
Genetic Programming for Effort Estimation:
an Analysis of the Impact of Different Fitness Functions

Filomena Ferrucci, Carmine Gravino, Rocco Oliveto, Federica Sarro

DMI, University of Salerno, via Ponte don Melillo, 84084 Fisciano (SA), Italy
{fferrucci, gravino, roliveto, fsarro}@unisa.it

Abstract—Context: The use of search-based methods has
been recently proposed for software development effort esti-
mation and some case studies have been carried out to assess
the effectiveness of Genetic Programming (GP). The results
reported in the literature showed that GP can provide an
estimation accuracy comparable or slightly better than some
widely used techniques and encouraged further research to
investigate whether varying the fitness function the estimation
accuracy can be improved. Aim: Starting from these considera-
tions, in this paper we report on a case study aiming to analyse
the role played by some fitness functions for the accuracy
of the estimates. Method: We performed a case study based
on a publicly available dataset, i.e., Desharnais, by applying
a 3-fold cross validation and employing summary measures
and statistical tests for the analysis of the results. Moreover,
we compared the accuracy of the obtained estimates with
those achieved using some widely used estimation methods,
namely Case-Based Reasoning (CBR) and Manual StepWise
Regression (MSWR). Results: The obtained results highlight
that the fitness function choice significantly affected the esti-
mation accuracy. The results also revealed that GP provided
significantly better estimates than CBR and comparable with
those of MSWR for the considered dataset.

Keywords-Software Development Effort Estimation; Genetic
Programming; Empirical Studies.

I. INTRODUCTION

Effort estimation is a critical activity for planning and

monitoring software project development and for delivering

the product on time and within budget. Significant over or

under-estimates can be very expensive for a company and

the competitiveness of a software company heavily depends

on the ability of its project managers to accurately predict

in advance the effort required to develop software systems.

Several approaches have been proposed to estimate software

development effort. Among them, data-driven approaches

exploit data from past projects to estimate the effort for

a new project under development [1] [2] [3] [4]. These

data consist of information about some relevant factors

(named cost drivers) and the effort actually spent to develop

the projects. Usually a data-driven method tries to explain

the relation between effort and cost drivers building an

estimation model (equation) that is used to estimate the

effort for a new project. Widely used and studied data-driven

approaches are Linear and StepWise Regression (LR and

SWR), and Case Based-Reasoning (CBR) [5].

Recently the use of search-based methods has been sug-

gested to address the software development effort estimation

problem [6] [7]. Such a problem can be formulated as

an optimisation problem where we have to identify the

estimation model which provides the best predictions. In the

literature some attempts have been reported on the use of Ge-

netic Programming (GP) for building software development

effort estimation models [8] [9] [10] [11]. All the studies

showed that GP provided models with estimation accuracy

comparable with the ones obtained employing some widely

used estimation techniques. However, several crucial design

choices need to be made when using GP, such as population

size, maximum number of generations, genetic operator

rates, and fitness function [6] [8]. Special relevance has the

choice of the fitness function to guide the search towards

a solution able to provide accurate estimates. The common

fitness function analysed in the previous studies was based

on the Mean Magnitude of Relative Error (MMRE) [12]

that represents the most widely used evaluation criterion

for assessing the accuracy of a software prediction model.

However, it was observed that employing MMRE as fitness

function had the effect to degrade a lot of other measures

that are usually employed to complement the analysis of the

estimation accuracy [8]. Moreover, it has also been argued

that the choice of the criterion for establishing the best

model can be a managerial issue. In particular, a project

manager could prefer to use MMRE as the criterion for

judging the quality of the prediction, while another might

prefer to use another criterion, just for example Pred(25)

[12]. Thus, further research was solicited to analyse which

measures is the most appropriate as fitness function.

Based on these considerations we have carried out an

empirical analysis to provide an insight on the use of

GP for effort estimation and in particular to analyse how

the estimation accuracy of GP is affected by the use of

different fitness functions. To this end we experimented

with different fitness functions based on widely recognised

indicators used to evaluate the accuracy of the estimates

(i.e., MMRE, MdMRE, Pred(25), MEMRE, and MdEMRE

[12] [13]) and combinations of them (i.e., Pred(25) and

MMRE, Pred(25) and MdMRE). The empirical study was

based on a publicly available dataset, i.e., Desharnais [14],

which has been widely and recently used to evaluate and

2nd International Symposium on Search Based Software Engineering

978-0-7695-4195-2/10 $26.00 © 2010 IEEE

DOI 10.1109/SSBSE.2010.20

89

compare estimation methods, see e.g., [4] [8] [15] [16] [17].

We also performed a comparison of the effectiveness of

GP with widely used estimation methods, namely Manual

SWR (MSWR) and CBR. The analysis of the results is

based on widely used summary measures (i.e., MMRE,

MdMRE, Pred(25), MEMRE, and MdEMRE [12] [13])

and on statistical test. To the best of our knowledge, only

summary measures, including MMRE and Pred(25), have

been used to compare estimations in the case studies carried

out so far with the use of GP [8] [9] [10].

The rest of the paper is organised as follows. Section

II introduces GP. The experimental method is described in

Section III, while the results are reported in Section IV. Case

study validity is discussed in Section V. Section VI reports

on related work, while final remarks and directions for future

work are presented in Section VII.

II. GENETIC PROGRAMMING

Genetic Programming (GP) [18] belongs to the family

of evolutionary algorithms that, inspired by the theory of

natural evolution, simulates the evolution of species em-

phasising the law of survival of the strongest to solve,

or approximately solve, optimisation problems. Thus, these

algorithms create consecutive populations of individuals,

considered as feasible solutions for a given problem, to

search for a solution which gives the best approximation

of the optimum for the problem under investigation. To

this end, a fitness function is used to evaluate the goodness

(i.e., fitness) of the solutions represented by the individuals

and genetic operators based on selection and reproduction

are employed to create new populations (i.e., generations).

The elementary evolutionary process of these algorithms is

composed by the following steps:

• S1: a random initial population is generated and a

fitness function is used to assign a fitness value to each

individual;

• S2: according to their fitness value some individuals are

selected to form the parents and new individuals are

created by applying genetic operators (i.e., crossover

and mutation). In particular, the crossover operator

combines two individuals (i.e., parents) to form one or

two new individuals (i.e., offspring), while the mutation

operator is employed to randomly modify an individual.

Then, to determine who will survive among the off-

spring and their parents a survivor selection is applied

according to the individuals’ fitness values;

• S3: step S2 is repeated until stopping criteria hold.

With respect to other evolutionary methods, GP is char-

acterised by the fact that individuals are computer programs

(e.g., mathematical expressions) usually encoded as a tree

where the leaves are terminals (e.g., operands) and the

internal nodes are functions (e.g., mathematical operators).

The initial population is usually generated building random

trees of fixed or variable depth or a combination of them.

The crossover and mutation operators are defined exchang-

ing parent subtrees and making random changes in trees,

respectively. Note that at each generation these operators are

applied with a certain probability, named crossover rate and

mutation rate. The stopping criterion for the evolutionary

process is usually based on a maximum number of gener-

ations. This stopping criterion can be combined with other

criteria to reduce the computation time. For example, the

search process can be stopped after a certain number of

generations or after some number of generations that do not

provide an improvement in the fitness value.

III. CASE STUDY PLANNING

This section presents the design of the case study we

carried out to get an insight in the use of GP for effort

estimation. The research goals of our study can be outlined

as follows:

• RG1: Analysing the impact of different fitness func-

tions on the accuracy of the estimation models built

with GP.

• RG2: Comparing the estimates achieved by applying

GP with the estimates obtained using widely and suc-

cessfully employed estimation methods.

To address research goals RG1 we experimented with

several fitness functions as reported and discussed in Section

III-B. The second research goal (RG2) aims to get an

insight on the estimation accuracy of GP and understand

the actual effectiveness of the technique with respect to other

effort estimation methods. For this reason, we first verified

whether the estimates obtained with GP were characterised

by significantly better accuracy than the simply mean and

median of effort of past projects. Indeed, if the investigated

estimation method does not outperform the results achieved

by using the mean or median effort it cannot be transferred to

industry [19] [20]. For a software company it could be more

useful to simply use the mean or the median effort of past

projects rather than dealing with complex computations of

estimation methods. Moreover, we compared the estimations

achieved using GP with those obtained by using MSWR

[20] and CBR [4] to have other benchmarks to assess the

effectiveness of GP.

A. Dataset Selection

To carry out the empirical study we exploited an industrial

dataset comprising 81 software projects. This dataset was

derived from a Canadian software house by Jean-Marc

Desharnais [14]. It is one of the largest, publicly available,

datasets and it has been widely and recently used to evaluate

estimation methods, see e.g., [4] [8] [15] [16] [17].

Table I reports the description of the eleven variables (nine

independent and two dependent) included in the Desharnais

dataset. In our analysis we considered as dependent variable

the total effort while we did not consider the length of the

code [8]. Moreover, we excluded from the analysis four

90

Table I
PROJECT FEATURES OF THE DESHARNAIS DATASET

Feature Description Type
TeamExp The team experience measured in years Discrete

ManagerExp The manager experience measured in years Discrete
Entities The number of the entities in the system data model Discrete

Transactions The number of basic logical transactions in the system Discrete
AdjustedFPs The adjusted Function Points Continuous

RawFPs The raw Function Points Continuous
Envergure A complex measure derived from other factors defining the environment Discrete
Language The language used to develop the system Categorical
YearEnd The project year finished Discrete

Effort The actual effort measured in person hours (dependent variable) Discrete
Length The length of the code (dependent variable) Discrete

Table II
DESCRIPTIVE STATISTICS OF THE DESHARNAIS DATASET FACTORS

Variable Min Max Mean Std. Dev.
TeamExp 0 4 2.30 1.33
ManagerExp 0 4 2.65 1.52
Entities 7 386 121.540 86.11
Transactions 9 661 162.940 146.08
AdjustedFPs 73 1127 284.480 182.26
RawFPs 62 1116 282.39 186.36
Envergure 5 52 27.24 8.600
Effort 546 2349 4903.95 4188.19

projects that had missing values. The same choice has been

done in other studies (e.g., [4] [17] [15]). Categorical (or

nominal) variables (i.e., Language and YearEnd) were also

excluded from the analysis, as done in [15].

B. Setting of the Experimented GP-based Method

In this section we present the design choices we made in

defining the GP-based estimation method experimented in

our case study.

1) Solution Representation: In the context of effort esti-

mation a solution consists of an estimation model described

by an equation of this type:

Effort = c1 op1 f1 op2 ... op2n−2 cn op2n−1 fn op2n C (1)

where fi represents the value of the ith project feature and ci

its coefficient, C represents a constant, while opi represents

the ith mathematical operator of the model. It is worth noting

that the equations feasible for the effort estimation problem

are those providing positive value for Effort.
To encode such a solution we used a binary tree containing

features and coefficients as leafs and mathematical operators

as internal nodes. In particular, we took into account the

following mathematical operators {+,−, ·, exp, ln}.
According to [21] the initial population is generated by

building 10V random trees of fixed depth, where V is the

number of features, aiming at achieving a good compromise

between the running time of GP and the accuracy of the

estimates.

2) Fitness Function: The fitness function guides the

search for the best estimation model. To this end, a suitable

fitness function should be able to determine whether an

estimation model leads to better predictions than another.

In the literature, a large number of different prediction

accuracy measures have been proposed. The most widely

used are MMRE and Pred(25) [12]. The former is the mean

of Magnitude of Relative Error (MRE), where MRE [12] is

defined as:

MRE =
|Effortreal − Effortestimated|

Effortreal

(2)

where Effortreal and Effortestimated are the actual and the

estimated efforts, respectively. MRE is calculated for each

project whose effort has to be estimated and MMRE is

used to have a cumulative measure of the error. Another

cumulative measure widely employed is the Median of MRE

(MdMRE) which is less sensitive to extreme values [22].

The Prediction at level l – Pred(l) – [12] is another

useful indicator that measures the percentage of the estimates

whose error is less than l% and l is usually set at 25. It can

be defined as:

Pred(25) =
k

N
(3)

where N is the total number of projects and k is the number

of observations whose MRE is less than or equal to 0.25.

Kitchenham et al. [13] suggest also the use of the Magni-

tude of Relative Error relative to the Estimate (EMRE). The

EMRE has the same form of MRE, but the denominator

is the estimate, giving thus a stronger penalty to under-

estimates:

EMRE =
|Effortreal − Effortestimated|

Effortestimated

(4)

As well as for MRE, we can also calculate the mean EMRE

(MEMRE) and median EMRE (MdEMRE).

To address research goal RG1 we experimented with

each of the above accuracy measures as fitness function

to analyse the impact on the estimation accuracy of the

constructed models. Moreover, the observation that different

accuracy measures take into account different aspects of

predictions accuracy [13] suggested us to investigate also

the effectiveness of some combinations of those accuracy

measures. In particular, we also experimented with
Pred(25)
MMRE

and
Pred(25)
MdMRE as fitness functions1.

3) Evolutionary Process: The evolutionary process we

experimented with employed two widely used selection op-

erators, i.e., roulette wheel selector and tournament selector

[18], whereas the crossover and mutation operators are

specific for our solution encoding.

In particular, we used the roulette wheel selector [18] to

choose the individuals for reproduction, while we employed

the tournament selector [18] to determine the individuals

that are included in the next generation (i.e., survivals).

The former assigns a roulette slice to each chromosome

according to its fitness value. In this way, even if candidate

1Thus, if MMRE (MdMRE, MEMRE, or MdEMRE) was used as fitness
function the GP goal was to find the solution having the lowest MMRE

(MdMRE, MEMRE, or MdEMRE) value. Otherwise, if Pred(25) (
Pred(25)
MMRE

or
Pred(25)
MdMRE

) was used as fitness function the GP goal was to find the

solution having the highest Pred(25) (
Pred(25)
MMRE

or
Pred(25)
MdMRE

) value.

91

solutions with a higher fitness have more chance to be

selected, there is still a chance that they may be not. On

the contrary, using the tournament selector only the best n
solutions (usually n ∈ [1, 10]) are copied straight into the

next generation.

Crossover and mutation operators were defined to pre-

serve well-formed equations in all offspring. To this end,

we used a single point crossover which randomly selects the

same point in each tree and swaps the subtrees corresponding

to the selected node. Since the two trees are cut at the

same point, the trees resulting after the swapping have the

same depth as compared to those of parent trees. Concerning

the mutation, we employed an operator that selects a node

of the tree and randomly changes the associated value.

The mutation can affect internal node (i.e., operators) or

leaves (i.e., coefficients) of the tree. In particular, when

the mutation involves internal node, a new operator op′i ∈
{{+,−, ·, exp, ln}\opi} is randomly generated and assigned

to the node, while if the mutation involves a leaf a new

coefficient c′i ∈ R is assigned to the node. It is worth noting

that also the employed mutation preserves the syntactic

structure of the equation. Crossover and mutation rate were

fixed to 0.5 and 0.1, respectively, since in previous works

recommended crossover rate ranged from 0.45 to 0.95 [21]

and mutation rate ranged from 0.06 to 0.1 [23].

According to [21] the evolutionary process is stopped after

1000V trials, where V is the number of features or if the

fitness value of the best solution does not change after 100V
trials2.

Since GP does not give the same solution each time it is

executed, we performed 10 runs and among the 10 solutions

we retained as final prediction model the one that had the

fitness value closest to the average value achieved on the

training sets in the 10 runs.

C. Validation Method and Evaluation Criteria

In order to verify whether or not a method gives useful

estimations of the actual development effort a validation pro-

cess is required. To this end, we performed a multiple-fold

cross validation, partitioning the whole dataset into training

sets, for model building, and test sets, for model evaluation.

Indeed, when the accuracy of the model is computed using

the same dataset employed to build the prediction model,

the accuracy evaluation is considered optimistic [5]. Cross

validation is widely used in the literature to validate effort

estimation models when dealing with medium/small datasets

(see, e.g. [1] [2]). In particular, to apply the multiple-fold

cross validation, we partitioned the dataset in 3 randomly test

sets (one containing 25 observations and two containing 26

observations), and then for each test set we considered the

2Since we focused on seven features (see section III-A) we executed GP
using a population of 70 (i.e., 10*# features) individuals and the generation
process was stopped after 7000 (1000*# features) generations or when the
best results did not change after 700 (100*# features) generations.

Table III
THE 3 FOLDS EMPLOYED IN OUR STUDY

Project Id
Fold 1 11, 19, 24, 77, 01, 26, 78, 02, 05, 12, 22, 23, 35,
(25 observations) 40, 58, 61, 68, 69, 29, 50, 13, 81, 49, 70, 65.
Fold 2 10, 15, 30, 41, 42, 43, 21, 03, 47, 63, 56, 62, 74,
(26 observations) 31, 52, 37, 57, 73, 76, 34, 27, 33, 72, 79, 54, 80.
Fold 3 04, 08, 09, 14, 16, 17, 18, 25, 32, 36, 39, 45, 51,
(26 observations) 53, 55, 59, 60, 67, 71, 06, 07, 20, 28, 46, 48, 64.

remaining observations as training set to build the estimation

model. The three folds are given in Table III to allow for

replications of our study.

Concerning the evaluation of the estimates obtained with

the analysed estimation methods, we used several summary

measures, namely MMRE, MdMRE, Pred(25), MEMRE

and MdEMRE [12][13]. According to [12], a good effort

estimation model should have an MMRE less than 0.25,

to denote that the mean estimation error should be less

than 25%, and a Pred(25) greater than 0.75, meaning that

at least 75% of the predicted values should fall within

25% of their actual values. Moreover, we complemented

these indicators with the analysis of the boxplots of the

absolute residuals, as suggested in [13] [24] [25]. The use

of boxplots is widely used in exploratory data analysis since

they summarise the data (using five values, i.e., median,

upper and lower quartiles, minimum and maximum values,

and outliers) through a visual representation [13]. In the

context of effort estimation, boxplots are generally used to

represent in a visual fashion the amount of the error for

a given estimation method. To this end, the spread of the

absolute residuals, calculated as |Effortreal−Effortestimated|,
can be graphically rendered.

The analysis of summary measures and boxplots gives

only an indication on which is the estimation method that

globally gives best effort estimations. In order to establish

if one of the estimation methods provides better results than

the others it is necessary to test the statistical significance of

the obtained results. For this reason we tested the statistical

significance of the absolute residuals achieved with different

estimation methods [13] [22] [26]. Such an analysis aims at

verifying that the estimations of one method are significantly

better than the estimations provided by another method.

Since (i) the absolute residuals for all the analysed estima-

tion methods were not normally distributed (as confirmed

by the Shapiro test [27] for non-normality), and (ii) the data

was naturally paired, we used the Wilcoxon Test [28] setting

the confidence limit at α = 0.05.

IV. ANALYSIS AND INTERPRETATION OF THE RESULTS

The following subsections present and discuss on the

results achieved in the empirical study. In subsection IV-C

we also compare the results with the ones obtained in the

literature exploiting GP on the same dataset.

92

A. Influence of the Fitness Function

In this section we report the results related to the first

research goal and obtained employing different fitness func-

tions, i.e., MMRE, Pred(25), MdMRE, MEMRE, MdEMRE,
Pred(25)
MMRE , and

Pred(25)
MdMRE .

To get an insight on the use of these fitness functions, we

first analysed the ability of the obtained estimation models to

fit data considering the results obtained on the training sets

and then we analysed their predictive capability considering

the results obtained on the test sets.

Table IV reports on the average summary measures ob-

tained on the training sets. We can observe that the use

of MMRE and MdEMRE as fitness functions provided the

worst results, whereas the best results were achieved by

using Pred(25), MdMRE and
Pred(25)
MMRE as fitness function.

However, there is no clear winner among them. Furthermore,

the use of MEMRE and
Pred(25)
MdMRE provided an MMRE value

worse than the ones obtained using other fitness functions

(e.g., Pred(25)).

Interesting considerations can be made by observing the

relationship between the fitness function and the summary

measures used to evaluate the estimation model. In par-

ticular, the results achieved on the training set (see Table

IV) suggest that almost all the fitness functions are able to

guide the search to get the best value for the considered

summary measure (as highlighted in bold face in Table

IV). Indeed, GP with MMRE obtained the best value for

MMRE (0.51). This happens also for GP with Pred(25)

that gets 0.50 as Pred(25) that is the best value obtained

with the considered fitness functions. This does not hold

for GP based on MdEMRE and
Pred(25)
MdMRE since other fitness

functions are able to get better results for MdEMRE and
Pred(25)
MdMRE values, respectively. Moreover, the use of some

summary measures as fitness functions decreased the value

of the other summary measure values. In particular, using

MMRE as fitness function, the estimation accuracy in terms

of the other summary measures was poor, since MEMRE

and MdEMRE values were very high and Pred(25) was

very low. This confirms the observation of Burgess of Lefley

[8] for MMRE. However, such a phenomenon can be also

observed for MEMRE and MdEMRE, whose use determines

an increasing of the MMRE value. This does not hold

for the use of the other fitness functions (i.e., Pred(25),

MdMRE, and
Pred(25)
MMRE) that were able to provide good

fitness value without decreasing so much the other measures.

This observation is also confirmed by graphically comparing

the trend of the values of summary measures MMRE,

Pred(25), MdMRE, MEMRE, and MdEMRE achieved by

GP during the evolution process. As an example, in Figure

1 we can observe that using MMRE as fitness function the

values of the Pred(25) and MEMRE became worst during

the evolution process, while as we can see in Figure 2 this

did not happen using the MdMRE as fitness function.

Table IV
RESULTS ON TRAINING SET USING DIFFERENT FITNESS FUNCTIONS

Fitness Function MMRE Pred(25) MdMRE MEMRE MdEMRE
MMRE 0.51 0.26 0.44 0.82 0.63
Pred(25) 0.68 0.50 0.28 0.42 0.31
MdMRE 0.68 0.44 0.28 0.39 0.33
MEMRE 0.85 0.42 0.35 0.36 0.32
MdEMRE 1.14 0.32 0.57 0.46 0.34
Pred(25)
MMRE

0.59 0.48 0.31 0.43 0.32
Pred(25)
MdMRE

0.75 0.48 0.29 0.43 0.32

Table V
RESULTS ON TEST SET USING DIFFERENT FITNESS FUNCTIONS

Fitness Function MMRE Pred(25) MdMRE MEMRE MdEMRE
MMRE 0.58 0.23 0.44 0.84 0.63
Pred(25) 0.68 0.43 0.33 0.38 0.31
MdMRE 0.67 0.43 0.32 0.38 0.32
MEMRE 0.91 0.38 0.36 0.39 0.35
MdEMRE 1.32 0.26 0.62 0.47 0.44
Pred(25)
MMRE

0.64 0.39 0.33 0.44 0.34
Pred(25)
MdMRE

0.87 0.36 0.40 0.47 0.39

Another interesting observation can be made related to

the number of iterations (i.e., generations) performed by GP

during the evolution process. In particular, we observed that

GP was able to find a solution in a relative low number

of generations with all the fitness functions. We also ob-

served that the maximum number of generations was rarely

achieved and the evolutionary process was generally stopped

because the best solution found did not change after a fixed

number of generations. In particular, we compared the trend

of the fitness value of the best solution obtained with the

trend of the average fitness value of the whole population for

all the considered fitness functions. The analysis suggested

that less than 1,000 iterations are needed to GP to converge.

As an example, when MMRE is used as fitness function the

analysis highlighted that after about 700-800 generations the

two curves were identical indicating that the best solution

found cannot be improved. Thus, we can state that the

stopping criteria we used is sufficient for GP to converge

and the convergence is not influenced by the fitness function

employed.

Table V reports the summary measures related to the

accuracy achieved by the models constructed by GP with

the analysed fitness functions on the test sets. First of all,

we can observe that the summary measures were not much

more worse than the ones achieved on the training sets.

However, we can observe that none of the exploited fitness

functions was able to provide summary measure values that

satisfy thresholds provided in [12]. Indeed, Pred(25) value

was always less than 0.75 and MMRE and MdMRE values

were always greater than 0.25. Moreover, we can observe

that the predictive capacity of the estimation models is very

similar to the ones achieved on the training sets. Indeed, the

use of Pred(25), MdMRE, and
Pred(25)
MMRE provided the best

results, while the worst summary measure were achieved by

using MMRE and MdEMRE as fitness functions. Finally,

despite the use of MEMRE and
Pred(25)
MdMRE provided results

similar to Pred(25) except for the MMRE value that was

93

Figure 1. An excerpt of the trend of summary measures when MMRE is used as fitness function.

Figure 2. An excerpt of the trend of summary measures when MdMRE is used as fitness function.

worse. As in the case of training sets we also noted that

the model employing MMRE (MdEMRE) as fitness func-

tion improved the estimation accuracy in terms of MMRE

(MdEMRE) but decreased the accuracy in terms of the others

summary measures. This did not happen using the other

fitness functions (i.e., Pred(25), MdMRE, and
Pred(25)
MMRE).

The boxplots in Figure 3 confirm the results obtained in

terms of summary measures. Indeed, the median of
Pred(25)
MMRE

is more close to zero than those of MMRE, MEMRE,

MdEMRE, and
Pred(25)
MdMRE . On the other hand, the median of

MdMRE and Pred(25) is very close to the one of
Pred(25)
MMRE .

Moreover, even if the box length and tails of MMRE and
Pred(25)
MdMRE are close to the ones of Pred(25), MdMRE, and
Pred(25)
MMRE they have more outliers that are more far from the

box than the ones of Pred(25), MdMRE, and
Pred(25)
MMRE .

The indications given by summary measures and boxplots

are confirmed also by using statistical tests. In particular,

we performed the Wilcoxon test to verify the following

null hypothesis: “the use of fi as fitness function does not
provide better results than using fj”, where fi and fj are

two experimented fitness functions. The results shown in

Table VI reveal that the use of MdEMRE provided the worst

Table VI
RESULTS OF THE WILCOXON TESTS COMPARING FITNESS FUNCTIONS

< MMRE Pred(25) MdMRE MEMRE MdEMRE
Pred(25)
MMRE

Pred(25)
MdMRE

MMRE - 0.989 0.986 0.486 0.032 0.995 0.735
Pred(25) 0.011 - 0.286 0.001 7.6e-5 0.190 0.000
MdMRE 0.014 0.715 - 0.001 9.9e-5 0.201 0.000
MEMRE 0.516 0.999 0.999 - 0.000 0.984 0.708
MdEMRE 0.969 1 1 0.999 - 0.999 0.999
Pred(25)
MMRE

0.005 0.811 0.800 0.016 0.001 - 0.010
Pred(25)
MdMRE

0.996 0.990 0.999 0.293 0.003 0.990 -

accuracy, i.e., all the other fitness functions provided better

results than it. Moreover, the use of Pred(25), MdMRE, and
Pred(25)
MMRE provided statistically significant better estimates

than the use of MMRE, MEMRE, and
Pred(25)
MdMRE . This

is especially interesting taking into account that previous

studies on the use of Genetic Programming employed only

MMRE as fitness function [8] [10] [16].

B. Comparison with other Effort Estimation Methods

In this section we report the results related to the second

research goal and obtained by comparing the estimates

provided by GP with the ones provided by Mean, Median,

MSWR, and CBR. In particular, since the previous analysis

revealed that GP performs better when Pred(25), MdMRE,

94

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

MMRE Pred(25) MdMRE MEMRE MdEMRE Pred(25)/MMRE Pred(25)/MdMRE

0
50
00

10
00
0

15
00
0

Figure 3. Boxplots of absolute residuals related to the application of the
models constructed by GP with the analysed fitness functions on the test
sets.

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●
●

●
●

●

GP_Pred(25) GP_MdMRE GP_Pred(25)/MMRE Mean Median CBR SWR

0
50
00

10
00
0

15
00
0

20
00
0

Figure 4. Boxplots of absolute residuals obtained with the analysed
estimation methods.

and
Pred(25)
MMRE are used as fitness function, we exploited them

(reported in the following as GPPred(25), GPMdMRE and,

GPP red(25)
MMRE

, respectively) for the comparison.

The analysis of summary measures (see Table VII) sug-

gests that the estimations obtained with GP are better than

those achieved by using Mean and Median of effort. The

boxplots of absolute residuals shown in Figure 4 confirm

these results. Indeed, the median of GP boxplots are more

close to zero than the one of the boxplots of Median

and Mean of effort. Furthermore, GP boxplots have less

ouliers (and less far from their boxes) and their box length

and tails are less skewed than those of the boxplots of

Mean and Median of effort. Moreover, Table VIII shows

the results of the Wilcoxon test to statistically compare

the accuracy provided by GP with the accuracy provided

by Mean and Median. This test revealed that the absolute

residuals obtained with GP are significantly better than those

obtained by using the Mean and Median of effort.

Concerning the comparison with MSWR and CBR,

Table VII
COMPARISON BASED ON SUMMARY MEASURES

Method MMRE Pred (25) MdMRE MEMRE MdEMRE
GPPred(25) 0.68 0.43 0.33 0.38 0.31

GPMdMRE 0.67 0.43 0.32 0.38 0.32
GP P red(25)

MMRE

0.64 0.39 0.33 0.44 0.34

Mean 1.21 0.22 0.54 0.62 0.51
Median 0.83 0.35 0.41 0.74 0.42
CBR 0.72 0.35 0.42 0.55 0.41
MSWR 0.62 0.40 0.36 0.47 0.38

Table VIII
COMPARISON BASED ON WILCOXON TESTS

< GPPred(25) GPMdMRE GP P red(25)
MMRE

Mean Median CBR MSWR

GPPred(25) - 0.286 0.190 9.3e-6 0.001 0.007 0.100

GPMdMRE 0.715 - 0.201 1.1e-5 0.002 0.008 0.077
GP P red(25)

MMRE

0.811 0.800 - 1.1e-5 0.001 0.021 0.133

Mean 1 1 1 - 0.952 0.999 1
Median 0.998 0.998 0.999 0.050 - 0.976 0.998

CBR 0.993 0.992 0.979 0.001 0.025 - 0.963
MSWR 0.900 0.923 0.868 2.3e-5 0.002 0.037 -

the analysis of the summary measures (see Table VII)

demonstrates that GP (i.e., GPPred(25), GPMdMRE and,

GPP red(25)
MMRE

) achieved better results than CBR and compa-

rable results with MSWR. This result is also confirmed by

the analysis of boxplots (see Figure 4). In particular, box

length and tails of GP boxplots have a median more close

to zero than CBR boxplot and very close to the median

of MSWR boxplot, while the box length and tails of the

GP boxplots are similar to the ones of MSWR and CBR

boxplots. Furthermore, we can observe that outliers of the

CBR boxplot are more far from its box than those of the

other boxplots. As designed we also tested whether there

was statistically significant difference between estimates

obtained with GP and those obtained with MSWR and CBR.

The results suggest that the absolute residuals obtained with

GP are significantly less than those achieved with CBR (see

Table VIII), while no statistically significant difference was

found between the estimates provided by GP and MSWR.

C. Comparison with Burgess and Lefley’s Case Study

Burgess and Lefley [8] also assessed the use of GP for

estimating software development effort in a case study that

exploited the Desharnais dataset [14]. The GP parameters

they used are: a population of 1000 individuals, 500 gen-

erations, and 10 executions (see Table IX). They exploited

only one fitness function designed to minimise MMRE and

employed canonical genetic operators. They also used a tree-

based representation for the solutions. However, differently

from our proposal, during the evolutionary process trees with

different depths can be produced. As for cross validation,

they employed the hold-out which is the simplest kind of

cross validation (i.e., one-fold), where the dataset is split into

a training set used to build the estimation model and a test

used to validate it. In particular a training set containing 63

observations and a test set containing 18 observations were

considered3. Thus, they employed also the 4 observations we

excluded from the analysis due to the presence of missing

3Note that this split is not publicly available.

95

Table IX
COMPARISON OF THE SETTING OF GP-BASED APPROACHES

Burgess and Lefley [8] Our approach
Population size 1000 70
Number of generations 500 ¡=7000
Number of executions 10 10
Tree depth Variable Fixed
Evolutionary approach Canonical Canonical

Fitness function MMRE MMRE, Pred(25), MdMRE, MEMRE, MdEMRE
Pred(25)
MMRE

Pred(25)
MdMRE

Table X
RESULTS ACHIEVED BY BURGESS AND LEFLEY [8]

Method MMRE #MRE<0.25 Pred(25)
Burgess Genetic Programming (GP) 0.45 4 0.23
and Lefley [8] Linear LSR (LR) 0.46 10 0.56

2 nearest neighbours (CBR2) 1.62 8 0.44
5 nearest neighbours (CBR5) 1.68 8 0.44

values. However, hold-out procedure can be biased since

the prediction performance may heavily depend on how the

dataset is split (what are the data points in training set and in

test set, respectively). Therefore, in our case study we used

a 3-fold cross validation which less suffers of such bias.

Moreover, differently from our work, they did not perform

statistical tests to verify differences in the distribution of the

absolute residuals or MRE values.

Table X shows the average results Burgess and Lefley

achieved executing 10 runs of their GP based estimation

method. We can observe that their approach obtained an

MMRE equals to 0.45 and a Pred(25) equals to 0.23. Even

if GP did not outperform LR (Linear Regression) the results

encouraged other research in this field. They observed that

the use of MMRE degraded the other accuracy measures and

suggested that the use of different functions could improve

the accuracy of estimations. By using the same dataset but

with a different validation method (3-fold vs hold-out) and

validation criteria our study has confirmed the observation

and the intuition of Burgess and Lefley. Indeed, first of all

we have confirmed that MMRE as fitness function is not

the best choice, since it allows us to get better MMRE

values but not an overall good prediction accuracy as we

have shown analysing other summary measures (i.e. Pred,

MdMRE, MEMRE, MdEMRE), boxplot of absolute resid-

uals, and statistical significance tests. We have also shown

that this behaviour is common to other summary measures

investigated in our paper as fitness function (MdEMRE,

MEMRE,
Pred(25)
MdMRE). Moreover, we have identified some

accuracy measures (i.e. Pred, MdMRE, and
Pred(25)
MMRE) that

can be more promising as fitness functions since they do

not exhibit this problem. Furthermore, we have confirmed

the intuition of Burgess and Lefley, since we have identified

GP settings with estimation accuracy very close to the one

achieved with MSWR and significantly better than those

obtained with CBR. Note that we used a different application

of linear regression (i.e., MSWR) that is considered more

solid [20].

V. VALIDITY EVALUATION

It is widely recognised that several factors can bias the

validity of empirical studies. In this section we discuss

the validity of the empirical study based on three types of

threats, namely construct, conclusion, and external validity.

As highlighted by Kitchenham et al. [29], to satisfy con-

struct validity a study has “to establish correct operational

measures for the concepts being studied”. This means that

the study should represent to what extent the predictor and

response variables precisely measure the concepts they claim

to measure [22]. Thus, the choice of the features and how

to collect them represents the crucial aspects. We tried to

mitigate such a threat by evaluating the employed estimation

methods on a publicly available dataset [14]. Moreover, since

the dataset is publicly available it has been previously used

in many other empirical studies carried out to evaluate effort

estimation methods, e.g., [4] [8] [15] [17].

Concerning the conclusion validity we carefully applied

the statistical tests, verifying all the required assumptions.

Moreover, we used a medium size dataset to mitigate the

threats related to the number of observations composing

the dataset. However, the employed dataset contains projects

related to one context that might be characterised by some

specific project and human factors, such as development pro-

cess, developer experience, tools, technologies used, time,

and budget constraints [30]. This represents an important

external validity threat that can be mitigated only replicating

the study taking into account data from other companies,

thus getting a generalisation of the results.

VI. RELATED WORK

Besides the work of Burgess and Lefley [8] whose results

have been reported and discussed in Section IV-C, some em-

pirical investigations have been performed to assess the ef-

fectiveness of GP in estimating software development effort.

In particular, GP was employed by Dolado [9] in order to

automatically derive equations alternative to multiple linear

regression. The aim was to compare the linear equations with

those obtained automatically. GP was run a minimum of 15

times and each run had an initial population of 25 equations.

Even if in each run the number of generations varied, the

best results were obtained with three to five generations (as

reported in the literature, usually more generations are used)

and by using the Mean Square Error (MSE) [12] as fitness

function. As dataset, 46 projects developed by academic

students were exploited. It is worth noting that the main

goal of Dolado work was not the assessment of GP but

the validation of the component-based method for software

sizing. However, he observed that GP provided similar or

better values than regression equations.

Successively, Shepperd and Lefley [10] also assessed the

effectiveness of GP and compared it with several estimation

techniques such as LR, ANN (Artificial Neural Networks),

and CBR. As for GP setting they applied the same choice

96

of Burgess and Lefley [8] while a different dataset was

exploited. This dataset is refereed as “Finnish Dataset” and

included 407 observations and 90 features, obtained from

many organizations. After a data analysis, a training set of

149 observations and a test set of 15 observations were

obtained and used in the empirical analysis. Even if the

results revealed that there was not a method that provided

better estimations than the others, GP performed consistently

well. However, the authors observed that GP and ANN

were harder to configure than LR and companies have to

weight the complexity of these methods against the small

increases in accuracy to decide whether to use it to estimate

development effort [10].

An evolutionary computation method, named Grammar

Guided Genetic Programming (GGGP), was proposed in

[11] to fit models, with the aim of improving the estimation

of the software development effort. Data of 423 software

projects from ISBSG (http://www.isbsg.org.au) database

were employed to build the estimation models using GGGP

and LR. The fitness function was designed to minimize

MSE, an initial population of 1000 was chosen, the max-

imum number of generations was 200 and the number of

executions was 5. The results revealed that GPPP performed

better than LR in terms of MMRE and Pred(25).

VII. CONCLUSIONS AND DISCUSSION

The choice of the fitness function represents one of the

main critical design choices in the use of GP. This is

especially true in the context of effort estimation since it

should guide the search to get a model with good estimation

accuracy. Unfortunately, not a unique criterion exists to mea-

sure such an accuracy and then to define the corresponding

fitness function. Indeed, although the identification of “the”

software estimation accuracy measure is still an open issue,

the research community has agreed that the prediction model

accuracy assessment should be based on the comparison

of different summary measures (e.g., MMRE, MdMRE,

Pred(25), MEMRE, and MdEMRE) as well as on the use

of more sophisticated techniques (e.g., boxplots of absolute

residuals, statistical tests).

Starting from the observation by Burgess and Lefley [8]

that the use of MMRE (the most widely used evaluation

criterion) as fitness function could degrade a lot of the other

accuracy measures, we carried out an empirical study whose

main goal was to analyse how the use of different fitness

functions affects the accuracy of GP for effort estimation.

We also compared the estimations achieved using GP with

those achieved by widely used estimation techniques, such

as MSWR and CBR. The experimentation was performed

by the Desharnais dataset [14].

The main result achieved in the case study is that the

choice of the accuracy measures as fitness function sig-

nificantly influenced the accuracy of estimations obtained

with GP. In particular, the results of Wilcoxon test revealed

that the use of Pred(25), MdMRE, and
Pred(25)
MMRE as fitness

function provided statistically significant better estimates

than the use of MMRE, MEMRE, MdEMRE, and
Pred(25)
MdMRE .

This also confirms and extends the observation made by

Burgess and Lefley [8] on the use of MMRE as objective

function. Nevertheless, the analysis also demonstrated that

there are some measures, e.g., Pred(25), that when used

as objective functions are able to guide towards estimation

model with better accuracy since do not degrade a lot of all

the other summary measures.
The idea that several factors should be taken into account

by the fitness function suggested us to investigate the use of

two combinations of summary measures as fitness function

(namely
Pred(25)
MMRE and

Pred(25)
MdMRE). In our case study

Pred(25)
MMRE

is one of the fitness functions that gave the best results.

Nevertheless, the combination only performs better than

MMRE but it is not better than Pred(25). On the contrary
Pred(25)
MdMRE did not provide good results, maybe it was not able

to capture complementary accuracy aspects. In any case, the

use of more than one summary measure in the definition

of the fitness function deserves to be further investigated

by employing more sophisticated combinations and multi-

objective optimisation approaches (e.g., the ones based on

Pareto optimality) [31]. This will be part of our agenda

of future work. Moreover, an empirical analysis could be

carried out to verify whether acting on others GP design

choice (e.g., population size, generation number, crossover

and mutation rates) influences the GP performance aiming

at choosing the most appropriate GP setting, as done in [32].
The case study also highlighted that GP performed better

than widely used estimation methods. In particular, the

results showed that GP provided better results than CBR

and MSWR in terms of summary measures. Moreover, GP

significantly outperformed CBR.
It is clear that the results presented in the paper should be

verified with other datasets. Moreover, the behaviour of other

search-based algorithms could be investigated [31], such as

Simulated Annealing and Tabu Search, only employed in a

preliminary case study [16].

REFERENCES

[1] L. Briand, K. El. Emam, D. Surmann, I. Wiekzorek, and
K. Maxwell, “An assessment and comparison of common
software cost estimation modeling techniques,” in Proceed-
ings of International Conference on Software Engineering.
IEEE press, 1999, pp. 313–322.

[2] L. Briand, T. Langley, and I. Wiekzorek, “A replicated as-
sessment and comparison of common software cost modeling
techniques,” in Proceedings of International Conference on
Software Engineering. IEEE press, 2000, pp. 377–386.

[3] G. R. Finnie, G. E. Wittig, and J.-M. Desharnais, “A compar-
ison of software effort estimation techniques: using function
points with neural networks, case-based reasoning and regres-
sion models,” Journal of Systems and Software, vol. 39, no. 3,
pp. 281–289, 1997.

97

[4] M. Shepperd and C. Schofield, “Estimating software project
effort using analogies,” IEEE Transaction on Software Engi-
neering, vol. 23, no. 11, pp. 736–743, 2000.

[5] L. C. Briand and I. Wieczorek, “Software resource estima-
tion,” Encyclopedia of Software Engineering, pp. 1160–1196,
2002.

[6] M. Harman and B. F. Jones, “Search based software engineer-
ing,” Information and Software Technology, vol. 43, no. 14,
pp. 833–839, 2001.

[7] J. Clarke, J. J. Dolado, M. Harman, R. Hierons, B. Jones,
M. Lumkin, B. Mitchell, K. Rees, and M. Roper, “Refor-
mulating software engineering as a search problem,” IEE
ProceedingsSoftware, vol. 150, p. 2003, 2003.

[8] C. J. Burgess and M. Lefley, “Can genetic programming im-
prove software effort estimation? a comparative evaluation,”
Information and Software Technology, vol. 43, no. 14, pp.
863–873, 2001.

[9] J. J. Dolado, “A validation of the component-based method
for software size estimation,” IEEE Transactions on Software
Engineering, vol. 26, no. 10, pp. 1006–1021, 2000.

[10] M. Lefley and M. J. Shepperd, “Using genetic programming
to improve software effort estimation based on general data
sets,” in Proceedings of Genetic and Evolutionary Computa-
tion Conference, 2003, pp. 2477–2487.

[11] Y. Shan, R. I. Mckay, C. J. Lokan, and D. L. Essam, “Software
project effort estimation using genetic programming,” in
Proceedings of International Conference on Communications
Circuits and Systems. IEEE press, 2002, pp. 1108–1112.

[12] D. Conte, H. Dunsmore, and V. Shen, Software engineering
metrics and models. The Benjamin/Cummings Publishing
Company, Inc., 1986.

[13] B. Kitchenham, L. M. Pickard, S. G. MacDonell, and M. J.
Shepperd, “What accuracy statistics really measure,” IEE
Proceedings Software, vol. 148, no. 3, pp. 81–85, 2001.

[14] J. M. Desharnais, “Analyse statistique de la productivitie des
projets informatique a partie de la technique des point des
fonction,” Ph.D. dissertation, Unpublished Masters Thesis,
University of Montreal, 1989.

[15] G. Kadoda and M. Shepperd, “Using simulation to evaluate
predictions techniques,” in Proceedings of International Soft-
ware Metrics Symposium. IEEE press, 2001, pp. 349–358.

[16] F. Ferrucci, C. Gravino, R. Oliveto, and F. Sarro, “Using
tabu search to estimate software development effort,” in
Proceedings of Mensura 2009. Lecture Notes in Computer
Science 5891 Springer, 2009, pp. 307–320.

[17] M. Shepperd, C. Schofield, and B. Kitchenham, “Effort
estimation using analogy,” in Proceedings of International
Conference on Software Engineering. IEEE press, 1996,
pp. 170–178.

[18] J. R. Koza, Genetic Programming. MIT Press, 1992.

[19] E. Mendes and B. Kitchenham, “A comparison of cross-
company and within-company effort estimation models for
web applications,” in Proceedings of Conference on Eval-
uation and Assessment in Software Engineering, 2004, pp.
47–55.

[20] E. Mendes and B.Kitchenham, “Further comparison of cross-
company and within-company effort estimation models for
web applications,” in Proceedings of International Software
Metrics Symposium. IEEE press, 2004, pp. 348–357.

[21] S.-J. Huang and N.-H. Chiu, “Optimization of analogy
weights by genetic algorithm for software effort estimation,”
Journal of Systems and Software, vol. 48, no. 11, pp. 1034–
1045, 2006.

[22] E. Mendes, S. Counsell, N. Mosley, C. Triggs, and I. Watson,
“A comparative study of cost estimation models for web
hypermedia applications,” Empirical Software Engineering,
vol. 8, no. 23, pp. 163–196, 2003.

[23] H. G. Cobb and J. J. Grefenstette, “Proceedings of the 5th
international conference on genetic algorithms, icga, 1993,”
in ICGA. Morgan Kaufmann, 1993, pp. 523–530.

[24] B. Kitchenham, T. Foss, E. Stensrud, and I. Myrtveit, “A
simulation study of the model evaluation criterion mmre,”
IEEE Transaction on Software Engineering, vol. 29, no. 11,
pp. 985–995, 2003.

[25] I. Myrtveit, M. Shepperd, and E. Stensrud, “Reliability and
validity in comparative studies of software prediction mod-
els,” IEEE Transactions on Software Engineering, vol. 31,
no. 5, pp. 380–39, 2005.

[26] E. Stensrud and I. Myrtveit, “Human performance estimating
with analogy and regression models: an empirical validation,”
in Proceedings of International Software Metrics Symposium.
IEEE press, 1996, pp. 205–.

[27] P. Royston, “An extension of Shapiro and Wilk’s W test for
normality to large samples,” Applied Statistics, vol. 31, no. 2,
pp. 115–124, 1982.

[28] J. Cohen, Statistical power analysis for the behavioral sci-
ences, 2nd ed. Lawrence Earlbaum Associates, 1988.

[29] B. Kitchenham, L. Pickard, and S. Pfleeger, “Case studies for
method and tool evaluation,” IEEE Software, vol. 12, no. 4,
pp. 52–62, 1995.

[30] L. C. Briand and J. Wüst, “Modeling development effort
in object-oriented systems using design properties,” IEEE
Transaction on Software Engineering, vol. 27, no. 11, pp.
963–986, 2001.

[31] M. Harman, “The current state and future of search based
software engineering,” in Proceedings of Future of Software
Engineering - International Conference on Software Engi-
neering, 2007, pp. 342–357.

[32] V. Garousi, “Empirical analysis of a genetic algorithm-based
stress test technique,” in Proceedings of the 10th Conference
on Genetic and Evolutionary Computation. ACM press,
2008, pp. 1743–1750.

98

