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Abstract. Project management presents the manager with a complex set of related optimi-
sation problems. Decisions made can more profoundly affect the outcome of a project than 
any other activity. In the chapter, we provide an overview of Search-Based Software Pro-
ject Management, in which Search-Based Software Engineering (SBSE) is applied to prob-
lems in software project management. We show how SBSE has been used to attack the 
problems of staffing, scheduling, risk, and effort estimation. SBSE can help to solve the op-
timisation problems the manager faces, but it can also yield insight. SBSE therefore pro-
vides both decision making and decision support. We provide a comprehensive survey of 
Search-Based Software Project Management, and give directions for the development of 
this subfield of SBSE. 

15.1 Introduction 

Software Project Management includes several activities critical for the success of 
a project (e.g., cost estimation, project planning, quality management). These ac-
tivities often involve finding a suitable balance between competing and potentially 
conflicting goals. For example, planning a project schedule requires to minimise 
the project duration and the project cost, and to maximise the product quality. 
Many of these problems are essentially optimization questions characterised by 
competing goals/constraints and with a bewilderingly large set of possible choices. 
So finding good solutions can be hard.  

Search-Based Software Engineering seeks to reformulate software engineering 
problems as search-based optimisation problems and applies a variety of meta-
heuristics based on local and global search to solve them (such as Hill Climbing, 
Tabu Search, and Genetic Algorithms). These meta-heuristics search for a suitable 
solution in a typically large input space guided by a fitness function that expresses 
the goals and leads the exploration into potentially promising areas of the search 
space.  

Though the term Search-Based Software Engineering (SBSE) was coined by 
Harman and Jones in 2001 to cover the application of computational search and 
optimisation across the wide spectrum of software engineering activities (Harman 
and Jones 2001), there were already pockets of activity on several specific soft-
ware engineering problems prior to the introduction of the term SBSE. One such 
topic was Search-Based Software Project Management, the topic of this chapter. 
In particular, there was work on search-based project scheduling and staffing by 
Chang (1994), Chang et al. (1994, 1998) and Chao et al. (1993), and on search-
based software development effort estimation by Dolado (2001) and Shukla 
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(2000). Figure 15.1 shows the number of papers published on the use of search-
based approaches for Software Project Management. We can note that the first 
work aiming at optimising project scheduling and staffing appeared in 1993, while 
in 2000 the SBSE community started investigating search-based approaches also 
for software development effort estimation. 

This chapter provides a comprehensive review of techniques, results and trends 
published in relevant papers. We discuss the effectiveness of search-based ap-
proaches for supporting project manager in these activities and provide sugges-
tions for future research directions. 

The rest of the chapter is organized as follows. Section 15.2 reports on the main 
features of the most popular search-based techniques used in the context of search-
based software project management. Section 15.3 introduces the problems of 
scheduling and staffing and building predictive models with special focus on 
software development effort estimation providing a description of search-based 
approaches proposed in the literature and the empirical studies carried out to as-
sess their effectiveness. Future research directions are instead described in Section 
15.4. Section 15.5 concludes the chapter. 

 

 
Figure 15.1: Number of Relevant Publications on the Use of Search-Based Approaches for 

Software Project Management from 1993 to 2013, source: (Zhang 2013). 

15.2   Search-Based Software Engineering 

Software Engineering, like other engineering disciplines, is concerned with opti-
mization problems: we seek to build systems that are better, faster, cheaper, more 
reliable, flexible, scalable, responsive, adaptive, maintainable, and testable; the list 
of objectives for the software engineer is a long and diverse one, reflecting the 
breadth and diversity of applications to which software is put. The space of possi-
ble choices is enormous and the objectives many and varied. Search-Based Soft-
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ware Engineering (SBSE) is an approach to software engineering in which search-
based optimization algorithms are used to identify optimal or near optimal solu-
tions and to get insight. Thus, in SBSE an SE problem  (e.g., test case generation) 
is treated as a search or optimization problem whose goal is to find the most ap-
propriate solution conforming to some adequacy criteria (e.g., maximizing the 
code coverage). Rather than constructing test cases, project schedules, require-
ments sets, designs, and other software engineering artefacts, SBSE simply 
searches for them.  

The search space is the space of all possible candidate solutions. This is typical-
ly enormous, making it impossible to enumerate all solutions. Moving from con-
ventional Software Engineering to SBSE basically requires choosing a representa-
tion of the problem and defining a suitable fitness function to determine how good 
a solution is. Typically, a software engineer will have a suitable representation for 
his/her problem, because one cannot do much engineering without a way to repre-
sent the problem in hand. Furthermore, many problems in Software Engineering 
have a rich and varied set of software metrics associated with them that naturally 
form good initial candidates for fitness functions (Harman and Clark 2004).  

With these two ingredients it becomes possible to implement search-based op-
timisation algorithms. These algorithms use different approaches to locate optimal 
or near optimal solutions. However, they are all essentially a search through many 
possible candidate instances of the representation, guided by the fitness function, 
which allows the algorithm to compare candidate solutions according to their ef-
fectiveness at solving the problem in hand. Many techniques have been used in-
cluding local search techniques, such as Hill Climbing (HC), and global tech-
niques, such as Genetic Algorithm (GA) and Genetic Programming (GP).  

Despite the local maximum problem, HC is a simple technique that is both easy 
to implement and surprisingly effective (Harman et al. 2002)(Mitchell 2002); the-
se aspects make it a popular first choice among search-based techniques. GA be-
longs to the larger class of evolutionary algorithms (EAs) (Holland 1975), which 
loosely model evolutionary searches for fit individuals. GP (Koza 1992) is another 
form of evolutionary technique that has proved very useful in SBSE for project 
management.  

A comprehensive review of the overall field of SBSE can be found in the work 
of Harman et al. (2012b). In that overall SBSE survey the reader can find a more 
detailed explanation of the algorithms used in SBSE. There is also a tutorial on 
SBSE (Harman et al. 2010), in which the reader can find a gentle introduction to 
the entire area. The SBSE survey (Harman et al. 2012b) and tutorial (Harman et 
al. 2010) cover the whole area of SBSE and, as a result, has little time and space 
available for each sub topic. The present survey focuses on the results, trends, 
techniques, and achievements in SBSE for project management. Though there 
have been many surveys on other sub areas of SBSE, including, Testing (McMinn 
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2004)(Yoo and Harman 2012), Design (Räihä 2010), and Requirements (Zhang et 
al. 2008), there has been no previous survey on SBSE for Project Management. 

15.3   Search-Based Software Project Management 

In this section, we provide an overview of the work on search-based Software Pro-
ject Management, in which SBSE is applied to support project managers for time 
management (Chapter 1 Section 1.3.3.), cost management (Chapter 1 Section 
1.3.4), quality management (Chapter 1 Section 1.3.5), human-resource manage-
ment (Chapter 1 Section 1.3.6) and risk management (Chapter 1 Section 1.3.8). 
The first application of SBSE to Software Project Management has been proposed 
for project scheduling and resource allocation. Figure 15.2 provides a generic 
schematic overview of SBSE approaches to project planning. Given in input in-
formation about work packages (e.g., cost, duration, dependencies) and staff skills, 
the search-based approaches search for an optimal work package ordering and 
staff allocation guided by a single or multi-objectives fitness function. A natural 
goal for a search-based approach to project management is to find project plans 
that minimise the completion time of the project. Another goal that has been taken 
into account is to minimise the risks associated with the development process 
(e.g., delays in the project completion time, or reduced budgets available).  

 

 
 

Figure 15.2: A Generic Search-Based Project Management Scheme (Harman et al. 
2012b) 
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Figure 15.2 also highlights one of the important limitations of the approach: it 

relies on simulation of the likely course of the project, given the guiding project 
configuration parameters (effectively, the search space). Moreover, the formula-
tion of search-based project management problem does not always model the real-
ity of software projects (e.g., many papers do not have a realistic representation of 
skill and/or risk). However, there is evidence to suggest that this uptake in making 
the formulation of the search-based project management problem more realistic 
(see e.g., (Antoniol et al. 2004)(Antoniol et al. 2005)(Luna et al. 2012)) and ori-
ented towards human aspects (see Chapter 4) is already taking place.  

SBSE techniques also have a natural application in predictive modelling (Har-
man 2010). Software development effort estimation is one of the areas in which 
this search-based predictive modeling approach has been most widely investigated 
(Ferrucci et al. 2010c). In particular, the use of search-based approaches in this 
context has been twofold: they can be exploited to build effort estimation models 
or to enhance the use of other effort estimation techniques (Sarro, 2011).  

In the first case the problem of building an estimation model is reformulated as 
an optimization problem where the search-based method builds many possible 
models - exploiting past projects data - and tries to identify the best one, i.e., the 
one providing the most accurate estimates.  

In the second case, search-based methods can be exploited in combination with 
other estimation techniques to improve critical steps of their application (e.g., fea-
tures subset selection or the identification of critical parameters) aiming to obtain 
better estimates.  

Many empirical studies were carried out in this field showing that search-based 
techniques are not only as effective as widely used effort estimation methods (see 
e.g., (Ferrucci et al. 2010)) but also their use can significantly improve the accura-
cy of other data-driven effort estimation techniques (see e.g., (Corazza et al. 
2013)). Moreover, there is evidence that the use of search-based approaches can 
help to yield insight into open problems, such as the choice of a reliable measure 
to compare different estimation models (see e.g., (Ferrucci et al. 2010b)(Lokan 
2005)). Furthermore, search-based approaches only have been used to obtain exact 
prediction (i.e., one point estimate for a project); however, they can be exploited 
to investigate prediction uncertainty and risk of inaccurate prediction by means of 
using sensitivity analysis or multi-objective optimisation, as successfully done in 
other fields of SBSE (see e.g., (Harman et al. 2009)).  

Figure 15.3 shows the key ideas developed so far for Search-Based Project 
Management. In Subsections 15.3.1-15.3.4 we discuss the studies that have been 
carried out on the use of search-based approaches for project planning and staff-
ing, while in Subsection 15.3.5 we discuss the main studies on search-based effort 
estimation. Open challenges and future work are reported in Section 15.4. 
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Figure 15.3: Key Ideas Developed for Search-Based Software Project Management 

 
SBSE has also been used to build predictive models to support project manag-

ers in other estimation tasks, namely quality prediction and defect prediction. In 
particular, Azar (2010) considers approaches to improve predictive models of 
software quality using SBSE. Liu and Khoshgoftaar (2011) apply GP to quality 
prediction, presenting two case studies of the approach. This GP approach has 
been extended, refined and further explored in (Khoshgoftaar et al. 2003, 
2007)(Liu and Khoshgoftaar 2001, 2003, 2004) (Khoshgoftaar and Liu 2007).  

In all these works, GP-evolved predictors are used as the basis for decision 
support. Bouktif et al. (2002, 2004, 2006) exploit GA and SA for quality predic-
tion for software projects. Other authors have used a combination of GA and GP 
techniques for estimation as a decision support tool for software managers. Jarillo 
et al. (2001) and Afzal et al. (2013) apply GA and GP for predicting the number of 
defects and estimating the reliability of the system. Others exploit GA to search 
for a suitable configuration of Support Vector Machines to be used for inter-
release fault prediction (Di Martino et al. 2011)(Sarro et al. 2013).  

15.3.1 Early Work on Search-Based Software Project Planning and Staffing 

Chang et al. (Chang 1994)(Chang et al. 1994)(Chang et al. 1998)(Chang et al. 
2001)(Chao et al. 1993) introduced the Software Project Management Net (SPM-
Net) approach for project scheduling (Chapter 1 Section 1.3.3) and resource allo-
cation (Chapter 1 Section 1.3.6). This was the first work on search-based Software 
Project Management in the literature. The work is evaluated on simulated data, 
constructed synthetically to mimic the properties of real software projects and to 
evaluate the properties of the algorithms used. One of the enduring problems re-
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searchers concerned with project management face is the lack of available real 
world project data. It remains a common problem to this day. 

At about the same time as the term SBSE was introduced to the mainstream 
software engineering community, Aguilar-Ruiz et al. (2001, 2002) were also ex-
perimenting with computational search as a means of managing and investigating 
software project management activities. The goal was to provide rules to the man-
ager to help guide the process of project management. As with the work of Chang 
et al, a simulation of the project was used to evaluate the search. 

This concept of a software project simulation has remained prevalent through-
out the history of work on project management (Chapter 17). To evaluate a fitness 
for a proposed project plan, it is necessary to run a simulation of the course of the 
project in order to obtain an assessment of the fitness of the proposed plan. Of 
course, this raises additional issues as to the validity of the simulation. One of the 
advantages of SBSE approach, more generally, is that it can operate directly on 
the engineering material (i.e., the software) in question. This is an aspect of SBSE 
that is unique to the software engineering domain and not shared by any other ap-
plication of computational search to other engineering disciplines (Harman 
2010a). However, for search-based project management, the familiar issues that 
arise in computational search for other engineering disciplines arise here also for 
software engineering (Harman 2010). We have to be aware that our model of re-
ality and our simulation of that model are both important players in the overall 
computation of fitness and, thereby, impact the results obtained; errors in the 
model or the simulation may feed through into poor quality solutions found by the 
search. 

15.3.2  Minimising Software Project Completion Time 

A natural step for a search-based approach to project management is to focus on 
techniques that find project plans that minimise the completion time of the project 
(Chapter 1 Section 1.3.3). Like all project managers, software project managers 
are concerned with timely product delivery. In highly competitive software engi-
neering application domains, time to market can be a key determinant of the ulti-
mate success of a product. 

Antoniol et al. (2004, 2005) applied GAs, HC and SA to the problem of staff 
allocation to work packages with the aim of reducing project completion time. 

At the same time, Alba and Chicano (2005, 2007) also applied search algo-
rithms to software projects. They combined several different objectives for opti-
misation of project management into a single weighted sum and optimise for this 
weighted sum. The approach was evaluated on a set of problems generated by an 
instance generator. Subsequently, this work was extended to handle multiple ob-
jectives using a Pareto optimisation approach (Chicano et al. 2011). 
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The work of Antoniol et al. (2004, 2005) targeted a massive maintenance pro-

ject, in which work packages were compressible by the allocation of additional 
staff. This principle of compressible work packages runs contrary to Brooks’ fa-
mous law (Brooks 1975). That is, adding more staff to a late project simply makes 
the project even later. Following Brooks’ law we may not, in general, assume that 
a work package of 2 person months will take one month to complete should we 
choose to allocate 2 people to it. In the most extreme case, the additional commu-
nication overheads may mean that the work package takes longer to complete with 
two people than with one.  

However, in some cases it is realistic to assume that the duration of a work 
package can be derived by dividing the person months needed for the package by 
the number of engineers working on it. This can only be applied within reason, 
even where the linearity can be assumed to hold; a 2 person month work package 
may not be completed in under an hour by allocating one thousand engineers to it! 
However, linearity may apply for a reasonably useful range of values, where the 
tasks are highly mechanized or where they are specified in detail and prescriptive. 
Such work packages may be found in such massive maintenance tasks such as 
those studied in Antoniol et al. (2004, 2005). They may also be found in situations 
where software engineering activities are outsourced and therefore more highly 
specified for this reason. 

Many authors have simplified their models of software projects by implicitly or 
explicitly assuming linearity (effectively denying Brooks’ law). Where the lineari-
ty assumption cannot be justified and we assume that Brooks’ law applies, we can 
still use SBSE; we simply require a richer model. We can also use SBSE to ex-
plore the impact of Brooks’ law on the software project planning process. Antoni-
ol et al. (2005) introduced an approach to investigating Brooks’ law with different 
models of communication overhead to explore the influence of nonlinearity on 
project planning. 

More intricate models may be required to adequately capture the true behaviour 
of the project once it commences. Another example of an important aspect of 
software engineering projects is the tendency for aspects of the project to be re-
worked. Software is so flexible, that it is often considered easy to reassign or re-
implement a component. This can lead to headaches for the project manager, who 
would prefer, perhaps, to schedule his or her project on the basis of known com-
pletion times.  

To make the formulation of the search-based project management problem 
more realistic, Antoniol et al. (2004) introduced models of the project manage-
ment problem that account for re-working and abandonment of work packages. In 
this way we can enrich our models of the eventual software project process to ca-
ter for more real world assumptions. This may make the overall model more real-
istic and the simulation, thereby, more reliable.  
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Unfortunately, it also makes the model more complex and consequently it be-

comes harder to explain the outcomes to the users. Care is thus required that the 
model does not become such a Byzantine work of intricate beauty, that its findings 
become simultaneously impenetrable to the decision maker; this area of SBSE is 
primarily concerned with decision support, rather than decision making (Harman 
et al. 2012b). Insights that accrue to the decision maker rely critically on accessi-
bility of explanations. 

Much of the previous work on search-based project management (Aguilar-Ruiz 
et al. 2001)(Alba and Chicano 2005)(Alba and Chicano 2007)(Chang 
1994)(Chang et al. 1994)(Chang et al. 1998)(Chang et al. 2001)(Chao et al. 
1993)(Minku et al. 2012)(Minku et al. 2013) has used synthetic data. This can be 
achieved in a disciplined and controlled manner. For example, Alba and Chicano 
(2007) used a systematic instance generator to create synthetic software project 
data concerning work package estimated effort. This approach to the construction 
of synthetic data allows for experimental control of the evaluation under ‘laborato-
ry conditions’. Such experimental control has been argued to be an important as-
pect of SBSE that complements empirical analysis on real world case studies 
(Harman et al. 2012). Antoniol et al. (2005) applied their search-based algorithms 
to real world data from a large Y2K maintenance project, providing empirical evi-
dence about search-based project management that complements (but does not re-
place the need for) the experimental data from other studies. 

Many other approaches and formulations have been introduced for the software 
project management problem. For example, Alvarez-Valdes et al. (2006) applied 
Scatter Search to the problem of minimizing project duration. Hericko et al. 
(2008) used a gradient-based optimization method to optimize project team size 
while minimising project effort. Chen and Zhang (2013) used an Ant Colony Op-
timisation (ACO) approach. Kang et al. (2011) optimized the scheduling of human 
resource allocations by using a variant of SA, taking into account individual and 
team constraints based on the literature and interviews with experts in the indus-
try, and by employing real data to validate their proposal. Rahman et al. (2010) al-
so reported on an empirical analysis carried out exploiting real data on the use of 
both GA and a greedy approach that makes the locally optimal choice at each 
stage to assign developer to tasks and bug fixings activities. Different aspects of 
the management also focused on the allocation of staff (Barreto et al. 2008) (Ka-
pur et al. 2008) and the provision of decision support (Cortellesa et al. 2008). An-
toniol et al. (2011) provided a recent evaluation of search-based techniques for 
scheduling and staffing for software project management assessed on real world 
examples in the style of detailed empirical evaluations using non-synthetic data. 
This paper covers single and multiple objective formulations, catering for conflict-
ing project objectives, schedule fragmentation, and developer expertise. Results 
are presented for HC, SA and GAs and applied to two real world software pro-
jects. 
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15.3.3 Risk Based Approaches 

All software projects suffer from risk (Chapter 1 Section 1.3.8). Risks can be cate-
gorised as product risks and process risks. Risks to the product concern the possi-
bility that there may be flaws in the product that make it less attractive to custom-
ers, while process risks concern the problems that may cause delays in the project 
completion time, or reduced budgets available forcing compromise. 

Kiper et al. (2007) were concerned with the problem of technical product risks, 
seeking to find those verification and validation activities that could be deployed 
to reduce risks subject to budget. This work can be categorised as a product risk; it 
seeks to reduce the chance that the product will exhibit a risk of faults or other low 
quality. 

Gueorguiev et al. (2009) concerned process risk, focusing on the chances that 
misestimating the effort required for a work package might lead to overruns which 
would adversely affect the completion time of the project. The effects of overruns 
are not immediately obvious, since they can affect the critical path, making previ-
ously less important work packages become more important for the overall project 
completion time. 

Jiang et al. (2007) proposed an approach that extracts personnel risk infor-
mation from historical data and integrates risk analysis into project scheduling 
performed with GA. A rescheduling mechanism is designed to detect and mitigate 
potential risks along with the software project development. However, the pro-
posed approach has not been empirically validated. 

Xiao et al. (2013) presented a search-based risk mitigation planning method 
based on GA for project portfolio management. Their results showed that with 
various risk mitigation actions and project objective settings, different plans can 
be effectively obtained, thus providing decision support for managers. 

15.3.4 Overtime Planning 

Effort estimation and planning of projects are hard problems that can be supported 
by decision support tools. Where these tools are inadequate or the project encoun-
ters unexpected ‘mission creep’, the consequences can be highly detrimental for 
the software engineers working on the project and the products they produce. Typ-
ically, the only remaining solution open to the project manager is to fall back on 
the allocation of overtime. However, unplanned overtime results in bad products, 
as has been repeatedly demonstrated in the literature (Akula et al. 2008) (Nishi-
kitani et al. 2005). It also has harmful effects on the engineers forced into such 
punitive working practices (see e.g., Kleppa et al. 2008). The spectre of the ‘death 
march project’ (Yourdon 1997) hangs over many software engineering activities, 
largely as a result of the inability to plan for and manage the deployment of over-
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time. More thorough overtime planning is not only beneficial to the software en-
gineers who have to undertake the work (Beckers et al. 2008), there is also evi-
dence that it produces better products when used in agile team (Mann and Maurer 
2005).  

Motivated by these observations Ferrucci et al. (2013) introduced a multi-
objective formulation of the project overtime planning for software engineering 
management. The approach is able to balance trade-offs between project duration, 
overrun risk, and overtime resources for three different risk assessment models. It 
is applicable to standard software project plans, such as those constructed using 
the Critical Path Method, widely adopted by software engineers and implemented 
in many tools. To analyse the effectiveness of the approach they reported an em-
pirical study on 6 real world software projects, ranging in size from a few person 
weeks to roughly four person years.  

The experiments reveal that the approach was significantly better than standard 
multi-objective search in 76% of experiments and was significantly better than 
random search in 100% experiments. Moreover, it always significantly outper-
forms standard overtime planning strategies reported in the literature. Further-
more, the Pareto fronts obtained by the proposed approach can yield actionable in-
sights into project planning trade-offs between risk, duration, and overtime using 
different risk assessment models. Software engineers can exploit this information 
when making decisions about software project overtime planning.  

15.3.5 Using SB Approaches for Software Development Effort Estimation 

Software development effort estimation concerns with the prediction of the effort 
needed to develop a software project. Such an effort is usually quantified as per-
son-hours or person-months. Development effort is considered as one the major 
component of software costs and it is usually the most challenging to predict 
(Chapter 3.1). In the last few decades, several methods have been proposed to 
support project managers in estimating software development effort (Briand et al. 
2002). In particular, data-driven methods exploit data from past projects to esti-
mate the effort for a new project under development (typical methods are Linear 
Regression and Case-Based Reasoning). These data consist of information about 
some relevant factors (named cost drivers) and the effort actually spent to develop 
the projects. Usually a data-driven method tries to explain the relation between ef-
fort and cost drivers building an estimation model (equation) that is used to predict 
the effort for a new project. Also search-based methods have been used to build 
effort estimation models by formulating the problem as an optimisation problem 
that aims to identify the best model, i.e., the one providing the most accurate esti-
mates. In the following, we highlight some key problems in the use of SBSE for 
effort estimation and how they have been addressed and assessed. 
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Dolado (2001) was the first to employ GP to automatically derive equations for 

estimating development effort and he observed a similar or better prediction than 
regression equations. Based on these encouraging results other investigations have 
been carried out comparing search-based approaches with other techniques pro-
posed in the literature. Most of the studies are based on GP and only more recently 
other search-based techniques such as Tabu Search (Ferrucci et al. 2010, 2010a) 
and multi-objective evolutionary approaches (Ferrucci et al. 2011), (Minku and 
Yao 2012, 2013). have been employed  

As for the setting of these techniques, usually a trial-and-error process has been 
employed carrying out a validation process with different settings and selecting 
the one providing the best results (Ferrucci et al. 2010c). This practice is time-
consuming and it has to be repeated every time new data is used, thus limiting the 
adoption of search-based approaches by practitioners. A heuristic approach has 
been instead exploited in (Ferrucci et al. 2010b) and empirically analysed in (Sar-
ro, 2013). The heuristic approach was originally suggested in (Doval et al. 1998) 
to set population size and number of generations of a GP for software clustering. 
In particular, given a project dataset containing V features, they set the number of 
iterations to 10V and stop the search after 1000V iterations or if the fitness value 
of the best solution does not change in the last 100V iterations. Thus, such heuris-
tics adapts the search process to the size of the problem under investigation. Sarro 
(2013) extended the same heuristics to work also with Tabu Search (TS) (setting 
to V the length of Tabu List) and assessed its effectiveness by comparing it with 
respect to the use of five different configurations characterized by very small, 
small, medium, large, and very large number of solutions.  

The results obtained by exploiting GP and TS on 7 public datasets highlighted 
that the considered heuristics is suitable to set both techniques since it provided 
comparable or superior prediction accuracy with respect to the ones obtained with 
the other configurations. Moreover, TS and GP configured by using the heuristics 
are much faster than the configurations obtained using other settings. This allowed 
saving time and computational resources without affecting the accuracy of the es-
timation models built with TS and GP, so the use of the heuristics has been re-
vealed a cost-effective way to set these techniques on the considered datasets. 

Another crucial design choice for search-based approaches is the definition of 
the fitness function that indicates how a solution is suitable for the problem under 
investigation driving the search towards optimal solutions. For the effort estima-
tion problem the fitness function should be able to assess the accuracy of estima-
tion models.  

It is worth noting that several different accuracy measures have been proposed 
in the literature for assessing the effectiveness/accuracy of effort prediction mod-
els, such as the Mean of Absolute Error (MAE), the Mean of Squared Error (MSE) 
the Mean and Median of Magnitude of Relative Error (MMRE and MdMRE, re-
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spectively), the Mean and Median of Magnitude of Estimate Relative Error 
(MERE and MdEMRE, respectively), the Prediction at level k (Pred(k)) (Conte et 
al. 1986)(Kitchenham et al. 2001). Usually they represent a cumulative measure of 
the error/residual, i.e., the difference between actual effort and predicted effort 
(e.g., MAE, MSE), or of the relative error with respect the actual (e.g., MMRE, 
MdMRE) or the estimated effort (e.g., MEMRE, MdEMRE); or a percentage of 
the cases where the considered error is less of a chosen threshold (e.g., Pred(25)).  

Among them, the MMRE (Conte et al. 1986) represents the most widely used 
measure for assessing effort estimation proposals, thus it is not surprising that it 
has been also the most used as fitness function in the study employing search-
based techniques. Nevertheless, MMRE reliability has been questioned by several 
researchers (e.g., (Kitchenham et al. 2001)(Shepperd and MacDonell 2012) and 
has been shown that it does not select the best model among competing ones. 
Presently, there does not exist a unique measure universally accepted as the best 
way to assess the estimation accuracy of effort models. On the other hand, each 
proposed measure focuses the attention on a specific aspect. As a matter of fact, 
Pred(25) measures how well an effort model performs, while MMRE measures 
poor performance; MMRE is more sensitive to overestimates and MEMRE to un-
derestimates. Thus, it could be argued that the choice of the criterion for assessing 
predictions and establishing the best model can be a managerial issue. So, a pro-
ject manager could prefer to use Pred(25) as the criterion for judging the quality of 
a model, while another might prefer to use another criterion, just for example 
MMRE to better control overestimates, or, to get a more reliable assessment, an-
other could jointly employ several evaluation criteria covering different aspects of 
model performances (e.g., underestimating or overestimating, success or poor per-
formance).  

Based on this consideration search-based methods represent an opportunity due 
to their flexibility. Indeed, they allow the use as fitness function of any measure 
able to evaluate some properties of interest, thus allowing a project manager to se-
lect his/her preferred accuracy measure so that the search for the model is driven 
by such a criterion. Moreover, search-based techniques can take into account not 
only single evaluation criteria but also multiple ones, considering some algebraic 
expressions of basic measures (e.g., Pred(25)/MMRE) (Ferrucci et al. 2010b) or 
exploiting more sophisticated approaches based on multi-objective optimization 
(Ferrucci et al. 2011)(Minku and Yao 2012, 2013)(Sarro 2012a).  

Different fitness functions have been employed in the studies carried out so far. 
They highlighted that such a choice can affect the performance of the obtained 
models: each fitness function is able to guide towards estimation models with bet-
ter accuracy in terms of the selected criterion, but some of them can degrade a lot 
the other summary measures (Burgess and Lefley 2011)(Ferrucci et al. 
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2010b)(Lokan 2005)(Sarro 2013). Thus, project managers should be aware of this 
effect and should take care to select the right evaluation criterion as fitness func-
tion. 

Another aspect that is important for project managers (both for trust on the so-
lution proposed by an estimation technique and for improving the data collection 
process of current projects) is concerned with the transparency of the proposed so-
lution. Search-based approaches produce transparent solutions because the predic-
tion model is an algebraic expression that makes explicit any information about 
the contribution of each variable in the model (this is not always the case for other 
estimation techniques, for example neural networks).  

Nevertheless, due to the variable length of the expression tree some proposed 
GP approaches (e.g., (Dolado 2001)(Burgess and Lefley 2001)(Lefley and Shep-
perd 2003)) produced not so clear expressions that need to be simplified. To im-
prove the transparency of solutions, an evolutionary computation method, named 
Grammar Guided Genetic Programming (GGGP), was proposed by Shan et al. 
(2002) that exploited grammars to impose syntactical constraints and incorporate 
background knowledge. Another approach to simplify the transparency of solu-
tions provided by GP was exploited in (Ferrucci et al. 2010b) based on the use of 
trees of fixed depth and crossover and mutation operators that preserved the syn-
tactic structure. 

As for the empirical studies all performed a hold-out validation on industrial 
datasets except for one that employed a dataset which contains academic projects. 
All the industrial datasets have been widely used in effort estimation studies; they 
come from a single company (e.g., Desharnais (Menzies et al. 2012)) or from mul-
tiple companies (e.g., Tukutuku (Ferrucci et al. 2010)) and are related to both 
software and Web projects. The criteria used to evaluate the accuracy of the ob-
tained estimates are all based on summary measures; in particular MMRE and 
Pred(25). To make the comparison more reliable, some of them complemented the 
analysis with graphical tools (boxplot of residuals) and statistical tests.  

As a general result of these studies we can conclude that search-based tech-
niques behave consistently well obtaining estimation accuracy comparable or bet-
ter than other widely used estimation techniques, such as the ones based on Manu-
al StepWise Regression (MSWR) or Case-Based Reasoning (CBR). Recently, it 
has also been highlighted that TS outperformed GP since it turns out to be more 
efficient, while preserving the same accuracy (Sarro, 2013). 

search-based methods can be exploited in combination with other estimation 
techniques to improve critical steps of their application (e.g., features subset selec-
tion or the identification of critical parameters) aiming to obtain better estimates.  

Search-based methods have also been used in combination with other estima-
tion techniques (see e.g., (Braga et al. 2008)(Faheem et al. 2008)), such as some 
Machine Learning (ML) techniques, aiming to obtain better estimates. Indeed, as 
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reported in several studies, ML approaches have the potential as techniques for 
software development effort estimation; nevertheless, their accuracy strongly de-
pends on an accurate setting of these methods (see e.g., (Song et al. 2013)). As an 
example, to use CBR we have to choose among many similarity measures, number 
of analogies, and analogy adaption strategies (Mendes 2009), while to employ 
Support Vector Regression (SVR) we have to set several parameters depending al-
so on the employed kernel function exploited to deal with non-linear problems 
(Cortes and Vapnik 1995). 

There are no general guidelines on how to best configure these techniques since 
the appropriate setting often depends on the characteristics of the employed da-
taset. An examination of all possible values for configuration parameters of each 
technique is often not computationally affordable, as the search space is too large, 
also due to the interaction among parameters, which often cannot be separately 
optimized. Another aspect that can influence the accuracy of estimation tech-
niques is the quality of input features, thus a feature subset selection (FSS) is usu-
ally recommended to select a subset of relevant features to be used in the model 
construction process. 

To address both the abovementioned problems the use of search-based ap-
proaches has been proposed and investigated. In the following we first discuss 
four works conceived to select a suitable configuration for some estimation tech-
niques, namely Neural Network, Case-Based Reasoning and Support Vector Re-
gression, and then we discuss four works that exploited GAs to address the FSS 
problem.  

Shukla (2000) was the first to propose a GA to configure Neural Network (NN) 
predictor in order to improve its estimation capability. In particular, GA had to 
find suitable weights for NN layer connections guided by a fitness function that 
minimizes MSE values. The empirical study based on two public datasets, i.e., 
COCOMO and Kemerer (Menzies et al. 2012), showed that GA+NN provided 
significantly better prediction than common used AI-oriented methods, such as 
CARTX and Quick Propagation trained NN. Similarly, Papatheocharous and An-
dreou (2009) enhanced the use of Artificial Neural Networks by using a Genetic 
Algorithm. Their results showed that using GA to evolve the network architectures 
(both input and internal hidden layers) reduced the Mean Relative Error (MRE) 
produced by the output results of each network. 

Chiu and Huang (2007) applied GA to CBR to adjust the reused effort obtained 
by considering different similarity distances (i.e., Euclidean, Minkowski, and 
Manhattan distances) between pairs of software projects. The result obtained on 
two industrial datasets revealed that the proposed GA improved the estimations of 
CBR.   

To automatically select suitable SVR settings Corazza et al. (2010, 2013) pro-
posed and assessed another approach based on the use of TS. A total of 21 datasets 
were employed and several benchmarks were taken into account. The results re-
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vealed that the combination of TS and SVR significantly outperformed all the oth-
er techniques showing that the proposed approach represents a suitable technique 
for software development effort estimation. 

The first work that proposed the use of a search-based approach to address the 
FSS problem in the context of effort estimation was the one of Kirsopp et al. 
(2002). In particular, they employed Hill Climbing to select the best set of project 
features to be used with CBR. The combined approach was evaluated on an indus-
trial dataset of 407 observations and the results showed that it performed better 
than Random Feature Selection and Forward Sequential Selection.  

In (Li et al. 2009) a GA was proposed to simultaneously optimise the selection 
of the feature weights and projects to be used with CBR. The empirical results 
employing four datasets (two industrial (Menzies et al. 2012) and two artificial (Li 
et al. 2009)) showed that the use of GA+CBR provided significantly better estima-
tions than CBR.  

GA was also used to improve the accuracy of an effort estimation model built 
by combining social choice (voting rules were used to rank projects determining 
similar projects) and analogy-based approaches (Koch et al. 2009). In particular, 
GA was employed to find suitable weights to be associated to the project attrib-
utes. The results revealed that the proposed approach provided the best value for 
Pred(25), but worse MMRE values with respect to other techniques (LR, ANN, 
CART, COCOMO, and Grey Relational Analysis). 

Huang et al. (2008) integrated a GA to Grey Relational Analysis to find the best 
fit of weights for each software effort driver. The experimental results showed 
comparable (COCOMO dataset) and better accuracy (Albrecht dataset) with re-
spect to CBR, CART, and ANN. 

15.4 Possible Directions for Future Work on Search-Based 
Project Management 

In this section we outline several directions for future work in search-based project 
management, highlighting promising areas that emerge for the analysis of trends 
within this subfield of SBSE. 

15.4.1 Interactive Optimisation 

Several authors have suggested and adopted interactive evolution for design-based 
(Simons and Parmee 2008, 2013) and comprehension-based (Harman 2007a) 
software engineering tasks. However, only one attempt has been made to apply 
this technique, which can incorporate human expert knowledge directly into fit-
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ness computation, in project management (Shackelford and Corne 2001). Since a 
software project management task is inherently human-centric it would be natural 
to explore the use of interactive evolution as a technique for ensuring that the pro-
ject manager’s expertise is accounted for in software project management 
(Shackelford 2007). The difficulty, as with all interactive evolution, lies in finding 
a way in which the manager can influence the computation of fitness without 
overburdening him or her with request for ‘fitness assessment’. 

It is also an open challenge as to how this judgment can be best incorporated in-
to fitness. For example, the manager may be aware that certain individuals cannot 
work together, that certain work packages are more critical or that some depend-
ence can be broken to make project more ‘parallelisable’. This information cannot 
simply be requested from the manager at the outset of the optimisation process; 
there is too much of it and much of the information is implicit. Rather, we need to 
make the whole process of using search-based project management tools more in-
teractive, so that the manager is able to ‘realise’ that they know something of im-
portance at the specific point i the optimisation process at which it applies and to 
introduce this domain knowledge into the overall planning process in a natural and 
seamless way. 

15.4.2 Dynamic Adaptive Optimisation 

In order to maximise the value of interactive solutions to project management, we 
need dynamic adaptive approaches to SBSE (Harman et al. 2012). As an example, 
effective resource scheduling is complicated by different disruptions, such as re-
quirements changes, bug fixing, or staff turnover, and dynamic resource schedul-
ing can help to address such potentially disruptive events (Xiao et al. 2010)(Xiao 
et al. 2013). If solutions can be computed in real time and presented to the deci-
sion maker in an intuitive form, then the decision maker can ask on-the-fly ‘what 
if’ questions to help decide on key project commitments. In an ideal world, the de-
cision maker would interact with the tool, exploring the possible implications of 
the decisions, with the optimisation continuing to provide updated best-so-far so-
lutions as the decision maker interacts. This may require fundamentally different 
approaches to the algorithms and formulations that underlie search-based software 
project management.  

15.4.3  Multi-Objective Optimisation 

It has been argued that, in order to better match real world scenarios, SBSE should 
move from a single objective paradigm to a multi objective paradigm (Harman et 
al. 2007) (Harman et al. 2012b). Indeed, more recent SBSE work has followed a 
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more multi-objective style of approach, touching many application areas including 
requirements (Finkelstein et al. 2008, 2009)(Zhang et al. 2007), testing (Everson 
et al. 2006)(Harman 2011)(Harman et al. 2007b), refactoring (Harman et al. 2007) 
and also, not least, project management (Ferrucci et al. 2011, 2012, 
2013)(Gueorguiev et al. 2009)(Minku and Yao 2012, 2013) (Rodriguez et al. 
2011) (Stylanou and Andreou 2013). Most problems in software engineering in-
volve multiple competing objectives and this is an observation most keenly felt in 
project management. Much of the future work on SBSE for project management is 
likely to focus on decision support in complex multi-objective problem spaces. 

15.4.4  Co-Evolution 

In Co-Evolutionary Computation, two or more populations of solutions evolve 
simultaneously with the fitness of each depending upon the current population of 
the other. Co-evolution can be either cooperative or competitive. In competitive 
evolution two (or more) populations of candidate solutions compete with each 
other for supremacy, the fitness of one depending on the other, such that im-
provements in one population tend to lead to lower fitness in the other. This is 
analogue to the well-known ‘predator-prey’ model of evolutionary biology and it 
has found application in SBSE work on testing (Adamopoulos et al. 2004) where 
predators are test cases and programs and their faults are the prey on which the 
test cases feed. 

However, co-evolution need not always follow a predator-prey model; it can al-
so be a co-operative, symbiotic process, just as often occurs in nature. In this co-
operative co-evolutionary model, several populations, all of which have distinct 
fitness functions, nevertheless depend on one another, without necessarily being in 
conflict. This is a natural model for project management, in which we seek, for 
example, a mutually supportive allocation of staff to teams and, simultaneously, 
an allocation of teams to work packages. Ren et al. (2011) explore the co-
operative co-evolutionary model of search-based project management. The close 
fit between project management objectives and co-evolutionary models makes this 
a natural choice and one that deserves more attention.  

15.4.5 Software Project Benchmarking 

One of the enduring problems researchers concerned with project management 
face is the lack of available real world project data. It remains a common problem 
to this day, especially for project planning and staffing. Indeed, despite there exist 
both publicly available (Menzies et al. 2012) and private (ISBG 2013) repositories 
of real project data for software project estimation, there are no available reposito-
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ries containing information for project planning. The promising results achieved in 
search-based project management may lead to the false impression that these 
techniques are readily available for industrial application, whereas many papers 
just use synthetic data, do not model skill, or have a realistic representation of skill 
and/or risk. Previous work on software planning and staffing often relies on simu-
lation of the likely course of the project rather than real data to assess the perfor-
mance of the proposed approaches. Indeed, data sets of real world projects are 
scarce; effort data are seldom ever made public not to mention skill and other kind 
of employee’s details (e.g., percentage of overhead, abilities to self-adapt to new 
project, management style, team leaders or soft skill). Despite researchers are 
making some effort to employ real data and to deal with a more human-centric 
problem (Chapter 4), to collect more real data on software projects and to make it 
publicly accessible still remains an open important challenge. 

15.4.6 Confident Estimates 

Obtaining exact time and effort estimates in software project management is im-
possible due not only to the inherently nature of estimates, but also due to incom-
plete, uncertain and/or noisy input used as the basis of the estimates. Rather than 
generating exact estimates it would be beneficial to introduce some level of uncer-
tainty and measure its effect on the management process. As an example, sensi-
tivity analysis can be a very useful means of determining the vulnerability of an 
estimate to particular assumptions and the level of confidence that can be placed 
in that estimate and the promising results obtained by using search-based ap-
proaches to assess software project uncertainty make us confident that these tech-
niques can be a key instrument to support this kind of analysis (see e.g., (Harman 
et al. 2009)). 

Elsewhere, Harman (2007), highlighted four future directions for the use of 
search-based approaches to obtain more confident predictive modelling that we 
want herein recall: 

1. Incorporation of risk into predictive models; 
2. More effective measurement of cost; 
3. More reliable models (even at the expense of predictive power; trading 

median accuracy for reduced variance over iterated predictions); 
4. Sensitivity analysis to determine which aspects are more important.  
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15.4.7 Decision Support Tools  

Despite the promising results highlighted in the research papers, the use of search-
based approaches for project management is still in the development/research 
stage. To the best of our knowledge only one tool for project management based 
on search-based approaches has been recently proposed (Stylanou et al. 2012). We 
believe that to transfer the most successful methods into practice we need to de-
velop them as freely available decision support tools. Indeed, this will allow an 
extensive evaluation of the interface between the technical aspects on which the 
research has been focused and other related socio-technical issues for implementa-
tion and exploitation, such as user interface, ease of use, HCI, and decision sup-
port. Moreover, this will allow us also to get feedback from practitioners on the 
usefulness and cost/effectiveness of the proposed approaches. 

15.5   Conclusions 

SBSE has proved widely applicable across many fields of software engineering 
activities. In those software engineering activities closely associated with the 
software product, SBSE has tended to be used as a means of finding good solu-
tions, guided by a fitness function. By contrast, its role in the earlier phases of the 
software development cycle, more associated with the establishment of plans and 
processes has tended to be subtler. In particular, for software project management, 
SBSE has tended to be used to provide decision support rather than to seek a sin-
gle solution. This is a naturally exploratory and multi-objective scenario. As we 
have seen, search-based techniques have potential to support software project 
managers, with predictions, analysis of potential scenarios and the optimised con-
figuration of process parameters. The review of trends in this chapter demonstrates 
that this is an active and growing field.  
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