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ABSTRACT 
The idea of exploiting Genetic Programming (GP) to estimate 
software development effort is based on the observation that the 
effort estimation problem can be formulated as an optimization 
problem. Indeed, among the possible models, we have to identify 
the one providing the most accurate estimates. To this end a 
suitable measure to evaluate and compare different models is 
needed. However, in the context of effort estimation there does 
not exist a unique measure that allows us to compare different 
models but several different criteria (e.g., MMRE, Pred(25), 
MdMRE) have been proposed. Aiming at getting an insight on the 
effects of using different measures as fitness function, in this 
paper we analyzed the performance of GP using each of the five 
most used evaluation criteria. Moreover, we designed a Multi-
Objective Genetic Programming (MOGP) based on Pareto 
optimality to simultaneously optimize the five evaluation 
measures and analyzed whether MOGP is able to build estimation 
models more accurate than those obtained using GP. The results 
of the empirical analysis, carried out using three publicly 
available datasets, showed that the choice of the fitness function 
significantly affects the estimation accuracy of the models built 
with GP and the use of some fitness functions allowed GP to get 
estimation accuracy comparable with the ones provided by 
MOGP. 

Categories and Subject Descriptors 
D.2.9 [Software Engineering]: Management - Cost Estimation. 

General Terms 
Management, Measurement. 

Keywords 
Genetic Programming, Multi Objective Search, Effort Estimation, 
Empirical Study. 

1. INTRODUCTION 
Effort estimation is a critical activity for planning and monitoring 
software project development and for delivering the product on 
time and within budget. Several methods have been proposed to 
address the problem. In particular, data-driven approaches exploit 

data from past projects, consisting of both factor values that are 
related to effort and the actual effort to develop the projects, to 
construct an estimation model that is used to predict the effort for 
a new project under development [3][28]. In this class, we can 
include the search-based approaches [15]. These are meta-
heuristics able to find optimal or near optimal solutions to 
problems characterized by large space that have turned out to be 
effective in solving numerous optimization problems in several 
contexts. Examples of search-based methods are Simulated 
Annealing, Tabu Search, Genetic Algorithms, and Genetic 
Programming [15]. The idea of exploiting these methods to 
estimate development effort is based on the observation that the 
effort estimation problem can be formulated as an optimization 
problem. As a matter of fact, among the possible estimation 
models, we have to identify the best one, i.e., the one providing 
the most accurate estimates.  

The investigations carried out so far on the use of search-based 
approaches for effort estimation have mainly focused on the use 
of Genetic Programming (GP) providing promising results 
[5][12][13][21][27]. Nevertheless, the design of these techniques 
deserves to be further explored and empirically analyzed. In 
particular, a crucial design choice is the definition of the fitness 
function which indicates how a solution is suitable for the 
problem under investigation driving the search towards optimal 
solutions. For the effort estimation problem the fitness function 
should be able to assess the accuracy of estimation models. It is 
worth noting that several different accuracy measures have been 
proposed for assessing the effectiveness/accuracy of effort 
prediction models. Among them the Mean Magnitude of Relative 
Error (MMRE) and the Prediction at level 25 (Pred(25)) represent 
the most widely used measures [8]. Each measure focuses the 
attention on a specific aspect, as a matter of fact “Pred(25) 
measures how well an effort model performs, while MMRE 
measures poor performance” [23].  

It could be argued that the choice of the criterion for assessing 
predictions and establishing the best model can be a managerial 
issue: a project manager could prefer to use Pred(25) as the 
criterion for judging the quality of a model, while another might 
prefer to use another criterion, just for example MMRE [14]. 

On the other hand, in order to get a more reliable assessment of 
estimation methods, several evaluation criteria (i.e., MMRE, 
Pred(25), MdMRE, MEMRE) covering different aspects of 
models performances (e.g., underestimating or overestimating, 
success or poor performance) are usually jointly used [9][14][22]. 

From both points of view search-based methods represent an 
opportunity. Indeed, they let use as fitness function any measure 
able to evaluate some properties of interest [16], thus allowing a 
project manager to select his/her preferred accuracy measure so 
that the search for the model is driven by such a criterion. On the 
other end, some search-based techniques have been conceived to 
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address also multi-objective optimization problems where two or 
more different objectives can be simultaneously considered to 
guide the search, thus allowing us to take into account several 
evaluation criteria.  

Nevertheless, to the best of our knowledge all the studies carried 
out so far on search-based techniques for effort estimation 
exploited only single objective search. Moreover, all those studies 
used GP with MMRE [5][21] or Mean Square Error (MSE) 
[12][13][27] as fitness function, except for [14] where some 
evaluation criteria were considered. This preliminary 
investigation showed that the employed fitness function can 
influence the overall accuracy of the models built with GP and 
some criteria can degrade a lot the performance in terms of the 
other measures. 

Aiming at better understand these effects that should be known to 
project managers, in this paper we further investigated the use of 
different fitness functions with GP. Moreover, we exploited a 
Multi-Objective Genetic Programming (MOGP) based on Pareto 
optimality [6] to simultaneously optimize all the evaluation 
measures and analyzed whether MOGP is able to build estimation 
models more accurate than those obtained using GP. To this end, 
we experimented GP and MOGP on three publicly available 
datasets (i.e., Desharnais [11], Finnish [28], and Miyazaki [24]) 
included in the PROMISE repository [25], performing a 3-fold 
cross validation and using both summary measures and statistical 
significance tests as evaluation criteria. 

The remainder of the paper is organized as follows. Section 2 
provides the description of the employed techniques. Section 3 
summarizes the design of the empirical study we performed and 
discusses the threats to its validity. Results are presented and 
discussed in Section 4, while related work is reported in Section 
5. Final remarks conclude the paper. 

2. GENETIC PROGRAMMING FOR 
EFFORT ESTIMATION 
Genetic Programming (GP) [20] belongs to the family of 
evolutionary algorithms that, inspired by the theory of natural 
evolution, simulates the evolution of species emphasizing the law 
of survival of the strongest to solve, or approximately solve, 
optimization problems. To this end, a fitness function is used to 
evaluate the goodness (i.e., fitness) of the solutions represented by 
the individuals and genetic operators based on selection and 
reproduction are employed to create new populations (i.e., 
generations). With respect to other evolutionary methods, GP is 
characterized by the fact that individuals are computer programs 
(e.g., mathematical expressions) usually encoded as a tree where 
leaves are terminals (e.g., operands) and internal nodes are 
functions (e.g., mathematical operators).  

The elementary evolutionary process of GP is composed by the 
following steps: 

Step1. [population generation] the initial population is usually 
generated building random trees of fixed or variable depth or a 
combination of them; 

Step2. [fitness assignment] a fitness function is used to assign a 
fitness value to each individual; 

Step3. [reproduction phase] according to their fitness value 
some individuals are selected to form the parents and new 
individuals are created by applying genetic operators (i.e., 

crossover and mutation) and evaluated using the fitness 
function; 

Step4. [replacement phase] to determine the individuals that 
will be included in the next generation (i.e., survivals) a 
selection based on individual’s fitness value is applied; 

Step5. [stopping criteria] steps 2, 3, and 4 are repeated until 
stopping criteria hold. 

In the following we detailed the design choices we made for 
tailoring GP and MOGP to the effort estimation problem.  

2.1 Single Objective GP for Effort Estimation 
In the context of effort estimation, a solution consists of an 
estimation model described by an equation of this type: 

EstimatedEffort = ci opi fi… cn op2n-1 fn op2n C (1) 

where fi represents the value of the ith project feature and ci its 
coefficient, C represents a constant, while opi represents the ith 
mathematical operator of the model. In particular, the 
mathematical operators {+,-,*,exp, ln} were took into account. It 
is worth noting that the equations feasible for the effort estimation 
problem are only those providing positive value for 
EstimatedEffort. 

The initial population (Step1) is generated by building m=10V 
random trees of fixed depth, according to [17] that suggests to use 
a population of 10V individuals, where V is the number of 
features, in order to achieve a good compromise between the 
running time and the accuracy of the estimates. 

As for Step2, since each measure that has been proposed as a 
means of evaluating some properties of interest can be used as 
fitness function [16] one of the measures suggested for the 
evaluation of estimation model accuracy [8][19] can be employed 
to this end. The most common ones are based on the Magnitude 
of Relative Error (MRE) and the Magnitude of Relative Error 
relative to the Estimate (ERE), defined as: 

MRE = (|EFreal-EFpred|)/EFreal  (2) 

ERE = (|EFreal-EFpred|)/EFpred  (3) 

where EFreal and EFpred are the actual and the predicted efforts, 
respectively. As we can note ERE has the same form of MRE, but 
the denominator is the estimate, giving thus a stronger penalty to 
under-estimates. Calculating the MRE and ERE values of each 
observation in the dataset and aggregating them using the Mean 
and the Median, gave rise to MMRE and MEMRE, and MdEMRE 
and MdEMRE, respectively. Such criteria allow a project 
manager to measure poor performance of an estimation model but 
can be skewed by a single large mistake [23]. However, MdMRE 
and MdEMRE are less sensitive to extreme values than MMRE 
and MEMRE. On the other end, a project manager that would to 
assess how well an effort model performs can use the Prediction 
at level l [4] criterion [23]. Indeed, it is is defined as 

Pred(l) = k/n                      (4) 

where k is the number of observations whose MRE is less than or 
equal to l, and n is the total number of observations in the 
validation set. Generally, a value of 25 for the level l is chosen. In 
other words, Pred(25) is a quantification of the predictions whose 
error is less than 25%.  

Once the fitness is assigned, the Roulette Wheel Selector is 
employed to select individuals for the reproduction phase. This 
selector assigns a roulette slice to each chromosome according to 
its fitness value. In this way, even if candidate solutions with a 
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higher fitness have more chance to be selected, there is still a 
chance that they may be not. Applying crossover and mutation 
operators with a certain probability (i.e., crossover rate and 
mutation rate) to the selected individuals an offspring is produced 
(Step3). As for the genetic operators crossover and mutation 
operators specific for the solution encoding were employed in 
order to preserve well-formed equations in all offspring. In 
particular, a single point crossover which randomly selects in 
each tree a node placed at the same depth and swaps the subtrees 
corresponding to the selected point was used. Since the two trees 
are cut at the same point, the trees resulting after the swapping 
have the same depth as compared to those of parent trees. 
Concerning the mutation, an operator that selects a node of the 
tree and randomly changes the associated value was employed. 
The mutation can affect internal node (i.e., operators) or leaves 
(i.e., coefficients) of the tree. In particular, when the mutation 
involves internal node, a new operator opi in {{+,-,*,exp,ln}-opi} 
is randomly generated and assigned to the node, while if the 
mutation involves a leaf a new coefficient ci in R is assigned to 
the node. It is worth noting that the employed mutation preserves 
the syntactic structure of the equation. Crossover and mutation 
rate were fixed to 0.5 and 0.1, respectively. As for the 
replacement phase (Step4) the Tournament Selector is employed, 
where the chromosomes are ranked by their fitness value and the 
best m ones are copied straight into the next generation. 

With regard to the stopping criteria (Step5), the evolutionary 
process is stopped after 1000V, where V is the number of features 
contained in the dataset or if the best solution does not change 
after 100V generations [17]. 

2.2 Multi Objective GP for Effort Estimation 
The Multi Objective Genetic Programming (MOGP) we designed 
is an adaptation to GP of the NSGA-II1 algorithm [10], based on 
the concept of Pareto optimality [6]. The employed MOGP is very 
similar to the GP described in Section 2.1, with crucial variations 
in Steps 2 and 4. In particular, the main difference respect to GP 
is that in MOGP an objective vector is considered instead of a 
single function and the fitness assignment procedure is based on 
the dominance deep according to NSGA-II [10]. This algorithm 
decomposes the population into several fronts, as follows: 

1. all the solutions are ranked using the non-dominance 
concept2 counting; 

2. all non-dominated solutions of the population are assigned 
to rank 1, then they are removed from the population; 

3. iteratively, non-dominated solutions are determined and 
assigned rank 2. 

Steps 1-3 are iterated until the population is empty. Then the 
solutions are ranked again according to a crowding distance, 
namely the difference between the left and right neighbors or 
infinity if there are no neighbors. The use of the crowding 
distance is crucial to preserve the diversity in the solutions fronts, 
since computing the distance between a given solution and its 
nearest neighbors allows NSGA-II to approximate the density of 
the obtained solution. So, solutions with higher crowding distance 
are considered better solutions, as they introduce more diversity 
                                                                 

1 We have chosen NSGA-II since it has been shown that it outperformed 
simpler algorithms, such as NSGA or VEGA [26]. Furthermore, even if 
it produces results similar to SPEA2 on some MOPs [29], its time 
complexity (i.e., O(n2) [10]) is better than SPEA2 (i.e., O(n3) [29]).  

2 A solution A is said to dominate a solution B if and only if A is at least 
equal to B in all objectives, and excels B in at least one objective. 

in the population. Once all the solutions are ranked by both 
dominance deep and crowing distance, the same crossover and 
mutation operators employed for GP are applied to produce an 
offspring (Step3). Then a tournament selector is applied and the 
best m solutions (in terms of dominance and crowding) are copied 
straight into the next generation (Step4). The algorithm is stopped 
according to the same criteria used for GP (Step5). The final 
result of the above algorithm is a set of solutions, that are all 
equivalent in the sense that although each of the elements of the 
objective vector have different values, no solution in this set 
(named Pareto front) can be considered superior to any other. To 
select a final solution from the Pareto front a decision maker is 
usually used [2][6]. In particular, we employed an “a priori” 
decision maker [6] which provides a complete order between the 
Pareto optimal solutions according to the following expression: 
Pred(25)/(MMRE+MEMRE+MdMRE+MdEMRE). 

3. CASE STUDY PLANNING 
This section presents the design of the empirical study we carried 
out to address the following research questions: 

(RQ1) How the choice of the fitness function impact on the 
accuracy of the estimation models built with GP? 

(RQ2) Is MOGP able to build estimation models more accurate 
than those obtained using GP? 

3.1 Datasets 
To carry out the empirical study we exploited three publicly 
available datasets, namely Desharnais, Finnish, and Miyazaki, 
included in the PROMISE repository [25]. The first one is an 
industrial dataset comprising 81 software projects derived from a 
Canadian software house [11]. The Finnish dataset contains 
industrial data about 38 projects developed by different Finnish 
companies [28]. Also the Miyazaki dataset is composed by data 
projects provided by different software companies, comprising 
data collected from 48 systems in 20 companies by Fujitsu [24]. 
All these datasets have been widely and recently used to evaluate 
estimation methods (see e.g., [5][24][28]). The descriptive 
statistics of the employed features for each dataset are shown in 
Table 1. We can observe that these datasets are a good sample 
since they are both single and cross company and differ for 
number of observations and feature characteristics. 

Table 1. Descriptive statistics of the employed datasets 

Dataset Variable Min Max Mean Std.Dev 

 TeamExp 0 4 2.30 1.33 
 ManagerExp 0 7 2.65 1.52 
 Entities 7 387 120.55 86.11 
Desharnais Transactions 9 886 177.47 146.08 
 AdjustedFPs 73 1127 298.01 182.26 
 RawFPs 62 1116 282.39 186.36 
 Envergue 5 52 27.45 10.53 
 Effort 546 23490 4903.95 4188.19 
 HW 1 3 1.26 0.64 
 AR 1 5 2.24 1.50 
Finnish FP 65 1,814 763.58 510.83 
 CO 2 10 6.26 2.73 
 Effort 460 25,65 7,678.29 7,135.28 

 SCRN 0 281 33.69 47.24 
Miyazaki FORM 0 91 22.38 20.55 
 FILE 2 370 20.55 53.56 
 Effort 896 253.76 13,996 36,601.56 
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3.2 Setting of GP and MOGP 
To address our first research question we experimented the 
proposed GP and MOGP using as fitness function the measures 
described in Section 2.1. This allowed us to analyze how this 
choice impacts on the estimation accuracy of the constructed 
models. In particular, we experimented GP with the following 
fitness functions: 

- GP1, that maximizes 1/MMRE as fitness function; 
- GP2, that maximizes Pred(25) as fitness function; 
- GP3, that maximizes 1/MdMRE as fitness function; 
- GP4, that maximizes 1/MEMRE as fitness function; 
- GP5, that maximizes 1/MdEMRE as fitness function; 

As for MOGP we exploited as objectives all the considered 
summary measures, i.e., MMRE, Pred(25), MdMRE, MEMRE, 
MdEMRE. The other settings of the experimented algorithms are 
reported in Table 2. It is worth mentioning that they reflect in 
some way the size of the datasets, as suggested in [14][17]. 
Moreover, we verified that they fit also to our cases comparing 
the trend of the fitness value of the current best solution with the 
trend of the average fitness value of the whole population. As an 
example, using GP with MMRE as fitness function on the 
Desharnais dataset the analysis highlighted that after about 700-
800 generations the two curves were identical indicating that the 
best solution found cannot be improved. Moreover, we also 
observed that the evolutionary process was generally stopped 
because the best solution did not change after a fixed number of 
generations. Thus, we can be confident that the setting we used is 
sufficient for the algorithms to converge. 

Table 2.  Setting of the employed GP and MOGP 

Parameter Desharnais Finnish Miyazaki 
Population Size 70 40 30 

Generation Number <=7000 <=4000 <=3000 
Crossover Rate 0.5 0.5 0.5 
Mutation Rate 0.1 0.1 0.1 

 

Finally, to take into account the non determinist nature of GP and 
MOGP (i.e., they cannot give the same solution each time they 
are executed), we performed 10 runs and among the ten solutions 
we retained as final prediction model the one that had objective 
values closest to the average value achieved in the 10 runs on 
training sets. 

3.3 Validation Method and Evaluation 
Criteria 
In order to verify whether or not a method gives useful 
estimations of the actual development effort a validation process 
is required. To this end, we performed a multiple-fold cross 
validation, partitioning the whole dataset into training sets, for 
model building, and validation sets, for model evaluation. In 
particular, we partitioned the Desharnais dataset in 3 randomly 
validation sets (one containing 25 observations and two 26), and 
then for each validation set we considered the remaining 
observations as training set. The same procedure was applied also 
for Finnish and Miyazaki datasets obtaining for Finnish a 
validation set of 12 observations and two of 13, while for 
Miyazaki each validation set contains 16 observations. 

Concerning the evaluation of the estimates obtained with the 
analyzed estimation methods we used all the summary measures 
described in Section 2.1, namely MMRE, MdMRE, Pred(25), 
MEMRE and MdEMRE. These measures give an indication on 
which is the method that globally provided the best estimates. To 

compare different estimation methods we tested also whether 
there was statistical significant difference among the absolute 
residuals [19]. Since (i) the absolute residuals for all the analyzed 
methods were not normally distributed, and (ii) the data was 
naturally paired, we used the Wilcoxon Test [7] setting the 
confidence at α= 0.05. In particular, we verified the following null 
hypothesis: “the use of mi does not provide better results than 
using mj”, where mi and mj are two experimented methods. 

3.4 Case Study Validity 
It is widely recognized that several factors can bias the validity of 
empirical studies. In this section we discuss on the validity of the 
empirical study based on three types of threats: construct validity, 
related to the agreement between a theoretical concept and a 
specific measuring device or procedure; conclusion validity, 
related to the ability to draw statistically correct conclusions; 
external validity, related to the ability to generalize the achieved 
results. As highlighted by Kitchenham et al. [18], in order to 
satisfy construct validity a study has “to establish correct 
operational measures for the concepts being studied”. This means 
that the study should represent to what extent the predictor and 
response variables precisely measure the concepts they claim to 
measure. Thus, the choice of the features and how to collect them 
represent the crucial aspects. We tried to mitigate this threat by 
evaluating the proposed estimation methods on reliable project 
data coming from a public repository (i.e., PROMISE [25]) and 
previously used in many other empirical studies carried out to 
evaluate effort estimation methods (e.g., [5][12][25]). Concerning 
the conclusion validity we carefully applied the statistical tests, 
verifying all the required assumptions. Moreover, we used three 
medium size datasets to mitigate the threats related to the number 
of observations composing a dataset. Furthermore, each dataset 
that contains projects related to one context (e.g., the Desharnais 
dataset) might be characterized by some specific project and 
human factors, such as development process, developer 
experience, employed technologies, time, and budget constraints 
[1]. Thus, using only one dataset could represent an important 
external validity threat that we mitigated using three datasets 
which contain projects related to different companies. Taking into 
account data from different datasets, let us to be more confident in 
the generalization of the achieved results. 

4. RESULTS 
Table 3 reports on the average summary measures obtained 
applying the 3-fold cross-validation with GP and MOGP. 

Concerning the application of GP, the results revealed that for all 
the considered datasets the best overall accuracy (i.e., taking into 
account all together the summary measures3) was achieved by the 
models built with GP2 and GP3 (i.e., using Pred(25) and MdMRE 
measures as fitness function, respectively). While the worst 
overall accuracy was obtained with the models built with GP1, 
GP4, and GP5 (i.e., using MMRE, MEMRE, and MdEMRE 
measures as fitness function, respectively). In particular, we 
observed that using MMRE (MEMRE) as fitness function 
improved the estimation accuracy in terms of MMRE (MEMRE) 
but decreased a lot the accuracy in terms of MEMRE (MMRE). 
These findings are confirmed by the Wilcoxon tests results 
reported in Table 4 which highlight that GP1, GP4, and GP5 

                                                                 
3 Let us recall that Pred(25) has to be maximized, while the others 

summary measures have to be minimized. 
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provided significantly worse results than GP2 and GP3 on the 
considered datasets. Thus, we can positively answer the research 
question RQ1, i.e., the choice of the fitness function impacts on 
the accuracy of the estimation models built with GP. In particular, 
using each evaluation measure as fitness function GP is able to 
get better values for the chosen criterion. Nevertheless, some 
measures (e.g., MMRE or MEMRE) should be carefully used as 
fitness functions since they can negatively affect the other 
measures and so the overall accuracy. Others (e.g., Pred(25) or 
MdMRE) do not exhibit such effects and seem to behave well. 

As for the comparison between GP and MOGP, we can observe 
that in general the summary measures obtained with MOGP are 
better than the results achieved employing GP1, GP4, and GP5 on 
all the considered datasets (see Table 3). This is interesting since 
means that the use of multi-objective optimization allowed us to 
mitigate the negative influence of MMRE, MEMRE, and 
MdEMRE when used as single fitness function. Nevertheless, 
MOGP did not provide better results than GP2 and GP3.  

Table 3. Summary measures achieved by GP and MOGP 

Technique MMRE Pred(25) MdMRE MEMRE MdEMRE
Desharnais 

GP1 0.58 0.23 0.44 0.84 0.63 
GP2 0.68 0.43 0.33 0.38 0.31 
GP3 0.67 0.43 0.32 0.38 0.32 
GP4 0.91 0.38 0.36 0.39 0.35 
GP5 1.32 0.39 0.33 0.44 0.34 

MOGP 0.71 0.35 0.34 0.39 0.34 
Finnish 

GP1 0.59 0.16 0.66 2.50 1.65 
GP2 1.05 0.21 0.49 0.58 0.59 
GP3 1.29 0.18 0.47 0.55 0.56 
GP4 1.92 0.24 0.84 0.52 0.49 
GP5 1.71 0.21 0.80 0.51 0.51 

MOGP 0.92 0.13 0.60 1.02 0.76 
Miyazaki 

GP1 0.53 0.25 0.44 0.85 0.70 
GP2 0.58 0.46 0.34 0.40 0.32 
GP3 0.52 0.35 0.34 0.54 0.37 
GP4 0.53 0.38 0.33 0.49 0.39 
GP5 0.50 0.38 0.32 0.56 0.44 

MOGP 0.51 0.33 0.33 0.55 0.45 
 

Table 4. Wilcoxon test results comparing GP and MOGP  

< GP1 GP2 GP3 GP4 GP5 
Desharnais 

GP1 - 0.99 0.99 0.77 0.67 
GP2 0.02 - 0.64 0.01 0.04 
GP3 0.01 0.36 - 0.01 0.03 
GP4 0.23 0.99 0.99 - 0.57 
GP5 0.33 0.96 0.97 0.43 - 

MOGP 0.02 0.78 0.63 0.00 0.02 
Finnish 

GP1 - 0.92 0.97 0.34 0.43 
GP2 0.08 - 0.10 0.01 0.02 
GP3 0.14 0.90 - 0.01 0.02 
GP4 0.66 0.99 0.99 - 0.95 
GP5 0.57 0.98 0.99 0.04 - 

MOGP 0.02 0.95 0.78 0.13 0.24 
Miyazaki 

GP1 - 0.98 1.00 1.00 1.00 
GP2 0.02 - 0.08 0.09 0.09 
GP3 0.00 0.93 - 0.92 0.71 
GP4 0.00 0.91 0.08 - 0.06 
GP5 0.00 0.91 0.30 0.94 - 

MOGP 0.00 0.92 0.42 0.94 0.65 

The indications given by summary measures are confirmed also 
by using statistical tests. Indeed, the Wilcoxon test results (see 
Table 4) show that for all the datasets the absolute residuals 
obtained with MOGP were significantly better than those of GP1. 
Moreover, MOGP also provided significant better estimations 

than GP4 and GP5 on the Desharnais datasets, while for Finnish 
MOGP performed significantly better than GP4. 

The above analysis suggests that we can partially positively 
answer our second research question (i.e., RQ2). Indeed, despite 
MOGP is able to address the drawback revealed by the use of GP 
using MMRE or MEMRE as fitness functions, providing better 
results than GP1, GP4, and GP5, it is not able to get better results 
of GP2 and GP3. Thus, the increasing of complexity determined 
by the use of MOGP seems to not be paid back by an 
improvement of performance respect to the use of GP using 
certain fitness functions (i.e., Pred(25) or MdMRE). 

5. RELATED WORK 
In the last years some empirical investigations have been 
performed to assess the effectiveness of GP in estimating software 
development effort. In particular, Burgess and Lefley [5] assessed 
the use of GP exploiting the Desharnais dataset and employing a 
fitness function designed to minimize MMRE. The average 
results achieved with GP were better than those obtained with 
Case-Based Reasoning (CBR) and Artificial Neural Network 
(ANN) and worse than the ones achieved with Linear Regression 
(LR). Moreover, the use of MMRE degraded other accuracy 
measures, thus suggesting the authors the intuition that the use of 
different functions could improve the effort estimates. In [14] by 
using the same dataset but with a different validation method (3-
fold vs hold-out) the authors confirmed the intuition of Burgess 
and Lefley [5]. Indeed, MMRE was not the best choice as fitness 
function, since it allowed for better MMRE values but not an 
overall good prediction accuracy in terms of all the considered 
measures. Moreover, the study highlighted that other measures 
(e.g., Pred(25) and MdMRE) can be more promising as fitness 
functions since they did not exhibit this problem. The Desharnais 
and Miyazaki datasets were also used by Dolado [12] together 
with other datasets, where the employed GP exploited a fitness 
function designed to minimize the Mean Squared Error (MSE) 
[8]. The accuracy evaluation was carried out considering only 
summary measures (i.e., MMRE and Pred(0.25)), whereas it was 
not reported which kind of validation was employed. The results 
of their analysis revealed that GP obtained better values for 
Pred(25) than standard regression, but at the cost of obtaining in 
some cases slight worse MMRE values. As for comparison, the 
results on Desharnais dataset were comparable with those we 
achieved here, while they obtained slightly better estimates on 
Miyazaki. However, they also employed KLOC, an information 
that is not available at the time the prediction would be made and 
that could create a false impression as the efficacy of the 
prediction method [28]. Dolado and Fernandez [13] compared 
GP, Neural Networks (NN) and LR with the aim to investigate the 
use of different methods for the purpose of estimation. They 
exploited a fitness function designed to minimize MSE [8] and 
carried out a case study on three publicly available datasets and 
two datasets collected in their environment [13]. The models 
accuracy was evaluated only in terms of MMRE and Pred(25) 
revealing that the best model obtained with GP was better than 
NN (on all the datasets) and LR (on two out of five datasets). 
Successively, Lefley and Shepperd [21] also assessed the 
effectiveness of an evolutionary approach and compared it with 
several estimation techniques such as LR, ANN, and CBR. As for 
GP setting, they applied the same choice of Burgess and Lefley 
[5] but using a different dataset. This dataset is refereed as 
“Finnish Dataset” and included 407 observations and 90 features, 
obtained from many organizations. After a data analysis, a 
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training set of 149 observations and a validation set of 15 
observations were obtained applying a hold-out validation and 
used in the empirical analysis. Even if the results revealed that 
there was not a method that provides better estimations than the 
others, the evolutionary approach performed consistently well. An 
evolutionary computation method, named Grammar Guided 
Genetic Programming (GGGP), was proposed by Shan et al. [27], 
with the aim of improving the estimation of the software 
development effort. Data of software projects from ISBSG 
database was used to build the estimation models using GGGP 
and LR. The fitness function was designed to minimize MSE. The 
results revealed that GPPP performed better than Linear 
Regression in terms of MMRE and Pred(25). 

6. CONCLUSIONS 
We designed GP and MOGP for estimating software development 
effort and empirically analyzed the performance on three publicly 
available datasets. The results showed that the choice of the 
evaluation criteria employed in the definition of the fitness 
function affects the overall accuracy of GP. Indeed, using fitness 
functions based on Pred(25) or MdMRE provided significantly 
better results than the use of other criteria such as MMRE and 
MEMRE. GP with Pred(25) and MdMRE was also able to 
achieve comparable results with respect to those obtained 
employing a more sophisticated technique such as MOGP using 
as objectives all the five summary measures. Thus, MOGP seems 
to be not cost/effective in the context of effort estimation, and GP 
with Pred(25) or MdMRE could represent suitable choices for 
project managers. However, these results needs to be deepen also 
using more data. Furthermore, other multi-objective optimization 
approaches could be considered to verify whether there are 
improvements in the built estimation models. 

7. REFERENCES 
[1] Briand, L., Wust, J. Modeling Development Effort in Object-

Oriented Systems Using Design Properties. IEEE Trans. 
Softw. Engineer. 27(11), 2001, 963–986. 

[2] Bowman, M., Briand, L., Labiche, Y. Solving the Class 
Responsibility Assignment Problem in Object-oriented 
Analysis with Multi-Objective Genetic Algorithms. IEEE 
Trans. Softw. Engineer. 36(6), 2010, 817-837. 

[3] Briand, L., Wieczorek, I. Software resource estimation. 
Encyclopedia of Software Engineering. 2002, 1160–1196. 

[4] Briand, L., El. Emam, K., Surmann, D., Wiekzorek, I., 
Maxwell, K. An assessment and comparison of common 
software cost estimation modeling techniques. In Procs. of 
Conference on Software Engineering, 1999, 313–322. 

[5] Burgess, C., Lefley, M. Can Genetic Programming Improve 
Software Effort Estimation: a Comparative Evaluation. 
Inform. and Softw. Technology, 43(14), 2001, 863–873. 

[6] Coello, C., Van Veldhuizen, D., Lamont, G. Evolutionary 
Algorithms for Solving Multi-Objective Optimization 
Problems. 2000. Kluwer Academic Publishers. 

[7] Cohen, J. Statistical power analysis for the behavioral 
sciences, 1998. 2nd ed. Lawrence Earlbaum Associates. 

[8] Conte, D., Dunsmore, H., Shen, V. Software engineering 
metrics and models. 1996. The Benjamin/Cummings 
Publishing Company, Inc.. 

[9] Corazza, A., Di Martino, S., Ferrucci, F., Gravino, C., Sarro, 
F., Mendes, E. How Effective is Tabu Search to Configure 
Support Vector Regression for Effort Estimation?. In Procs. 
of  PROMISE, 2010, ACM NY, 4. 

[10] Deb, K., Pratap, A. Apratap, S., Agarwal, S., Meyarivan, T. 
A fast and elitist multi-objective genetic algorithm: NSGA-
II”, IEEE Trans. on Evol. Comp., 6(2), 2002, 182-197. 

[11] Desharnais, J. Analyse statistique de la productivitie des 
projets informatique a partie de la technique des point des 
function. 1989. Master Thesis, University of Montreal. 

[12] Dolado, J.. On the problem of the software cost function. 
Inform. and Softw. Technology 43 (1), 2001, 61-72. 

[13] Dolado, J., Fernandez, L.. Genetic programming, neural 
networks and linear regression in software project 
estimation. In Procs.of  International Conference on 
Software Process Improvement, Research, Education and 
Training, 1998, 157-171. 

[14] Ferrucci, F., Gravino, C., Oliveto, R., Sarro, F. Genetic 
Programming for Effort Estimation: an Analysis of the 
Impact of Different Fitness Functions. In Procs.of 
International Symposium on Search Based Software 
Engineering, 2010, 89-98.  

[15] Harman, M. The Current State and Future of Search Based 
Software Engineering. In Workshop on the Future of 
Software Engineering, 2007, 342-357. 

[16] Harman. M., Clark, J. Metrics are Fitness Functions too. In 
Procs. of International Symposium on Software Metrics, 
2004, 58–69. 

[17] Huang, S., Chiu, N. Optimization of analogy weights by 
genetic algorithm for software effort estimation. Journal of 
Systems and Software 48 (11), 2006, 1034-1045. 

[18] Kitchenham, B., Pickard, L., Pfleeger, S., Case studies for 
method and tool evaluation. IEEE Software 12(4), 1995, 52-
62. 

[19] Kitchenham, B., Pickard, L., MacDonell, S., Shepperd, M. 
What accuracy statistics really measure. IEEE Procs. 
Software 148(3), 2001, 81–85. 

[20] Koza, J. Genetic Programming, 1992. MIT Press. 
[21] Lefley, M., Shepperd, M. Using genetic programming to 

improve software effort estimation based on general data 
sets. In Procs. of Genetic and Evolutionary Computation 
Conference, 2003, 2477–2487. 

[22] Mendes, E.,  Mosley, N. Bayesian Network Models for Web 
Effort Prediction: A Comparative Study. IEEE Trans. 
Software Eng., 34(6), 2008, 723-737 . 

[23] Menzies, T., Chen, Z., Hihn, J., Lum, K. Selecting best 
practices for effort estimation. IEEE Trans. on Softw. 
Engineer. 32 (11), 2006, 883-895. 

[24] Miyazaki, Y., Terakado, M., Ozaki., K., Nozaki, H. Robust 
regression for developing software estimation models. 
Journal of Systems and Software, 27(1), 1994, pp. 3 -16 

[25] PROMISE Repository of empirical software engineering 
data,  http://promisedata.org/repository. 

[26] Schaffer, J., Caruna, R., Eshelman, L., Das, R. A study of 
control parameters affecting online performance of genetic 
algorithms for function optimization. In Procs. of. Int. Conf. 
on Genetic Algorithms and Their Applications, 1989, 51-60. 

[27] Shan, Y., Mckay, R., Lokan, C., Essam, D. Software project 
effort estimation using genetic programming. In Procs. of 
Conf. on Comms. Circ. and Systems, 2002, 1108–1112. 

[28] Shepperd, M., Schofield, C. Estimating software project 
effort using analogies. IEEE Trans. Softw. Engineer., 23(11), 
2000, 736–743. 

[29] Zhang, Y., Harman , M., Mansouri, S. The Multi-Objective 
Next Release Problem. In Procs. of Genetic and 
Evolutionary Computation Conference, 2007, 1129-1136.

1226


