
Exploiting Prior-phase Effort Data to Estimate the Effort for
the Subsequent Phases: a Further Assessment

Filomena Ferrucci
Department of Management
and Information Technology

University of Salerno
Italy

fferrucci@unisa.it

Carmine Gravino
Department of Management
and Information Technology

University of Salerno
Italy

gravino@unisa.it

Federica Sarro
CREST Department of

Computer Science
University College London

United Kingdom
f.sarro@ucl.ac.uk

ABSTRACT
Context. Development effort estimation is a managerial ac-
tivity that takes place throughout the life-cycle of the soft-
ware so that it may benefit from information that becomes
available as the project progresses. Researchers investigated
the use of prior-phase effort data to estimate the effort in
subsequent phases, as well as early phase effort data to es-
timate the total development effort. Objective. We assessed
the usefulness of the effort spent for each phase in order to
predict the effort required during the subsequent phase and
until the end of the development process. We compared the
use of effort data against the use of Function Points (i.e.,
a functional size measure widely used for effort estimation)
and verified whether it is useful to combine them. Method.
We performed an empirical study employing 25 applications
from a single software company. The company collected ef-
fort from 3 different phases (i.e., specification and analysis,
system and object design, and implementation and testing).
Linear regression was used to build the estimation models.
Results. Our analysis revealed that we obtained more accu-
rate estimations by using prior-phase effort data to estimate
the effort of subsequent phases. The combination of the
prior-phase efforts and Function Points allowed us to im-
prove the estimations in some cases. Conclusion. The effort
spent in the prior-phase of a project is a good predictor for
the effort that will be required later. In a continuous esti-
mation process project managers can benefit from this effort
data to obtain more accurate estimations for the subsequent
phase(s).

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics; D.2.9 [Software
Engineering]: Management

General Terms
Management, measurement, experimentation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
PROMISE ’14, September 17, 2014, Turin, Italy
Copyright 2014 ACM 978-1-4503-2898-2/14/09 ...$15.00.
http://dx.doi.org/10.1145/2639490.2639509

Keywords
Effort estimation; Functional Size measures; Function Points
Analysis; Prior-phase effort

1. INTRODUCTION
When developing software systems, the estimation of the

effort required is a crucial activity to make a bid, plan the
development activities, allocate resources adequately, and so
on. Development effort, meant as the work carried out by
software practitioners, is the most dominant project cost,
and also the most difficult to estimate and control. Sig-
nificant over or underestimates can be very expensive and
deleterious for a company [32] [39].

Several approaches have been proposed to estimate soft-
ware development effort. Many of them rely on an algorith-
mic method that takes in input some project factors influ-
encing the development effort (such as software size) and
produce an effort estimate (e.g., [7], [33], [26]). Functional
Size Measurement (FSM) methods, such as Function Points
Analysis (FPA), have been widely applied in software engi-
neering for sizing software systems. The obtained functional
size can then be used as independent variable in effort esti-
mation models [19]. A few works have also investigated the
possibility of exploiting as independent variable the effort
of the activities already completed [27], [41]. The research
described in this paper is placed in this context and is based
on the following considerations.

It is widely recognized that effort estimation is a manage-
rial activity that takes place throughout the whole software
life-cycle [6] [27] and can benefit from the information that
become available as the project progresses. A continuos es-
timation (i.e., reviewing the project estimates and planning
on an ongoing basis) is required in all projects to assess
whether the initial estimate has been fairly good or it has
to be adjusted according to the actual status of the project
[6]. Moreover, during the software process, project managers
can benefit from updated estimations not only of the total
project effort but also of the effort devoted to each phase
(e.g., design, implementation, testing) that has still to be
carried out. Several works have analyzed the distribution of
effort spent for different phases identifying possible patterns
that depend on several features (e.g., employed development
activities, employed technologies, characteristics of software
company) [35] [43] [12].

To the best of our knowledge the first work addressing
the problem of estimating the effort of a development phase
exploiting the effort of a previous phase was done by Mac-

Donell and Shepperd [27]. They built an estimation model
to predict the effort of the design phase by exploiting the
effort of the planning phase (i.e., MS1 in Figure 1(a)). Sim-
ilarly, the efforts of the implementation and testing phases
were estimated using the effort of the design phase, i.e., by
employing the models MS2 and MS3 in Figure 1(a). Fur-
thermore, the model MS4 was built by exploiting the effort
of the implementation phase and used to predict the effort
for the testing phase. The results of their study suggested
that prior-phase effort data can be useful to predict the ef-
fort of a subsequent phase during the software development
process thus improving the subsequent management activi-
ties.

Recently Tsunoda et al. [41] have investigated if the use
of early phase effort (e.g., related to planning and require-
ments analysis) is useful to estimate the total development
effort. To this end they compared the resulting estimation
model with the ones built by using the software size, ex-
pressed in terms of Function Points, and a combination of
early effort data and software size. They built four models to
predict the total development effort exploiting (i) the effort
of the planning phase (i.e., model T2 in Figure 1(b)), (ii) the
sum of both efforts for planning and requirements analysis
phases (i.e., model T3 in Figure 1(b)), (iii) the combination
of Function Points and planning effort, (iv) the combination
of Function Points and effort for planning and requirements
analysis. The model exploiting Function Points alone was
also considered. The results of the empirical analysis showed
the usefulness of early effort data which, alone or combined
with Function Points, were able to provide estimation more
accurate than the models based only on Function Points.

Based on the above encouraging results, we carried out an
empirical analysis by generalizing the MacDonell and Shep-
perd idea [27] and taking into account the efforts of any
prior-phase to predict the efforts of the subsequent phase
and of all the remaining phases in the development process
(see Figure 1(c)). Moreover, as made by Tsunoda et al. [41]
we also compared the obtained accuracy with respect to the
ones given by the corresponding estimation models based
on Function Points. In particular, we defined the following
research question:

RQ1 Can prior-phase efforts provide more accurate esti-
mates of the subsequent phase(s) effort than the corre-
sponding models based on the use of Function Points
alone?

Our empirical study employed 25 applications from a sin-
gle software company while linear regression was used to
build the estimation models. The company collected effort
from 3 different phases (i.e., specification and analysis, sys-
tem and object design, and implementation and testing).
So, we built an estimation model to predict the effort of the
system and object design phases exploiting the effort data
of the specification and analysis phases (i.e., Eff1 in Figure
1(c)). Similarly, we used the effort data of the specifica-
tion and analysis phase to estimate the effort spent for both
the system and object design and the implementation and
testing phases i.e., by employing model Eff2 in Figure 1(c).
We also exploited both effort data of the specification and
analysis and system and object design phases in order to
predict the effort of the implementation and testing phase
(i.e., model Eff3 in Figure 1(c)). Moreover, we built the
corresponding models based on Function Points alone (i.e.,

FP1, FP2, and FP3). We also considered the estimation
models based on the combination of Function Points and
phases effort data (i.e., EffFP1, EffFP2, EffFP3), as made
by Tsunoda et al. [41].

This leads to the following research question:

RQ2 Can the combination of Function Points and prior-
phase efforts provide more accurate estimates of the
subsequent phase(s) efforts than the corresponding mod-
els based on the use of prior-phase efforts alone?

To address it we built three estimation models, i.e., Eff1,
Eff2, and Eff3, using as exploratory variables the effort data
and the size measure, expressed in terms of Functions Points.

Structure of the paper. Section 2 describes the design
of the performed empirical study, while the results and their
discussion are reported in Section 3. Section 4 summarizes
the related work. Conclusion and future work conclude the
paper.

2. EMPIRICAL STUDY DESIGN

2.1 Employed Functional Size Measure
Functional Size Measurement (FSM) methods have ob-

tained worldwide acceptance and allow measuring software
size in terms of the functionality provided to the users. The
success of FSMs can be mainly due to their early applicabil-
ity and independence from the adopted programming lan-
guages. Function Point Analysis (FPA) was the first FSM
method [4][5] and since then several variants have been de-
fined (e.g., MarkII and NESMA [11]) aiming at improving
size measurement or extending the applicability domain. IF-
PUG Function Points (FP, for short) represents the version
of the Function Point Analysis (FPA) managed by the In-
ternational Function Point Users Group (IFPUG) [19]. The
FP method sizes an application using its Functional User
Requirements (FURs) or other software artifacts that can
be abstracted in terms of FURs.

To accomplish the measurement, each FUR is functionally
decomposed into Base Functional Components (BFC), and
each BFC is categorized into one of five Data or Transac-
tional BFC Types. The Data functions are Internal Logical
Files and External Interface Files, while the Transactional
ones are External Inputs, External Outputs and External
Inquires.

Then, the “complexity” of each BFC is assessed. This step
depends on the kind of function type and requires the iden-
tification of further attributes (such as the number of data
fields to be processed). Once derived this information, a
table provided in the IFPUG approach method [19] speci-
fies the complexity of each function, in terms of Unadjusted
Function Points (UFP).

The sum of all these UFPs gives the functional size of
the application. Subsequently, a Value Adjustment Factor
(VAF), can be computed to take into account non-functional
requirements, such as Performances, Reusability, and so on.
The final size of the application in terms of Function Points
is given by FP = UFP · V AF .

FP is widely exploited to estimate effort but also produc-
tivity (i.e., Function Points per person-month), and quality
(i.e., number of defects with respect to requirements, design,
coding and user documentation phases). For more details
about the application of the IFPUG method, readers are
referred to the counting manual [1] [19].

!
!
!

!
!

!
!
!

!
!
!

!

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

Planning!!
effort!

Requirements!
and!analysis!

effort!

Total&effort&

T2!to!predict!

T3!to!predict!

(b)!Tsnonoda!et!al.!Analysis![41]!

Remaining!phase!effort!

MS1!to!predict!

Planning!!
effort!

Design!!
Effort!

Implementation!!
Effort!

Testing!
Effort!

MS2!to!predict!

MS3!to!predict!

(a)!MacDonell!and!Shepperd!analysis![27]!

MS4!to!predict!

Specification!
and!analysis!

effort!

System!and!
object!design!

effort!

Implementation!
and!testing!
effort!

Eff3!to!predict!

Eff1!to!predict!

Eff2!to!predict!!

(c)!our!analysis!

Figure 1: Exploiting development phase efforts

2.2 Data Set
The data for our empirical study were provided by a medium-

sized software company, whose core business is the devel-
opment of enterprise information systems, mainly for lo-
cal and central government. Among its clients, there are
health organizations, research centers, industries, and other
public institutions. The company is specialized in the de-
sign, development, and management of solutions for Web
portals, enterprise intranet/extranet applications (such as
Content Management Systems, e-commerce, work-flow man-
agers, etc.), and Geographical Information Systems. It has
about fifty employees, it is certified ISO 9001:2000, and it is
also a certified partner of Microsoft, Oracle, and ESRI.

This company provided us information on 25 applications
they developed. All the projects have been developed by ex-
ploiting SUN J2EE or Microsoft .NET technologies. Oracle
has been the most commonly adopted DBMS, but also SQL
Server, Access, and MySQL have been employed in some of

these projects. As for the employed development method-
ology, the company applied the waterfall model to develop
the applications considered in our empirical study.

As for the collection of the information, the software com-
pany used timesheets to keep track of the application devel-
opment effort. Each team member annotated the informa-
tion about his/her development effort every day, and weekly
each project manager stored the sum of the efforts for the
team. Furthermore, to collect the information needed to cal-
culate the values of the size measure in terms of FPA, the
company usually uses template to be filled in by the project
managers.

Table 1 reports on some summary statistics related to
the 25 applications employed in our study1. The variables
are EFFA, i.e., the effort spent for the specification and
analysis phases, EFFD, i.e., the effort spent for the system

1Raw data cannot be revealed because of a Non Disclosure
Agreement with the software company.

Table 1: Descriptive statistics of the considered vari-
ables

.

Var Obs Min Max Mean Median
Std.
Dev.

EFFA 25 208 1496 853.2 864 332.04
EFFD 25 264 1528 905 960 352.38
EFFI 25 310 1513 817.8 738 319.43

EFFD&I 25 574 3041 1724 1748 664.24
FP 25 89 915 366.76 303.94 208.65

and object design phases, EFFI , i.e., the effort spent for
the implementation and testing phases, and EFFD&I , i.e.,
the effort obtained by summing EFFD and EFFI , that are
expressed in terms of person-hours, and FP, expressed in
terms of number of Function Points obtained with IFPUG
FPA.

2.3 Estimation Method
Linear regression is a statistical technique that explores

the relationship between a dependent variable and one or
more independent variables [34], providing a prediction model
described by an equation

y = b1x1 + b2x2 + ...+ bnxn + c (1)

where y is the dependent variable, x1, x2, ..., xn are the in-
dependent variables, bi is the coefficient that represents the
amount the variable y changes when the variables xi changes
1 unit, and c is the intercept.

In our empirical study, we employed simple linear regres-
sion to obtain an estimation model that uses the variable
representing the effort of a prior-phase (e.g., EFFD) as de-
pendent and the variable denoting the employed size mea-
sure (i.e., FP) or the effort of a subsequent phase (e.g.,
EFFA) as independent. Once the prediction model was con-
structed, the effort estimation of the subsequent develop-
ment phase for a new application was obtained by sizing
the application in terms of FPA (or considering the effort
of the prior-phase, respectively) and using this value in the
obtained model.

Moreover, we applied SWR (StepWise linear Regression)
to build estimation models that exploit more variables as in-
dependent variables (i.e., FP, EFFA, or EFFD), and EFFD,
EFFI , or EFFD&I as dependent variable. This allowed us
to consider models that combine the use of the size mea-
sure or the efforts of prior-phases to estimate the effort of
the subsequent phase(s). SWR allowed us to compute lin-
ear regression in stages [15]. The model is built by adding,
at each stage, the independent variable with the highest as-
sociation to the dependent variable, taking into account all
the variables currently in the model. It aims to find the set
of independent variables (predictors) that best explains the
variation in the dependent variable (response)2.

To evaluate the goodness of fit of a regression model we
considered several indicators. In particular, to determine the
goodness of fit of the regression models we can use the coef-
ficient of determination, R2, which measures the percentage
of variation in the dependent variable explained by the in-
dependent variable. A high R2 value is an indication of the
goodness of the prediction model. Other useful indicators

2We employed the automatic procedure provided by the R
environment.

are the F value and the corresponding p-value (denoted by
Sign F), whose high and low values, respectively, denote a
high degree of confidence for the prediction. Moreover, a t
statistic can be performed to determine the p-value and the
t-value of the coefficient and the intercept for each model
in order to evaluate its statistical significance. p-value pro-
vides the probability that a coefficient of a variable is zero,
while t-value can be used to evaluate the importance of the
variable for the generated model. A p-value less than 0.05
indicates that we can reject the null hypothesis and the vari-
able is a significant predictor with a confidence of 95%. As
for the t-value, a variable is significant if the corresponding
t-value is greater than 1.5.

2.4 Validation Method and Evaluation Crite-
ria

We carried out a cross-validation to assess whether or not
the obtained effort predictions are useful estimations of the
actual development effort. In particular, we exploited a
leave-one-out cross validation, which means that the orig-
inal data set is divided into n=25 different pairs (25 is the
size of the original data set) of training and validation sets,
where each tranining and validation set has n-1 and one
project, respectively. Training sets are used to build models
with linear regression and validation sets are used to vali-
date the obtained models. A recent study have shown the
advantages of leave-one-out cross validation with respect to
K-fold cross validation to assess software effort estimation
models [25].

Regarding the evaluation criteria, we used some statistics
of absolute residuals (i.e., |Actual - Predicted |), namely:

• Median of Absolute Residuals (MdAR);

• Mean of Absolute Residuals (MAR);

These measures are unbiased since they are not based on
ratios, as it is the case for other summary measures such
as MMRE [14] which has undesirable properties, e.g. asym-
metry [38]. Observe that we also report other summary
measures, namely MMRE, MdMRE, Pred(25) (see [14] for
their definitions), to allow a comparison with previous re-
searches published in this context and they are not used for
the assessment of the achieved effort estimations.

Moreover, we tested the statistical significance of the ob-
tained results to compare predictions obtained with different
approaches (e.g., to establish if the estimation models based
on the use of the functional size measure provided signifi-
cantly better absolute residuals than effort based estimation
models [23] [40]). In particular, we performed the T-test to
verify the following null hypothesis “the two considered pop-
ulation of absolute residuals have identical distributions”.
Observe that we used the Wilcoxon signed rank test when
absolute residuals were not normally distributed [13].

In order to have an indication of the practical/managerial
significance of the results we verified the effect size [21]. Ef-
fect size is a simple way of quantifying the standardized
difference between two groups. It has many advantages over
using only the tests of statistical significance, since “whereas
p-values reveal whether a finding is statistically significant,
effect size indicates practical significance” [21]. In particu-
lar, we employed the point-biserial correlation r because it
is suitable to compute the magnitude of the difference when
a non parametric test is used [16]. In the empirical soft-
ware engineering field [21], the magnitude of the effect sizes

measured using the point-biserial correlation is classified as
follows: small (0 to 0.193), medium (0.193 to 0.456), and
large (0.456 to 0.868).

2.5 Threats to Validity
It is widely recognized that several factors can bias the

construct, internal, external, and conclusion validity of em-
pirical studies [24] [29] [42].

As for the construct validity, the choice of the size mea-
sures and how to collect the information needed to deter-
mine size measures and actual effort represents a crucial
aspect. Regarding the selection of the approach to size the
applications, we employed (IFPUG) FPA [1] that is a widely
employed FSM method and has been applied for years by
the company involved in our study. Often, the collection of
information about the size measures and actual effort rep-
resents the main difficulty of this kind of study [22]. We
checked the procedure used by the involved software com-
pany to carefully collect the information we need for the
empirical analysis. In particular, we verified that the data
collection task was done in a controlled and uniform fashion.
Of course we are aware that controlled experiments ensure
a higer level of confidence.

Concerning internal validity [29], the data considered were
provided by the company and there was no selection neither
on the applications nor the managers who provided the re-
lated information. Thus, no bias has apparently been in-
troduced. Other concerns could regard data reliability and
lack of standardization. However, the projects managers
employed the same templates for all the applications and
they were instructed on how to use the questionnaires, to
correctly provide the required information. Furthermore,
instrumentation effects in general did not occur in this kind
of studies.

As for the conclusion validity, we applied the estimation
method and the statistical tests by verifying all the required
assumptions.

With regards to the external validity, a possible threat
could be related to the fact that we considered applications
from one company. It is recognized that the results obtained
in an industrial context might not hold in other contexts [10].
However, in our analysis we were interested in analyzing the
experience of a single company also based on the consider-
ation that the identification of the activities of the process
development and the distribution of the effort spent for each
phase can depend on the specific software company [12].

3. RESULTS AND DISCUSSION
We performed the linear regression analysis to build the

effort estimation models by using the data set of 25 appli-
cations (Table 1). Some statistics about the obtained linear
regression models are shown in Table 2. It is worth noting
that when we applied SWR using EFFA and EFFD as in-
dependent variables and EFFI as dependent variable, i.e.,
model Eff3 in the case of RQ1, the procedure in stages pro-
duced as the best predicting model the one employing only
EFFD as independent variable. In the case of RQ2, when
combining FP with the effort of prior-phase(s), SWR se-
lected only EFFA for model EffFP1 which is equal to Eff1
(see Table 2). Similarly, only EFFD and FP were selected by
SWR when considering EFFA, EFFD, and FP as indepen-
dent variables and EFFI as dependent variable (i.e., model
EffFP3 in Table 2).

Before applying linear regression we tested for normal-
ity the dependent and independent variables, employing the
Shapiro-Wilk Test [37]. No transformation was required
since all the variables were normally distributed, i.e., the
test provided p-values greater than 0.05 in all the cases (see
Table 3). In the application of linear regression we first
verified the underlying assumptions, i.e., the existence of
a linear relationship between the independent variable and
the dependent variable (linearity), the average value of the
error term is 0 (zero mean), the constant variance of the er-
ror terms for all the values of the independent variable (ho-
moscedasticity), the normal distribution of the error terms
(normality) [28]. In the following, we report on the analysis
carried out to verify these assumptions. Note that the re-
sults are intended as statistically significant at α=0.05 (i.e.,
95% confidence level):

• linearity. The linear relationship between each inde-
pendent variable and the corresponding dependent vari-
able was verified by using the (two-tailed) Pearson’s
correlation test [17]. The results of the performed tests
suggested that there was a high (statistic >0.9) and
significant (p-value <0.001) correlation between EFFA

and EFFD, EFFA and EFFD&I , and EFFD and EFFI

(see Table 4). On the other hand, there was a sig-
nificant correlation between FP and EFFD, FP and
EFFD&I , FP and EFFI , with a statistic lower (0.775,
0.816, and 0.841, respectively) than the one character-
izing the other models.

• zero mean. We performed the Student t-test to verify
that the average value of the error term is not signifi-
cantly different from 0. The results reported in Table
5 reveal that this assumption can be considered to be
verified for all the built models (t-statistic = 0 and
p-value = 1).

• homoscedasticity. We investigated the homoscedastic-
ity assumption by performing the Breush-Pagan Test
[9], with the homoscedasticity of the error terms as null
hypothesis. As we can see from Table 5, the p-values
obtained for all the models are greater than 0.05 and
thus we can considered the assumption to be verified.

• normality. We used the Shapiro-Wilk Test [37], by
considering as null hypothesis the normality of error
terms. Again, we can considered the assumption to be
verified since the p-values are greater than 0.05 for all
the models (see Table 5).

Moreover, we verified the lack of multicollinearity in the
independent variables, since it is an undesirable situation
in regression analysis when two independent variables are
highly correlated. To this end, we decided to check multi-
collinearity for the models EffFP2 and EffFP3 by first ana-
lyzing the correlation among the involved independent vari-
ables. The results of the Pearson correlation test performed
on the variables and reported in Table 4 suggest that for the
two independent variables EFFA and FP of model EffFP2
the correlation statistic is less than 0.8. Similarly, the two
independent variables EFFD and FP of model EffFP3 are
correlated with a statistic less than 0.8. Thus, this criterion
holds for both the models having more than one independent
variable. Moreover, we computed the tolerance that is cal-
culated as 1-R2

j , where R2
j is the coefficient of determination

Table 2: Linear regression results grouped for research question (RQ)

RQ
Dependent Independent

Model
Variable(s)/

Value
Std.

t-value p-value R2 Std.
F

Sign.
variable variables Intercept Err Err F

RQ1

EFFD EFFA Eff1
EFFA 1.029 0.054 18.98 <0.001

0.94 88.2 360 <0.001
Intercept 27.948 49.489 0.56 0.58

EFFD FP FP1
FP 1.309 0.222 5.89 <0.001

0.601 227 34.7 <0.001
Intercept 425.505 93.369 4.56 <0.001

EFFD&I EFFA Eff2
EFFA 1.927 0.112 17.230 <0.001

0.928 182 297 <0.001
Intercept 79.452 102.124 0.780 0.440

EFFD&I FP FP2
FP 2.597 0.384 6.760 <0.001

0.665 392 45.800 <0.001
Intercept 771.244 161.216 4.780 <0.001

EFFI EFFA, EFFD Eff3
EFFD 0.865 0.057 15.30 <0.01

0.91 97.6 234 <0.001
Intercept 34.235 54.822 0.62 0.58

EFFI FP FP3
FP 1.287 0.173 7.453 <0.001

0.707 177 55.5 <0.001
Intercept 345.634 72.563 4.76 <0.001

RQ2

EFFD EFFA, FP EffFP1(=Eff1)
EFFA 1.029 0.054 18.98 <0.001

0.94 88.2 360 <0.001
Intercept 27.948 49.489 0.56 0.58

EFFD&I EFFA, FP EffFP2
EFFA 1.627 0.155 10.53 <0.001

0.945 163 188 <0.001FP 0.629 0.246 2.560 0.018
Intercept 105.113 92.223 1.140 0.267

EFFI EFFA, EFFD, FP EffFP3
EFFD 0.687 0.077 8.87 <0.001

0.936 84.4 161 <0.001FP 0.387 0.131 2.96 0.007
Intercept 34.235 54.822 0.62 0.58

Table 3: Results of the Shapiro-Wilk Test for nor-
mality of variables

Variables statistic p-value

EFFA 0.97 0.65
EFFD 0.973 0.731
EFFI 0.957 0.365
EFF 0.979 0.859

Table 4: Results of the Pearson correlation test

Variables statistic p-value

EFFD vs EFFA 0.969 <0.001
EFFD vs FP 0.775 <0.001

EFFD&I vs EFFA 0.963 <0.001
EFFD&I vs FP 0.816 <0.001
EFFI vs EFFD 0.954 <0.001

EFFI vs FP 0.841 <0.001

of a regression of the variable j on all the other independent
variables [36]. The tolerance values we obtained for 2 and
EffFP3 are 0.422 (=1-0.578) and 0.397 (=1-0.603), respec-
tively. The criterion holds since tolerance values are greater
than 0.3.

We also performed an analysis of influential observations
and verified model’s stability as suggested in [30]. No ob-
servations was proved to be an outlier and hence was left as
per original data set.

We can observe that all the models are characterized by
a very high R2 value (greater than 0.9), a high F value, and
a low Sign F (< 0.001 in all the cases), indicating that the
prediction is indeed possible with a high degree of confidence
(see Table 2), except for those using FP as independent vari-
able since they have R2 values ranging from 0.601 to 0.707
and F values ranging from 34.7 to 55.5. However, all the FP
based models are characterized by a Sign F value less than
<0.001. As for the performed t-statistic, for all the mod-
els the considered independent variables have a t-value and
a p-value greater than 1.5 and less than 1.5, respectively,
meaning that the employed variables are important for the

Table 6: The results of validation for each research
question (RQ)

RQ Model MdAR MAR MMRE MdMRE Pred(25)

RQ1

Eff1 70.6 72 0.08 0.08 1
FP1 160 195 0.30 0.15 0.72
Eff2 117 159 0.10 0.09 1
FP2 315 350 0.26 0.14 0.64
Eff3 64.1 79.1 0.11 0.11 0.96
FP3 171 159 0.23 0.17 0.64

RQ2
EffFP2 107 132 0.08 0.07 1
EffFP3 53.2 69.7 0.04 0.03 1

generated models and significant. Furthermore, note that
all the models using a variable denoting the effort for a de-
velopment phase as independent variable have the intercept
characterized by a t-value less than 1.5 and a p-value greater
than 0.05, meaning that the intercept is not important and
significant in the generated model. The models using FP as
the only independent variable have an intercept satisfying
the thresholds for t-values and p-values.

To evaluate the estimation accuracy of the models built
with linear regression analysis, we performed a leave-one-out
cross validation, whose results are reported in Table 6.

Comparing the results achieved with the models Eff1 and
FP1 (i.e., to address RQ1), we can observe that the values
of MdAR and MAR are more than two times lower for the
model using EFFA, meaning that Eff1 allowed us to obtain
better effort estimations. The values of MdAR and MAR
characterizing the model Eff2 are also more than two times
lower than those obtained with the model FP2. A similar
result is achieved for model Eff3 providing estimations two
time better than those achieved with FP3.

As for research question RQ2, the results of Table 6 sug-
gest that the combination of EFFA and FP to predict EFFD&I

(i.e., model EffFP2) allowed us to obtain lower MdAR and
MAR values with respect to use EFFA or FP alone (i.e.,
model Eff2 and FP2). Moreover, we can observe that MdAR
and MAR values achieved combining the use of FP with
EFFD to predict EFFI (i.e., model EffFP3) are lower than
those obtained employing EFFD or FP alone (i.e., model
Eff3 and FP3).

Table 5: Results of the tests to verify Zero mean, Homoscedasticity, and Normality assumptions

Estimation model
Student t-test Breush-Pagan Test Shapiro-Wilk Test

statistic/p-value statistic/p-value statistic/p-value
Eff1 0/1 1.595/0.207 0.972/0.696
FP1 0/1 1.125/0.289 0.937/0.129
Eff2 0/1 1.252/0.263 0.966/0.552
FP2 0/1 0.254/0.614 0.927/0.075
Eff3 0/1 1.923/0.165 0.955/0.324
FP3 0/1 0.340/0.560 0.929/0.082

EffFP1 (= Eff1) 0/1 1.252/0.263 0.966/0.082
EffFP2 0/1 1.265/0.531 0.960/0.406
EffFP3 0/1 3.951/0.139 0.983/0.943

To verify whether the difference highlighted with the anal-
ysis in terms of the MdAR and MAR values are significant
we performed statistical tests by using absolute residuals [23]
[29] [40]. The results are reported in Table 7. In particular,
the T-test (or the Wilcoxon test if absolute residuals were
not normally distributed) revealed that:

RQ1 The absolute residuals provided by the model Eff1 are
significantly lower than those obtained with model FP1
(with a large effect size since 0.456<r<0.868), mean-
ing that it is better to estimate the development effort
for the system and object design phases by exploit-
ing the development effort of the previous phases, i.e.,
specification and analysis.

EFFA also allowed us to obtain estimations of EFFD&I

(i.e., the effort for the system and object design and
the implementation and testings phases) better than
those achieved using FP (with a large effect size).

A similar result was achieved in the case of the effort
predicted for the implementation and testing phases.
Model Eff3 provided significantly less absolute resid-
uals than the model FP3 (with a large effect size),
meaning that better estimations are obtained by ex-
ploiting the development effort of the previous phases,
i.e., system and object design.

RQ2 The results reported in Table 7 reveal that the model
combining early effort data, i.e., EFFA, and the func-
tional size in terms of Function Points can provide
significantly better estimations than the model based
only on EFFA (with a medium effect size since 0.193
<r<0.456).

The results have also revealed that there is not statisti-
cally significant difference between the absolute resid-
uals achieved with the model employing only EFFD

(i.e., the effort of system and object design phases) as
independent variable and those obtained by using the
model exploiting both EFFD and FP as independent
variables, to predict the effort for the implementation
and testing phases (i.e., EFFI).

The above results suggest that we can positively answer
our first research question RQ1 (i.e., prior-phase efforts can
provide more accurate estimates of the subsequent phase(s)
effort than the corresponding models based on the use of
Function Points alone).

Furthermore, the combination of FP with the effort for the
specification and analysis phase (i.e., EFFA) allowed us to
significantly improve the results achieved in terms of EFFA

(and of course of FP) alone, in estimating the effort for the

Table 7: The results of the statistical test and effect
size analysis, by considering absolute residuals, for
each research question (RQ)

RQ Comparison
Statistical test Effect size

p-value r

RQ1
Eff1 vs FP1 <0.001 0.669
Eff2 vs FP2 0.002 0.592
Eff3 vs FP3 0.002 0.542

RQ2
EffFP2 vs Eff2 0.042 0.342
EffFP3 vs Eff3 0.149 0.211

system and object design, and implementation and testing
phases. Similarly, the combination of FP with the effort for
the system and object design phases provided better estima-
tions than using the effort for the system and object design
phases alone. However, the difference in the absolute resid-
uals is not statistically significant. Thus, we can partially
positively answer our second research question RQ2.

Summary of results and contribution. The analysis
reported above suggests that the accuracy achieved predict-
ing the effort to accomplish a development phase with the
effort of the previous phase(s) is significantly better than
the accuracy obtained by exploiting a Function Points based
estimation model. The results of our empirical study have
also highlighted that efforts for the specification and analysis
phases provided estimations of the effort for the subsequent
phases (i.e., system and object design, and development and
testing) better than those achieved by employing a Function
Points based model.

Moreover, the combined us of specification and analysis
data effort and the number of Function Points can improve
the estimates. However, the improvement was not statisti-
cally significant when such a combination was used to pre-
dict the effort for the final phases (i.e., implementation and
testing phases).

Thus, for the company seems to be crucial to carefully col-
lect information on effort spent during the project in order to
build estimation models able to predict the effort of the de-
velopment phase(s). However, the use of a size measure, like
Function Points, remain important since the combination of
effort data and size measure can allow to (significantly) im-
prove the accuracy of effort estimations. Furthermore, the
use of a measurement method is also important to esitmates
the effort for the first phases of the development process, i.e.,
when we have no effort data on prior-phases to exploit, with-
out forgetting that a functional size measure, like Function
Points, also supports the project managers for other man-
agement activities, e.g., productivity benchmarking. On the

other hand, it could also be interesting to identify a less ex-
pensive method (in terms of time and cost) able to effectively
predict the effort for the first phases (in our case specifica-
tion and analysis).

4. RELATED WORK
Related work falls in the context of phase-based estima-

tions concerning with both analyses and visualizations of
activities and effort distribution [35] [43] [12] and in the con-
text of the use of effort data to estimate subsequent phases
[27] [20] [6] [41].

Ohlsson and Wohlin [35] used phase-based data, such as
the number of requirements and flowcharts, to estimate ef-
fort for the subsequent phases. The results, however, showed
that the metrics used did not correlate particularly well with
effort.

Yang et al. [43] analyzed the phase effort distribution pat-
terns and different variation sources. To this end, they car-
ried out an empirical study on phase effort distribution data
of 75 industrial projects, from the China Software Bench-
marking Standard Group (CSBSG) database [18]. The re-
sults revealed some consistency in effects of software size and
team size on code and test phase distribution variations, and
some considerable deviations in requirements, design, and
transition phases, compared with recommendations in the
COCOMO model [8].

Chatzipetrou et al. [12] also studied the effort distribu-
tion over different phases of 1,500 projects from the ISBSG
R11 database [3]. In particular, they studied the correla-
tion between the effort distribution and different kinds of
phase-based data, i.e., project life-cycle activities, organiza-
tion type, language type, function points, and other prime
project attributes. ISBSG provides information on effort for
the following development phases: Planning, Specification,
Design, Build, Test, and Implementation. It is worth not-
ing that ISBSG defines Implementation as activities to do
with delivering and installing the final product. In our case,
the definition of Implementation refers to “implementation
activities” and seems to correspond to the Build phase of
ISBSG. The main findings of the Chatzipetrou et al. work
are: a) the Build and Test phases are characterized by effort
values greater than those of the other phases; b) the efforts
are distributed among the different development phases ac-
cording the organization type; c) more effort is distributed
in the Design phase when high level programming language,
such as 3GL, 4GL, and Java are employed, while the use of
C/C++ or C produces more effort to carry out implemen-
tation activities; d) there was correlation between software
size and effort data characterizing the phases.

Aroonvatanaporn et. al [6] proposed a framework to con-
tinuously monitor the software project progress and readjust
the estimated effort utilizing COCOMO II [8]. A simulation
of this framework, carried out on data from two academic
software development projects, showed significant improve-
ments in estimating project resources with significant reduc-
tion in estimation errors as the project progresses through
its life cycle.

Jiang et al. [20] proposed a model to predict development
effort based on the software size estimated with Function
Points. The authors used the ISBSG dataset and provided
estimates for the effort used in Building, Testing, and Im-
plementation phases. The results showed that there was a
strong positive relationship between the software size, given

in terms of number of Function Points, and the total project
development effort. Furthermore, the analysis also high-
lighted that there was a strong correlation between the effort
of each development phase and the software size.

MacDonell and Shepperd [27] studied an approach based
on the use of effort data recorded for those project tasks al-
ready completed to predict the effort needed for subsequent
activities. In particular, they investigated the performance
of models that use prior-phase effort as an explanatory vari-
able and estimated next phase effort, using 16 projects col-
lected from a single software company. The obtained results
showed that prior-phase effort data can be used to augment
the estimation process already in place, based on expert esti-
mations, in order to improve the management of subsequent
process tasks. However, they did not use software size as an
explanatory variable nor estimate total development effort.

Tsunoda et al. [41] investigated which model shows higher
estimation accuracy: a model using software size, or early
phase effort, or their combination. This is the closest study
to the one we have presented herein. Release 9 of ISBSG
was exploited to obtain the data set used in the performed
empirical study. They first applied a selection procedure
on the initial 3,016 project to obtain information on 70 and
178 projects to be employed in the analysis to address their
three research questions. As for the variables employed to
build the models to estimate total effort, they considered the
software size, given in terms of number of Function Points,
and the effort for each of the following development phases:
Planning, Requirement analysis, Planning and Requirement
analysis. However, Planning effort and Requirement analy-
sis effort were not considered separately as predictor of to-
tal effort since they were characterized by multicollinearity.
They built estimation models that employ early phase ef-
fort as predictors, but total effort was the information to
predict, while we exploit effort of prior-phases to predict
the effort of the subsequent phases. It is worth noting that
since we predict the effort also for all the remaining phases,
in a certain sense, we also predict the total effort. They also
compared the accuracy of the effort estimations obtained by
using these models with the accuracy of models based only
on the software size (i.e., Function Points). They also built
estimation models using both early phase effort and soft-
ware size. They employed linear regression as estimation
techniques and applied a 5-fold cross validation to validate
the estimates. As evaluation criteria they exploited several
summary measures based on absolute residuals as we did in
our study, namely MAR and MdAR. They also based the
comparison among the different estimation methods on un-
biased summary measures like MMRE and MdMRE [38].
The results showed that the models based on early effort
data provided estimations better than those achieved with
the models based on Function Points. Furthermore, using
both software size and early phase effort improved estima-
tion accuracy and multicollinearity did not arise. Thus, our
work confirms that using prior-phase effort is more effec-
tive than using only software size, given in terms of Func-
tion Points, to estimate the effort required in subsequent
phase(s), while the combination of prior-phase effort data
and Function Points provide slightly improvements.

5. CONCLUSION AND FUTURE WORK
We have presented the results of an empirical study per-

formed to analyze the possibility of applying the effort of

the development phase(s) to predict the effort required for
the subsequent phase(s). Furthermore, we assessed the com-
bined use of the effort of the prior-phase(s) and the software
size given in terms number of Function Points.

The study was based on 25 applications from a single soft-
ware company that provided us the effort data of 3 different
phases (i.e., specification and analysis, system and object
design, and implementation and testing). Linear regression
was used to build the estimation models.

The analysis has revealed that the effort data of prior-
phase(s) can provide estimations of the effort of the sub-
sequent development phases significantly better than those
achieved by using Function Points alone, thus confirming
MacDonell and Shepperd [27] results that the use of prior-
phase effort data can augment the estimation process al-
ready in place thus improving the management of subse-
quent process tasks. Moreover, it confirms and extends the
results of Tsunoda et al. [41] showing that the combina-
tion of prior-phases effort data and the number of Function
Points can further improve the effort estimations.

As future work we intend to replicate the present study
by employing other Functional Size Measurement methods,
such as MarkII and NESMA [11] and COSMIC [2] Further-
more, we intend to replicate the study by exploiting data
from publicly available data repository (like PROMISE [31])
with the aim of comparing the results we obtained on a single
company data set with cross-company data sets containing
different types of applications. We also intend to extend
the study by exploiting other cost drivers (e.g., related to
personnel and projects attributes) together with Function
Points.

6. REFERENCES
[1] ISO/IEC 20926: Software Engineering - IFPUG 4.1

Unadjusted FSM Method - Counting Practices
Manual, 2003.

[2] A. Abran, J. Desharnais, A. Lesterhuis, B. Londeix,

R. Meli, P. Morris, S. Oligny, M. OÕNeil, T. Rollo,
G. Rule, L. Santillo, C. Symons, and H. Toivonen. The
COSMIC Functional Size Measurement Method -
Measurement Manual, version 3.0.1, 2008.

[3] A. Abran and et al. The COSMIC Functional Size
Measurement Method - Measurement Manual, version
3.0.1 - http://www.cosmicon.com/, 2009.

[4] A. Albrecht. Measuring Application Development
Productivity. In Proceedings of the Joint
SHARE/GUIDE/IBM Application Development
Symposium, pages 83–92, 1979.

[5] A. J. Albrecht and J. E. Gaffney. Software Function,
Source Lines of Code, and Development Effort
Prediction: A Software Science Validation. IEEE
Transactions on Software Engineering, 9(6):639–648,
1983.

[6] P. Aroonvatanaporn, C. Sinthop, and B. Boehm.
Reducing estimation uncertainty with continuous
assessment: Tracking the ”cone of uncertainty”. In
Proceedings of the IEEE/ACM International
Conference on Automated Software Engineering, ASE
’10, pages 337–340, New York, NY, USA, 2010. ACM.

[7] D. Azhar, P. Riddle, E. Mendes, N. Mittas, and
L. Angelis. Using ensembles for web effort estimation.
In ESEM, pages 173–182, 2013.

[8] B. Boehm, C. Abts, A. Brown, S. Chulani, B. Clark,
W. Horowitz, R. Madachy, D. Reifer, and B. Steece.
Software Cost Estimation with COCOMO II. Prentice
Hall, NJ, 2000.

[9] T. Breush and A. Pagan. A simple test for
heteroscedasticity and random coefficient variation.
Econometrica, 47:1287–1294, 1992.

[10] L. C. Briand and J. Wüst. Modeling Development
Effort in Object-Oriented Systems Using Design
Properties. IEEE Transaction on Software
Engineering, 27(11):963–986, 2001.

[11] Çigdem Gencel and O. Demirörs. Functional size
measurement revisited. ACM Trans. Softw. Eng.
Methodol., 17(3), 2008.

[12] P. Chatzipetrou, E. Papatheocharous, L. Angelis, and
A. Andreou. An investigation of software effort phase
distribution using compositional data analysis. In
Software Engineering and Advanced Applications
(SEAA), 2012 38th EUROMICRO Conference on,
pages 367–375, Sept 2012.

[13] W. J. Conover. Practical Nonparametric Statistics.
Wiley, 3rd edition edition, 1998.

[14] D. Conte, H. Dunsmore, and V. Shen. Software
engineering metrics and models. The
Benjamin/Cummings Publishing Company, Inc., 1986.

[15] N. Draper and H. Smith. Applied Regression Analysis.
John Wiley & Sons, Inc., 2d Edition, New York, 1981.

[16] A. Field and G. Hole. How to Design and Report
Experiments. Sage publications Limited, 2003.

[17] J. Freund. Mathematical Statistics. Prentice-Hall,
Upper Saddle River, NJ, 1992.

[18] M. He, M. Li, Q. Wang, Y. Yang, and K. Ye. An
investigation of software development productivity in
china. In Proceedings of the Software Process, 2008
International Conference on Making Globally
Distributed Software Development a Success Story,
ICSP’08, pages 381–394, Berlin, Heidelberg, 2008.
Springer-Verlag.

[19] IFPUG. International Function Point Users Group -
www.ifpug.org.

[20] Z. Jiang, P. Naudé, and B. Jiang. The effects of
software size on development effort and software
quality, 2007.

[21] V. Kampenes, T. Dyba, J. Hannay, and I. Sjøberg. A
systematic review of effect size in software engineering
experiments. Information and Software Technology,
4(11-12):1073–1086, 2007.

[22] C. Kaner and W. Bond. Software Engineering Metrics:
What Do They Measure and How Do We Know? In
Proceedings of the International Software Metrics
Symposium. IEEE press, 2004.

[23] B. Kitchenham, L. Pickard, S. MacDonell, and
M. Shepperd. What accuracy statistics really measure.
IEE Proceedings Software, 148(3):81–85, 2001.

[24] B. Kitchenham, L. Pickard, and S. Pfleeger. Case
studies for method and tool evaluation. IEEE
Software, 12(4):52–62, 1995.

[25] E. Kocaguneli and T. Menzies. Software effort models
should be assessed via leave-one-out validation.
Journal of Systems and Software, 86(7):1879–1890,
2013.

[26] E. Kocaguneli, T. Menzies, and J. W. Keung. On the
value of ensemble effort estimation. IEEE Trans.
Software Eng., 38(6):1403–1416, 2012.

[27] S. MacDonell and M. Shepperd. Using prior-phase
effort records for re-estimation during software
projects. In Software Metrics Symposium, 2003.
Proceedings. Ninth International, pages 73–86, Sept
2003.

[28] K. Maxwell. Applied Statistics for Software Managers.
Software Quality Institute Series, Prentice Hall, 2002.

[29] E. Mendes, S. Counsell, N. Mosley, C. Triggs, and
I. Watson. A Comparative Study of Cost Estimation
Models for Web Hypermedia Applications. Empirical
Software Engineering, 8(23):163–196, 2003.

[30] E. Mendes and B. Kitchenham. Further Comparison
of Cross-company and Within-company Effort
Estimation Models for Web Applications. In
Proceedings of International Software Metrics
Symposium, pages 348–357. IEEE press, 2004.

[31] T. Menzies, B. Caglayan, Z. He, E. Kocaguneli,
J. Krall, F. Peters, and B. Turhan. The promise
repository of empirical software engineering data, June
2012.

[32] T. Menzies, Z. Chen, J. Hihn, and K. Lum. Selecting
Best Practices for Effort Estimation. IEEE
Transactions on Software Engineering,
32(11):883–895, 2006.

[33] L. L. Minku and X. Yao. Ensembles and locality:
Insight on improving software effort estimation.
Information & Software Technology, 55(8):1512–1528,
2013.

[34] D. Montgomery, E. Peck, and G. Vining. Introduction
to Linear Regression Analysis. John Wiley and Sons,
Inc., 1986.

[35] M. Ohlsson and C. Wohlin. An empirical study of
effort estimation during project execution. In Software
Metrics Symposium, 1999. Proceedings. Sixth
International, pages 91–98, 1999.

[36] R. OÕbrien. A caution regarding rules of thumb for
variance inflation factors. Quality & Quantity:
International Journal of Methodology, 41(5):673–690,
2007.

[37] P. Royston. An extension of Shapiro and Wilk’s W
test for normality to large samples. Applied Statistics,
31(2):115–124, 1982.

[38] M. J. Shepperd and S. G. MacDonell. Evaluating
prediction systems in software project estimation.
Information & Software Technology, 54(8):820–827,
2012.

[39] I. Sommerville. Software Engineering (8th Edition).
Addison-Wesley, 2007.

[40] E. Stensrud and I. Myrtveit. Human performance
estimating with analogy and regression models: an
empirical validation. In Proceedings of International
Software Metrics Symposium, pages 205–. IEEE press,
1996.

[41] M. Tsunoda, Y. Kamei, K. Toda, M. Nagappan,
K. Fushida, and N. Ubayashi. Revisiting software
development effort estimation based on early phase
development activities. In Mining Software
Repositories (MSR), 2013 10th IEEE Working
Conference on, pages 429–438, May 2013.

[42] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, and
B. Regnell. Experimentation in Software Engineering.
Springer, 2012.

[43] Y. Yang, M. He, M. Li, Q. Wang, and B. Boehm.
Phase distribution of software development effort. In
Proceedings of the Second ACM-IEEE International
Symposium on Empirical Software Engineering and
Measurement, ESEM ’08, pages 61–69, New York, NY,
USA, 2008. ACM.

