
components used to define GAs by exploiting the underneath
interface provided by CoreOS and Docker. The first com-
ponent is a running container of RabbitMQ, an open source
‘message broker’ that implements the Advanced Message
Queueing Protocol (AMQP). Its role is to ensure that data
(i.e., messages) go from a publisher, who produces messages,
to consumers, who process them. The main recipient of mes-
sages is the ‘queue’, a potentially unlimited buffer of data,
which resides inside RabbitMQ. If publisher and consumers
are connected to the same queue, they can communicate
without actually know each other. This makes RabbitMQ a
powerful tool for scalable distribution of tasks.

The second component is formed by multiple containers
responsible of both communication and genetic operators
implementations. As an example let us consider the global
parallelisation model [2] where the GAs architecture is com-
posed by a master node executing the genetic operators and
some distributed slave nodes to which the fitness evaluation
is demanded. Once the fitness values have been computed,
the individuals go back to the master node where the ge-
netic operators are applied to produce the next offspring. In
our proposal this data (i.e., the individuals) would be ex-
changed through the RabbitMQ service rather than using a
distributed file system as proposed in previous work. Using
the message broker as the master node for the computation
enables to add any further slave nodes to the GA, even at
running time, making the system scalable.

3. THE CONCEPTUAL WORKFLOW
Figure 2 shows a conceptual workflow that can be ap-

plied thought our architecture. It involves two actors: a
developer deploying a distributed GA and a user executing
it. In particular, 1 the developer pushes its code to its
public or private Git repository, together with a Docker file
defining the environment; 2 after the push, the Git repos-

itory automatically triggers (hook mechanism) a continuous
integration service that executes both the integration test-
ing of the new source code and the Docker image building;
3 if both testing and building succeed, a report is sent to

the developer and the Docker image is pushed in a Docker
registry.

The Docker image of the GA developed is now ready to
be deployed to a production cluster and executed by the
user as follows: 1 the user submits a request to a cloud
provider and a cluster with the number of CoreOS nodes
s/he requested is allocated; 2 the user demands CoreOS

to execute the GA with a certain configuration; 3 CoreOS
invokes fleet which pulls the Docker image of the GA imple-
mentation and any other useful service images (RabbitMQ
in our case) from the Docker registry, if there is a newer
version available; 4 fleet is ready to orchestrate containers
and start the execution of the distributed GA.

4. CONCLUSIONS
This work proposes a novel architecture to develop, deploy

and execute parallel Genetic Algorithms in a cloud environ-
ment. As future work we plan to empirically evaluate the
approach in order to assess its scalability.

5. REFERENCES
[1] L. Di Geronimo, F. Ferrucci, A. Murolo, and F. Sarro.

A Parallel Genetic Algorithm Based on Hadoop
MapReduce for the Automatic Generation of JUnit
Test Suites. In IEEE International Conference on
Software Testing, Verification and Validation (ICST),
pages 785–793. IEEE, 2012.

[2] S. Di Martino, F. Ferrucci, V. Maggio, and F. Sarro.
Towards Migrating Genetic Algorithms for Test Data
Generation to the Cloud. In Software Testing in the
Cloud: Perspectives on an Emerging Discipline, pages
113–135. IGI Global, 2013.

[3] F. Ferrucci, P. Salza, M.-T. Kechadi, and F. Sarro. A
Parallel Genetic Algorithms Framework Based on
Hadoop MapReduce. In ACM/SIGAPP Symposium on
Applied Computing (SAC), pages 1664–1667. ACM
Press, 2015.

[4] M. Garćıa-Valdez, L. Trujillo, J. J. Merelo Guervós,
F. Fernandez de Vega, and G. Olague. The EvoSpace
Model for Pool-Based Evolutionary Algorithms.
Journal of Grid Computing, 13(3):329–349, Sept. 2015.

[5] P. Salza, F. Ferrucci, and F. Sarro. elephant56: Design
and Implementation of a Parallel Genetic Algorithms
Framework on Hadoop MapReduce. In Genetic and
Evolutionary Computation Conference (GECCO
Companion), 2016.


	Introduction
	The Proposed Architecture
	The Conceptual Workflow
	Conclusions
	References

