
Single and Multi Objective Genetic Programming for
Software Development Effort Estimation

Federica Sarro
University of Salerno

Via Ponte Don Melillo,
84084 Fisciano (SA), Italy

{fsarro@unisa.it}

Filomena Ferrucci
University of Salerno

Via Ponte Don Melillo,
84084 Fisciano (SA), Italy

{fferrucci@unisa.it}

Carmine Gravino
University of Salerno

Via Ponte Don Melillo,
84084 Fisciano (SA), Italy

{gravino@unisa.it}

ABSTRACT
The idea of exploiting Genetic Programming (GP) to estimate
software development effort is based on the observation that the
effort estimation problem can be formulated as an optimization
problem. Indeed, among the possible models, we have to identify
the one providing the most accurate estimates. To this end a
suitable measure to evaluate and compare different models is
needed. However, in the context of effort estimation there does
not exist a unique measure that allows us to compare different
models but several different criteria (e.g., MMRE, Pred(25),
MdMRE) have been proposed. Aiming at getting an insight on the
effects of using different measures as fitness function, in this
paper we analyzed the performance of GP using each of the five
most used evaluation criteria. Moreover, we designed a Multi-
Objective Genetic Programming (MOGP) based on Pareto
optimality to simultaneously optimize the five evaluation
measures and analyzed whether MOGP is able to build estimation
models more accurate than those obtained using GP. The results
of the empirical analysis, carried out using three publicly
available datasets, showed that the choice of the fitness function
significantly affects the estimation accuracy of the models built
with GP and the use of some fitness functions allowed GP to get
estimation accuracy comparable with the ones provided by
MOGP.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management - Cost Estimation.

General Terms
Management, Measurement.

Keywords
Genetic Programming, Multi Objective Search, Effort Estimation,
Empirical Study.

1. INTRODUCTION
Effort estimation is a critical activity for planning and monitoring
software project development and for delivering the product on
time and within budget. Several methods have been proposed to
address the problem. In particular, data-driven approaches exploit

data from past projects, consisting of both factor values that are
related to effort and the actual effort to develop the projects, to
construct an estimation model that is used to predict the effort for
a new project under development [3][28]. In this class, we can
include the search-based approaches [15]. These are meta-
heuristics able to find optimal or near optimal solutions to
problems characterized by large space that have turned out to be
effective in solving numerous optimization problems in several
contexts. Examples of search-based methods are Simulated
Annealing, Tabu Search, Genetic Algorithms, and Genetic
Programming [15]. The idea of exploiting these methods to
estimate development effort is based on the observation that the
effort estimation problem can be formulated as an optimization
problem. As a matter of fact, among the possible estimation
models, we have to identify the best one, i.e., the one providing
the most accurate estimates.

The investigations carried out so far on the use of search-based
approaches for effort estimation have mainly focused on the use
of Genetic Programming (GP) providing promising results
[5][12][13][21][27]. Nevertheless, the design of these techniques
deserves to be further explored and empirically analyzed. In
particular, a crucial design choice is the definition of the fitness
function which indicates how a solution is suitable for the
problem under investigation driving the search towards optimal
solutions. For the effort estimation problem the fitness function
should be able to assess the accuracy of estimation models. It is
worth noting that several different accuracy measures have been
proposed for assessing the effectiveness/accuracy of effort
prediction models. Among them the Mean Magnitude of Relative
Error (MMRE) and the Prediction at level 25 (Pred(25)) represent
the most widely used measures [8]. Each measure focuses the
attention on a specific aspect, as a matter of fact “Pred(25)
measures how well an effort model performs, while MMRE
measures poor performance” [23].

It could be argued that the choice of the criterion for assessing
predictions and establishing the best model can be a managerial
issue: a project manager could prefer to use Pred(25) as the
criterion for judging the quality of a model, while another might
prefer to use another criterion, just for example MMRE [14].

On the other hand, in order to get a more reliable assessment of
estimation methods, several evaluation criteria (i.e., MMRE,
Pred(25), MdMRE, MEMRE) covering different aspects of
models performances (e.g., underestimating or overestimating,
success or poor performance) are usually jointly used [9][14][22].

From both points of view search-based methods represent an
opportunity. Indeed, they let use as fitness function any measure
able to evaluate some properties of interest [16], thus allowing a
project manager to select his/her preferred accuracy measure so
that the search for the model is driven by such a criterion. On the
other end, some search-based techniques have been conceived to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ACM SAC’12, March 26-30, 2012, Riva del Garda, Italy.
Copyright 2012 ACM 978-1-4503-0857-1/12/03…$10.00.

1221

address also multi-objective optimization problems where two or
more different objectives can be simultaneously considered to
guide the search, thus allowing us to take into account several
evaluation criteria.

Nevertheless, to the best of our knowledge all the studies carried
out so far on search-based techniques for effort estimation
exploited only single objective search. Moreover, all those studies
used GP with MMRE [5][21] or Mean Square Error (MSE)
[12][13][27] as fitness function, except for [14] where some
evaluation criteria were considered. This preliminary
investigation showed that the employed fitness function can
influence the overall accuracy of the models built with GP and
some criteria can degrade a lot the performance in terms of the
other measures.

Aiming at better understand these effects that should be known to
project managers, in this paper we further investigated the use of
different fitness functions with GP. Moreover, we exploited a
Multi-Objective Genetic Programming (MOGP) based on Pareto
optimality [6] to simultaneously optimize all the evaluation
measures and analyzed whether MOGP is able to build estimation
models more accurate than those obtained using GP. To this end,
we experimented GP and MOGP on three publicly available
datasets (i.e., Desharnais [11], Finnish [28], and Miyazaki [24])
included in the PROMISE repository [25], performing a 3-fold
cross validation and using both summary measures and statistical
significance tests as evaluation criteria.

The remainder of the paper is organized as follows. Section 2
provides the description of the employed techniques. Section 3
summarizes the design of the empirical study we performed and
discusses the threats to its validity. Results are presented and
discussed in Section 4, while related work is reported in Section
5. Final remarks conclude the paper.

2. GENETIC PROGRAMMING FOR
EFFORT ESTIMATION
Genetic Programming (GP) [20] belongs to the family of
evolutionary algorithms that, inspired by the theory of natural
evolution, simulates the evolution of species emphasizing the law
of survival of the strongest to solve, or approximately solve,
optimization problems. To this end, a fitness function is used to
evaluate the goodness (i.e., fitness) of the solutions represented by
the individuals and genetic operators based on selection and
reproduction are employed to create new populations (i.e.,
generations). With respect to other evolutionary methods, GP is
characterized by the fact that individuals are computer programs
(e.g., mathematical expressions) usually encoded as a tree where
leaves are terminals (e.g., operands) and internal nodes are
functions (e.g., mathematical operators).

The elementary evolutionary process of GP is composed by the
following steps:

Step1. [population generation] the initial population is usually
generated building random trees of fixed or variable depth or a
combination of them;

Step2. [fitness assignment] a fitness function is used to assign a
fitness value to each individual;

Step3. [reproduction phase] according to their fitness value
some individuals are selected to form the parents and new
individuals are created by applying genetic operators (i.e.,

crossover and mutation) and evaluated using the fitness
function;

Step4. [replacement phase] to determine the individuals that
will be included in the next generation (i.e., survivals) a
selection based on individual’s fitness value is applied;

Step5. [stopping criteria] steps 2, 3, and 4 are repeated until
stopping criteria hold.

In the following we detailed the design choices we made for
tailoring GP and MOGP to the effort estimation problem.

2.1 Single Objective GP for Effort Estimation
In the context of effort estimation, a solution consists of an
estimation model described by an equation of this type:

EstimatedEffort = ci opi fi… cn op2n-1 fn op2n C (1)

where fi represents the value of the ith project feature and ci its
coefficient, C represents a constant, while opi represents the ith
mathematical operator of the model. In particular, the
mathematical operators {+,-,*,exp, ln} were took into account. It
is worth noting that the equations feasible for the effort estimation
problem are only those providing positive value for
EstimatedEffort.

The initial population (Step1) is generated by building m=10V
random trees of fixed depth, according to [17] that suggests to use
a population of 10V individuals, where V is the number of
features, in order to achieve a good compromise between the
running time and the accuracy of the estimates.

As for Step2, since each measure that has been proposed as a
means of evaluating some properties of interest can be used as
fitness function [16] one of the measures suggested for the
evaluation of estimation model accuracy [8][19] can be employed
to this end. The most common ones are based on the Magnitude
of Relative Error (MRE) and the Magnitude of Relative Error
relative to the Estimate (ERE), defined as:

MRE = (|EFreal-EFpred|)/EFreal (2)

ERE = (|EFreal-EFpred|)/EFpred (3)

where EFreal and EFpred are the actual and the predicted efforts,
respectively. As we can note ERE has the same form of MRE, but
the denominator is the estimate, giving thus a stronger penalty to
under-estimates. Calculating the MRE and ERE values of each
observation in the dataset and aggregating them using the Mean
and the Median, gave rise to MMRE and MEMRE, and MdEMRE
and MdEMRE, respectively. Such criteria allow a project
manager to measure poor performance of an estimation model but
can be skewed by a single large mistake [23]. However, MdMRE
and MdEMRE are less sensitive to extreme values than MMRE
and MEMRE. On the other end, a project manager that would to
assess how well an effort model performs can use the Prediction
at level l [4] criterion [23]. Indeed, it is is defined as

Pred(l) = k/n (4)

where k is the number of observations whose MRE is less than or
equal to l, and n is the total number of observations in the
validation set. Generally, a value of 25 for the level l is chosen. In
other words, Pred(25) is a quantification of the predictions whose
error is less than 25%.

Once the fitness is assigned, the Roulette Wheel Selector is
employed to select individuals for the reproduction phase. This
selector assigns a roulette slice to each chromosome according to
its fitness value. In this way, even if candidate solutions with a

1222

higher fitness have more chance to be selected, there is still a
chance that they may be not. Applying crossover and mutation
operators with a certain probability (i.e., crossover rate and
mutation rate) to the selected individuals an offspring is produced
(Step3). As for the genetic operators crossover and mutation
operators specific for the solution encoding were employed in
order to preserve well-formed equations in all offspring. In
particular, a single point crossover which randomly selects in
each tree a node placed at the same depth and swaps the subtrees
corresponding to the selected point was used. Since the two trees
are cut at the same point, the trees resulting after the swapping
have the same depth as compared to those of parent trees.
Concerning the mutation, an operator that selects a node of the
tree and randomly changes the associated value was employed.
The mutation can affect internal node (i.e., operators) or leaves
(i.e., coefficients) of the tree. In particular, when the mutation
involves internal node, a new operator opi in {{+,-,*,exp,ln}-opi}
is randomly generated and assigned to the node, while if the
mutation involves a leaf a new coefficient ci in R is assigned to
the node. It is worth noting that the employed mutation preserves
the syntactic structure of the equation. Crossover and mutation
rate were fixed to 0.5 and 0.1, respectively. As for the
replacement phase (Step4) the Tournament Selector is employed,
where the chromosomes are ranked by their fitness value and the
best m ones are copied straight into the next generation.

With regard to the stopping criteria (Step5), the evolutionary
process is stopped after 1000V, where V is the number of features
contained in the dataset or if the best solution does not change
after 100V generations [17].

2.2 Multi Objective GP for Effort Estimation
The Multi Objective Genetic Programming (MOGP) we designed
is an adaptation to GP of the NSGA-II1 algorithm [10], based on
the concept of Pareto optimality [6]. The employed MOGP is very
similar to the GP described in Section 2.1, with crucial variations
in Steps 2 and 4. In particular, the main difference respect to GP
is that in MOGP an objective vector is considered instead of a
single function and the fitness assignment procedure is based on
the dominance deep according to NSGA-II [10]. This algorithm
decomposes the population into several fronts, as follows:

1. all the solutions are ranked using the non-dominance
concept2 counting;

2. all non-dominated solutions of the population are assigned
to rank 1, then they are removed from the population;

3. iteratively, non-dominated solutions are determined and
assigned rank 2.

Steps 1-3 are iterated until the population is empty. Then the
solutions are ranked again according to a crowding distance,
namely the difference between the left and right neighbors or
infinity if there are no neighbors. The use of the crowding
distance is crucial to preserve the diversity in the solutions fronts,
since computing the distance between a given solution and its
nearest neighbors allows NSGA-II to approximate the density of
the obtained solution. So, solutions with higher crowding distance
are considered better solutions, as they introduce more diversity

1 We have chosen NSGA-II since it has been shown that it outperformed
simpler algorithms, such as NSGA or VEGA [26]. Furthermore, even if
it produces results similar to SPEA2 on some MOPs [29], its time
complexity (i.e., O(n2) [10]) is better than SPEA2 (i.e., O(n3) [29]).

2 A solution A is said to dominate a solution B if and only if A is at least
equal to B in all objectives, and excels B in at least one objective.

in the population. Once all the solutions are ranked by both
dominance deep and crowing distance, the same crossover and
mutation operators employed for GP are applied to produce an
offspring (Step3). Then a tournament selector is applied and the
best m solutions (in terms of dominance and crowding) are copied
straight into the next generation (Step4). The algorithm is stopped
according to the same criteria used for GP (Step5). The final
result of the above algorithm is a set of solutions, that are all
equivalent in the sense that although each of the elements of the
objective vector have different values, no solution in this set
(named Pareto front) can be considered superior to any other. To
select a final solution from the Pareto front a decision maker is
usually used [2][6]. In particular, we employed an “a priori”
decision maker [6] which provides a complete order between the
Pareto optimal solutions according to the following expression:
Pred(25)/(MMRE+MEMRE+MdMRE+MdEMRE).

3. CASE STUDY PLANNING
This section presents the design of the empirical study we carried
out to address the following research questions:

(RQ1) How the choice of the fitness function impact on the
accuracy of the estimation models built with GP?

(RQ2) Is MOGP able to build estimation models more accurate
than those obtained using GP?

3.1 Datasets
To carry out the empirical study we exploited three publicly
available datasets, namely Desharnais, Finnish, and Miyazaki,
included in the PROMISE repository [25]. The first one is an
industrial dataset comprising 81 software projects derived from a
Canadian software house [11]. The Finnish dataset contains
industrial data about 38 projects developed by different Finnish
companies [28]. Also the Miyazaki dataset is composed by data
projects provided by different software companies, comprising
data collected from 48 systems in 20 companies by Fujitsu [24].
All these datasets have been widely and recently used to evaluate
estimation methods (see e.g., [5][24][28]). The descriptive
statistics of the employed features for each dataset are shown in
Table 1. We can observe that these datasets are a good sample
since they are both single and cross company and differ for
number of observations and feature characteristics.

Table 1. Descriptive statistics of the employed datasets

Dataset Variable Min Max Mean Std.Dev

 TeamExp 0 4 2.30 1.33
 ManagerExp 0 7 2.65 1.52
 Entities 7 387 120.55 86.11
Desharnais Transactions 9 886 177.47 146.08
 AdjustedFPs 73 1127 298.01 182.26
 RawFPs 62 1116 282.39 186.36
 Envergue 5 52 27.45 10.53
 Effort 546 23490 4903.95 4188.19
 HW 1 3 1.26 0.64
 AR 1 5 2.24 1.50
Finnish FP 65 1,814 763.58 510.83
 CO 2 10 6.26 2.73
 Effort 460 25,65 7,678.29 7,135.28

 SCRN 0 281 33.69 47.24
Miyazaki FORM 0 91 22.38 20.55
 FILE 2 370 20.55 53.56
 Effort 896 253.76 13,996 36,601.56

1223

3.2 Setting of GP and MOGP
To address our first research question we experimented the
proposed GP and MOGP using as fitness function the measures
described in Section 2.1. This allowed us to analyze how this
choice impacts on the estimation accuracy of the constructed
models. In particular, we experimented GP with the following
fitness functions:

- GP1, that maximizes 1/MMRE as fitness function;
- GP2, that maximizes Pred(25) as fitness function;
- GP3, that maximizes 1/MdMRE as fitness function;
- GP4, that maximizes 1/MEMRE as fitness function;
- GP5, that maximizes 1/MdEMRE as fitness function;

As for MOGP we exploited as objectives all the considered
summary measures, i.e., MMRE, Pred(25), MdMRE, MEMRE,
MdEMRE. The other settings of the experimented algorithms are
reported in Table 2. It is worth mentioning that they reflect in
some way the size of the datasets, as suggested in [14][17].
Moreover, we verified that they fit also to our cases comparing
the trend of the fitness value of the current best solution with the
trend of the average fitness value of the whole population. As an
example, using GP with MMRE as fitness function on the
Desharnais dataset the analysis highlighted that after about 700-
800 generations the two curves were identical indicating that the
best solution found cannot be improved. Moreover, we also
observed that the evolutionary process was generally stopped
because the best solution did not change after a fixed number of
generations. Thus, we can be confident that the setting we used is
sufficient for the algorithms to converge.

Table 2. Setting of the employed GP and MOGP

Parameter Desharnais Finnish Miyazaki
Population Size 70 40 30

Generation Number <=7000 <=4000 <=3000
Crossover Rate 0.5 0.5 0.5
Mutation Rate 0.1 0.1 0.1

Finally, to take into account the non determinist nature of GP and
MOGP (i.e., they cannot give the same solution each time they
are executed), we performed 10 runs and among the ten solutions
we retained as final prediction model the one that had objective
values closest to the average value achieved in the 10 runs on
training sets.

3.3 Validation Method and Evaluation
Criteria
In order to verify whether or not a method gives useful
estimations of the actual development effort a validation process
is required. To this end, we performed a multiple-fold cross
validation, partitioning the whole dataset into training sets, for
model building, and validation sets, for model evaluation. In
particular, we partitioned the Desharnais dataset in 3 randomly
validation sets (one containing 25 observations and two 26), and
then for each validation set we considered the remaining
observations as training set. The same procedure was applied also
for Finnish and Miyazaki datasets obtaining for Finnish a
validation set of 12 observations and two of 13, while for
Miyazaki each validation set contains 16 observations.

Concerning the evaluation of the estimates obtained with the
analyzed estimation methods we used all the summary measures
described in Section 2.1, namely MMRE, MdMRE, Pred(25),
MEMRE and MdEMRE. These measures give an indication on
which is the method that globally provided the best estimates. To

compare different estimation methods we tested also whether
there was statistical significant difference among the absolute
residuals [19]. Since (i) the absolute residuals for all the analyzed
methods were not normally distributed, and (ii) the data was
naturally paired, we used the Wilcoxon Test [7] setting the
confidence at α= 0.05. In particular, we verified the following null
hypothesis: “the use of mi does not provide better results than
using mj”, where mi and mj are two experimented methods.

3.4 Case Study Validity
It is widely recognized that several factors can bias the validity of
empirical studies. In this section we discuss on the validity of the
empirical study based on three types of threats: construct validity,
related to the agreement between a theoretical concept and a
specific measuring device or procedure; conclusion validity,
related to the ability to draw statistically correct conclusions;
external validity, related to the ability to generalize the achieved
results. As highlighted by Kitchenham et al. [18], in order to
satisfy construct validity a study has “to establish correct
operational measures for the concepts being studied”. This means
that the study should represent to what extent the predictor and
response variables precisely measure the concepts they claim to
measure. Thus, the choice of the features and how to collect them
represent the crucial aspects. We tried to mitigate this threat by
evaluating the proposed estimation methods on reliable project
data coming from a public repository (i.e., PROMISE [25]) and
previously used in many other empirical studies carried out to
evaluate effort estimation methods (e.g., [5][12][25]). Concerning
the conclusion validity we carefully applied the statistical tests,
verifying all the required assumptions. Moreover, we used three
medium size datasets to mitigate the threats related to the number
of observations composing a dataset. Furthermore, each dataset
that contains projects related to one context (e.g., the Desharnais
dataset) might be characterized by some specific project and
human factors, such as development process, developer
experience, employed technologies, time, and budget constraints
[1]. Thus, using only one dataset could represent an important
external validity threat that we mitigated using three datasets
which contain projects related to different companies. Taking into
account data from different datasets, let us to be more confident in
the generalization of the achieved results.

4. RESULTS
Table 3 reports on the average summary measures obtained
applying the 3-fold cross-validation with GP and MOGP.

Concerning the application of GP, the results revealed that for all
the considered datasets the best overall accuracy (i.e., taking into
account all together the summary measures3) was achieved by the
models built with GP2 and GP3 (i.e., using Pred(25) and MdMRE
measures as fitness function, respectively). While the worst
overall accuracy was obtained with the models built with GP1,
GP4, and GP5 (i.e., using MMRE, MEMRE, and MdEMRE
measures as fitness function, respectively). In particular, we
observed that using MMRE (MEMRE) as fitness function
improved the estimation accuracy in terms of MMRE (MEMRE)
but decreased a lot the accuracy in terms of MEMRE (MMRE).
These findings are confirmed by the Wilcoxon tests results
reported in Table 4 which highlight that GP1, GP4, and GP5

3 Let us recall that Pred(25) has to be maximized, while the others

summary measures have to be minimized.

1224

provided significantly worse results than GP2 and GP3 on the
considered datasets. Thus, we can positively answer the research
question RQ1, i.e., the choice of the fitness function impacts on
the accuracy of the estimation models built with GP. In particular,
using each evaluation measure as fitness function GP is able to
get better values for the chosen criterion. Nevertheless, some
measures (e.g., MMRE or MEMRE) should be carefully used as
fitness functions since they can negatively affect the other
measures and so the overall accuracy. Others (e.g., Pred(25) or
MdMRE) do not exhibit such effects and seem to behave well.

As for the comparison between GP and MOGP, we can observe
that in general the summary measures obtained with MOGP are
better than the results achieved employing GP1, GP4, and GP5 on
all the considered datasets (see Table 3). This is interesting since
means that the use of multi-objective optimization allowed us to
mitigate the negative influence of MMRE, MEMRE, and
MdEMRE when used as single fitness function. Nevertheless,
MOGP did not provide better results than GP2 and GP3.

Table 3. Summary measures achieved by GP and MOGP

Technique MMRE Pred(25) MdMRE MEMRE MdEMRE
Desharnais

GP1 0.58 0.23 0.44 0.84 0.63
GP2 0.68 0.43 0.33 0.38 0.31
GP3 0.67 0.43 0.32 0.38 0.32
GP4 0.91 0.38 0.36 0.39 0.35
GP5 1.32 0.39 0.33 0.44 0.34

MOGP 0.71 0.35 0.34 0.39 0.34
Finnish

GP1 0.59 0.16 0.66 2.50 1.65
GP2 1.05 0.21 0.49 0.58 0.59
GP3 1.29 0.18 0.47 0.55 0.56
GP4 1.92 0.24 0.84 0.52 0.49
GP5 1.71 0.21 0.80 0.51 0.51

MOGP 0.92 0.13 0.60 1.02 0.76
Miyazaki

GP1 0.53 0.25 0.44 0.85 0.70
GP2 0.58 0.46 0.34 0.40 0.32
GP3 0.52 0.35 0.34 0.54 0.37
GP4 0.53 0.38 0.33 0.49 0.39
GP5 0.50 0.38 0.32 0.56 0.44

MOGP 0.51 0.33 0.33 0.55 0.45

Table 4. Wilcoxon test results comparing GP and MOGP

< GP1 GP2 GP3 GP4 GP5
Desharnais

GP1 - 0.99 0.99 0.77 0.67
GP2 0.02 - 0.64 0.01 0.04
GP3 0.01 0.36 - 0.01 0.03
GP4 0.23 0.99 0.99 - 0.57
GP5 0.33 0.96 0.97 0.43 -

MOGP 0.02 0.78 0.63 0.00 0.02
Finnish

GP1 - 0.92 0.97 0.34 0.43
GP2 0.08 - 0.10 0.01 0.02
GP3 0.14 0.90 - 0.01 0.02
GP4 0.66 0.99 0.99 - 0.95
GP5 0.57 0.98 0.99 0.04 -

MOGP 0.02 0.95 0.78 0.13 0.24
Miyazaki

GP1 - 0.98 1.00 1.00 1.00
GP2 0.02 - 0.08 0.09 0.09
GP3 0.00 0.93 - 0.92 0.71
GP4 0.00 0.91 0.08 - 0.06
GP5 0.00 0.91 0.30 0.94 -

MOGP 0.00 0.92 0.42 0.94 0.65

The indications given by summary measures are confirmed also
by using statistical tests. Indeed, the Wilcoxon test results (see
Table 4) show that for all the datasets the absolute residuals
obtained with MOGP were significantly better than those of GP1.
Moreover, MOGP also provided significant better estimations

than GP4 and GP5 on the Desharnais datasets, while for Finnish
MOGP performed significantly better than GP4.

The above analysis suggests that we can partially positively
answer our second research question (i.e., RQ2). Indeed, despite
MOGP is able to address the drawback revealed by the use of GP
using MMRE or MEMRE as fitness functions, providing better
results than GP1, GP4, and GP5, it is not able to get better results
of GP2 and GP3. Thus, the increasing of complexity determined
by the use of MOGP seems to not be paid back by an
improvement of performance respect to the use of GP using
certain fitness functions (i.e., Pred(25) or MdMRE).

5. RELATED WORK
In the last years some empirical investigations have been
performed to assess the effectiveness of GP in estimating software
development effort. In particular, Burgess and Lefley [5] assessed
the use of GP exploiting the Desharnais dataset and employing a
fitness function designed to minimize MMRE. The average
results achieved with GP were better than those obtained with
Case-Based Reasoning (CBR) and Artificial Neural Network
(ANN) and worse than the ones achieved with Linear Regression
(LR). Moreover, the use of MMRE degraded other accuracy
measures, thus suggesting the authors the intuition that the use of
different functions could improve the effort estimates. In [14] by
using the same dataset but with a different validation method (3-
fold vs hold-out) the authors confirmed the intuition of Burgess
and Lefley [5]. Indeed, MMRE was not the best choice as fitness
function, since it allowed for better MMRE values but not an
overall good prediction accuracy in terms of all the considered
measures. Moreover, the study highlighted that other measures
(e.g., Pred(25) and MdMRE) can be more promising as fitness
functions since they did not exhibit this problem. The Desharnais
and Miyazaki datasets were also used by Dolado [12] together
with other datasets, where the employed GP exploited a fitness
function designed to minimize the Mean Squared Error (MSE)
[8]. The accuracy evaluation was carried out considering only
summary measures (i.e., MMRE and Pred(0.25)), whereas it was
not reported which kind of validation was employed. The results
of their analysis revealed that GP obtained better values for
Pred(25) than standard regression, but at the cost of obtaining in
some cases slight worse MMRE values. As for comparison, the
results on Desharnais dataset were comparable with those we
achieved here, while they obtained slightly better estimates on
Miyazaki. However, they also employed KLOC, an information
that is not available at the time the prediction would be made and
that could create a false impression as the efficacy of the
prediction method [28]. Dolado and Fernandez [13] compared
GP, Neural Networks (NN) and LR with the aim to investigate the
use of different methods for the purpose of estimation. They
exploited a fitness function designed to minimize MSE [8] and
carried out a case study on three publicly available datasets and
two datasets collected in their environment [13]. The models
accuracy was evaluated only in terms of MMRE and Pred(25)
revealing that the best model obtained with GP was better than
NN (on all the datasets) and LR (on two out of five datasets).
Successively, Lefley and Shepperd [21] also assessed the
effectiveness of an evolutionary approach and compared it with
several estimation techniques such as LR, ANN, and CBR. As for
GP setting, they applied the same choice of Burgess and Lefley
[5] but using a different dataset. This dataset is refereed as
“Finnish Dataset” and included 407 observations and 90 features,
obtained from many organizations. After a data analysis, a

1225

training set of 149 observations and a validation set of 15
observations were obtained applying a hold-out validation and
used in the empirical analysis. Even if the results revealed that
there was not a method that provides better estimations than the
others, the evolutionary approach performed consistently well. An
evolutionary computation method, named Grammar Guided
Genetic Programming (GGGP), was proposed by Shan et al. [27],
with the aim of improving the estimation of the software
development effort. Data of software projects from ISBSG
database was used to build the estimation models using GGGP
and LR. The fitness function was designed to minimize MSE. The
results revealed that GPPP performed better than Linear
Regression in terms of MMRE and Pred(25).

6. CONCLUSIONS
We designed GP and MOGP for estimating software development
effort and empirically analyzed the performance on three publicly
available datasets. The results showed that the choice of the
evaluation criteria employed in the definition of the fitness
function affects the overall accuracy of GP. Indeed, using fitness
functions based on Pred(25) or MdMRE provided significantly
better results than the use of other criteria such as MMRE and
MEMRE. GP with Pred(25) and MdMRE was also able to
achieve comparable results with respect to those obtained
employing a more sophisticated technique such as MOGP using
as objectives all the five summary measures. Thus, MOGP seems
to be not cost/effective in the context of effort estimation, and GP
with Pred(25) or MdMRE could represent suitable choices for
project managers. However, these results needs to be deepen also
using more data. Furthermore, other multi-objective optimization
approaches could be considered to verify whether there are
improvements in the built estimation models.

7. REFERENCES
[1] Briand, L., Wust, J. Modeling Development Effort in Object-

Oriented Systems Using Design Properties. IEEE Trans.
Softw. Engineer. 27(11), 2001, 963–986.

[2] Bowman, M., Briand, L., Labiche, Y. Solving the Class
Responsibility Assignment Problem in Object-oriented
Analysis with Multi-Objective Genetic Algorithms. IEEE
Trans. Softw. Engineer. 36(6), 2010, 817-837.

[3] Briand, L., Wieczorek, I. Software resource estimation.
Encyclopedia of Software Engineering. 2002, 1160–1196.

[4] Briand, L., El. Emam, K., Surmann, D., Wiekzorek, I.,
Maxwell, K. An assessment and comparison of common
software cost estimation modeling techniques. In Procs. of
Conference on Software Engineering, 1999, 313–322.

[5] Burgess, C., Lefley, M. Can Genetic Programming Improve
Software Effort Estimation: a Comparative Evaluation.
Inform. and Softw. Technology, 43(14), 2001, 863–873.

[6] Coello, C., Van Veldhuizen, D., Lamont, G. Evolutionary
Algorithms for Solving Multi-Objective Optimization
Problems. 2000. Kluwer Academic Publishers.

[7] Cohen, J. Statistical power analysis for the behavioral
sciences, 1998. 2nd ed. Lawrence Earlbaum Associates.

[8] Conte, D., Dunsmore, H., Shen, V. Software engineering
metrics and models. 1996. The Benjamin/Cummings
Publishing Company, Inc..

[9] Corazza, A., Di Martino, S., Ferrucci, F., Gravino, C., Sarro,
F., Mendes, E. How Effective is Tabu Search to Configure
Support Vector Regression for Effort Estimation?. In Procs.
of PROMISE, 2010, ACM NY, 4.

[10] Deb, K., Pratap, A. Apratap, S., Agarwal, S., Meyarivan, T.
A fast and elitist multi-objective genetic algorithm: NSGA-
II”, IEEE Trans. on Evol. Comp., 6(2), 2002, 182-197.

[11] Desharnais, J. Analyse statistique de la productivitie des
projets informatique a partie de la technique des point des
function. 1989. Master Thesis, University of Montreal.

[12] Dolado, J.. On the problem of the software cost function.
Inform. and Softw. Technology 43 (1), 2001, 61-72.

[13] Dolado, J., Fernandez, L.. Genetic programming, neural
networks and linear regression in software project
estimation. In Procs.of International Conference on
Software Process Improvement, Research, Education and
Training, 1998, 157-171.

[14] Ferrucci, F., Gravino, C., Oliveto, R., Sarro, F. Genetic
Programming for Effort Estimation: an Analysis of the
Impact of Different Fitness Functions. In Procs.of
International Symposium on Search Based Software
Engineering, 2010, 89-98.

[15] Harman, M. The Current State and Future of Search Based
Software Engineering. In Workshop on the Future of
Software Engineering, 2007, 342-357.

[16] Harman. M., Clark, J. Metrics are Fitness Functions too. In
Procs. of International Symposium on Software Metrics,
2004, 58–69.

[17] Huang, S., Chiu, N. Optimization of analogy weights by
genetic algorithm for software effort estimation. Journal of
Systems and Software 48 (11), 2006, 1034-1045.

[18] Kitchenham, B., Pickard, L., Pfleeger, S., Case studies for
method and tool evaluation. IEEE Software 12(4), 1995, 52-
62.

[19] Kitchenham, B., Pickard, L., MacDonell, S., Shepperd, M.
What accuracy statistics really measure. IEEE Procs.
Software 148(3), 2001, 81–85.

[20] Koza, J. Genetic Programming, 1992. MIT Press.
[21] Lefley, M., Shepperd, M. Using genetic programming to

improve software effort estimation based on general data
sets. In Procs. of Genetic and Evolutionary Computation
Conference, 2003, 2477–2487.

[22] Mendes, E., Mosley, N. Bayesian Network Models for Web
Effort Prediction: A Comparative Study. IEEE Trans.
Software Eng., 34(6), 2008, 723-737 .

[23] Menzies, T., Chen, Z., Hihn, J., Lum, K. Selecting best
practices for effort estimation. IEEE Trans. on Softw.
Engineer. 32 (11), 2006, 883-895.

[24] Miyazaki, Y., Terakado, M., Ozaki., K., Nozaki, H. Robust
regression for developing software estimation models.
Journal of Systems and Software, 27(1), 1994, pp. 3 -16

[25] PROMISE Repository of empirical software engineering
data, http://promisedata.org/repository.

[26] Schaffer, J., Caruna, R., Eshelman, L., Das, R. A study of
control parameters affecting online performance of genetic
algorithms for function optimization. In Procs. of. Int. Conf.
on Genetic Algorithms and Their Applications, 1989, 51-60.

[27] Shan, Y., Mckay, R., Lokan, C., Essam, D. Software project
effort estimation using genetic programming. In Procs. of
Conf. on Comms. Circ. and Systems, 2002, 1108–1112.

[28] Shepperd, M., Schofield, C. Estimating software project
effort using analogies. IEEE Trans. Softw. Engineer., 23(11),
2000, 736–743.

[29] Zhang, Y., Harman , M., Mansouri, S. The Multi-Objective
Next Release Problem. In Procs. of Genetic and
Evolutionary Computation Conference, 2007, 1129-1136.

1226

