
Noname manuscript No.
(will be inserted by the editor)

Empirical Comparison of Text-Based Mobile Apps
Similarity Measurement Techniques

Afnan Al-Subaihin · Federica Sarro ·
Sue Black · Licia Capra

Received: 14-Aug-2018 / Accepted: date

Abstract Context : Code-free software similarity detection techniques have
been used to support different software engineering tasks, including clustering
mobile applications (apps). The way of measuring similarity may affect both
the efficiency and quality of clustering solutions. However, there has been no
previous comparative study of feature extraction methods used to guide mobile
app clustering. Objective: In this paper, we investigate different techniques to
compute the similarity of apps based on their textual descriptions and evaluate
their effectiveness using hierarchical agglomerative clustering. Method : To this
end we carry out an empirical study comparing five different techniques, based
on topic modelling and keyword feature extraction, to cluster 12,664 apps ran-
domly sampled from the Google Play App Store. The comparison is based on
three main criteria: silhouette width measure, human judgement and execution
time. Results: The results of our study show that using topic modelling, in ad-
dition to collocation-based and dependency-based feature extractors perform
similarly in detecting app-feature similarity. However, dependency-based fea-
ture extraction performs better than any other in finding application domain
similarity (ρ = 0.7, p − value < 0.01). Conclusions: Current categorisation in
the app store studied do not exhibit a good classification quality in terms of
the claimed feature space. However, a better quality can be achieved using a
good feature extraction technique and a traditional clustering method.

A. Al-Subaihin
Department of Computer Science, University College London and CCIS, King Saud Univer-
sity
E-mail: a.alsubaihin@cs.ucl.ac.uk
aalsubaihin@ksu.edu.sa

F. Sarro and L. Capra
Department of Computer Science, University College London
E-mail: {f.sarro@ucl.ac.uk, l.capra@ucl.ac.uk}

S. Black
Department of Computer Science, Durham University E-mail: Sue.black@durham.ac.uk



2 Afnan Al-Subaihin et al.

Keywords App Store Analysis · Software Clustering · Mobile Applications
Clustering · Feature Extraction · Cluster Analysis

1 Introduction

Categorisation is the activity of grouping objects according to their similar-
ity, usually for a specific purpose. It can be done automatically by using both
supervised (i.e. classification) or unsupervised (i.e. clustering) learning ap-
proaches.

Automatic categorisation of software (both supervised and unsupervised)
has been used to help address several software engineering tasks. In the case
of mobile applications (apps), this is a particularly viable option as apps are
hosted in an app store ecosystem ripe with metadata [38][58] which can be used
for achieving automated categorisation. As a matter of fact, a large number
of studies have investigated categorisation of mobile applications for various
purposes [53]; including, but not limited to, detecting anomalies [6,31,61],
finding software clones [17,78], grouping of requirements into coherent sets [24,
45,48], detecting semantically related code chunks [55,56], finding actionable
insights [60,70], and classifying systems into application domains [25,47,77].

Despite the great variety of studies and promising results, little attention
has been devoted to comparing different techniques measuring apps’ similar-
ity (which is at the heart of achieving a good categorisation) against each
other on a same benchmark data. This aspect is important for unsupervised
classification (a.k.a cluster analysis) as clustering is concerned with studying
effective techniques to detect similarity and subsequently group data so that
data points in a same group are more similar to each other than to members
in other groups. Clustering, furthermore, enables the detection of latent seg-
mentation of a dataset without a ground truth known a priori. This is very
useful when a taxonomy is not available and/or it is too costly to carry out
the labelling process, as in the case of app stores.

However, since clustering is an exploratory endeavour that helps uncover
underlying, seemingly unknown, segmentation of data, the way of measuring
similarity and extracting the features on which this similarity is computed
may affect both its efficiency and quality.

Since there has been no previous comparative study of feature extraction
methods used to guide mobile app clustering, in this paper we address this
gap by comparing a set of well-known text similarity extraction techniques to
tackle the task of clustering mobile applications based on their descriptions on
a level playing field.

To this end, we use the evidence of feature claims present in developers’
description of their apps1, which we extract using the text mining feature
extraction framework proposed by Harman et al. [38]. We then compare this

1 In using textual descriptions to cluster mobile apps, we only consider those textual
features that developers believe to be important to future users’ decision to acquire the app.
Whereas categorisation based on such features provides an interesting view of the app store



Title Suppressed Due to Excessive Length 3

technique with a clustering technique based on topic modelling (Latent Dirich-
let Allocation), Vector Space Model and a variation of the feature extraction
framework that relies on keyword extraction using sentence dependency pars-
ing to build a similarity matrix. Finally, we use agglomerative hierarchical
clustering to detect natural groupings in the data based on all previous text
representation techniques. A hierarchical technique gives flexibility with re-
gards to the desired granularity of the final grouping.

The performance of the above approaches in clustering mobile applications
based on their descriptions has been assessed and compared by carrying out a
thorough empirical study answering the following research questions:

1. How different are the clustering solutions produced by different feature
extraction techniques from one another?

2. Do different similarity measurement techniques produce results that en-
hance the current app store categorisation?

3. How do different similarity measurement techniques perform at different
granularity levels for clustering mobile apps?

4. How well do different similarity measurement techniques perform according
to human judgement?

5. How efficient is each of the similarity measurement techniques?

To answer these questions we use 12,664 real-world apps extracted from
the Google Play (Android) app store and follow well-established software en-
gineering experimentation guidelines [81] .

Our study, in addition to revealing that these technique produce distinct
solutions, and that they definitely improve on current app categorisation, con-
tributes several observations. First, it reveals that using LDA and/or FSM
improves on the baseline with regards to three evaluation criteria: functional,
domain and API similarities. Second, we observe that dependency-based key-
word extraction performs best in terms of detecting application domain simi-
larity.

These results can be used to guide future research in selecting methods that
better detect the similarity among mobile applications and can be used, inter
alia, for a more fine-grained auto-categorization of apps in the store where they
are deployed. Furthermore, future studies can investigate the effect of using
the similarity measures used herein for traditional software categorisation.

2 Empirical Study Design

In this section we describe the design of our empirical study by presenting the
investigated text representation techniques (Section 2.1), the research ques-
tions we aim to answer (Section 2.2), the dataset (Section 2.3) and evaluation
criteria (Section 2.4) used to this end.

relying on the developers’ professed features, we do not claim that this is the only view of
app store segmentation.



4 Afnan Al-Subaihin et al.

2.1 Text Representation Techniques

At the heart of any clustering solution lie two important choices: the method-
ology used to represent the data points and the distance metric used to capture
the difference among these data points. Common clustering techniques define
a set of finite variables that describe the data which can be converted to nu-
merals and appended to form a vector representing the data point. Then, given
all the data points, they form a vector space representing the data, and cluster
the data based on the vector space and a distance metric. Various geometrical
distance metrics (e.g. Euclidean and cosine distances) can be used to quan-
tify the similarity, and lack thereof, among the data points. More specifically,
clustering methods usually only need, as input, a distance matrix of size n×n
where n is the number of data points to be clustered, the columns and rows
are the data points and each cell contains the distance between these two data
points.

In this paper we empirically observe how five textual feature extraction
techniques perform when used as clustering input, applied on the case of mobile
app descriptions. We specifically select the baseline techniques that are most
commonly used in Software Engineering research as reported by Arnaoudova
et al. [5] and discussed in Section 5.

The textual description clustering baseline used in our study relies on the
Vector Space Model representation of the data using Term Frequency-Inverse
Document Frequency weighting, with and without latent semantic indexing.
We compare this with three more advanced textual-based feature extraction
techniques that have been used in software engineering research: topic mod-
elling [79], collocation-based feature extraction [38] and an enhancement on
the latter we propose in this paper relying on dependency parsing of sentences
to extract software features. The following subsections explain each of these
techniques in further detail.

2.1.1 Vector Space Model

The Vector Space Model (VSM) is a textual representation baseline tech-
nique that relies on a bag-of-words (BOW) approach [49][68]. Bag-of-words
approaches discard information regarding ordering of the terms in the docu-
ment. The vector space is represented by a document-by-term matrix (DTM).
Each data point (i.e. document) is a vector (i.e. row in the matrix). Each
term in the corpus’ vocabulary (the union of all terms in the corpus) is a col-
umn. Each cell in the matrix conveys whether the document being represented
contains this term or not (or a weight that conveys the degree of association
between the document and the term).
Term Frequency/Inverse Document Frequency: TF-IDF [42] is a base-
line weighting approach for VSM and has been shown to work well for ranking
of documents in information retrieval literature [66]. It is used to link corpus
terms with data points (i.e. documents) within a DTM. Term Frequency is
the frequency of occurrences of a term in the document in question. This is



Title Suppressed Due to Excessive Length 5

then multiplied by the inverse document frequency: the logarithm of the total
number of documents in the corpus divided by the number of documents that
contain the term in question. Modifying the term weights with the IDF score
increases the specificity of the terms, thus giving higher weight to less com-
mon terms. The assignment of the weights then comprises a document vector
that is used to solve various information retrieval problems. In this paper, this
vector is used to represent the applications in the dataset which is fed to the
clustering algorithm.

Latent Semantic Analysis: LSA uses matrix dimensionality reduction in
order to index the DTM in a way that approximates semantic closeness [21];
thus revealing the higher order semantic structure of the text after eliminating
noise introduced using synonyms or word-sense ambiguity. Latent semantic
analysis is also referred to as latent semantic indexing and we do not make a
distinction between the two terms in this paper. At the heart of LSA, singular-
value decomposition (SVD) is used to decompose the document-term matrix;
this results in three matrices: a term vector matrix, a document vector matrix
and the singular values matrix, such that the original matrix can be obtained
from the product of the three matrices. The latent semantic space is then
obtained by truncating the matrices to a certain number of dimensions k (i.e.
only the k largest singular values are used to reconstruct the original matrix).

The number of selected dimensions can greatly affect LSA results. In our
study, we operate a share-based dimensionality search routine in which k is the
number of singular values (in a descending list) whose sum reaches a certain
value. In our search, we set the value to 0.05% of the sum of all singular values.
We also use several other techniques and different other share thresholds before
settling on the aforementioned option as it produced the highest cluster quality
in further steps according to the silhouette width score.

In our study, we include VSM-based representation as well as an LSA
enhanced one in order to observe whether LSA can enhance the clustering
results for the problem of classifying mobile applications based on their textual
descriptions.

2.1.2 Latent Dirichlet Allocation

Topic modelling is the usage of statistical models to infer a set of topics in tex-
tual corpora. Latent Dirichlet Allocation (LDA) is a a generative probabilistic
model. It operates by assuming that each document contains a latent mixture
of topics. It uses a three-level hierarchical Bayesian model to discover the doc-
ument’s mixture of the corpus’ underlying topics using a Dirichlet distribution.
Topics are identified as being a distribution of terms [11].

Hence, the results of running LDA over a set of documents are the probabil-
ities of relatedness of each document to each generated topic and each topic’s
distribution over the set of terms in the corpus. In this paper, we use a variation
of LDA that estimates LDA parameters using a sample of the dataset (since
doing this over the entire dataset is typically not feasible). Gibbs sampling [32]



6 Afnan Al-Subaihin et al.

Table 1: Examples of extracted topics (represented by 4 terms) and the number
of apps associated with each topic (occurrences).

Topic Terms Occurrences
estate, home, property, real 860
gps, locate, time, map 664
account, bank, check, mobile 605
care, health, medical, patient 296
call, contact, phone, text 255
app , audio, listen, station 137
camera, image, photo, picture 85
book, item , library, search 48
airport , app, flight, hotel 29
country, currency, dollar, franc 17

is one commonly used sampling technique to solve this problem within LDA
[65].

One drawback of LDA is the precondition that the number of latent topics
in the dataset is already known and required to be set as a parameter. Since
this is not the case in our study, we search for the number of topics that
generates the lowest perplexity [41] (log likelihood on 10% held-out data). To
this end, we generate LDA models over a large range of possible k values and
select the k that produces the lowest perplexity, as done in previous work [14,
54,59].

Table 1 shows examples of the extracted topics from this study’s dataset
(discussed in 2.3).

2.1.3 Feature Vector Space

The feature vector space model (FSM) in this paper refers to a suite of tech-
niques based on a feature extraction algorithm introduced by Harman et al.
[38] which we have adapted to form a ‘claimed feature’ space used in app
clustering in our previous work [3]. The term feature here refers to mobile ap-
plications’ functional capabilities that are expressed in the natural language
belonging to the user’s domain of knowledge and can be provided by more
than one app.

The feature vector space first clusters all raw extracted keywords (either
collocation-based or dependency-based) to further abstract away the syntac-
tical differences between features to capture their meaning. This is done using
a modification of the vector space model and k-means clustering algorithm.

The vector space matrix is constructed such that features are rows and
the columns represent all terms in the features’ vocabulary. Each cell in the
matrix is the multiplication of the inverse document frequency of that term
and the maximum of the semantic similarities of every term in the feature and
that term. Semantic similarities are extracted from the WordNet English lan-
guage ontology [1] since app store descriptions belong to the user’s knowledge



Title Suppressed Due to Excessive Length 7

domain and not expected to be overly technical. The k-means clustering is
conducted using cosine distance (spherical k-means). The number of clusters
k is calculated using a variation of Can’s metric [12] adapted by Dumitru et
al. [24].

In the following we provide an overview of two variations of feature vec-
tor space model, in terms of how features are extracted from app descriptions.
First we describe the technique proposed by Harman et al. relying on word col-
locations [27,38]; second we describe a variation, we propose herein, that uses
natural language dependency parsing. Both approaches are used in our empir-
ical study, which compares their performance with other baseline techniques
(namely, using the entire description with no keyword/feature extraction and
LDA).

Collocation-based feature extraction: The original algorithm proposed
by Harman et al. [27,38] relied on extracting mobile applications’ claimed fea-
tures from their app store descriptions. The algorithm identifies feature list
patterns (if any), then it proceeds to extract word collocations in the form
of bi-grams. Extracted similar collocations are then merged using a greedy
clustering algorithm in which if a cluster of bi-gram terms shares over half of
the words of another, the two clusters are merged. The resulting clusters are
‘featurelets’ of two or three terms representing one mobile application claimed
feature. This algorithm has been shown to extract meaningful mobile applica-
tion features (0.71 precision, 0.77 recall) [26]. It has been subsequently used to:
observe feature behaviour in app stores [70], their correlation with price, rating
and rank [28,26,27], their viability as features to discover latent categorisation
of app stores [3], and to predict customer reactions to proposed feature sets
[71]. A detailed description of this approach can be found elsewhere [27].

Dependency-based feature extraction: This approach extracts soft-
ware features from descriptions using dependency lexical parsing. This is led
by the intuition that apps’ features are described using common linguistic
patterns. We perform the parsing using the Stanford dependency parser [19,
20].

To extract feature phrases using dependency parsing, first the app descrip-
tion is tokenised at the sentence level using common sentence termination
punctuation in the English language, in addition to new lines. Then each
sentence’s dependency is parsed. Based on extensive analysis of dependency-
parsed mobile app description, we devise a set of clauses that are likely to
refer to the application’s behaviour and offered features. These clauses are:
[verb, direct-object], [verb, indirect-object], [noun, reduced-non-finite-verbal-
modifier], [verb, noun-modifier] and [verb, nominal-subject]. We also preserve
part-of-speech tags and ensure that the first part of the pair is either a verb,
noun or a phrase of either; and that the second part is either noun, adjective
or adverb.

These pairs of words/phrases are then extracted and treated as ‘featurelets’
used in the clustering explained previously.

Table 2 shows examples of featurelets extracted from the dataset described
in 2.3 using both collocation- and dependency-based parsing.



8 Afnan Al-Subaihin et al.

Table 2: Examples of extracted featurelets representing each feature and the
number of times these features appear in the dataset (number of apps that
boast the feature) for collocation-based and dependency-based parsing.

Dataset Featurelet terms Occurrences

Collocation-Based

[push, notification] 54
[news, search, ability] 19
[font, change, size] 6
[translate, dictionary, sentence] 2
[photo, background, change] 1

Dependency-Based

[share, friends] 442
[send, email] 192
[choose, theme] 40
[wake, alarm clock] 22
[scan, business cards] 1

2.2 Research Questions

In order to assess the impact of using different similarity measurement tech-
niques on mobile apps clustering we investigate five research questions.

The first question (RQ0) is a sanity check we carry out to assess the degree
of difference in clustering solutions for different choices of similarity:

RQ0. Sanity Check: How much do clusterings based on different
similarity measurement techniques differ from one another?
This is a sanity check in the sense that a low difference level would suggest
there is little point in further study. To measure the similarity among different
clustering solutions we use the Jaccard index as explained in Section 2.4.

The following three questions (RQs 1–3) are based on previous work [3]
and aim to assess the effectiveness of the techniques we compared herein with
respect to three main aspects as follows:

RQ1. How well do the similarity measurement techniques represent
the commercial assigned app store categories?
In this research question, we investigate the degree to which each of the sim-
ilarity measurement techniques deem apps in same app store category more
similar than apps in different categories (i.e. which technique more closely rep-
resents the app similarities in current app store categorisation). This research
does not regard app store categorisation as a ground truth of app similarity.
We envisage a clustering algorithm that relies on capability-based feature ex-
traction to result in a better and more fine-granularity segmentation of the
dataset.

RQ2. How does the clustering granularity levels affect the cluster-
ing quality and what is the granularity level that results in the best
clustering quality for each technique?
A granularity level of a clustering technique is the selected number of clusters,
k. The clustering quality can be measured using the silhouette width score
of the clustering solution. Different choices of k directly affect the clustering



Title Suppressed Due to Excessive Length 9

quality score. In answering this question, we verify that cluster quality does
indeed change depending on the choice of k. We report the maximum scored
silhouette width for each technique and at what granularity was achieved. Fur-
thermore, in previous work [3] we found that using hierarchical agglomerative
clustering results in a range of viable granularities where the cluster quality
(measured using silhouette width score) plateaus. This means that users of a
clustering technique are able to select the granularity of the clustering based
on desired result and the degree of distinction the clustering makes among the
apps without large sacrifice in the cluster quality.
RQ3. What is the clustering solution quality for each technique
based on human judgement?
The silhouette width score is a method of internally measuring the cluster
quality depending on each data point’s assignment and overall cohesion. How-
ever, a more conclusive method of measuring the clustering solution’s external
quality is by relying on human judgement. Therefore, we analyse the resulting
clustering hierarchies produced by the different techniques in a more qualita-
tive manner. To this end we sample pairs of app from the dataset and proceed
to build a gold set based on human-judgement. Due to the abundance of pos-
sible clustering solutions based on the selected granularity level, we draw a
random sample of 300 apps comprising 150 app pairs from 5 different levels.
The annotation is then carried out by eight human annotators (none of them
author of this paper) to rate the similarity between apps in each pair based on
their descriptions. This enables us to investigate the correlation between the
similarity score and the finest granularity at which these two apps remain in
the same cluster for each technique.

The last question we answer aims at investigating the cost of using these
approaches in practice:
RQ4. How efficient is each of the similarity measurement tech-
niques?
In order to be usable, the set up cost and subsequent instantiation cost of a
clustering approach should be within reasonable bounds, to allow developers
to use the approach to help understand the claimed-feature competitive space
into which they deploy their apps. To this end, we compare the techniques
with regards to their execution time.

2.3 Dataset

The dataset used in our empirical study has been built by sampling from a
complete snapshot of the Google Play app store. This snapshot was collected
by crawling the entire the app store in October, 2014 by Viennot et al. [78]
amassing around 1.4 million Android apps2. Accessing the whole content of an

2 A JSON file containing the metadata and URLs for all apps in the snapshot can be found
here: https://archive.org/download/playdrone-snapshots/2014-10-31.json. The docu-
mentation of how to parse the JSON file is here: https://archive.org/details/android_
apps&tab=about

https://archive.org/download/playdrone-snapshots/2014-10-31.json
https://archive.org/details/android_apps&tab=about
https://archive.org/details/android_apps&tab=about


10 Afnan Al-Subaihin et al.

app store enable us to uniformly randomly sample mobile apps from it in its
entirety. Full access is often not possible by using typical app store retrieval
APIs as they limit access to the apps (and mainly give priority to apps with
higher download rank) which may bias the sample. This problem (known as
the app sampling problem) is presented and further discussed by Martin et
al. in [50]. Therefore, using this dataset helps us mitigate the app sampling
problem.

Throughout the sampling process, we have noticed that applications hav-
ing a description composed by only one sentence rarely are describing app’s
functionality. Examples include: ‘Roadside assistance and Mobile Mechanic
Company’ and ‘Super calculator has many functions.’ This may influence the
results as some techniques may work better with shorter descriptions than
others. Via empirical observation, we have found that approximately a 100-
character limit is a good cut-off point where apps with non-descriptive de-
scriptions fall below this threshold. Through random sampling, we found on
average 30 apps out of 1,000 (median = 31 and SD = 6) whose descriptions
fall under 100 characters (over 10 random sampling trials). Therefore, we did
not consider apps that have descriptions with less than 100 characters. We
also filtered out apps with non-English descriptions. Furthermore, we did not
include the games category in our study as it has grown to the point of having
a dedicated section in the store. The final sample consists of 12,664 Android
apps belonging to 24 categories3.

2.4 Evaluation Criteria

This section explains the metrics and statistical analysis we use to evaluate
the results of our study and answer our five research questions: Perplexity,
Jaccard index, Silhouette width score, intra-class correlation coefficient and
Spearman rank correlation.

Perplexity [41] is the log likelihood of a model generating a held-out set.
It is used in our study to find the most appropriate number of topics over our
dataset when using latent dirichlet allocation (LDA). The concept of perplexity
was first proposed to measure the complexity of speech recognition tasks. It
is directly related to the entropy of a language model. Perplexity has since
been the standard used to evaluate the performance of a probability model
as done previous work [14,54,59]. Perplexity assigns the model a score that
shows how well it predicts the probability distribution of a sample. The lower
the perplexity, the better the model.

Jaccard Index, used in RQ0, is a measurement of agreement between
two partitions by counting the number of element pairs that are classified
together by the two partitions, divided by the number of pairs that are clas-
sified differently. We also investigated the Adjusted Rand Index [39] and the
Fowlkes-Mallows index [30]. We have found that all three produced somewhat

3 Our random sample can be downloaded from here: http://clapp.afnan.ws/data/.

http://clapp.afnan.ws/data/


Title Suppressed Due to Excessive Length 11

consistent numbers. We have opted for reporting Jaccard index as it is the
simplest to understand. Jaccard index value lies between 0 and 1 with 0 de-
noting complete dissimilarity and 1 being assigned when the two clustering
solutions are identical.

The silhouette width score [67], used in RQ1 and RQ2, measures the
similarity of data points in the same cluster to one another, and their dis-
similarity with data points assigned to other clusters. Its value ranges from 1
(perfectly assigned) to -1 (completely mis-assigned). This score is assigned to
each data point, hence an overall silhouette score of a clustering is typically the
average of the silhouette scores of all data points. The silhouette is a standard
measurement that is used in similar software engineering experimentation (e.g.
[31]).

Intraclass Correlation Coefficient (ICC) [9], used in RQ3, is a method
of calculating inter-rater agreement. It is used in this study since there are more
than two raters (thus, Cohen’s Kappa and Weighted Kappa are unsuitable
[16]). Whereas Fleiss’ Kappa [29] is suitable for the case of more than two
raters, it assumes the rating system to be nominal or categorical. In this study,
we use a Likert scale represented by 5 Likert items, we need a rater-agreement
system that deems two ratings of 4 and 5 as more consistent than two ratings
of 3 and 5. To calculate ICC, we use a two-way model indicating that both
rated statements and raters are representative of a larger sample. The ICC lies
between 0 (extreme inconsistency among raters) and 1 (complete consensus).

Spearman rank correlation [75], used in RQ3, is a measurement of how
well two paired series of values correlate with one another (i.e. change in one,
leads to a change in another). Spearman correlation is based on the rank,
therefore does not require a fixed rate of increase/decrease among correlating
observations making it suitable for ordinal scale metric data (as used in this
paper), in contrast with Pearson’s linear correlation [64]. The value of the
Spearman rank correlation coefficient (typically denoted ρ) lies between -1 and
1 and gives an indication of degree of correlation (1 means a strong positive
correlation, -1 indicates a strong inverse one and 0 means a complete lack of
correlation). Spearman rank correlation also produces a p−value showing the
probability of the given ρ when in fact there is no correlation (i.e. ρ = 0),
hence, it is a proxy of the certainty of observing an accurate ρ.

This correlation is used to evaluate the performance of the hierarchical clus-
tering algorithm. This is the method of external evaluation used in our previous
work [3], which proposed calculating the correlation between a human-assigned
score of the similarity and the normalised number at which an app pair is sep-
arated in a series of increasing cluster numbers does give a good quantitative
evaluation of an inherently qualitative task. The correlation is calculated be-
tween: a similarity score assigned by human raters on a 5-item Likert scale, and
the level in the hierarchical clustering dendrogram at which the app pair are
separated. App pairs in the sample are therefore specifically sampled from 5
different levels in the dendrogram that maps to the five similarity Likert items.
These levels are drawn from the hierarchical clustering dendrogram at which
the pair remain together before immediately separating in the next level. For



12 Afnan Al-Subaihin et al.

Table 3: RQ0: Jaccard similarity index between each of the clustering solutions
of the studied techniques for 24 clusters (the number of app store categories).

LDA VSM VSM+LSA
FSM+

Collocation
FSM+

Dependency
LDA 1 0.246 0.080 0.351 0.331
VSM - 1 0.095 0.303 0.29
VSM+LSA - - 1 0.076 0.076
FSM+Collocations - - - 1 0.617
FSM+Dependency - - - - 1

example app A and app B are together at the first level where k = 2, but are
immediately separated when k increases; whereas app C and app D remain
together in the same cluster until k=350, this means that app C and D are
more similar to one another than app A and app B.

3 Empirical Study Results

RQ0. Sanity Check: Degree of agreement among the different simi-
larity measures.
To calculate the Jaccard index among all the different partitions that are based
on the studied techniques, we need to select one k (number of clusters) for all
techniques. We have opted to measure Jaccard index at k = 24 as the number
of Google Play categories in our corpus is 24.

Table 3 shows the Jaccard index results: We can observe that the techniques
produce clusterings that are different from one another. However, partitions
produced by the collocations and dependency parsing variations of the Feature
Space Model are close. This is to be expected as both rely on keyword-based
extraction from the corpus.

It is worth noting that augmenting VSM with LSA differentiates it further
from VSM on its own as it is the least similar to any of the other techniques.

RQ1. How well do the similarity measurement techniques represent
the given commercially given app categories?
This shows whether the current app store categorisation represents a good
clustering solution for each of the text representation and feature extraction
techniques.

To answer this question, we build a distance matrix for the dataset that is
calculated using each of the text representation techniques explained in section
2.1. Then, assigning a cluster to each data point that represents the app store
category from which this app was mined. This forms a clustering solution of the
dataset, albeit enforced by the state of the app store categorisation. Finally,
we use the silhouette width score to measure the quality of this clustering
solution. This measurement represents how well are apps grouped together
based on the technique used to represent the apps. This also helps ensure



Title Suppressed Due to Excessive Length 13

Table 4: RQ1: Summary of silhouette width scores for each of the techniques
when considering app store category as a cluster assignment (existing cate-
gorisation) and when selecting k = 24 (same number of categories in the app
store).

Min. Max. Mean Median

LDA
Existing categorisation -0.54 0.59 0.003 -0.01
Clustering solution -0.64 0.99 0.02 -0.01

VSM
Existing categorisation -0.26 0.26 0.01 -0.001
Clustering solution -0.39 0.86 0.01 -0.02

VSM+LSA
Existing categorisation -0.64 0.64 0.002 -0.02
Clustering solution -0.68 0.82 0.11 0.06

FSM+Col
Existing categorisation -0.05 0.10 -0.0003 -0.002
Clustering solution -0.35 1 0.01 -0.01

FSM+Dep
Existing categorisation -0.06 0.09 -0.0003 -0.003
Clustering solution -0.42 1 -0.004 -0.03

that any further clustering stages that are app store category independent do
indeed improve on the current categorisation of the app store.

Our results reveal that existing app store categories (24 categories) per-
form badly as a segmentation of mobile apps based on those representations
(see Table 4). The results also reveal that performing hierarchical clustering
yields an improvement of the silhouette scores of the partitions (cut-off at
k = 24), albeit a slight one. Subsequent results for RQ2 will show that these
cluster quality scores can be improved by increasing the number of clusters,
thus supporting the observation that existing categorisation is of too coarse
granularity to yield higher cluster quality scores based on the features studied.

RQ2. What is the clustering performance at different granularity
levels for each technique?
Hierarchical clustering affords the user a range of possible k values. This can
be selected depending on the desired granularity level and purpose of the
clustering (broad sense of similarity vs. almost identical cluster members).
However, the cluster memberships’ quality can suffer if an inadequate k is
selected. To gauge the tendency of cluster quality compared to k we plot the
silhouette score at each granularity level. Figure 1 shows the behaviour of the
silhouette score as the granularity increases for each of the techniques.

The maximum silhouette scored by each technique can be an indication
of the technique’s performance compared to others. Table 5 lists the granu-
larity level at which the silhouette score reaches its maximum value for each
of the techniques. We observe that extracting features using topic modelling
scores the largest silhouette with (0.48) whereas collocation-based feature
space model scores the least. We also observe that using baseline VSM with
LSA reduction can help achieve higher silhouette at an early stage (coarse
granularity) of the dendrogram.

RQ3. How do the clustering solutions compare to the ground truth?
To answer this question, we rely on human judgement in evaluating how well



14 Afnan Al-Subaihin et al.

Table 5: RQ2.1: For each technique, the maximum viable granularity and the
generated maximum silhouette score.

Max Sil Granularity
LDA 0.48 5702
VSM 0.14 5252
VSM+LSA 0.24 112
FSM+Collocations 0.12 6322
FSM+Dependency 0.13 6302

each of the techniques cluster apps based on their feature (functionality) simi-
larity, application domain similarity, and underlying libraries/APIs similarity.
Since the hierarchical clustering solutions provide a range of usable cut-off
points (k clusters), we test the clustering at 5 different levels of the solution
starting from k = 2 until the maximum viable k for each technique (i.e. maxi-
mum k before silhouette score starts dropping). The five sampling levels lie at
2, 25%, 50%, 75% and 100% of the maximum viable k for each technique where
apps sampled from level 1 are apps that were separated immediately in the
hierarchical dendrogram thus representing apps that are deemed completely
different by the clustering technique. Apps sampled at level 25% represent
apps that survived together in the dendrogram but were separated at level
25% thus deemed somewhat different, and so on.

From each of the levels, and for each technique, we randomly sample 6
app pairs (12 apps) representing the clustering technique’s performance at
that level, thus generating 30 app pairs for each technique representing all
similarity levels. This results in a sample of 150 app pairs (300 apps in total).

In order to evaluate the results, we enlisted the aid of eight annotators
who are computer science students: 4 are PhD students (previously employed
as professional software engineers), 2 are Masters students; all of which have
more than 6 years of coding experience; 2 are undergraduate students who have
completed a 3-month internship in developing mobile applications. The raters
were asked to rate the similarity of each of the app pairs (after randomisation)
on 5 similarity levels (5-item Likert scale) according to three criteria: feature
similarity (functionality/capability), application domain similarity (category)
and underlying libraries (APIs) similarity based on the descriptions of the two
apps in the pair. Table 6 shows the inter-rater agreement calculated using
intra-class correlation confirming that indeed a correlation emerges.

In order to measure the performance of the techniques we analysed, we
check if a correlation exists between the mean of human-assigned similarity
scores on the Likert scale and the level at which the app pair survives in
the hierarchical clustering dendrogram before being separated into different
clusters. Table 7 reports the Spearman rank correlation scores. The results
reveal that a positive correlation does exist between the goldset’s similarity
score (mean of the scores assigned by the annotators) and the level at which the
clustering algorithm decides to separate the pair in the case of LDA and FSM-
based techniques. The correlation is especially prominent in the dependency



Title Suppressed Due to Excessive Length 15

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0 1000 2000 3000 4000 5000 6000

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

Number of Clusters

A
ve

ra
ge

 S
ilh

ou
et

te
 W

id
th

●

●

●

● ●
● ●

●
●

●
●

●
●

● ●
● ●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0 1000 2000 3000 4000 5000 6000

0.
05

0.
10

0.
15

0.
20

Number of Clusters

A
ve

ra
ge

 S
ilh

ou
et

te
 W

id
th

(a) VSM (b) VSM+LSA

●●
●
●
●
●
●●
●●
●
●●●
●
●●
●●
●●
●
●●
●●
●●
●●●
●●
●●
●●
●●●
●●
●●
●●
●●●
●●●
●●●
●●●
●●
●●●
●●
●●●
●●●
●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●●

●●●
●●●●●●●

●●●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●●●●●●
●●●●●●●

●●●●●●
●●●●●●●

●●●●●●●●
●●●●●●●●●

●●●●●●
●●●●●●●

●●●●●●●
●●●●●

●●●●●●●●●●●
●●●●●●●●●

●●●●●
●●●●●●●●●

●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●

0 1000 2000 3000 4000 5000 6000

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

Number of Clusters

A
ve

ra
ge

 S
ilh

ou
et

te
 W

id
th

●

●●●
●
●●
●
●
●●●
●●
●
●●
●●●
●●●
●●
●
●●
●●
●●
●●●●

●●
●●●●

●●
●●
●●●
●●
●●●
●●
●●●
●●●
●●
●

●●●
●●●●

●●●
●●
●●●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●●

●●●●●
●●●●●●

●●●●
●●●●●

●●●
●●●●●

●●●●●
●●●●●

●●●●●
●●●
●●●●●●●

●●●●●●
●●●●●●●

●●●●●●
●●●●

●●●●
●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●
●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●
●●
●●●●●●●●●●

●●●●●
●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●

●●●●●
●●●●●●

●●●●●●●●

0 1000 2000 3000 4000 5000 6000

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

Number of Clusters

A
ve

ra
ge

 S
ilh

ou
et

te
 W

id
th

(c) FSM+Collocations (d) FSM+Dependency

●

●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0 1000 2000 3000 4000 5000 6000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Number of Clusters

A
ve

ra
ge

 S
ilh

ou
et

te
 W

id
th

(e) LDA

Fig. 1: RQ2.1 Average silhouette score as the granularity (k) in-
creases for each technique.



16 Afnan Al-Subaihin et al.

Table 6: RQ3: Inter-rater agreement of the obtained goldset (8 raters) on the
three rating criteria using intra-class correlation.

Feature Similarity
Application Domain

Similarity
API Similarity

LDA 0.7 0.8 0.8
VSM 0.5 0.6 0.6
VSM+LSA 0.6 0.6 0.5
FSM+Collocations 0.6 0.6 0.7
FSM+Dependency 0.6 0.7 0.6
Overall 0.6 0.6 0.6

Table 7: RQ3: Spearman Rank correlation scores (p-value in brackets) between
hierarchical sampling level (technique-assigned similarity) and human-assigned
similarity scores. Scores are deemed statistically significant if p-value < 0.01.

Feature Similarity
Application Domain

Similarity
API Similarity

LDA 0.60 (0.0004) 0.60 (0.0003) 0.60 (0.0012)
VSM 0.40 (0.03) 0.60 (0.0008) 0.40 (0.03)
VSM+LSA 0.04 (0.85) 0.07 (0.7) 0.10 (0.6)
FSM+Collocations 0.60 (0.0016) 0.60 (0.0006) 0.60 (0.0011)
FSM+Dependency 0.60 (0.0012) 0.70 (6.7e−05) 0.60 (0.0003)

parsing based feature extractor when detecting similarity in the application
domain. On the other hand, VSM-based techniques failed to generate strong
correlations, or indeed statistically significant ones.

RQ4. How efficient is each of the similarity measurement tech-
niques?
In table 8 we report the cost in terms of execution time of each of the tech-
niques we compared. The times are broken down into four main phases re-
quired for each of the techniques. The first one is data preprocessing which,
for LDA, included the amount of time it takes to select the number of topics
that generate the lowest perplexity. For the feature-space model techniques
data preprocessing also includes the feature extraction and clustering stages.
The second phase is building the document-term matrix and any required sub-
sequent reductions. This is followed by calculating the distance matrix (dis-
tance between each pair in the dataset) and, finally, the hierarchical clustering
phase. As expected, feature-space model techniques require a large amount of
time to conduct lexical feature extraction with the collocation-based one being
considerably faster than the dependency-based algorithm. The topic modelling
based technique is mostly hampered by the amount of time it takes to select
the proper number of topics (by measuring the perplexity).

However, for all these techniques, except for VSM, the majority of the
cost lies in early steps. Whereas LDA, and both variations of FSM require
an upfront cost, folding-in (adding new unobserved data), is of significantly
less cost for calculating the distance matrix and conducting the clustering.



Title Suppressed Due to Excessive Length 17

Table 8: RQ4: Efficiency of each of the studied techniques. The technique’s
run-time was measured on a standard laptop with an Intel Core i7 3.1 GHz
and 16 GB RAM; d=days, h=hours, m= minutes, s=seconds.

Data
Preprocessing

DTM
Reduction

Distance
Matrix

Clustering

LDA 5.4 d 3.0 h 21.0 s 6.0 s
VSM - 6.0 s 9.0 s 8.0 s
VSM+LSA 7.0 h 6.0 s 1.3 h 6.0 s
FSM+Collocations 1.5 m 8.7 d1 12.0 s 8.0 s
FSM+Dependency 5.0 d 17.9 d1 12.0 s 9.0 s

1 The running time for FSM+Collocations and FSM+Dependency has been nor-
malised to simulate sequential time in order to enable comparison with other
phases/techniques, however the technique was actually run in parallel taking 1.17
days for FSM+Collocations (14 threads and an average of 15 hours per thread) and
5 days for FSM-Dependency (4 threads and an average of 4.5 days per thread).

Using VSM with LSA promises larger folding-in cost as the distance matrix
calculation step poses a bottleneck.

4 Discussion

The results of our empirical study show that mobile app similarity can be cal-
culated by analysing their descriptions, with an acceptable degree of accuracy.

On one hand, using the feature extraction techniques discussed in this
paper to measure the current app store categorisation quality as a clustering
solution (RQ1) resulted in very low silhouette measures. This confirms that
the app store commercial categorisation does not provide an accurate view
of the apps with regards to their provided features, but a broad sense of the
app’s theme.

For example, ‘NFC Paging’ is an application directed at retailers that helps
store managers page their employees using NFC tags. This has been found in
the ‘Shopping’ Category of the app store. Our LDA-based results actually
clustered it with apps that provide business solutions such as ‘Glovia Mobile
Workplace’, a workplace messaging app, from the Business category and with
‘Indigo Mobile CRM’ from the Productivity category; this LDA-based clus-
tering has been obtained using a cut-off at k=24 and LDA further produces
more fine-grained segmentation of the apps at higher k values.

This indicates that in the current Google app store an app might share more
features with apps placed in different categories than with the apps belonging
to its category (i.e. more features tend to be ubiquitous than category-specific
features). This supports the conjecture that app store categorisation may not
provide an ideal feature-specific segmentation of the app store as a mobile
software repository. We conjecture that this might be due to the goal of app
stores as a means for users to browse applications and their heavy reliance on
searching rather than exploring categories [46]. However, for developers, and



18 Afnan Al-Subaihin et al.

for several research tasks (such as anomaly detection [31], requirements extrac-
tion [24] and many others [60]) a more feature-aware segmentation of the app
store may be more beneficial. Hence motivating the need to investigate better
techniques to offer different views of the apps offered. All of the techniques
studied in the paper can be used at the heart of an unsupervised categorisa-
tion algorithm for automated categorization, with different possible outcomes
depending on how features are extracted and the goal of the clustering.

Our study also shows that the task of detecting app store similarity cannot
be carried absolutely conclusively by human raters (overall inter-rater agree-
ment of 0.6) although the similarity criteria were broken down and clearly
defined. For example, the raters were asked to rate the similarity of the fea-
tures of the following two apps: ‘Easy Eating Tips’, a nutrition and health
app in the ‘Health and Fitness’ category, and ‘Food Path’, an app that helps
browse nearby restaurants. The raters showed disagreement in how similar the
features of these two apps are: Three raters assigned their similarity as 4, one
rater assigned it 3, two raters assigned it 2, and two raters assigned it 1. This
indicates that the task is somewhat difficult and has a certain degree of sub-
jectivity, albeit low, thus the automation of such tasks should be handled with
care especially with regards to the expectation of possible achievable accuracy.

In measuring the quality of a clustering solution, this study shows that in-
ternal cluster quality measures (i.e. silhouette score) are not a sufficient view of
the resulting clustering and do not completely eliminate the need for a human
rated ground truth. This is evident in the case of LDA-based feature extrac-
tion which enabled hierarchical clustering to produce more cohesive clusters
than other techniques (silhouette = 0.48), however, it has been shown to per-
form similarly to FSM-based techniques. In fact, dependency-parsing based
clustering performs better that any other technique in terms of finding apps
in similar application domains as measured by the rank correlation between
human similarity rating and cluster agreement level in the dendrogram.

Finally, we deduce that baseline techniques (VSM), though the fastest and
cheapest to carry out, do not seem to produce statistically significant results
with regards to their similarity quality using human judgement. One interest-
ing observation we find is that using dimensionality reduction, namely latent
semantic analysis, enabled the clustering to quickly converge to a high cluster
quality earlier than other techniques (see Figure 1-b). This may indicate the
usefulness of LSA if a clustering of coarser granularity is required.

4.1 Threats to Validity

Internal Validity: We carefully applied the statistical tests verifying all the
required assumptions. As in every clustering solution, finding the optimal num-
ber of clusters remains ambiguous. To cluster the mined features, we use a pop-
ular method (Can’s Metric) that has been used in previous work with good
results [3,24]. Another threat to internal validity could be due to the apps
composing our datasets (a.k.a. App Sampling Problem [50]) as collecting all



Title Suppressed Due to Excessive Length 19

existing apps is not currently allowed for existing app stores, including Google
Play. Threats may also arise due to the procedure we used to build the gold
set. However, the number of human raters is consistent with that in previous
similar studies (e.g., [3,73]) and their agreement. Moreover, when selecting
random app pairs, we prevent a bias towards a majority of a certain degree
of similarity by using purposive sampling [7], thus ensuring that the sample
contains apps with varying degrees of similarity, as done in a previous study
[3].

Construct Validity: Previous studies have shown that it is possible to extract
features from product descriptions available on-line [18,24,36,54,76]. However,
these features are extracted from claims reported by app store developers
and we cannot be sure that these necessarily correspond to features actually
implemented in the code itself, since developers do not always deliver on their
claims [61]. We mitigate this threat by extracting the features from a large
and varied collection of app descriptions, and clarifying that it is clearly a
constraint of most NLP-based approaches [24]. Nevertheless, previous work
has shown that developers’ technical claims about their apps are inherently
interesting and however we view them, they have interesting properties in real
world app stores (see e.g., [27,70,71]).

External Validity: The feature extraction methods analysed in this paper,
though they can be applied to any kind of software and software repository,
are presented and tested herein only for the task of mobile application clus-
tering. Therefore, our empirical results are specific to mobile applications and
to the store considered. More work might be necessary to investigate whether
the findings generalise to other time periods, app stores, and software types.
The dataset used in this study was collected in 2014. We conjecture that app
descriptions in app stores remain descriptive of the application’s functional-
ity and claimed features as a study showed it is the driving force for users’
download decision (in addition to reviews)[15]. Therefore, since the techniques
in this study are applicable to any natural language descriptions, we believe
they may still be used; we believe there is an indication they may behave in a
similar manner compared to one another when studied over a different period
of time.

5 Related Work

This section reviews work pertaining to clustering of mobile applications to
resolve several mobile-related software engineering issues (see 5.1). We also re-
view work that proposes extracting mobile apps features from artefacts written
in natural language found in app descriptions or user reviews publicly available
on App Stores (see 5.2).



20 Afnan Al-Subaihin et al.

5.1 Categorization of Mobile Applications

The mobile applications market, as one of the largest online application repos-
itories, has received much attention in research in order to automate and reg-
ulate its categorization.

A large amount of work has tackled the problem of clustering mobile appli-
cations using different feature extraction and categorisation techniques. How-
ever, to date there has been no study using the same dataset and valida-
tion method to compare various techniques against one another. Therefore, in
this paper, we select the main components of feature extraction from textual
artefacts and test their performance for the task of clustering mobile applica-
tions by using a uniformly sampled dataset from the Google Play (Android)
app store and by incorporating both quantitative previous measurement and
human-judgement to validate the results. In the following we discuss in detail,
the previous studies using unsupervised classification techniques to cluster
mobile apps.

Kim et al. [43] used cluster analysis to study and analyse mobile applica-
tion service networks showing the relationships between software capabilities
and categories. Zhu et al.[82] also proposed a solution to automatically classify
mobile application in which they leverage contextual information mined from
usage logs in addition to the textual description of apps. Lulu and Kuflik [45]
carry out this same task while incorporating a method for detecting word se-
mantic similarity using Wordnet. Mokarizadeh et al.[57] used topic modelling
to extract features that were fed into a k-means clusterer to generate a cluster-
ing of applications based on their functionality. Vakulenko and Muller [77] also
attempted to categorize mobile apps solely given their product descriptions.
However, in their work, they apply topic modelling as the main techniques for
categorization. They perform the analysis over approximately 600,000 English
app descriptions from Apple’s App Store. Then they conduct LDA to discover
prevalent topics in the text. They set the number of topics to be found to 66
corresponding to the number of categories in the app store. Among the topics
assigned to each app, they discard topics assigned with probability less than
0.2. They then evaluate this technique with the actual categorization of the
app store as ground truth. They calculate the overlap between actual category
and topic model distribution. However, they do not report on TPR, FPR, Pre-
cision or F-Measure. As part of their large study of the entirety of Google Play,
Viennot et al.[78] introduced a simple approach that uses MD5 hashes to iden-
tify similar applications that detects clones and apps with duplicate content.
Linares-Vásquez et al. [47] use the approach of McMillan et al. [55] to auto-
matically detect similar mobile apps. Their approach involves Android-specific
semantic features such as intents, user permissions and hardware sensors uses.
Unsupervised clustering of the mobile app market has also been proposed to
enhance sampling applications for research purposes by Nayebi et al. [60].
They propose an approach that uses DBSCAN clustering technique carried
out over features extracted from app specific metadata such as topic models
from descriptions, number of downloads, ratings and reviews.



Title Suppressed Due to Excessive Length 21

On the other hand, researchers tried to automate the existing categoriza-
tion of mobile application markets. This kind of research deem the categoriza-
tion pre-known thus uses supervised classification. Berardi et al.[10] implement
a SVM classifier to aid users in app discovery. Chen et al. [13] solve the prob-
lem using an online kernel learning approach that extracts features from app
titles, descriptions, categories, permissions, images, rating, size and reviews.

Several studies conducted on mobile applications used the abundance of
app metadata, especially user-granted permissions that the app requires, to
detect app anomalies and malice.

Shabtai et al. [74] applied Machine Learning techniques to classify An-
droid apps with the goal of detecting malware. They use app byte code to
detect app permissions, API calls in terms of methods and classes and other
information extractable from app binaries. Since there are no datasets of ma-
licious and benign apps, they evaluate their tool on its ability to distinguish
the categories of the apps; namely whether the app belongs to the tools or the
games category. They mine 407 games and 1878 tool apps; a portion of this is
used to train the classifier and the remaining portion is used for evaluations.
Then they investigate all types of classification features that can be extracted
from app archives. Their study reveals that Boosted Bayesian Networks out-
perform all other techniques. This technique boasts an accuracy of 0.922 when
using top 800 features selected using Chi-Squared. They also conclude that
the features that contribute the most to the classification process are the used
packages/methods.

Sanz et al. [69] provide a technique for categorizing Android apps using
app information provided in the app store as well as in the app itself. Their
work focuses on application permissions. They extract permissions from the
app executable archive, as well as the permissions advertised on the app store.
They also include the frequency of printed strings in the app. The goal is to
provide automatic organization of the app store as well as anomaly detection.
They extract 820 applications from the Android app store belonging to 7 cat-
egories. They extract possible classification features using Information Gain.
After performing training and testing over the dataset, they show that Bayes
TAN performs the best when comparing Area Under the Curve (AUC) of
the Receiver Operator Characteristics (ROC) graph; which is a plot of True
Positive Rate (TPR) against False Positive Rate (FPR).

Gorla et al. [31] used topic modelling to cluster applications based on their
functionality. This clustering was then used to establish a baseline of the type
of user-granted permissions required by the app for each particular application
domain. This facilitated detecting outliers that require permission not required
by other similar apps, thus deemed suspicious. They report in their study that
clusters acquired using an unsupervised technique perform better than using
the app store’s existing categorization in defining groups of apps that share
similar functionality.

Previous studies showed that current app store categories do not exhibit
good classification quality in terms of the claimed feature space [3,31,80] and
better quality can be achieved using good feature extraction techniques and



22 Afnan Al-Subaihin et al.

a traditional clustering method [3]. In this paper, we extend these previous
studies by using a larger corpus of mobile apps and investigating five distance
measures to similarity detection. Indeed, despite a large number of previous
studies using unsupervised classification techniques, there are no comparative
studies of distance measures used to guide mobile app clustering to the best
of our knowledge.

A comprehensive review of the literature pertaining to app store analysis
is provided by Martin et al. [53].

5.2 Apps’ Feature Extraction From Artefacts Written in Natural Language

The research that tackles feature extraction from App Stores aims to extract
features in textual, human-readable form from app descriptions and user re-
views.

In the line of work carried out by the UCLAppA1 team [2,37] a feature
is defined as “a claimed functionality offered by an app, captured by a set
of collocated words in the app description and shared by a set of apps in
the same category [27].” Harman et al. were the first to carry out feature ex-
traction from app descriptions by identifying feature list locations that follow
a conventional pattern [27,38]. Using an NLP collocation finder, they iden-
tify bi- and tri-grams that consist of words that commonly occur together. A
third and final step is carried out to cluster features according to the number
of words they share, minimizing the redundancy of features. These features
have been successfully used to study the relationships between features and
rating/popularity/price [27,38], to study feature migratory patterns [70], to
cluster mobile apps [3] and to predict customers’ reaction to app features [71].

Kuznetsov et al. [44] leverage app description to assess their safety. They
use topic modelling in order to compare mobile applications’ advertised fea-
tures (found in app store descriptions) and their interface text to detect pos-
sible anomalies and misbehaviour. To this end, they generate an LDA topic
model over the dataset’s app description, then they use the model to assign
topics to the apps using their interface text. If a mismatch is detected be-
tween an app’s description topic distribution, and the topic distribution of its
interface text, then it is flagged as a risk.

Martin et al. [51,52] use app’s description and what’s new content (i.e.,
release text) of over 26,000 app releases from Google Play and Windows
Phone stores in order to investigate the relationship between most prevalent
terms/topics (extracted by using TF-IDF and topic modelling) and impactful
releases revealed by causal impact analysis. The results highlight that releases
significantly affecting app success have more descriptive release text and also
make prevalent mentions of bug fixes and new features.

Extracting features is also useful for the task of tackling and analysing user
reviews. This aims to guide developers in sorting app reviews into bug reports

1 http://www0.cs.ucl.ac.uk/staff/F.Sarro/projects/UCLappA/home.html

http://www0.cs.ucl.ac.uk/staff/F.Sarro/projects/UCLappA/home.html


Title Suppressed Due to Excessive Length 23

and/or feature requests (or a variation of this taxonomy) which developers
believe can be challenging [4]. Research also looked into collating user feedback
into specific issues/features to help prioritise and summarise the large amount
of feedback. Whereas some research sought to use supervised techniques (e.g.
[22,23]), we focus on the following part on work that used NLP, IR and/or
text representation techniques as they are more related to this paper.

Guzman and Maalej [35] tackle the problem of extracting features from
user reviews by identifying collocations. Their goal is to provide fine-grained
feature-level user ratings by conducting sentiment analysis over high level
grouping of related extracted features, after identifying bi-grams of words that
co-occur using the likelihood ratio test. Synonyms are factored into the feature
extraction by using Wordnet which also helps in identifying misspelled words.
Finally, they group features into supersets of similar functionality using La-
tent Dirichlet Allocation (LDA). They evaluate their technique by comparing
the results with human coded dataset. This technique’s measured precision is
0.601 while recall and F-measure are 0.506 and 0.549 respectively. Bakiu and
Guzman [8] use this technique, coupled with sentiment analysis, in order to
specifically detect users’ degree of satisfaction regarding usability and user ex-
perience. This showed that this algorithm can be adapted to generate features
of a specific domain in cases where search by keyword might not be accurate
enough as done in [34] where a search for all words relating to advertisements
(i.e. ad and advert) successfully returned all user reviews discussing the app’s
advertisements.

A closely related endeavour is carried out by Iacob and Harrison [40] where
they mine feature requests from user reviews. Feature requests are first iden-
tified as following common linguistic rules containing a pre-defined set of key
words (e.g. add, allow and if only) resulting in a total of 237 rules. This ap-
proach performs very well with 0.85 precision and 0.87 recall. Then LDA was
conducted over the entire set of feature requests to identify general topics of
user requests. Although their work succeeds in automatically extracting fea-
ture requests, LDA does not work well in identifying feature topics with fine
granularity.

Panichella et al. [62][63] also use linguistic patterns that were manually
compiled by analysing a sample of 500 user reviews. They identify 246 re-
curring sentence patterns that were used to request features thus enabling
building an automatic NLP module that can automatically extract sentences
following any of the patterns. Similarly, Gu and Kim [33] base a user review
summariser (SUR-Miner) on linguistic patterns comprising certain orders of
part-of-speech tags in the sentence. In their approach, they isolate features
’aspects’ and the user opinion with regards to it. Their feature/opinion ex-
traction model achieves 0.85 F1-score when tested over the user reviews of 17
Android applications.

In the work presented by Scalabrino et al. [72], not only is useful informa-
tion extracted from user feedback, but an attempt to cluster feedback reporting
the same problem together for prioritisation and summarisation purposes. To
this end, the framework, after successfully categorising the type of review,



24 Afnan Al-Subaihin et al.

represents the feedback using the vector space model (see Section 2.1) cou-
pled with DBSCAN as the clustering algorithm. They evaluate the resulting
clusters using MoJoFM (Move Join Effectiveness Measure). Their algorithm
scores an average of 75% and 83% in clustering bug reports and feature re-
quests respectively.

6 Conclusion and Future Work

In this paper, we empirically analysed how different text representation tech-
niques perform when used for mobile app clustering. As Arnaoudova et al.
[5] estimate that NLP and text retrieval can address more than 20 software
engineering issues, such techniques are particularly useful in the case of mo-
bile applications as the app store provides a rich repository of software where
textual description is readily available while source code might not necessarily
be.

To this end we have used a textual description clustering baseline, which re-
lies on the Vector Space Model representation of the data using Term Frequency-
Inverse Document Frequency weighting, along with latent semantic indexing.
We compare this baseline with three more advanced textual-based feature ex-
traction techniques that have been used in software engineering research: topic
modelling [79], collocation-based feature extraction [38] and a variation of the
latter we propose in this paper relying on dependency parsing of sentences to
extract software features. We have performed this comparison on a randomly
sampled dataset of 12,664 mobile app descriptions extracted from the Google
Play (Android) app store.

The results of our study revealed that quantitative cluster quality (mea-
sured in silhouette score) tends to favour clustering solution produced by using
topic modelling (silhouette = 0.48). However, qualitative evaluation (human
judgement) shows a good clustering quality for all techniques, barring the base-
line. Our study also confirms that current app store categorisation performs
badly as a segmentation of the dataset based on all of these representation
techniques, thus motivating the need for a better segmentation of applications
in mobile app stores.

These results can be used to guide future research in selecting methods that
better detect the similarity among mobile applications and can be used, inter
alia, for a more fine-grained auto-categorization of apps in the store where they
are deployed. Furthermore, future study can investigate the effect of using the
similarity measures used herein for traditional software categorisation.

References

1. About WordNet. http://wordnet.princeton.edu/. Accessed: 2016-01-29.
2. A. A. Al-Subaihin, A. Finkelstein, M. Harman, Y. Jia, W. Martin, F. Sarro, and

Y. Zhang. App store mining and analysis. In Proceedings of the 3rd International
Workshop on Software Development Lifecycle for Mobile, DeMobile 2015, pages 1–2,
2015.

http://wordnet.princeton.edu/


Title Suppressed Due to Excessive Length 25

3. A. A. Al-Subaihin, F. Sarro, S. Black, L. Capra, M. Harman, Y. Jia, and Y. Zhang.
Clustering mobile apps based on mined textual features. In Proceedings of the 10th
ACM/IEEE International Symposium on Empirical Software Engineering and Mea-
surement, ESEM 2016, pages 38:1–38:10, 2016.

4. A. AlSubaihin, F. Sarro, S. Black, L. Capra, and M. Harman. App Store Effects on
Software Engineering Practices. IEEE Transactions on Software Engineering, 2019.

5. V. Arnaoudova, S. Haiduc, A. Marcus, and G. Antoniol. The use of text retrieval and
natural language processing in software engineering, 2015.

6. V. Avdiienko, K. Kuznetsov, I. Rommelfanger, A. Rau, A. Gorla, and A. Zeller. De-
tecting Behavior Anomalies in Graphical User Interfaces. In 2017 IEEE/ACM 39th
International Conference on Software Engineering Companion (ICSE-C), pages 201–
203. IEEE, may 2017.

7. E. R. Babbie. The practice of social research, volume 112. Wadsworth publishing
company Belmont, CA, 1998.

8. E. Bakiu and E. Guzman. Which Feature is Unusable? Detecting Usability and User
Experience Issues from User Reviews. In 2017 IEEE 25th International Requirements
Engineering Conference Workshops (REW), pages 182–187. IEEE, sep 2017.

9. J. J. Bartko. The intraclass correlation coefficient as a measure of reliability. Psycho-
logical reports, 19(1):3–11, 1966.

10. G. Berardi, A. Esuli, T. Fagni, and F. Sebastiani. Multi-store metadata-based super-
vised mobile app classification. In Proceedings of the 30th Annual ACM Symposium on
Applied Computing - SAC ’15, pages 585–588, New York, New York, USA, apr 2015.
ACM Press.

11. D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent Dirichlet Allocation Michael. Technical
report, 2003.

12. F. Can and E. A. Ozkarahan. Concepts and effectiveness of the cover-coefficient-based
clustering methodology for text databases. ACM Trans. Database Syst., 15(4):483–517,
Dec. 1990.

13. N. Chen, S. C. Hoi, S. Li, and X. Xiao. SimApp: A Framework for Detecting Similar
Mobile Applications by Online Kernel Learning. In Proceedings of the Eighth ACM
International Conference on Web Search and Data Mining - WSDM ’15, pages 305–
314, New York, New York, USA, feb 2015. ACM Press.

14. N. Chen, J. Lin, S. C. H. Hoi, X. Xiao, and B. Zhang. AR-miner: mining informative
reviews for developers from mobile app marketplace. In Proceedings of the 36th Inter-
national Conference on Software Engineering (ICSE), pages 767–778, New York, New
York, USA, May 2014. ACM Press.

15. S. Cheng and H. Sällberg. The influence of online product reviews on the downloading
decision for mobile apps. PhD thesis, Lbekinge Institute of Technology, 2015.

16. J. Cohen. Weighted kappa: Nominal scale agreement provision for scaled disagreement
or partial credit. Psychological Bulletin, 70(4):213–220, 1968.

17. J. Crussell, C. Gibler, and H. Chen. AnDarwin: Scalable Detection of Semantically
Similar Android Applications. In J. Crampton, S. Jajodia, and K. Mayes, editors, 18th
European Symposium on Research in Computer Security, pages 182—-199, Egham, UK,
2013. Springer Berlin Heidelberg.

18. J.-M. Davril, E. Delfosse, N. Hariri, M. Acher, J. Cleland-Huang, and P. Heymans.
Feature model extraction from large collections of informal product descriptions. In
Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering -
ESEC/FSE 2013, page 290, New York, New York, USA, Aug. 2013. ACM Press.

19. M.-C. De Marneffe and C. D. Manning. Stanford Dependencies.
20. M.-C. de Marneffe and C. D. Manning. The Stanford typed dependencies representation.

In Coling 2008: Proceedings of the workshop on Cross-Framework and Cross-Domain
Parser Evaluation, pages 1–8, Manchester, UK, 2008. Association for Computational
Linguistics.

21. S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman. Indexing
by latent semantic analysis. Journal of the American Society for Information Science,
41(6):391–407, sep 1990.

22. A. Di Sorbo, S. Panichella, C. V. Alexandru, J. Shimagaki, C. A. Visaggio, G. Canfora,
and H. C. Gall. What would users change in my app? summarizing app reviews for



26 Afnan Al-Subaihin et al.

recommending software changes. In Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering - FSE 2016, pages
499–510, New York, New York, USA, 2016. ACM Press.

23. A. Di Sorbo, S. Panichella, C. V. Alexandru, C. A. Visaggio, and G. Canfora. SURF:
Summarizer of User Reviews Feedback. In 2017 IEEE/ACM 39th International Con-
ference on Software Engineering Companion (ICSE-C), pages 55–58. IEEE, may 2017.

24. H. Dumitru, M. Gibiec, N. Hariri, J. Cleland-Huang, B. Mobasher, C. Castro-Herrera,
and M. Mirakhorli. On-demand feature recommendations derived from mining public
product descriptions. In Proceeding of the 33rd international conference on Software
engineering - ICSE ’11, page 181, New York, New York, USA, May 2011. ACM Press.

25. J. Escobar-Avila, M. Linares-Vásquez, and S. Haiduc. Unsupervised software catego-
rization using bytecode. In Proceedings of the 2015 IEEE 23rd International Conference
on Program Comprehension, pages 229–239. IEEE Press, may 2015.

26. A. Finkelstein, M. Harman, Y. Jia, W. Martin, F. Sarro, and Y. Zhang. App store
analysis: Mining app stores for relationships between customer, business and technical
characteristics. UCL - Research Note RN/14/10, September 2014.

27. A. Finkelstein, M. Harman, Y. Jia, W. Martin, F. Sarro, and Y. Zhang. Investigating
the relationship between price, rating, and popularity in the blackberry world app store.
Information & Software Technology, 87:119–139, 2017.

28. A. Finkelstein, M. Harman, Y. Jia, F. Sarro, and Y. Zhang. Mining app stores: Ex-
tracting technical, business and customer rating information for analysis and prediction.
RN 13, University College London, Research Notes, 2013.

29. J. L. Fleiss. Measuring nominal scale agreement among many raters. Psychological
Bulletin, 76(5):378–382, 1971.

30. E. B. Fowlkes and C. L. Mallows. A Method for Comparing Two Hierarchical Cluster-
ings. Journal of the American Statistical Association, 78(383):553–569, sep 1983.

31. A. Gorla, I. Tavecchia, F. Gross, and A. Zeller. Checking app behavior against app
descriptions. In Proceedings of the 36th International Conference on Software Engi-
neering - ICSE 2014, pages 1025–1035, New York, New York, USA, May 2014. ACM
Press.

32. T. L. Griffiths and M. Steyvers. Finding scientific topics. Proceedings of the National
Academy of Sciences of the United States of America, 101 Suppl 1(suppl 1):5228–35,
apr 2004.

33. X. Gu and S. Kim. ”What Parts of Your Apps are Loved by Users?” (T). In 2015
30th IEEE/ACM International Conference on Automated Software Engineering (ASE),
pages 760–770. IEEE, nov 2015.

34. J. Gui, M. Nagappan, and W. G. J. Halfond. What Aspects of Mobile Ads Do Users
Care About? An Empirical Study of Mobile In-app Ad Reviews. Technical report, 2017.

35. E. Guzman and W. Maalej. How Do Users Like This Feature? A Fine Grained Sentiment
Analysis of App Reviews. In 2014 IEEE 22nd International Requirements Engineering
Conference (RE), pages 153–162. IEEE, Aug. 2014.

36. N. Hariri, C. Castro-Herrera, M. Mirakhorli, J. Cleland-Huang, and B. Mobasher. Sup-
porting Domain Analysis through Mining and Recommending Features from Online
Product Listings. IEEE Transactions on Software Engineering, 39(12):1736–1752, Dec.
2013.

37. M. Harman, A. Al-Subaihin, Y. Jia, W. Martin, F. Sarro, and Y. Zhang. Mobile app
and app store analysis, testing and optimisation. In Proceedings of the International
Conference on Mobile Software Engineering and Systems, MOBILESoft ’16, pages 243–
244. ACM, 2016.

38. M. Harman, Y. Jia, and Y. Zhang. App store mining and analysis: MSR for app stores.
In Proceedings of MSR, pages 108–111. IEEE Press, June 2012.

39. L. Hubert and P. Arabie. Comparing partitions. Journal of Classification, 2(1):193–218,
dec 1985.

40. C. Iacob and R. Harrison. Retrieving and analyzing mobile apps feature requests from
online reviews. In 2013 10th Working Conference on Mining Software Repositories
(MSR), pages 41–44. IEEE, May 2013.

41. F. Jelinek, R. L. Mercer, L. R. Bahl, and J. K. Baker. Perplexitya measure of the
difficulty of speech recognition tasks. The Journal of the Acoustical Society of America,
62(S1):S63–S63, dec 1977.



Title Suppressed Due to Excessive Length 27

42. K. S. Jones. A STATISTICAL INTERPRETATION OF TERM SPECIFICITY AND
ITS APPLICATION IN RETRIEVAL. Journal of Documentation, 28(1):11–21, 1972.

43. J. Kim, Y. Park, C. Kim, and H. Lee. Mobile application service networks: Apple’s App
Store. Service Business, 8(1):1–27, feb 2013.

44. K. Kuznetsov, V. Avdiienko, A. Gorla, and A. Zeller. Checking app user interfaces
against app descriptions. In Proceedings of the International Workshop on App Market
Analytics - WAMA 2016, pages 1–7, New York, New York, USA, 2016. ACM Press.

45. D. Lavid Ben Lulu and T. Kuflik. Functionality-based clustering using short textual
description. In Proceedings of the 2013 international conference on Intelligent user
interfaces - IUI ’13, page 297, New York, New York, USA, 2013. ACM Press.

46. S. L. Lim, P. J. Bentley, N. Kanakam, F. Ishikawa, and S. Honiden. Investigating Coun-
try Differences in Mobile App User Behavior and Challenges for Software Engineering.
IEEE Transactions on Software Engineering, 41(1):40–64, jan 2015.

47. M. Linares-Vásquez, A. Holtzhauer, and D. Poshyvanyk. On Automatically Detecting
Similar Android Apps. In 24th IEEE International Conference on Program Compre-
hension. IEEE Comput. Soc, 2016.

48. M. Lu and P. Liang. Automatic Classification of Non-Functional Requirements from
Augmented App User Reviews. In Proceedings of the 21st conference on Evaluation
and Assessment in Software Engineering, EASE’17, Karlskrona, Sweden., 2017.

49. H. P. Luhn. A Statistical Approach to Mechanized Encoding and Searching of Literary
Information. IBM Journal of Research and Development, 1(4):309–317, oct 1957.

50. W. Martin, M. Harman, Y. Jia, F. Sarro, and Y. Zhang. The app sampling problem for
app store mining. In Proceedings of the 12th Working Conference on Mining Software
Repositories (MSR), pages 123–133, 2013.

51. W. Martin, F. Sarro, and M. Harman. Causal impact analysis applied to app releases
in google play and windows phone store. Technical report, University College London,
2015.

52. W. Martin, F. Sarro, and M. Harman. Causal impact analysis for app releases in google
play. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, FSE 2016, pages 435–446, New York, NY, USA,
2016. ACM.

53. W. Martin, F. Sarro, Y. Jia, Y. Zhang, and M. Harman. A survey of app store analysis
for software engineering. IEEE Transactions on Software Engineering, 43(9):817–847,
2017.

54. A. Massey, J. Eisenstein, A. Anton, and P. Swire. Automated text mining for require-
ments analysis of policy documents. In IEEE International Requirements Engineering
Conference, pages 4–13, 2013.

55. C. McMillan, N. Hariri, D. Poshyvanyk, J. Cleland-Huang, and B. Mobasher. Recom-
mending source code for use in rapid software prototypes. pages 848–858, jun 2012.

56. C. McMillan, M. Linares-Vasquez, D. Poshyvanyk, and M. Grechanik. Categorizing
software applications for maintenance. In 2011 27th IEEE International Conference on
Software Maintenance (ICSM), pages 343–352. IEEE, sep 2011.

57. S. Mokarizadeh, M. T. Rahman, and M. Matskin. Mining and Analysis of Apps in
Google Play. In 9th International Conference onWeb Information Systems and Tech-
nologies, WEBIST ’13, 2013.

58. M. Nagappan and E. Shihab. Future Trends in Software Engineering Research for Mobile
Apps. In 2016 IEEE 23rd International Conference on Software Analysis, Evolution,
and Reengineering (SANER), pages 21–32. IEEE, mar 2016.

59. M. Nayebi, H. Cho, and G. Ruhe. App store mining is not enough for app improvement.
Empirical Software Engineering, pages 1–31, feb 2018.

60. M. Nayebi, H. Farrahi, A. Lee, H. Cho, and G. Ruhe. More insight from being more
focused: analysis of clustered market apps. In Proceedings of the International Workshop
on App Market Analytics - WAMA 2016, pages 30–36, New York, New York, USA, 2016.
ACM Press.

61. R. Pandita, X. Xiao, W. Yang, W. Enck, and T. Xie. Whyper: Towards automating risk
assessment of mobile applications. In Proceedings of the 22Nd USENIX Conference on
Security, SEC’13, pages 527–542, Berkeley, CA, USA, 2013. USENIX Association.



28 Afnan Al-Subaihin et al.

62. S. Panichella, A. Di Sorbo, E. Guzman, C. A. Visaggio, G. Canfora, and H. C. Gall.
How can i improve my app? Classifying user reviews for software maintenance and evo-
lution. In 2015 IEEE International Conference on Software Maintenance and Evolution
(ICSME), pages 281–290. IEEE, sep 2015.

63. S. Panichella, A. Di Sorbo, E. Guzman, C. A. Visaggio, G. Canfora, and H. C. Gall.
ARdoc: app reviews development oriented classifier. In Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering -
FSE 2016, pages 1023–1027, New York, New York, USA, 2016. ACM Press.

64. K. Pearson. Notes on regression and inheritance in the case of two parents. Proc. of
the Royal Society of London, 58:240–242, June 1895.

65. X.-H. Phan, L.-M. Nguyen, and S. Horiguchi. Learning to classify short and sparse text
& web with hidden topics from large-scale data collections. In Proceeding of the 17th
international conference on World Wide Web - WWW ’08, page 91, New York, New
York, USA, 2008. ACM Press.

66. S. Robertson. Understanding inverse document frequency: on theoretical arguments for
IDF. Journal of Documentation, 60(5):503–520, oct 2004.

67. P. J. Rousseeuw. Silhouettes: A graphical aid to the interpretation and validation of
cluster analysis. Journal of Computational and Applied Mathematics, 20:53–65, nov
1987.

68. G. Salton and C. Buckley. Term-weighting approaches in automatic text retrieval.
Information Processing & Management, 24(5):513–523, jan 1988.

69. B. Sanz, I. Santos, C. Laorden, X. Ugarte-Pedrero, and P. G. Bringas. On the automatic
categorisation of android applications. In 2012 IEEE Consumer Communications and
Networking Conference (CCNC), pages 149–153. IEEE, Jan. 2012.

70. F. Sarro, A. A. Al-Subaihin, M. Harman, Y. Jia, W. Martin, and Y. Zhang. Feature
lifecycles as they spread, migrate, remain, and die in app stores. In 23rd IEEE Inter-
national Requirements Engineering Conference, RE 2015, pages 76–85, 2015.

71. F. Sarro, M. Harman, Y. Jia, and Y. Zhang. Customer rating reactions can be predicted
purely using app features. In Proceedings of the 26th IEEE International Requirements
Engineering Conference, RE’18, 2018.

72. S. Scalabrino, G. Bavota, B. Russo, R. Oliveto, and M. Di Penta. Listening to the Crowd
for the Release Planning of Mobile Apps. IEEE Transactions on Software Engineering,
pages 1–1, 2017.

73. S. Seneviratne, A. Seneviratne, M. A. Kaafar, A. Mahanti, and P. Mohapatra. Early
detection of spam mobile apps. WWW ’15, pages 949–959, 2015.

74. A. Shabtai, Y. Fledel, and Y. Elovici. Automated Static Code Analysis for Classifying
Android Applications Using Machine Learning. In 2010 International Conference on
Computational Intelligence and Security, pages 329–333. IEEE, Dec. 2010.

75. C. E. Spearman. The proof and measurement of association between two things. The
American Journal of Psychology, 15(1):72–101, January 1904.

76. A. Sutcliffe and P. Sawyer. Requirements elicitation: Towards the unknown unknowns.
In IEEE International Requirements Engineering Conference, pages 92–104, 2013.

77. S. Vakulenko, O. Müller, and J. Brocke. Enriching iTunes App Store Categories via
Topic Modeling. In Proceedings of the Thirty Fifth International Conference on Infor-
mation Systems (ICIS), Auckland, New Zealand, 2014.

78. N. Viennot, E. Garcia, and J. Nieh. A measurement study of google play. ACM
SIGMETRICS Performance Evaluation Review, 42(1):221–233, jun 2014.

79. H. M. Wallach and H. M. Topic modeling: beyond bag-of-words. In Proceedings of the
23rd international conference on Machine learning - ICML ’06, pages 977–984, New
York, New York, USA, 2006. ACM Press.

80. T. Wang, H. Wang, G. Yin, C. X. Ling, X. Li, and P. Zou. Mining Software Profile
across Multiple Repositories for Hierarchical Categorization. In 2013 IEEE Interna-
tional Conference on Software Maintenance, pages 240–249. IEEE, Sept. 2013.

81. C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén. Experi-
mentation in software engineering. Springer, 2012.

82. H. Zhu, E. Chen, H. Xiong, H. Cao, and J. Tian. Mobile App Classification with En-
riched Contextual Information. IEEE Transactions on Mobile Computing, 13(7):1550–
1563, jul 2014.


	Introduction
	Empirical Study Design
	Empirical Study Results
	Discussion
	Related Work
	Conclusion and Future Work

