Reductive logic & proof-theoretic
semantics: a coalgebraic perspective

David Pym

Thanks to Simon Docherty and Alexandra Silva

UCL & The Alan Turing Institute

Proof-theoretic Semantics
Assessment and Future Perspectives
Third Tubingen Conference on Proof-theoretic Semantics,
27-30 March 2019

| want to say some quite simple things, trying to make some
connections between

- reductive logic & tactical proof construction,
- proof-theoretic semantics, and

- coalgebraic semantics, as a candidate unifying approach.

Reductive logic: proof theory and proof-search

Here, we have the most basic idea: we read inference rules as
reduction operators, from conclusion to premisses. Instead of the

deduction . _
Premiss; ... Premiss, ll
Conclusion ’
the reduction
Sufficient Premiss; ... Sufficient Premissy ﬂ

Putative Conclusion

Here, failure to construct a proof derives from failure to reduce to
axiom sequents, say. For example,

[Fp

T

and there is no unpacking of I that exposes an occurrence of p.

Reductive logic: Kripke semantics and
model-checking

Model-theoretic satisfaction relations also work like this, of course:

wEMOAY iff wEMPandw Epm Y

w = ¢ x1 iff there are worlds v and v s.t. R(u, v, w) and

ufFEMm¢and v Eum Y

and so on.

Here, failure to construct a realizer derives from failure to reduce
to satisfiable atoms:

whkEMmp iff weV(p)

That is, we reduce to atoms that do not satisfy this condition.

Reductive logic
Towards a semantic perspective.

- Reductive logic:
- Proof-search
- Syntactic Reductions (e.g., for logic programming, theorem

proving)
- Bigger space than proofs

- Truth-functional semantics

- Semantic Reductions (e.g., for model-checking)
- Bigger space than realizers

- Distinction at axioms and atomics, respectively.

- But these larger spaces are not sufficient alone to characterize
reductive logics: typically, reductions are one-to-many,
whereas, typically, deductions are many-to-one.

- Let's unpack this a bit, following Pym & Ritter, Reductive
Logic and Proof-search: Proof Theory, Semantics, and
Control, Oxford Logic Guides, 2004, has a detailed set-up for
classical and intuitionistic logic.

Theoretical backstory

- A reduction model is a fibred structure R — in the sense of
the use of fibred and indexed categories, and doctrines, in
categorical logic — interpreting propositions and proofs —
relative to indeterminates, interpreted using polynomial
constructions, which stand for terms and propositions that
remain to be calculated.

- Along with this, we need a semantic judgement, defined
relative to the model,

W ke (¢:9)l

between worlds W, indeterminates in ©, sequents [7- ¢, and
reductions, .

- At world W, relative to ©, ® is a reduction of I 7- ¢:

[2-¢: ¢

Theoretical backstory

- In this truth-functional sense, soundness means that all I' 7- ¢
for which a reduction can be calculated are true in the model
and completeness means that there is a (term) reduction
model for which all true ' 7- ¢ have reductions.

- Again, Pym & Ritter, Oxford Logic Guides, 2004, has the
details.

Theoretical backstory

A reduction & is interpreted as a map

rpy e pagy

Soundness means that every reduction that can be calculated
can be so interpreted in the model.

Completeness means that there is a (term) model consisting
of exactly the reductions that can be calculated.

In this denotational setting, we seek to interpret not only the
realizer of a consequence but the control process.

Theoretical backstory

- For example, Prolog’'s strategy of left-to-right clause selection
with depth-first traversal and Cut, and the input-output
model.

- A control process is associated with the realizer ®,
constructed using the process E:

iy ES (A

- There is a well-developed theory of (bi)simulation (equality)
of processes.

- We can explore examples of game-theoretic models that are
able to account for both the structural and operational
aspects of reductive logic.

- Again, Pym & Ritter, Oxford Logic Guides, 2004.

Milner and LCF: a concrete theory of proof-search

In the late 70s and early 80s, Robin Milner and colleagues worked
on machine-assisted proof, producing the ‘Stanford LCF' and
‘Edinburgh LCF’ systems.

This work was about ‘goal-oriented reasoning’” — that is,
proof-search.

- R. Milner. The use of machines to assist in rigorous proof.
Phil. Trans. R. Soc. Lond. A 312, 411-422 (1984).

- M. Gordon. Tactics for mechanized reasoning: a commentary
on Milner (1984) ‘The use of machines to assist in rigorous
proof’. Phil. Trans. R. Soc. Lond. A 373:20140234 (2015).

Goals, theorems, and procedures

Following Milner:
- A theorem is a (proved) sequent " - ¢.
- A goal G is a sequent [7— ¢.
Then:
- An event E is [the proving of]| a theorem.

- An event A F 1) achieves a goal I 7— ¢ if, for some © C T,
©7— ¢ =~ A7 1, for some equivalence (generalizing
Milner a bit here).

- A procedure is a partial function

p : (list of theorems) — theorem

Tactics

- A tactic is a partial function that takes a goal and returns a
list of goals and a procedure:

tactic : goal — goal list x procedure

- Elementary tactics are given by the the reduction operators
that correspond to the ‘inverses’ of inference rules

Premiss; ... Premissy ﬂ

Conclusion

Subgoal; ... Subgoalkﬂ
Goal
- A tactic T is valid if, whenever

T(G) =([G1,... Gn)l, p)

is defined and whenever [Eq, ..., E,] respectively achieve the
goals [G1, ..., Gg], then the event p([Ey,..., E,]) achieves G.

Tacticals

Complex goals require, in practice, complex strategies.

Need combinators, called tacticals, for composing tactics.

Tactical combinations of tactics are themselves tactics.

Examples would include:

- Basic sequencing

- The definition of uniform proof in the sense of Miller

- In some sense, this is the origin of the ML (‘Meta-Language')
family of programming languages.

Relate to theoretical backstory

Recall
E:®o|W
(61, 6,1 50 [y

Here, abusing notation a bit

strategy \ / realizer
E:®

Dly- oy O

A strategy is a tactical combination of tactics

A procedure converts/reduces realizers to proofs, working up
to ~.

Proof-theoretic semantics

Proof-theoretic used to be known as the theory of meaning — that
is, of logical of constructs — in the sense of Prawitz, Martin-Lof,
Sundholm, and others, mainly in the Scandinavian logical school.

- Basic idea: provide theory of logical validity that is based on
proof-theoretic structures instead model-theoretic structures.

- We can think of this as working with mathematical structures
that are built out of proof systems (inference rules,
meaningfully organized) instead of satisfaction relations (truth
in models).

Proof-theoretic semantics

Some questions that proof-theoretic semantics asks.

- In order to understand how it is that proof characterizes
meaning, of structures are proofs delineating examples?

- One answer, inspired by truth semantics!, is that inferences
rules are special cases of relations on sequents (or other basic
units of a proof system).

- Then, within this bigger space of constructions, how can
proofs — or, more generally, things equivalent to proofs — be
identified? There's a kind of subtext of constructivism here.

I'll try to look at all this in terms of Milner's theory of tactical
proof.

Relate to proof-theoretic semantics

We can see, informally, for now, a correspondence between
Milner's analysis and current ideas in proof-theoretic semantics.

Let's work with something like the Prawitz, Schroder-Heister,
. approach (e.g., Proof-theoretic vs model-theoretic
consequence, 2008).

Proof structures D that are tree-like arrangements of sequents.
A justification system [J that maps structures to structures.

Idea is that justifications pick out those structures that
correspond to proofs in a ‘ground’ system of proof-theoretic
rules.

Relate to proof-theoretic semantics

- Validity with respect to J and atomic system S (inference
restricted to propositional atoms):

¢1,.-.,0n EY iff thereisa J s.t. for every S
and all J1,...,Jp, if
(*-7175) ‘: P15 - - '7(\7n75) ‘: Gn,
then (7, S) = ¢

- J(N,---,Tn) amounts to the procedure, relative to possibly
generalized S (‘ground’ inferences).

- Strategy not included in this picture (as | understand it).

Towards a coalgebraic approach

- A coalgebra for an endofunctor F : C — C is a morphism
a: X — FX in C, usually written (X, a).

- Intuitively, F assigns structure to a state space X, while «
describes the dynamics for a system that traverses this
structured space.

- This concept subsumes and generalizes phenomena as
wide-ranging as automata, context-free grammars, datatypes,
games, program semantics, and transition systems.

This approach provides an algebraic framework within which to
generalize the theoretical backstory.

Towards a coalgebraic approach — first, a logic

- Kripke semantics can be seen coalgebraically.

- Example: BI, the logic of bunched implications (O'Hearn &
Pym, BSL 1999) the basis of Separation Logic.

- Essentially, freely combines IL and MILL in a bunched
proof-theoretic framework.

- Name comes from sequent calculus: bunched contexts,
separating intuitionistic and linear parts.

- Very different logic from LL: for example, ¢ — ¢ =1¢ —o)
does not hold.

Towards a coalgebraic approach — first, a logic

- Ordered partial monoid (R,C, o, e) of worlds, r, s, t,

rep
re= L
reT
rEovVY
rEeAy
rE¢—v

ri=1
riEéxy

rE ¢)

iff

never
always

iff
iff
ift
iff
ift

iff

r e V(p)

reorr =y
r=¢andriE=
for all s C r, s = ¢ implies s &= ¥

rC e

there are worlds s and t such that
rC(sot)land s E=¢ and t =19

for all s such that (ros)] and s = ¢,
ros=1

Truth-

functional semantics, coalgebraically

Bl can be given by coalgebras for the functor T : C — C,
TX =2 X Po(X x X) x Pe(XP x X)

where C is the category of posets, 2 the two element poset
and P, the convex powerset functor (Egli-Milner order).

The first component interprets of the unit constant /, the
second *, and the third —.
Given a monoid (R, o, e), a poset is given by setting r C s iff
there exists r’ such that ror’ = s.
Then the coalgebra a: R — 2 X P (R x R) x P.(R°P x R) is:
- mo(a(r))islif r=eand 0if r e — for |
- m(a(r)) ={(s,t) | sot < r} — for %
- m(afr)) ={(s,t) | ros =t} — for —

- The coalgebraic interpretation of the logic is given, essentially,
by a natural transformation 6 from a functor that forms the
formulae of the Bl to the functor T.

- In the specific case of *, given interpretations for ¢ and 1), we
obtain the interpretation

ox(¢x1p) ={t e TX|I(x,y) € ma(t),x € ox(),y € ox(¢¥)}

- In the coalgebra associated to a monoid, this corresponds
precisely to the standard truth-functional clause for %, but the
class of coalgebraic models strictly extends the class of
truth-functional models.

What’s the use of all this?

Proof-search with substructural connectives

From the computational perspective, the reduction operators
that correspond to the inference rules for multiplicative
connectives, such as ® and —o, and * and —, are
problematic.

For example,

[1Eo1 Tol ¢
[F @1 % @2

How to calculate the ['s?

M=T1r

lterates through the search: suppose ¢1 = 11 * ¥, then need
|_1 = Al,AQ e

Computationally expensive (potentially both time and space).

Not just right rules,

-
[¢—F x ?

The input—output model

T\AF ¢y -

I'E oy T A gy
I'E @1 % @2

Figure 1: The input—output model (Miller)

- All ‘resources’ are sent up the first branch.

- Those required to close the branch (if possible) are retained on
the branch, with what remains being sent to the next branch.

Back to coalgebra, for the input-output model

Coalgebraically, we can see this as a further structuring of the
search space TX by updating to Bool x In x TX.
Then the coalgebra o : X — Bool x In x TX works as follows:

at a reduction with a multiplicative conjunction leaf
[+ ¢1 % ¢o, a is designed to choose to reduce the left-hand
premiss;

In outputs a list of the formulae required for the current proof
of ¢1;
Bool is a test for termination of that branch;

if a proof is found, the next step of computation defined by «
is to begin reducing the right-hand premiss with respect to the
context given by [minus the current value of In;

In is then reset to the empty list and Bool to false.

Why coalgebra?

The motivation for adopting a coalgebraic approach is strong;
it handles both

- Kripke semantics, as a framework for defining logics, and
- proof-search and model-checking procedures.

The latter point perhaps deserves some expansion.

Search procedures are not naturally functional, but are
naturally stateful. ML, the programming language initially
developed as language for specifying tactics and tacticals in
LCF, is not a purely functional language. Rather, it makes
explicit use of imperative exceptions.

Exceptions are used to handle failure and continuation/
resumption — essential features of search procedures.

Thus while deduction naturally has functional accounts,
reduction does not.

Generalizing
At this level of generality — remaining agnostic about the exact
nature of the termination test — it is easy to see how this
coalgebraic description could incorporate more general examples
like the resource-distribution model of Harland & Pym
(Resource-distribution via Boolean constraints, ACM ToCL, 2000),
where the test is solutions to Boolean constraints.

More generally still, this can be seen as the use of the classical
(sequent) calculus, as a meta-calculus for the reductive
(proof-search) view of non-classical logics, L:

L-search = LK-search + Conditions

- Dummett's restriction of multiple-conclusion sequent calculus
for IL;

- Essentially modal conditions;
- Resource-distribution in substructural logics

Actually, it's the and—or combinatorics that matter, with negation
a sometimes-convenient tool.

A general approach to resource distribution

- We consider a sequent calculus for, for example, Linear Logic
in which the non-deterministic splitting of contexts at
multiplicative reductions is explicit.

- This allows us to set up a calculus which is independent of the
choice of strategy that is used to distribute formulae, but
which makes the necessary constraints explicit.

- To motivate/frame the approach, let's start with examples of
key strategies for calculating multiplicative splitting.

- Method is very general, actually ...

- Let’s begin with a simple example: the provable Linear Logic
sequent

P, p,q,qF (P®q)®(p®q)

Lazy distribution

First pass all of context to a chosen (lefmost, say) branch,
calculate which formulae are required to close the branch, and pass
the remaining formulae to the next branch.

- So, first

p,p,e, et p Xobgq
p,P,q, 4 p®q XiFp®q
PP a9 (P®q)@(p®q)
- Then X5 gets p, g, g and uses a g and so X; gets p and gq.

- Repeat for the leftmost remaining branch, and the proof

p,pg,¢Fp p,9.6-q pgabp p,qkqg
p,p,q, g p®q p,g-p®q
P, p,q,qF (P®q)®(p®q)

Lazy distribution

Let's see how a lazy search can fail.
So, first

p,pe, et p Xobgq
p,p,d, g pRq p,p,d, g pRq
PP q,q (P2 q)&(p® q)
Again, X5 gets p, g, g and uses a q.

Now we fail: all of the leaves on the left-hand branch have
been closed. unused formulae remain, and there is nowhere to
send them (the branching point below is additive).

Eager distribution

Pass all formulae to all possible branches

p,p,. ¢, ¢~-p p,p,.9.6-q p,p,g,gbp p,p,g,qq
XiFp®ag XoFp® g

p,p.q, g (P®q)®(p®q)

- p,p,q, qhasto all leaves.

Requirements to close each leaf can be solved simultaneously.

So a proof is determined.

Intermediate distribution

- Lazy and eager are extreme points in the space of possible
strategies here.

- In between, we have ‘intermediate’ strategies.

- That is, where many multiplicative branch is explored
simultaneously up to some specified maximum number.

- Lazy is depth-first, eager is breadth-first, intermediate is
bounded depth-first (cf. ‘iterative deepening’).

The generality of the approach

See Harland and Pym, Resource-distribution via Boolean
constraints, ACM ToCL 2000 for the following:

- Formulation of general sequent calculus with Boolean
constraints;

- Soundness and completeness results;

- The method appllies to full Linear Logic;

- The method applies to Bl's sequent calculus;

- The method applies to the full family of relevant logics as

described in Read’s Relevant Logic, Blackwell, 1988.

Additionally, we conjecture that the method applies to the families
of layered graph logics and the families of bunched modal and
epistemic logics sketched in these lectures.

We also conjecture fits into the coalgebraic framework.

Summary to take away

General, theoretically supported view of reductive logic —
proof-theoretically and model-theoretically.

Uniform coalgebraic treatment of structure and control.

Sits in the framework of proof-theoretic semantics.

Provides a setting for systematic understanding of

Reductive Logic = Structure + Control

