
MobiRate: Making Mobile Raters Stick to their Word

Daniele Quercia, Stephen Hailes, Licia Capra
Department of Computer Science, University College London, London, WC1E 6BT, UK.

{D.Quercia, S.Hailes, L.Capra}@cs.ucl.ac.uk

ABSTRACT
To share services, portable devices may need to locate rep-
utable in-range providers and, to do so, they may exchange
ratings with each other. However, providers may well tweak
ratings to their own advantage. That is why we have de-
signed a new decentralized mechanism (dubbed MobiRate)
with which portable devices store ratings in (local) tamper-
evident tables and check the integrity of those tables through
a gossiping protocol. We evaluate the extent to which
MobiRate reduces the impact of tampered ratings and conse-
quently locates reputable service providers. We do so using
real mobility and social network data. We also assess com-
putational and communication costs of MobiRate on mobile
phones.

ACM Classification Keywords
D.2.0 Software Engineering: General—protection mecha-
nisms; C.2.4 Computer-Communication Networks: Distributed
Systems—distributed applications

General Terms
Algorithms, Security

Author Keywords
Distributed Reputation (Trust) Systems, Mobile Systems

INTRODUCTION
In-range portable devices may collaborate for enabling new
applications. Such applications might include, for example:
cooperative device localization that increases the precision
of street map software and of location-based services; syn-
chronization of timers in playing mobile multi-player games;
Web content caching that avoids monetary costs of cellular
or wireless providers.

To enable those applications, researchers have proposed gen-
eral infrastructures with which portable devices opportunis-
tically trade various services with each other [6, 20, 21]. At
the heart of those designs is a centralized reputation system

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UbiComp’08, September 21-24, 2008, Seoul, Korea.
Copyright 2008 ACM 978-1-60558-136-1/08/09...$5.00.

that stores ratings about service providers. For locating rep-
utable providers, portable devices have no choice but to go
through this central server. Given this problem, researchers
have conceded that, on scalability and mobility grounds, the
reputation system needs to be decentralized [6, 21].

One way of decentralizing a reputation system is to have
each user run a reputation model on her device [25]. A repu-
tation model is a piece of software that keeps track of which
devices are reputable for providing services and which are
not. To see how a reputation model works, consider two de-
vices A and B, and say that, after receiving a service from B,
A rates B. When deciding whether to trust B, other devices
may find that rating useful, so the rating should be stored
and made available to other devices. A simple way of mak-
ing the rating available is to have A send the rating to B,
B acknowledge it, and both of them store the rating locally
(B may do so to prove its trustworthiness to other devices
by showing credentials, and A to keep track of the nodes it
has interacted with). This approach is simple yet yields to
these threats: A lies (it supplies fake ratings); B pretends
to be ignorant (it does not acknowledge the rating); or B is
malicious (it tampers with the rating).

In the next section, we will see that previous work has fo-
cused on the first problem (lying recommenders) and has not
thoroughly explored the problem of ignorant and malicious
individuals. We set out to fill this void by making the fol-
lowing contributions:

• A new and secure way of storing and exchanging ratings
for portable devices (described in Section “Our Proposal:
MobiRate”). The key idea is that A and B store the rat-
ings in their local tables. They then obtain verifiable ev-
idence that the counterpart actually did so by running a
commitment protocol. They send those commitments to
other devices, which become witnesses. Whenever they
interact with other devices, witnesses check whether they
store commitments about those devices and, if so, they
verify whether those commitments are honored. Eventu-
ally, honest individuals that run MobiRate: suspect any
device that has not acknowledged a rating sent to it; ex-
pose any device that has tampered with at least one of its
ratings; or trust any other honest device.

• Evaluation of the robustness of MobiRate on real mobility
and social network data (Section “Robustness”).

• Evaluation of its communication and computational over-
heads on mobile phones (Section “Overheads”).

EXISTING SOLUTIONS: UNFIT FOR MOBILE USERS
There has been rapid progress in recent years in understand-
ing how to combine user ratings in both Web and peer-to-
peer applications in the presence of malicious users.

Early work by Chris Dellarocas [8] explored the use of ro-
bust statistics in aggregating user ratings on reputation web-
sites (e.g., on eBay). Those statistics aimed at safeguarding
the reliability of those websites in the presence of potentially
deceitful buyers and sellers. At the same time, Ralph Levin
designed a way for identifying reputable members in the Ad-
vogato free software developer community [19]. He did so
by creating a network whose nodes are members and whose
links are trust relationships. To assign a trust value to each
member, he applied the max flow algorithm to that network.
The idea of max flow is that between any two nodes (mem-
bers), the quantity of trust flowing from one node to another
cannot be greater than the weakest rating somewhere on the
path between the two nodes. Therefore, the less connected
a member, the lower its trust value. Since malicious nodes
happen to be the least connected nodes, they receive the low-
est trust value.

In peer-to-peer networks, EigenTrust [16] assigns a trust value
to each peer similar to how Google’s PageRank [23] ranks
web pages. Trust values are then used by peers to exclude
untrustworthy peers (which send inauthentic files) and to se-
lect peers from whom to download files. As a consequence,
the number of inauthentic files in the network decreases.

In short, there is now a substantial literature on how Web
and peer-to-peer users aggregate ratings. However, there has
been little work on how mobile users would do so. One may
well wonder why. Here is a possible explanation: a portable
device collects and stores only a tiny part of the ratings in
the system and does not necessarily have enough knowledge
to keep track of who is trustworthy and who is not. By con-
trast, a Web or peer-to-peer application is able to collect and
aggregate all the ratings in the system [2, 8].

It thus seems that a different way of storing ratings for portable
devices is needed. But what sort of method should we use?
Ideally, one needs a distributed mechanism with which rat-
ings are made both available (to counter limited knowledge)
and tamper-evident (to detect tampering).

OUR PROPOSAL: MOBIRATE
We design one such mechanism and call it MobiRate:

1. What it is: MobiRate allows portable devices both to store
ratings locally and to make them tamper-evident.

2. Where it works: MobiRate is applicable to various sce-
narios where there are many opportunities of relatively
long-lived interactions between in-range devices. An ex-
ample is a local coffee shop in which individuals (few
of which are regulars) spend tens of minutes in relatively
close proximity of each other. Another example is a train
in which passengers commute to work daily. In those lo-
cations, individuals may be willing to share digital con-
tent (e.g., music files) within their physical neighborhood.

PB(Y) Public-key encryption of data Y using B’s public key.
SB(Y) Public-key encryption of data Y using B’s secret key.
H(Y) Hash value of data Y .
X||Y Bit-string concatenation of data X and Y .

aB
k Authenticator of B’s kth entry signed by B(using SB).
rk kth rating.
sk Sequence number of rk .
hk Hash chain up to rk .
tk Additional information about rk .
ek kth entry made up of sk , rk , and tk .

Table 1. Symbols used to present MobiRate.

They may want to do so to improve their downloading
performance, to reduce monetary costs of downloads over
cellular links, or, in the long-term, to interact with their
peers using Mobile 2.0 applications in which users are not
only consumers of content but also producers [5] (so much
so that they have been aptly called “prosumers” [30]).
However, sharing content introduces the problem of how
to find reputable sources of downloads. One way of doing
so is to rate sources, and then store and exchange those rat-
ings using MobiRate. To ease illustration, we will hence-
forth refer to an abstract situation: devices A and B come
into range, B makes available digital content, A down-
loads it and eventually rates the completed experience.

3. When it works: MobiRate works under the assumption
that each device has a unique identifier in the form of a
public key. If identifiers are not unique, malicious indi-
viduals can escape responsibility by assuming a different
identity (i.e., by launching Sybil attacks [9]). In Section
“Discussion”, we will look at the impact of Sybil attacks.

4. How it works: A device that runs MobiRate implements
four operations (which we gradually introduce in this sec-
tion): (1) Maintain ratings locally; (2) Commit to those
ratings; (3) Gossip those commitments; and (4) Act on the
commitments it receives. By implementing those opera-
tions, MobiRate guarantees that every malicious device
(that tampers with the ratings it stores) will be detected
eventually and likely. “Eventually” because we allow for
some delay since devices are mobile and can communi-
cate with each other only sporadically; and “likely” be-
cause MobiRate offers probabilistic guarantees. In “Eval-
uation”, we will show that those guarantees are high and
met in brief simulation time under the assumption that
people have few regular encounters. That is the case in
reality because of the so-called familiar strangers: people
who we do not know (strangers) but meet regularly (fa-
miliar) on, say, the way to work [13].

Rating Tables
To begin with, consider that device A receives content from
B and produces a rating for the completed interaction. A
then stores its rating (e.g., “A → B : 2”) locally and sends
a copy of it to B. After receiving the rating, B stores it as
well.

Both A and B should now make their rating tables tamper-
evident (i.e., any deliberate altering of them is detectable).

Figure 1. A’s and B’s Rating Tables. Take B’s table. In it, B appends
its ratings in a way that makes them tamper-evident. For example, the
entry ek contains B’s kth rating and is made tamper-evident by adding
authenticator aB

k and hash value hk (which chains back to the previous
entry). The last column in both tables are populated after A (B) runs
the commitment protocol.

They do so in a way similar to how an existing technique
builds tamper-evident logs [28]. This technique dates back
to 1998, and, until recently, has inspired successful mech-
anisms for detecting faults in distributed systems [7, 12].
More specifically, A and B make their entries tamper-evident
by associating with each of their entries a statement (called
“authenticator”). Upon verifying it, any device is able to de-
termine whether the entry is authentic - if the entry has been
tampered, the authenticator gets compromised. To see why,
having the notation in Table 1 at hand, consider that B pro-
duces an entry ek containing the rating and appends it to its
table. The entry (highlighted in Figure 1):

• Consists of a sequence number sk, a rating rk of the form
“A → B : 2”, and additional information tk. For short,
the entry ek = (sk, rk, tk). In general, it is useful to know
the type of content a rating refers to (e.g., music file, video
file) [27], and that is why we specify it in tk - a statement
signed by B that ensures that A has sent a certain type
of content to B. Sequence numbers do not have to be
contiguous but must be increasing; a timestamp could be
used. Also, sequence numbers must be increasing, but
corresponding interactions do not need to be serialized -
one does not need to end one interaction before starting
the next. That is because interactions can end without any
predefined order and, only once they end, they are rated
and associated with sequence numbers.

• Includes a recursively defined hash value
hk = H(hk−1||sk||H(ek)). The hash value is recursive in
the sense that it “chains back” to the previous one (hk−1).
That makes ratings tamper-evident - if any rating is al-
tered, then the hash chain gets compromised.

• And finally includes an authenticator aB
k = SB(sk, hk) - a

signed statement with which B commits to having stored
entry ek = (sk, rk, tk) whose hash value is hk.

In Section “Discussion”, we will see that this way of con-
structing a table makes sure that tampered ratings are de-
tected, that each device keeps only one table, and that ratings
can change over time.

Making Commitments
After storing the rating, A and B must obtain verifiable ev-
idence that the counterpart actually did so. That is done by
using the commitment protocol, which consists of two steps:

1st Commitment: A stores the rating in its table and sends
its authenticator to B. The authenticator is a verifiable
evidence that A stored “A → B : 2” in its table. As we
will see shortly, the authenticator comes with additional
information used for verifying it.

2nd Commitment: Similarly, B stores the rating in its table
and sends its authenticator (plus additional information) to
A.

At this point, both devices possess verifiable evidence that
the counterpart stored the rating. Let us describe these two
steps in more detail:

• A creates an entry el = (sl, rl, tl) in its table (rl is of the
form “A → B : 2”). It then creates the authenticator aA

l ,
attaches additional information to verify it (hl−1 and el),
and sends the result to B.

1st Commitment: A → B : {aA
l , hl−1, el}

• B has now enough information to compute hl and, conse-
quently, to verify aA

l . If the signature in aA
l is not valid,

B discards rl. Otherwise, B creates its own table entry
(sk, rk, tk) (with rl = rk) and returns an acknowledg-
ment with the authenticator aB

k plus additional informa-
tion to verify it (hk−1, and ek).

2nd Commitment: A ← B : {aB
k , hk−1, ek}

If the protocol ends correctly, it ensures that B cannot mod-
ify A’s rating without being detected. But, what if the proto-
col fails? That is: what if there is no interaction between A
and B but, nonetheless, A makes up a rating for it? what if
A refuses to take part in the protocol? what if either A or B
does not store the corresponding authenticators? We answer
those questions next.

Gossiping Commitments
Up to now, A and B have committed to having stored the
rating and have gossiped verifiable evidence of it. This evi-
dence takes different forms depending on how the commit-
ment protocol ended (or failed):

• 1st Commitment does not take place (i.e., A does not send
its rating): Nothing is done since we leave recommenders
free to choose whether to rate or not. However, if A does
not rate B, it should not be able to claim otherwise later.
That is, A must be able to rate B only if it has received
content from B. To ensure that, we have considered that A
can rate B only if it possesses a statement tk with which
B certified that it has sent content to A. To make that
statement unique, B associated a timestamp with it. As-
sociating a timestamp is feasible since it only requires
that devices in the system are loosely synchronized, and
it guarantees that A cannot make up a rating if A has not
received any content from B.

• 2nd Commitment does not take place (i.e., B does not
acknowledge the rating it has received from A): A gossips
the answer it sent to B to other devices. Again, A cannot
make up ratings simply because, to release a rating, it has
to receive tk from B. So, if we name one of those devices
W , then:

A’s Type 1 gossip: A → W : {aA
l , hl−1, el}

The gossip contains enough evidence for challenging B
to acknowledge A’s rating and for convincing any device
(including W) that if B were an honest device, it would be
able to answer the challenge. We name this gossip Type 1
gossip and will see how W acts upon it in the next Section.

• Both steps run correctly: A and B gossip each other’s
commitment (reply) to other devices. We name this kind
of gossips Type 2 gossips:

A’s Type 2 gossip: A → W : {aB
k , hk−1, ek}

B’s Type 2 gossip: B → W : {aA
l , hl−1, el}

To see how witnesses are selected, consider that not all de-
vices should care to store gossips about (to act as witnesses
for) B. Were that not be the case, devices would be swamped
by massive storage and communication overheads. In a con-
tent sharing scenario, the devices that care to store gossips
about B are those that come into contact with B and share
interests with it. That is because they are the only devices
that are willing to interact with B (as they share interests
with B) and able act upon those gossips (as they are co-
located with B). So we consider that W is a good witness
for B if both conditions hold:

• W has met B before. Past encounters help in predict-
ing future ones because individuals are creatures of habits.
They meet the same people regularly. For example, they
meet their friends and their familiar strangers [24]. Famil-
iar strangers are those people who we do not know but we
meet regularly, say, on the way to work or at local coffee
shops. So, if W has met B, it is likely that W will again
do so in the future [13].

• W shares interests with B. That introduces the problem
of how W and B would know whether they have com-
mon interests (e.g., whether they like similar music gen-
res). They may do so by simply having their Bluetooth in-
terface on: in so doing, they can advertise and match their
interests by encoding them into the undefined attributes of
the Bluetooth Service Discovery [1]. Being part of the dis-
covery mechanism, undefined attributes are shared with-
out any additional communication cost.

Therefore, witnesses are what we call like-minded familiar
strangers - people who we do not know (strangers) but we
meet very regularly (familiar) and we share interests with
(like-minded).

Figure 2. Verifiable Hash Chain. During the audit protocol on B’s
entries (e10, . . . , e14), W attempts to form a chain with B’s answer
(highlighted) and to match that chain with two authenticators aB

10 and
aB
14. If the match succeeds, one can conclude that B has not tampered

with any of the ratings in its entries (e10, . . . , e14).

Acting on Gossips
To see what B’s witnesses should do, let us call one of them
W . W acts on the gossips about B only if it needs to interact
with B, and the way it will do so depends on the gossips it
stores, which are of two types:

Type 1 gossip: B not acknowledging a rating. If it has re-
ceived a gossip of Type 1, W checks whether B deliber-
ately failed to acknowledge the rating or was unable to do
so (simply because it was slow or moved away). So, be-
fore interacting with B, W runs the commitment protocol
for the unacknowledged rating. If B does not respond,
W marks B as suspected and gossips its suspicion (again,
a Type 1 gossip). By contrast, if B responds, W simply
trusts B, and the gossip dies out. The main idea is that
if B is honest and has not received a certain rating yet, it
accepts the rating now and returns an acknowledgement.
By contrast, if B has already received the rating but the
rater has failed to receive any acknowledgement, then B
can simply re-send the earlier acknowledgment to witness
W , which will eventually send it back to the rater. In Sec-
tion “Evaluation”, we will see that these messages entail
little communication cost.

Type 2 gossip: B committing to ratings. If W has collected
gossips about B and now needs to interact with B, then,
before interacting, W runs the audit protocol. This pro-
tocol checks the consistency of B’s ratings. For exam-
ple, consider that W has collected 3 authenticators - say,
{aB

10, a
B
11, a

B
14}. In that case, W checks the signature on

the authenticators with the lowest and highest sequence
numbers (on aB

10 and on aB
14) and sends them to B. By

doing so, W challenges B to produce the corresponding
ratings (r10, . . . , r14). If B is:

• unable to do so, then W marks B as suspected and
gossips its suspicion (as a pair of Type 2 gossips).

• able to do so, then B has not tampered with any of
the corresponding ratings. That is because the hash
values of those entries form a chain connecting aB

10 to
aB
14. To see how, consider that B returns the entries

(e10, . . . , e14) plus the preceding hash value h9. By
construction, B’s answer should form a chain against
which both authenticators can be matched (see Fig-

ure 2 for a sketchy representation, and Theorem 2 in
the Appendix for a formal explanation). If B’s an-
swer forms a chain, W trusts B of not having tam-
pered with those ratings, and the gossip dies out. By
contrast, if it does not form a chain, W marks B as
exposed and gossips evidence of it (a pair of Type 2
gossips).

Let us rephrase those two steps more formally. If it runs
successfully, the audit protocol consists of a challenge and
of a response:

W ’s Challenge: W → B : {aB
k , aB

m}
B’s Response: W ← B : {hk−1, ek, . . . , em}

By contrast, if the protocol fails, W sends a pair of Type
2 gossips to other devices (one of which we now call D):

W ’s Pair of Type 2 gossips:
W → D :
{aB

k , hk−1, ek}
{aB

m, hm−1, em}

To summarize, depending on the type of gossips, W runs
either the commitment protocol or the audit protocol. By
doing so, W suspects B, if B does not acknowledge any
message from W ; exposes B, if B has tampered with at least
one of its ratings; or trusts B otherwise. We now turn to
evaluating to what extent MobiRate is able to suspect and
expose malicious devices in practice.

EVALUATION
The goal of MobiRate is to make it difficult for users to
tamper with ratings. To ascertain the effectiveness of Mo-
biRate at meeting this goal, our evaluation ought to answer
two questions:

• Robustness: How effectively does MobiRate protect rat-
ings? More specifically, is MobiRate robust against mali-
cious individuals (see Section “Robustness”)?

• Overhead: What time, storage, and communication over-
head does MobiRate impose on a mobile phone (see “Over-
head”)?

Robustness
Ideally, we would evaluate the robustness of MobiRate by
carrying out a field experiment. We would find a large num-
ber of mobile users who run applications for sharing services
and have them exchange ratings either using state-of-the art
protection or MobiRate. We would also “introduce” users
who maliciously modify their ratings. As users share con-
tent on the move, we would measure the fraction of com-
promised interactions (i.e., decisions of interacting made by
honest individuals on fake ratings).

Unfortunately, we do not have a deployment of mobile con-
tent sharing applications. So we need to set up a realistic

simulation. We do so in “Simulation Setup” and use empiri-
cal observations about how individuals move, when they in-
teract, and which interactions get compromised. Then, while
running our simulations, we evaluate the robustness of Mo-
biRate by keeping track of the fraction of compromised in-
teractions (which we call f) - interactions between an honest
device A and a malicious device B in which, unbeknownst
to A, B supplies forged ratings, and A decides to interact
upon those ratings. By doing so, we assess: to what extent
MobiRate reduces f (see Section “Reducing f”); and how
fast it does so (see “f Over Time”).

Simulation Setup
The simulation setup is based on observations about:

• How individuals move. We use the mobility traces pro-
duced by the Reality Mining project at MIT [10]. That
project tracked how 96 individuals moved while carrying
their mobile phones for 9 months.

• When they interact. To model when people interact (i.e.,
exchange digital content), we reasonably consider that two
individuals interact if they come into range and have inter-
est in common. Our mobility traces tell those who come
into range, so we simply need to model those who have
interests in common. To do so, we model interests as cate-
gories of digital content (e.g., music genres) and distribute
those categories across individuals. We do so by assign-
ing categories at random. However, that does not reflect
reality on two counts. The first is that some categories
are more popular than others. More specifically, category
popularity often follows a Zipf distribution [3]. The sec-
ond count is that one may well befriend similar people
since homophily (i.e., love of “similar others”) has been
found to play a starring role in human society [17]. There-
fore, to assign categories, we need to account for those
two aspects. We are in the position of doing so because
the Reality Mining project not only tracked how individ-
uals moved but also recorded their social network (“who
knows whom”). We have exploited this added knowledge
to realistically distribute interests so that:

– Friends share more categories than unknown indi-
viduals do. We obtain that by following links in the
social network, selecting one node at the time (step
1), and assigning categories to that node (step 2). In
so doing, we bias the way we assign categories over
time - one friend after the other. We have quanti-
tatively measured to what extent friends’ categories
overlap by computing the Jaccard similarity for each
pair of friends (Jaccard similarity is a statistic used
for comparing the similarity of two sets [29]). Com-
pared to random, the realistic way of distributing in-
terests shows an average Jaccard similarity 3.2 times
higher.

– Category popularity follows a Zipf distribution. We
do so by preferentially assigning popular categories
in step 2. More formally, the probability of assigning
a category is proportional to that category popularity.
That is, given the choice between two categories, one
with twice as many people assigned as the other, it

Figure 3. Fraction of compromised interactions f versus the percent-
age of malicious individuals m.

is twice as likely that we assign the more popular
category.

To sum up, any two individuals interact if they share con-
tent categories. We assign c categories (out of a possible
t) to each individual. We do so in two ways: random and
realistic. By changing c and t, the results (fraction f of
compromised interactions) differ little. So we will report
below only the results for c = 2 and t = 10 and will study
which factors (other than c and t) impact those results.

• Which interactions get compromised. Finally, to deter-
mine which interactions get compromised, we need to de-
termine which individuals are malicious and consider that,
whenever one interacts with any of those individuals, the
completed interaction gets compromised. There are clearly
many possibilities of how to select malicious individuals
and we consider two extremes. We pick malicious indi-
viduals either uniformly at random or by preferentially
selecting among those least-social (have the least num-
ber of friends). Again, we will refer to those two ways of
choosing malicious individuals as random and realistic,
respectively.

To compare MobiRate to other approaches, we consider that
simulated devices either exchange recommendations or rely
on MobiRate’s tamper-evident tables. When devices exchange
recommendations, we further consider two extremes: de-
vices either do not filter recommendations or perfectly filter
them (they are oracles who know which recommendations
are fake and filter them out). In short, we consider that de-
vices use either “No Filtering”, “Oracle Filtering”, or “Mo-
biRate”. Using “Oracle Filtering”, a device can still interact
with malicious nodes about which it lacks direct experiences
or recommendations.

Reducing f
One would expect that how well MobiRate performs (lowers
f) mainly depends on the fraction of malicious individuals
(which we call m). Figure 3 plots f against m. f increases
linearly with m when recommendations are not filtered (“No

Figure 4. Fraction of compromised interactions f in four simulation
setups. By categorizing setups along the two dimensions (wayinterests,
waymalicious), we identify four of them: (1) (realistic, realistic); (2) (re-
alistic, random); (3) (random, realistic); and (4) (random, random). For
example, (1) corresponds to a setup in which the way we distribute
interests and the way we pick malicious individuals are both realistic.
“(3) ∼ (4)” means that setups (3) and (4) show the same results.

Filtering” curve), as one expects: the more malicious indi-
viduals (the higher m), the more users are to fall victim (the
higher f). Both “Oracle Filtering” and MobiRate signifi-
cantly reduce f . The latter is robust to higher percentages
of malicious individuals - it shows negligible f up to 80%
of malicious individuals. That is because, in the presence of
malicious individuals, it is preferable to rely not on exchang-
ing recommendations but on locally stored ratings which are
tamper-evident.

One would also expect that f may be affected by the way
we have distributed interests across users (wayinterests) and
the way we have picked malicious individuals (waymalicious).
We have seen that either of this way can take two extremes
(random,realistic). So we have four possible simulation se-
tups. Figure 4 depicts how f varies across those setups -
f shows the same trend for all of them - as one expects, it
increases with m. However, the results quantitatively vary
across setups. To find out whether the way we pick mali-
cious individuals or the way we distribute interests impacts
the most, we run a 2-factorial experiment [14] (whose results
have a confidence interval of 95%). We found that the way
we pick malicious individuals has the least impact (24%) on
f . That is intuitively confirmed by Figure 4 in which (3) is
superimposed on (4) - those setups vary in the way we pick
malicious individuals (waymalicious), and they show the same
results - so waymalicious matters little.

f Over Time
We have seen that MobiRate considerably reduces the frac-
tion of compromised interactions. But does MobiRate take
considerable time to show those good results? Figure 5 shows
how f evolves over (simulation) time if there are 70% of ma-
licious individuals1. For “No Filtering”, after an initial as-
sessment, f remains constant - if the percentage of malicious
1For 30% of malicious individuals, f follows the same trends.

Figure 5. Fraction of compromised interactions f over (simulation)
time. 70% of malicious individuals in the system.

individuals remains the same, the number of compromised
interactions roughly remains the same. For both “Oracle
Filtering” and MobiRate, f exponentially decreases. Mo-
biRate shows a steeper decline because, again, it does not
rely on exchanging recommendations (limited in the pres-
ence of malicious individuals) but relies on locally stored
and tamper-evident ratings.

Overhead
The overhead a mobile phone would see in using Mobi-
Rate largely depends on two cryptographic techniques: pub-
lic key encryption and collision-resistant hashing. These
techniques can be implemented by different algorithms and,
among them, we should pick those two that are both secure
and fast. To attain a minimum level of security, America’s
National Institute of Standards and Technology (NIST) re-
cently suggested SHA-1 (for collision-resistant hashing) and
RSA (for public key encryption) with a key of at least 1024
bytes [4]. However, the use of RSA may slow down current
models of mobile phones. So, we consider a second public
key encryption algorithm - ECDSA [15]. We do so because,
security level being equal, compared to RSA, ECDSA uses
smaller keys and, consequently, signs messages faster [11].

Storage Overhead. A device that runs MobiRate stores the
code for a set of cryptographic algorithms, a rating table, and
the gossips it receives from other devices. In the worst case,
all this requires about 106KB. That is because: the cryp-
tographic algorithms in JAVA require 53KB for ECDSA or
60KB for RSA [31], a rating table that contains 100 ratings
(which is pessimistically high given that expired ratings are
discarded) takes 15.4KB, and a set of 100 gossips also re-
quires 15.4KB. So the amount of storage required is neg-
ligible, mostly because mobile phones come with GBs of
storage nowadays.

Communication Overhead. As for communication overhead
experienced by a device, if the device runs: (1) the commit-
ment protocol (at either end), it transmits 158 bytes2; (2) the
2That is because a table row is transmitted. A row takes 158 bytes

Protocol
Nokia
6600
RSA

Nokia
6600
ECDSA

Ericsson
P900
RSA

Ericsson
P900
ECDSA

Commitment
(Rater)

4,41 1,10 2,9 0,6

Commitment
(Rated)

4,55 2,35 3,87 1,45

Audit
(Challenger)

0,28+
n·0, 34

0,28 +
n · 0, 34

1,94+
n · 0, 18

1,70 +
n · 0, 18

Table 2. Execution time (seconds) of MobiRate’s protocols on two mo-
bile phones. We compare two public key encryption algorithms: RSA
and ECDSA. Using the latter (whose execution time is highlighted),
both protocols run faster.

audit protocol as challenger, it transmits 256 bytes; or (3)
the audit protocol as responder, it transmits 20+n · 10 bytes
(where n is the number of ratings being audited). In theory,
using Bluetooth version 1.2, devices can transfer 434 kb/s
. In practice, environmental conditions (e.g., human bodies
that interfere with Bluetooth’s frequencies) lower that speed.
Still, at a speed as low as 100 kb/s, a mobile phone can carry
out the audit protocol (which requires the most number of
bytes) in 2.5 milliseconds.

Communication Complexity. MobiRate’s protocols use two
types of gossips. These gossips have both O(a) message
complexity, where a is the average number of “like-minded
familiar strangers”. As we mentioned at the end of Section
“Gossiping Commitments”, those individuals are a subset of
familiar strangers (a limited group of people who one does
not know but meets regularly [13]).

Computational Overhead: CPU. Researchers have exten-
sively implemented and evaluated the cryptographic algo-
rithms that MobiRate uses [31]. Based on their results, we
compute the execution time of our protocols on two mobile
phones (Table 2). The overhead on either phone is accept-
able. As one would expect, ECDSA signs messages faster
than RSA. However, Moore’s Law lends a word of caution
on those results: they are meant to demonstrate the feasibil-
ity of MobiRate but not to hold in the future - in few months’
time mobile phones will become more powerful, and Mobi-
Rate is expected to run seamlessly on them. Furthermore,
one may observe that the two cryptographic operations used
are well-established, and one may consequently imagine a
(near) future in which those operations will be partially or
fully implemented in hardware for higher performance.

DISCUSSION
Based on the previous results, we now discuss some open
questions.

Privacy Concerns. By exchanging their ratings, users reveal
people with whom they have interacted, and some users may
not feel comfortable doing so for privacy concerns [18]. Our

as it consists of an entry (10 bytes), an authenticator (which re-
quires 128 bytes in the worst case of RSA signature), and an hash
value (20 bytes).

design partially alleviates these concerns because it supports
anonymous tokens for identifying users.

Additional attacks. Malicious individuals may not limit them-
selves to simply being malicious or ignorant, but may also
carry out other attacks:

• Sybil Attackers. MobiRate is a way of collecting and stor-
ing ratings. Those ratings may come not only from hon-
est individuals but also from Sybil attackers (Sybils). A
Sybil is a user who takes on multiple identities and pre-
tends to be multiple, distinct users who highly rate each
other [9]. To reduce the impact of Sybils, one needs an
algorithm that filters out their ratings. We have recently
proposed a distributed algorithm for portable devices that
does so by arranging ratings in a social network of recom-
menders [26]. The idea is that the more connected a rec-
ommender, the higher the importance of her ratings. Since
Sybils happen to be poorly-connected, our algorithm has
been proven experimentally robust to their ratings.

• Dynamic Attackers. User A may be ignorant or malicious
when interacting with B but not so with C. The result is
that B singles out A, while C keeps on interacting with A.
That situation does not create any conflict between B and
C as there is no need for them to share the same opinion
on any device (including A).

• Lying Recommenders or Gossipers. MobiRate is orthogo-
nal to most existing work that focuses on designing algo-
rithms for filtering lying recommenders. Interestingly, we
have shown that even assuming ideal filtering algorithms,
devices can still fall victim of malicious devices whenever
they lack information about them. By contrast, using Mo-
biRate, devices do not need to collect recommendations
but rely on locally stored ratings and on gossips to ver-
ify the integrity of those ratings. Devices cannot make up
gossips simply because any gossip that is cryptographi-
cally corrupted is automatically discarded.

• Slackers. Recommenders who are willing to contribute
and see their ratings forged will likely feel frustrated, and
that may turn them into slackers. A slacker is a term for
people who escape their fair share of work by not supply-
ing ratings. Intuitively, MobiRate may encourage contri-
bution since it allows its users to rate without being dis-
couraged by forgers. However, this argument needs fur-
ther research - it should be treated as a testable hypothesis
rather than an established fact.

Design of Rating Tables. The way we have designed rating
tables guarantees that:

• Tampered ratings are detected. In Section “Acting on
Gossips”, we have seen that if B tampers with its entry ek,
any device is able to detect the alteration by challenging B
to produce that entry, thereby obtaining enough evidence
to conclude that B has tampered with the entry.

• Each device keeps only one table. B may attempt to keep
more than one rating table. For example, B may keep one

table for ratings by C and another for ratings by D. How-
ever, if B were to do so, it would be unable to answer audit
challenges (Type 2 gossips). That is because, as we have
seen in Section “Acting on Gossips”, those challenges re-
quire B to return a “linear hash chain” of ratings, which
is infeasible if ratings come from different tables, as we
will formally prove in Theorem 2 of the Appendix.

• Ratings can change over time. If A rates B more than
once, B appends more than one rating in its table. To limit
storage, B may well want to stop its table from growing
over time. It may do so in two ways. First, by summa-
rizing ratings using standard optimizations such as Bloom
Filters [22]. Second, by discarding expired ratings - rat-
ings older than some specific expiration time. That would
make sense since the value of ratings decays over time.
By simply assigning each gossip with an expiration time,
a device can delete the entries whose gossips have ex-
pired but cannot do so for those whose gossips are still
valid - witness devices should still be able to scrutinize
them. Given that B interacts with some devices more fre-
quently than others, B chooses an expiration time (e.g.,
few months) that will be large enough to accommodate all
of the devices it has interacted (and will interact) with.

CONCLUSION
We proposed a mechanism (MobiRate) that makes it pos-
sible for mobile users to run collaborative applications by
storing and exchanging tamper-evident ratings. MobiRate is
effective in singling out malicious individuals (it is robust
up to 90% of malicious individuals in the system) and scales
(it entails reasonable storage, communication, and computa-
tional overhead).

To further evaluate MobiRate, we are studying how under-
ground passengers (of the order of 1 million) happen to be
co-located and how their mobility patterns would impact the
performance of MobiRate. To evaluate whether users under-
stand MobiRate’s underlying concept and whether they can
use it, we are also designing a user study.

Acknowledgments: We thank the anonymous reviewers and
our shepherd, Rene Mayrhofer, for their helpful comments.
We also thank: Bence Pasztor, Anders Lindgren, and Liam
McNamara for their guidance on mobility traces; Shinichi
Honiden for his support; Eric Platon, Neal Lathia, and Costin
Raiciu for their constructive feedback; and Microsoft Re-
search Cambridge for its financial support.

REFERENCES
1. Bluetooth SIG. Core Specification v2.1 + EDR. July 2007.
2. K. Aberer and Z. Despotovic. Managing Trust in a Peer-to-Peer

Information System. In Proc. of the 10th ACM International
conference on Information and Knowledge Management, pages
310–317, Atlanta, USA, November 2001.

3. A. L. Barabasi. Linked: How Everything Is Connected to Everything
Else and What It Means. Penguin, 2003.

4. E. Barker, W. Barker, W. Burr, W. Polk, and M. Smid.
Recommendation for key management. In NIST Special Publication.
Revised Mar 2007.

5. A. Bassoli, J. Brewer, K. Martin, P. Dourish, and S. Mainwaring.
Underground Aesthetics: Rethinking Urban Computing. IEEE
Pervasive Computing, 6(3):39–45, 2007.

6. R. Chakravorty, S. Agarwal, S. Banerjee, and I. Pratt. MoB: A mobile
bazaar for wide-area wireless services. In Proceedings of the 11th

ACM International Conference on Mobile Computing and
Networking (MobiCom), page 228242, 2005.

7. B.-G. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz. Attested
append-only memory: making adversaries stick to their word. In
Proc. of 21st ACM SIGOPS Symposium on Operating Systems
Principles (SOSP), pages 189–204, Stevenson, Washington, USA,
2007.

8. C. Dellarocas. Immunizing online reputation reporting systems
against unfair ratings and discriminatory behavior. In Proceedings of
the 2nd ACM Conference on Electronic Commerce (EC), pages
150–157, Minnesota, US, 2000.

9. J. R. Douceur. The Sybil Attack. In Proc. of the 1st International
Workshop on Peer-to-Peer Systems, pages 251–260, Cambridge,
USA, 2002.

10. N. Eagle and A. S. Pentland. Reality mining: sensing complex social
systems. Personal Ubiquitous Computing, 10(4):255–268, 2006.

11. V. Gupta, M. Millard, S. Fung, Y. Zhu, N. Gura, H. Eberle, and S. C.
Shantz. Sizzle: A standards-based end-to-end security architecture
for the embedded internet. In Proc. of the 3rd IEEE International
Conference on Pervasive Computing and Communications
(PERCOM), pages 247–256, Washington, DC, USA, 2005.

12. A. Haeberlen, P. Kouznetsov, and P. Druschel. PeerReview: practical
accountability for distributed systems. In Proc. of 21st ACM SIGOPS
Symposium on Operating Systems Principles (SOSP), pages
175–188, Stevenson, Washington, USA, 2007.

13. P. Hui, J. Crowcroft, and E. Yoneki. BUBBLE Rap: Social Based
Forwarding in Delay Tolerant Networks. In Proc. of the 9th ACM
International Symposium on Mobile Ad Hoc Networking and
Computing (MobiHoc), HongKong, 2008.

14. R. K. Jain. The Art of Computer Systems Performance Analysis.
Wiley.

15. D. B. Johnson and A. J. Menezes. Elliptic curve dsa (ecsda): an
enhanced dsa. In Proc. of the 7th Conference on USENIX Security
Symposium (SSYM), pages 13–13, San Antonio, Texas, 1998.

16. S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. The Eigentrust
algorithm for reputation management in P2P networks. In Proc. of
the 12th ACM International Conference on World Wide Web (WWW),
pages 640–651, Budapest, Hungary, May 2003.

17. G. Kossinets and D. J. Watts. Empirical Analysis of an Evolving
Social Network. Science, 311(5757):88–90, 2006.

18. N. Lathia, S. Hailes, and L. Capra. Private Distributed Collaborative
Filtering using Estimated Concordance Measures. In Proceedings of
ACM Recommender Systems (RecSys), 2007.

19. R. Levien and A. Aiken. Attack-resistant trust metrics for public key
certification. In Proc. of the 7th USENIX Security Symposium, pages
229–241, Berkeley, USA, January 1998.

20. H. Luo, R. Ramjee, P. Sinha, L. E. Li, and S. Lu. UCAN: a unified
cellular and ad-hoc network architecture. In Proceedings of the 9th

ACM International Conference on Mobile Computing and
Networking (MobiCom), pages 353–367, New York, US, 2003.

21. L. McNamara, C. Mascolo, and L. Capra. Media Sharing based on
Colocation Prediction in Urban Transport. In Proceedings of the 14th

ACM International Conference on Mobile Computing and
Networking (MobiCom), San Francisco, US, 2008.

22. M. Mitzenmacher and E. Upfal. Probability and Computing.
Cambridge University Press, 2005.

23. L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank
Citation Ranking: Bringing Order to the Web. Technical report,
Stanford University Technical Report, 1998.

24. E. Paulos and E. Goodman. The familiar stranger: anxiety, comfort,
and play in public places. In Proc. of ACM Conference on Human
Factors in Computing Systems, pages 223–230, 2004.

25. D. Quercia, S. Hailes, and L. Capra. B-trust: Bayesian Trust
Framework for Pervasive Computing. In Proc. of the 4th

International Conference on Trust Management (iTrust), pages
298–312, Pisa, Italy, May 2006. LNCS.

26. D. Quercia, S. Hailes, and L. Capra. Lightweight Distributed Trust
Propagation. In Proc. of the 7th IEEE International Conference on
Data Mining (ICDM), Omaha, US, October 2007.

27. D. Quercia, S. Hailes, and L. Capra. TRULLO - local trust
bootstrapping for ubiquitous devices. In Proc. of the 4th IEEE
International Conference on Mobile and Ubiquitous Systems:
Computing, Networking and Services (MobiQuitous), Philadelphia,
US, August 2007.

28. B. Schneier and J. Kelsey. Cryptographic support for secure logs on
untrusted machines. In Proc. of the 7th Conference on USENIX
Security Symposium (SSYM), pages 4–4, San Antonio, Texas, 1998.

29. P.-N. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining.
Addison-Wesley, 2005.

30. D. Tapscott and A. D. Williams. Wikinomics: How Mass
Collaboration Changes Everything. Portfolio, Penguin, 2006.

31. S. Tillich and J. Grossschaedl. A Survey of Public-Key Cryptography
on J2ME-Enabled Mobile Devices. In Proc. of the 11th International
Symposium of Computer and Information Sciences, pages 935–944,
2006.

APPENDIX
Audits
Theorem 1. If B tampers with its entry ek, A is able to
detect that tampering by running a commitment protocol on
ek.

Proof. Assume to the contrary that:

1. B tampers with the rating in its kth entry ek (we indi-
cate the tampered entry as ẽk = (sk, r̃k)).

2. A and B run the commitment protocol for the entry ek,
and A does not detect the tampering.

After the commitment protocol, A obtains aB
k = SB(sk, hk),

ẽk = (sk, r̃k), and hk−1. It then computes
h̃k = H(hk−1||sk||H(r̃k)), arranges (sk, h̃k), and com-
pares it to (sk, hk) (extracted from aB

k). During this com-
parison, A runs into a mismatch and concludes that B has
tampered with ek. That is a contradiction.2

Theorem 2. If B tampers with its lth entry el (where k <
l < m), A is able to detect that tampering by running a
commitment protocol on the segment (ek, . . . , em).

Proof. Assume to the contrary that:

1. B tampers with the rating in its lth entry el (we indicate
the tampered entry as ẽl = (sl, r̃l)).

2. A and B run the commitment protocol for the segment
(ek, . . . , em), and A does not detect the tampering.

After the commitment protocol, A obtains aB
k = SB(sk, hk),

ek = (sk, rk), and hk−1. It then computes:

• hk = H(hk−1||sk||H(rk))

• hk+1 = H(hk||sk+1||H(rk+1))

• . . .

• hl−1 = H(hl−2||sl−1||H(rl−1))

• h̃l = H(hl−1||sl||H(r̃l)) - from here, the chain gets compromised

• . . .

• h̃m = H(hm−1||sm||H(r̃m))

A then arranges (sm, h̃m), and compares it to (sm, hm) (ex-
tracted from aB

m). During this comparison, A runs into a
mismatch and concludes that B has tampered with at least
one of the entries in the segment (ek, . . . , em). That is a
contradiction.2

Completeness
Theorem 3. Eventually, every ignorant device is suspected
by each of its like-minded familiar strangers (defined as per
Section ”Gossiping Commitments”).

Proof. Assume to the contrary that:

1. B is ignorant.
2. There is a device C that does not suspect B at time

t′ > t, ∀t

The first assumption (B is ignorant) means that there is a
device D that sent a message to B, B did not acknowledge it,
and D sent a Type 1 gossip. Eventually, all reached devices
(B’s like-minded familiar strangers) started suspecting B.

Let t1 be the first time C receives D’s gossip. Given the
second assumption, C does not suspect B at time t2 > t1.
But that may only happen if B has engaged in a commitment
protocol with C and has correctly acknowledged B’s mes-
sage. That contradicts the first assumption (B is ignorant).2

Theorem 4. Every malicious device is eventually exposed or
forever suspected by each of its like-minded familiar strangers
(defined as per Section ”Gossiping Commitments”).

Proof. Assume to the contrary that:

1. B is malicious.
2. There is a device C that does not suspect (or exposes)

B at time t′ > t, ∀t

The first assumption (B is malicious) means that there is a
device D that has proof of B being malicious and that dis-
tributes evidence as Type 2 gossips. Eventually, all reached
devices (B’s like-minded familiar strangers) start suspecting
B.

Let t1 be the first time C receives D’s gossip. Given the sec-
ond assumption, C does not suspect B at time t2 > t1. But
that may only happen if B has engaged in an audit protocol
with C and has correctly acknowledged C’s message. That
contradicts the first assumption (B is malicious).2

Accuracy
Theorem 5. No honest device is forever suspected by an
honest device.

Proof. Assume to the contrary that there is an honest device
B that is forever suspected by A after time t1.

Let t2 > t1 be the first time A receives a gossip about B.
A runs either the commitment protocol or the audit proto-
col. However, being B an honest device, B constructs a
valid response. But A still suspects B after t2. That is a
contradiction.2

Theorem 6. No honest device is ever exposed by an honest
device.

Proof. Assume to the contrary that there is an honest de-
vice B that is exposed by another honest device A. Since
A is an honest device, the only reason for A exposing B is
that A has a proof of B misbehaving. But B, being honest,
has not misbehaved. As such, A cannot have any proof of
misbehavior and cannot expose B. That is a contradiction.2

