A Parallel Genetic Algorithms Framework based on Hadoop MapReduce

Filomena Ferrucci
Pasquale Salza
University of Salerno, Italy
{fferrucci,psalza}@unisa.it

M-Tahar Kechadi
University College Dublin
Ireland
tahar.kechadi@ucd.ie

Federica Sarro
University College London
United Kingdom
f.sarro@cs.ucl.ac.uk

ABSTRACT

This paper describes a framework for developing parallel Genetic Algorithms (GAs) on the Hadoop platform, following the paradigm of MapReduce. The framework allows developers to focus on the aspects of GA that are specific to the problem to be addressed. Using the framework a GA application has been devised to address the Feature Subset Selection problem. A preliminary performance analysis showed promising results.

Categories and Subject Descriptors
C.2.4 [Computer-communication Networks]: Distributed Systems—Distributed applications; D.1.3 [Programming Techniques]: Concurrent Programming—Distributed programming

General Terms
Algorithms, Experimentation, Performance

Keywords
Hadoop, MapReduce, Parallel Genetic Algorithms

1. INTRODUCTION

Genetic Algorithms (GAs) are powerful metaheuristic techniques used to address many software engineering problems [7] that involve finding a suitable balance between competing and potentially conflicting goals, such as looking for the set of requirements that balance software development cost and customer satisfaction or searching for the best allocation of resources to a software development project.

GAs simulate several aspects of the “Darwin’s Evolution Theory” to converge towards optimal or near-optimal solutions [5]. Starting from an initial population of individuals, each represented as a string (chromosome) over a finite alphabet (“genes”), every iteration of the algorithm generates a new population executing genetic operations on selected individuals, such as crossover and mutation. Along the chain of generations, the population tends to improve its individuals by keeping the strongest individuals (characterised by the best fitness value) and rejecting the weakest ones. The generations continue until a specified stopping condition is verified. The problem solution is given by the individual with the best fitness value in the last population.

GAs are usually executed on single machines as sequential programs, so scalability issues prevent that they are effectively applied to real-world problems. However, these algorithms are naturally parallelisable, as it is possible to use more than one population and execute the operators in parallel. Parallel systems are becoming commonplace mainly due to the increasing popularity of Cloud Systems and the availability of distributed platforms, such as Apache Hadoop [12], characterized by easy scalability, reliability and fault-tolerance. It is characterized by the use of the MapReduce algorithm and the distributed file system HDFS, which run on large clusters of commodity machines.

In this paper, it is presented a framework for developing GAs that can be executed on the Hadoop platform, following the paradigm of MapReduce. The main purpose of the framework is to completely hide the inner aspects of Hadoop and allow users to focus on the definition of their problems in terms of GAs. An example of use of the framework for the “Feature Subset Selection” problem is also provided together with preliminary performance results.

2. RELATED WORK

As described by Di Martino et al. [3], there exist tree possible main grain parallelism implementations of GAs by exploiting the MapReduce paradigm: Fitness Evaluation Level (Global Parallelisation Model); Population Level (Coarse-grained Parallelisation Model or Island Model); Individual Level (Fine-grain Parallelisation Model or Grid Model) [3]. The Global Parallelisation Model was implemented by Di Martino et al. [3] with three different Google App Engine MapReduce platform configurations to address automatic test data generation.

For the same purpose, Di Geronimo et al. [2] developed Coarse-grained Parallelisation Model on the Hadoop MapReduce platform.

“MRPGA” is a parallel GAs framework based on .Net and “Aneka”, a platform which simplifies the creation and communication of nodes in a Grid environment [8]. It exploits the MapReduce paradigm, but with a second reduce phase. A master coordinator manages the parallel GA execution among nodes, following the islands parallelisation model, in which each node computes the GA operators for a portion...
of the population only. During the first step, every mapper node reads a portion of individuals and computes the fitness values. Then, in the first reduce phase, each node applies the selection operator for the input individuals, giving a local optimum relative to each island. The eventual single reducer computes the global optimum and applies the remaining GA operators. Comparing the results from MRPGA with a sequential version of the same algorithm, they have had an interesting degree of scalability overhead factor but also a high overhead.

The approach by Verma et al. [11] was developed on Hadoop. The number of Mapper and Reducer nodes are unrelated. The main difference with MRPGA lies in the fact a sort of “migration” is performed among the individuals as it randomly sends the outcome of the Mapper nodes to different Reducer nodes. Results showed the potential of parallel GA approach for the solution of big computation problems.

3. THE PROPOSED FRAMEWORK

The proposed framework aims to reduce the effort for implementing parallel GAs, exploiting the features of Hadoop in terms of scalability, reliability and fault tolerance, thus allowing developers do not worry about the infrastructure for a distributed computation. One of the problems with the execution of GAs in a distributed system is the overhead that might be reduced if the network movements are reduced. So it is important to minimise the number of phases, whenever they are associated to an execution which passes from a machine to a new one. For this reason, the framework implements the islands model (mostly following the design provided from Di Martino et al. [8]), forcing the machines to work always with the same portion of population and using just one Reducer phase.

In the following it is described the design of the involved components, starting from the Driver, which is the fulcrum of the framework.

3.1 The Driver

It manages the interaction with the user and launch jobs on the cluster. It is executed on a machine even separated from the distributed cluster and it also computes some functions in order to manage the received results, generation by generation.

The elements involved into the Driver process are:

- **Initialiser**: the user can define how to generate the first individuals for each island, but the default implementation makes it randomly. The Initialiser is a MapReduce job which produces the individuals in the form of a sequence of files, stored in a serialised form directly in HDFS;
- **Generator**: it executes one generation on the cluster and produces the new population, storing each individual again in HDFS with the fitness values and a flag indicating if an individual satisfies the stopping condition defined by the user;
- **Terminator**: at the end of each generation, the Terminator component checks the stopping conditions: the standard one of “if the maximum number of generations has been reached” or a defined by user one, by checking the presence of the flag in the HDFS. Once terminated, the population is directly submitted to the SolutionsFilter job;
- **Migrator**: this job allows moving individuals from an island to another, according to the criteria defined by the user such as the period of migration, number and destinations of migrants and the selected method for choosing migrants.

This phase is optional and it can occur by setting a “migration period” parameter;

- **SolutionsFilter**: when the job terminates, all the individuals of the last generation are filtered according to those that satisfy the stopping condition and those which do not. Then, the results of the whole process is stored in HDFS.

3.2 The Generator and the other components

Each generator job makes the population evolve. In order to develop the complex structure described below, it was needed to use multiple MapTasks and ReduceTasks. This is possible using a particular version of ChainMapper and ChainReducer classes of Hadoop, slightly modified in order to treat Avro objects rather than the raw serialisation used by Hadoop as default method. Thus, using Aero [1] it is easier to store objects and to save space on the disk, also allowing any external treatment of them and a quick exchange of data among the parties involved in the MapReduce communication.

A chain allows to manage the tasks in the form described by the pattern:

\[(MAP)^+ (REDUCE) (MAP)^*\]

which means one or more MapTasks, followed by one ReduceTask and other possible MapTasks.

The generation work is distributed on nodes of the Cloud as follows:

- **Splitter**: the Splitter takes as input the population, deserialises it and splits the individuals into J groups (islands), according to the order of individuals. Each split contains a list of records, one per each individual:

 \[\text{split : } \text{individuals} \rightarrow \text{list (individual, NULL)}\]

 During the deserialisation, the splitter adds some fields to the objects which will be useful for the next steps of the computation, such as the fitness function;

- **Fitness**: here according to J islands, the J Mappers compute the fitness values for each individual of its corresponding island:

 \[\text{map : (individual, NULL)} \rightarrow \text{(individual null, NULL)}\]

 The user defines how to evaluate the fitness and the values are stored inside the corresponding field of the objects;

- **TerminationCheck**: without leaving the same machine of the previous map, the second map acts in a chain. It checks if the current individuals satisfies the stopping condition. This is useful, for instance, when a lower limit target of the fitness value is known. If at least one individual gives a positive answer to the test, the event is notified to the other phases and islands by a flag stored in HDFS. This avoids the executions of the next phases and generations;

- **Selection**: if the stopping condition has not been satisfied yet, this is the moment to choose the individuals that will be the parents during the crossover for the next iteration. The users can define this phase in their own algorithms. The couples which have been selected are all stored in the key:

 \[\text{map : (individuals null, NULL)} \rightarrow \text{(couples information, individuals)}\]

 If an individual has been chosen more than one time, it is replicated. Then all the individuals, including those not
chosen if the elitism is active, leave the current machine and go to the correspondent Reducer for the next step.

Crossover: in this phase, individuals are grouped by the couples established during the selection. Then each Reducer applies the criteria defined by the user and makes the crossover:

\[
\text{reduce : } (\text{couple_information}, \text{list(individuals)}) \rightarrow \text{individual}, \text{TRUE}
\]

This produces the offspring (marked with the value TRUE in the value field) that is read during the next step, together with the previous population;

Mutation: during this phase, the chained Mappers manage to make the mutation of the genes defined by the user. Only the offspring can be mutated:

\[
\text{map : } \text{individual,TRUE} \rightarrow \text{individualM}, \text{NULL}
\]

Elitism: in the last phase. If the user chooses to use the optional elitism, the definitive population is chosen among the individuals of the offspring and the previous population:

\[
\text{map : } \text{individual, NULL} \rightarrow \text{individual}, \text{NULL}
\]

At this point, the islands are ready to be written into HDFS.

The architecture of the generator component provides two levels of abstraction:

- The first one, which is called the “core” level, allows the whole job to work;
- The second one, which is called the “user” level, allows the user to develop his own Genetic Algorithm and to execute it on the Cloud.

The core is the base of the framework with which the end-user does not need to interact. Indeed, the fact that a MapReduce job is executed is totally invisible to the user. It consists of everything that is needed to run an application on Hadoop. The final user can develop his own GA simply by implementing the relative classes, without having to deal with map or reduce details. If the user does not extend these classes, a simple behaviour is implemented by doing nothing else than forwarding the input as output. The framework also makes some default classes available, thus the user can use them for most cases.

The Terminator component plays two roles in different times: after the execution of every generation job, by calling the methods of the Terminator class on the same machine where the Driver is running; during the generator job, through the use of the TerminationCheckMapper. It checks if the stopping conditions have occurred, i.e. the count of the maximum number of generations has been reached or at least one individual has been marked of satisfying the stopping condition during the most recent generation phase. The count is maintained by storing a local counter variable that is updated after the end of each generation. The check for the presence of marked individuals is done by looking for possible flags in HDFS. If it terminates, the execution of the SolutionsFilter component will eventually follow.

The Initialiser computes an initial population according to the definition of the user.

Another optional component is the Migrator which shuffles individuals among the islands according to the definition of the user. It is at the same time a local component and a job executed on the cluster. It is started by the Driver according to a period counter.

The component SolutionsFilter is invoked only when at least one individual has provoked the termination by satisfying the stopping condition. It simply filters the individuals of the last population by dividing those that satisfy the condition from those which do not. More details about the proposed framework can be found in [4].

4. PRELIMINARY ANALYSIS

Many software engineering problems involve prediction and classification tasks (e.g., effort estimation [9] and fault prediction [10]). Classification consists of learning from example data, called “training dataset”, with the purpose of properly classifying any new input data. The training dataset includes a list of records, also called “instances”, consisting of a list of “attributes” (features). Several classifiers exist, among them C4.5 builds a Decision Tree, which is able to give a likely class of membership for every record in a new dataset. The effectiveness of the classifier can be measured by the accuracy of the classification of the new data:

\[
\text{accuracy} = \frac{\text{correct classifications}}{\text{total of classifications}}
\]

“Feature Subset Selection” (FSS) helps to improve prediction/classification accuracy by reducing noise in the training dataset [6], selecting the optimal subset of features. Nevertheless the problem is NP-hard. GAs can be used to identify a near-optimal subset of features in a training dataset. The framework was exploited in order to develop a GA to address the problem. For the development of the application of FSS, only 535 lines of code were written against the 3908 of the framework infrastructure. In terms of the framework, the Driver is the main part of the algorithm and is executed on one machine. It needs some additional information before execution: the parameters for the GA environment, such as the number of individuals in the initial population, the maximum number of generations, etc.; the training dataset; the test dataset.

Every individual (subset) is encoded as an array of \(m \) bit, where each bit shows if the corresponding enumerated attribute is present into the subset (value 1) or not (value 0). During each generation, every subset is evaluated by computing the accuracy value and all the GAs operations are applied until target accuracy is achieved or maximum number of generations is reached, according to the following steps:

Fitness: for each subset of attributes, the training dataset is reduced with respect of the attributes in the subset. The fitness value is computed by applying the steps:

1. Build the Decision Tree through the C4.5 algorithm and computing the accuracy by submitting the current dataset;
2. The operations are repeated according to the cross-validation folds parameter;
3. The mean of accuracies is returned.

4.1 Subject

The “Chicago Crime” dataset (from the UCI Machine Learning Repository was used. The dataset has 13 features
and 10000 instances. It was divided into two parts: the first 60% as training dataset and the last 40% as test dataset.

The test bench was composed by three versions:

- **Sequential**: a single machine executes a GA version similar to the framework one by using the Weka Java library, for the University of Waikato;

- **Pseudo-distributed**: here the framework version of the algorithm is used. It is executed on a single machine again, setting the number of islands to one. It requires Hadoop in order to be executed;

- **Distributed**: the framework is executed on a cluster of computers on Hadoop platform. Of course, this is the object of interest.

All the versions run on the same remote Amazon EC2 cluster and all the machines involved had the same configuration, in order to give a strong factor of fairness. This configuration is named by Amazon as “m1.large”, a machine with 2 CPUs, 7.5 GB of RAM and 840 GB for storage.

The sequential version was executed on a single machine and also the pseudo-distributed, but over a Hadoop installation. Instead, the distributed version needed a full Hadoop cluster composed by 1 master and 4 computing slaves.

The chosen configuration for the test consisted of 10 generations, a migration period of 5 with 10 migrants. It was specified as a stopping condition only the “maximum number of generations”.

The final accuracy is computed on test dataset using the classifier built with the best individual identified.

4.2 Results

As for the accuracy, the results were 89.55% for sequential, 89.40% for pseudo-distributed and 89.45% for distributed version. This confirms that the application achieves its objective, by giving a subset that has both a reduced number of attributes and a suitable accuracy value.

As for the running time, the distributed version won against other versions, with 1384 s against 2993 s for pseudo-distributed and 2179 s for sequential. It is clear that the distributed version must face some considerable intrinsic Hadoop bottlenecks such as map initialization, data reading, copying and memorisation etc. and it has an additional phase of Migration not present in the sequential version.

The proposed framework does not consider every single aspect of Hadoop and this suggest that a further optimisation might increase the performance of the parallel version compared with the sequential one. It is predictable that the distributed version performs better when the amount of required computation is large [4]. Since the pseudo-distributed is second to the distributed, this suggests that is worth splitting the work among multiple nodes. More details about the analysis carried out can be found in [4].

5. CONCLUSIONS AND FUTURE WORK

This work proposed a framework for Genetic Algorithms with the aim of simplifying the development of Genetic Algorithms on Cloud. The obtained results showed an interesting effort ratio between the number of lines of code for the application against the ones for the framework. The preliminary tests about the performance confirmed the natural tendency of GAs to parallelisation but the threat of overhead is still around the corner. Indeed, the use of parallelisation seems to be worth only in presence of computationally intensive and not trivial problems [4] but scalability issues need to be deeper addressed. Because of the use of specific components (e.g. MapTasks and ReduceTasks chains), it does not seem unreasonable to suggest that giving an “ad-hoc” optimisation of Hadoop might improve the performance and there is also a possibility that the change of model of parallelisation [3] could give better results.

6. REFERENCES

