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Preface

This volume contains the papers presented at SR 2015: the 3rd International
Workshop on Strategic Reasoning held on September 20-21, 2015 in Oxford.

Strategic reasoning is one of the most active research areas in the multi-agent
system domain. The literature in this field is extensive and provides a plethora
of logics for modelling strategic ability. Theoretical results are now being used in
many exciting domains, including software tools for information system security,
robot teams with sophisticated adaptive strategies, and automatic players ca-
pable of beating expert human adversary, just to cite a few. All these examples
share the challenge of developing novel theories, tools, and techniques for agent-
based reasoning that take into account the likely behaviour of adversaries. The
SR international workshop aims to bring together researchers working on differ-
ent aspects of strategic reasoning in computer science and artificial intelligence,
both from a theoretical and a practical point of view.

This year SR has four invited talks:

1. Coalgebraic Analysis of Equilibria in Infinite Games.
Samson Abramsky (University of Oxford).

2. In Between High and Low Rationality.
Johan van Benthem (University of Amsterdam and Stanford University).

3. Language-based Games.
Joseph Halpern (Cornell University).

4. A Revisionist History of Algorithmic Game Theory.
Moshe Vardi (Rice University).

We also have four invited tool presentations and eleven contributed papers.
Each submission to SR 2015 was evaluated by three reviewers for quality and
relevance to the topics of the workshop. We would like to acknowledge the people
and institutions who contributed to the success of this edition of SR. We thank
the Program Committee members and the additional reviewers for their excellent
work, the fruitful discussions, and the active participation during the reviewing
process. We also thank the members of the Organizing Committee for their hard
work in making sure that the workshop could be successfully organised as well
as the EasyChair organization for supporting all tasks related to the selection
of contributions and production of the proceedings. We gratefully acknowledge
the financial support of the ERC Advanced Grant 291528 (“RACE”) at the Uni-
versity of Oxford and the Artificial Intelligence journal. Finally, we acknowledge
the support of the Department of Computer Science of the University of Oxford.

September, 2015
Oxford, UK.

Julian Gutierrez
Fabio Mogavero
Aniello Murano

Michael Wooldridge
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Petr Čermák, Alessio Lomuscio and Aniello Murano

P-Automata for Markov Decision Processes . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Souymodip Chakraborty and Joost-Pieter Katoen

Energy Structure and Improved Complexity Upper Bound for Optimal
Positional Strategies in Mean Payoff Games . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Carlo Comin and Romeo Rizzi

Simulating cardinal payoffs in Boolean games . . . . . . . . . . . . . . . . . . . . . . . . . 11
Egor Ianovski and Luke Ong

Dealing with imperfect information in Strategy Logic . . . . . . . . . . . . . . . . . . 12
Sophia Knight and Bastien Maubert

An Arrow-based Dynamic Logic of Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Louwe B. Kuijer

The risk of divergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Pierre Lescanne

Preference Refinement in Normative Multi-agent System . . . . . . . . . . . . . . . 15
Xin Sun

ii



Workshop Chairs

Julian Gutierrez University of Oxford
Fabio Mogavero University of Oxford
Aniello Murano University of Naples
Michael Wooldridge University of Oxford

Program Committee

Natasha Alechina University of Nottingham
Julian Bradfield University of Edinburgh
Krishnendu Chatterjee Institute of Science and Technology
Vojtech Forejt Oxford University
Valentin Goranko Stockholm University
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J. Gutierrez, F. Mogavero, A. Murano, and M. Wooldridge (Eds.):
3rd International Workshop on Strategic Reasoning 2015 (SR15)

Coalgebraic Analysis of Equilibria in Infinite Games

Samson Abramsky
University of Oxford

Oxford, UK

Viktor Winschel
ETH Zurich

Zurich, Switzerland

We present a novel coalgebraic formulation of infinite economic non-cooperative games. We define
the infinite trees of the extensive representation of the games as well as the strategy profiles by pos-
sibly infinite systems of corecursive equations. Subgame perfect equilibria are defined and proved
using a novel proof principle of predicate coinduction which is related to Kozen’s metric coinduction.
We characterize all subgame perfect equilibria for the dollar auction game. The economically inter-
esting feature is that in order to prove these results we do not need to rely on continuity assumptions
on the payoffs which amount to discounting the future. This suggests that coalgebras support a more
adequate treatment of infinite-horizon models in game theory and economics.
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J. Gutierrez, F. Mogavero, A. Murano, and M. Wooldridge (Eds.):
3rd International Workshop on Strategic Reasoning 2015 (SR15)

Language-based games

Adam Bjorndahl
Carnegie Mellon University∗

Pittsburgh, PA
adam.bjornedahl@gmail.com

Joseph Y. Halpern
Cornell University

Ithaca, NY
halpern@cs.cornell.edu

Rafael Pass
Cornell University
New York City, NY

rafael@cs.cornell.edu

1 Introduction

In a classical, normal-form game, an outcome is a tuple of strategies, one for each player, and players’
preferences are formalized by utility functions defined on the set of all such outcomes. This framework
thereby hard-codes a single conception of how players represent the world insofar as their preferences
are concerned.

The motivating idea of the present work is to relax this rigidity in a systematic way by using language
as the foundation of preference. Roughly speaking, we assume that what the players care about is cap-
tured by some underlying language, with utility defined on descriptions in that language. Classical game
theory can be viewed as the special case where the underlying language can talk only about outcomes.
In general, however, the language can be as rich or poor as desired.

In the colloquial sense of the word, the role of “language” in decision making and preference for-
mation can hardly be overstated. It is well known, for example, that presenting alternative medical
treatments in terms of survival rates versus mortality rates can produce a marked difference in how those
treatments are evaluated, even by experienced physicians [7]. More generally, one of the core insights
of prospect theory [4]—that subjective value depends not (only) on facts about the world but on how
those facts are presented (as gains or losses, dominated or undominated options, etc.)—can be viewed
as a kind of language-sensitivity. We celebrate 10th and 100th anniversaries specially, and make a big
deal when the Dow Jones Industrial Average crosses a multiple of 1,000, all because we happen to work
in a base 10 number system (i.e., our language puts special emphasis on multiples of 10 that would be
absent, for example, in a hexadecimal system). Furthermore, we often assess likelihoods using words
like “probable”, “unlikely”, or “negligible”, rather than numeric representations, and when numbers are
used, we tend to round them [6]. Much of the motivation and conceptual appeal of our approach stems
from observations like these: defining preferences in terms of language provides a direct avenue for
formalizing such intuitions about how people think.

Of special interest is the general phenomenon of coarseness or categoricity. Theories of rational
decision making are often couched in the formalism of continuous mathematics, but the world is not
always a continuous place, at least as far as preferences are concerned. Consumers tend to ignore,
for example, the difference in price between $3.98 and $3.99, but take seriously (or even exaggerate)
the difference between $3.99 and $4.00. Similarly, although degrees of belief are often formalized using
probability measures, a coarser representation can be more appropriate for reasoning about human choice
and inference (see [8], [9], [6]). We show, for instance, that the Allais paradox [1] can be resolved simply
and intuitively when belief is represented discretely, rather than on a continuum.

Coarseness in the underlying language—cases where there are fewer descriptions than there are ac-
tual differences to describe—provides a natural and powerful way of capturing such phenomena, offering
∗Work on this paper was mainly done while the author was at Cornell University
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insight into a variety of puzzles and paradoxes of human decision making. Moreover, it allows for a uni-
fied analysis of coarseness as it pertains both to preferences and to beliefs, traditionally distinct domains
of decision making. This is accomplished using languages expressive enough to talk about beliefs, a
technique that is of interest in its own right.

Classically, beliefs are relevant to decision making insofar as they determine expected utility. But
beliefs can also themselves be considered as objects of preference: one might wish to model players who
feel guilt, wish to surprise their opponents, or are motivated by a desire to live up to what is expected
of them. Psychological game theory, beginning with the work of Geanakoplos, Pearce, and Stachetti
[3] and expanded by Battigalli and Duwfenberg [2], is an enrichment of the classical setting meant to
capture such preferences and motivations. In a similar vein, the notion of reference-dependent prefer-
ences developed by Köszegi and Rabin [5], building on prospect theory, formalizes phenomena such
as loss-aversion by augmenting players’ preferences with an additional sense of gain or loss derived by
comparing the actual outcome to what was expected.

With the appropriate choice of language, our approach subsumes these: an underlying language that
includes beliefs allows us to capture psychological games, while a language that distinguishes expected
from actual outcomes allows us to represent reference-dependent preferences. Moreover, in each of these
frameworks, modeling coarse beliefs provides insight and opportunities lacking in the continuous setting.
Much of this paper is an elaboration and justification of this point.

The central concept we develop in this paper is that of a language-based game, where utility is de-
fined not on outcomes but on situations. As noted, a situation can be conceptualized as a collection of
statements about the game; intuitively, each statement is a description of something that might be rele-
vant to a player’s preferences, such as whether or not Alice believes that Bob will play a certain strategy.
Of course, this notion crucially depends on just what counts as an admissible description. The set of all
admissible descriptions—what we refer to as the underlying language of the game—is a key component
of our model. Since utility is defined on situations, and situations are sets of descriptions taken from
the underlying language, a player’s preferences can depend, in principle, on anything expressible in this
language, but nothing more. Succintly: players can prefer one state of the world to another if and only
if they can describe the difference between the two in the underlying language. From a technical stand-
point, this paper makes three major contributions. First, we define a generalization of classical game
theory and demonstrate its versatility in modeling a wide variety of strategic scenarios, focusing in par-
ticular on psychological and reference-dependent effects. Second, we provide a formal representation
of coarse beliefs in a game-theoretic context. This exposes an important insight: a discrete representa-
tion of belief, often conceptually and technically easier to work with than its continuous counterpart, is
sufficient to capture psychological phenomena that have heretofore been modeled only in a continuous
framework. Moreover, as we show by example, utilities defined over coarse beliefs provide a natural
way of capturing some otherwise puzzling behavior. Third, we provide novel equilibrium analyses for
a broad class of language-based games that do not depend on continuity assumptions as do those of,
for example, Geanakoplos et al. [3]. In particular, our main theorem demonstrates that if the underlying
language satisfies certain natural “compactness” assumptions, then every game over this language admits
rationalizable strategies. By contrast, even under such compactness assumptions, not every game admits
a Nash equilibrium.

This paper originally appeared in the Theoretical Aspects of Rationality and Knowledge: Proc. Four-
teenth Conference (TARK 2013); the full paper, which expands and on all the points above and gives
numerous examples, can be found at https://www.cs.cornell.edu/home/halpern/papers/lbg.pdf.
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J. Gutierrez, F. Mogavero, A. Murano, and M. Wooldridge (Eds.):
3rd International Workshop on Strategic Reasoning 2015 (SR15)

In Between High and Low Rationality

Johan van Benthem
University of Amsterdam and Stanford University

Strategic social behavior may be held in place by highly sophisticated reasoning, but its stability
may also result from a simple iterated imitation and reward structure. The same two perspectives
can be taken with respect to other aspects of social life, including the origins of morality. We will
explore this tension by taking a look at the interface of classical and evolutionary game theory from
a logician’s perspective.
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J. Gutierrez, F. Mogavero, A. Murano, and M. Wooldridge (Eds.):
3rd International Workshop on Strategic Reasoning 2015 (SR15)

A Revisionist History of Algorithmic Game Theory

Moshe Y. Vardi
Rice University

Department of Computer Science
Houston, TX 77251-1892, USA

vardi@cs.rice.edu

A key feature of current Theoretical Computer Science (TCS) is the division between Volume-A
TCS, focused on algorithms and complexity, and Volume-B TCS, focused on logic and formal mod-
els. Algorithmic Game Theory (AGT), introduced independently by several authors around 2000, is
considered today as one of the main topics of Volume-B TCS, and plays a major role in the two pre-
mier North American TCS Conferences FOCS (Symposium on Foundations of Computer Science)
and STOC (Symposium on Theory of Computing)which focus almost exclusively on Volume-A TCS.

In this revisionist history of AGT, I will show that, contrary to popular perception, AGT was stud-
ied by logicians 40 years before it was “discovered” by computer scientists, and has been a part of
Volume-B TCS at least a decade before it became a part of Volume-A TCS. I will sketch the differ-
ences between Volume-A AGT and Volume-B AGT, and call for an integrated approach to AGT.
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Substructural modal logic for
optimal resource allocation

Gabrielle Anderson
University College London, UK

gabrielle.anderson@ucl.ac.uk

David Pym
University College London, UK

d.pym@ucl.ac.uk

We introduce a substructural modal logic for reasoning about (optimal) resource allocation
in models of distributed systems. The underlying logic is a variant of the modal logic of
bunched implications, and based on the same resource semantics, which is itself closely
related to concurrent separation logic. By considering notions of cost, strategy, and utility,
we are able to formulate characterizations of Pareto optimality, best responses, and Nash
equilibrium within resource semantics.

1 Introduction

Mathematical modelling and simulation modelling are fundamental tools of engineering, sci-
ence, and social sciences such as economics, and provide decision-support tools in management.
The components of distributed systems (as described, e.g., in [9]) are typically modelled using
various algebraic structures for the structural components — location, resource, and process —
and probability distributions to represent stochastic interactions with the environment. A key as-
pect of modelling distributed systems is resource allocation. For example, when many processes
execute concurrently, they compete for resources.

A common desire of system designers, managers, and users is to determine, if possible, the
optimal allocation of resources required in order to solve a specific problem or deliver a specific
service. The notion of optimality of resource allocation is a central topic in economics, where
game theory plays a significant role. For all elementary notions from economics required for
this short paper, including ideas from utility theory and game theory, a suitable source is [20].

Building on a mathematical systems and security modelling framework — described in,
for example, [8, 6, 7], which builds on ideas in [2] and which has been widely deployed (e.g.,
[15, 1, 5, 3, 4]) — we sketch the development of a systems modelling framework that provides
a theory of (optimal) resource allocation.

The key systems components of our resource semantics-based framework (which in turn
builds on BI and its resource semantics [17, 18, 10, 8, 6]) are the following: environment (within
which the system resides), locations (the architecture of the system), resources (that are ma-
nipulated — e.g., consumed, created, moved — by the system), and processes (that operate
the system and deliver services). We integrate these components into an algebra of locations,
resources, and processes that is defined by an operational semantics [8, 7] with a judgement
of the form L,R,E a→ L′,R′,E ′ in which the process E evolves by action a, using resources R
at locations L, to become the process E ′, able to evolve further using the resources R′ at lo-
cations L′. A key component of this operational semantics is a (partial) modification function,
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µ : Actions×Resources×Locations ⇀ Resources×Locations, that specifies the effects of ac-
tions on resources and locations.

Properties of systems, including optimality properties, can be expressed logically. Specif-
ically, we make use of a substructural modal logic [8, 7] that is naturally associated with the
process algebra above in the Hennessy–Milner sense [12, 16, 8] — that is, it is defined by a
(truth-functional) satisfaction relation of the form L,R,E |= φ , for logical formulae φ — with
transitions between worlds defined by the operational semantics.

For the purposes of this paper, however, we make two simplifications. First, we elide loca-
tions, which can be coded in terms of resources if necessary. Second, we neglect the structure
of processes, using modification functions to describe the effects of actions on processes. Thus
we are able to define a logic with a satisfaction relation between resource states R and formulae
φ (i.e., R |= φ ) in which the meaning of formulae involving action modalities, such as 〈a〉φ , is
given by transitions as specified by µ(a,R).

To this logic we add, in Section 4, a simple account of utility, building on simple notions
of strategy and cost that we introduce in Section 3. Then, in Section 4, we consider a range of
examples about resource allocation and optimality, including Pareto optimality, best responses,
and Nash equilibrium. We begin by introducing, in Section 2, resource semantics.

2 Resource semantics and modal logic for systems modelling

We present our resource model and semantics, along with its key technical properties. We define
resources, actions, and an operational semantics for resources. We define our notion of bisimu-
lation, and note that resource composition forms a congruence with respect to the bisimulation
relation. We sketch a modal logic, and describe how it can be used for systems modelling.

First, we introduce our notion of resource, following [8, 7].

Definition 1 (Resource monoid). A resource monoid is a structure R = (R,◦,e) with carrier set
R, commutative partial binary operation ◦ : R×R ⇀ R, and unit e ∈ R.

We assume a commutative monoid, Act, of actions, freely generated from a set of atomic
actions. The actions correspond to the events of the system.

Definition 2 (Actions). Let Act be the free commutative monoid formed by combinations of
atomic actions, with operation · and unit 1. Let ab denote a ·b.

We set up a function that describes how actions transform resources.

Definition 3 (Modification function). A modification function is a partial function µ : Act×R⇀
R such that, for all resources R,S ∈ R and actions a,b,c ∈ Act:
• If µ(a,R), µ(b,S), and R ◦ S are all defined, then µ(a,R) ◦ µ(b,S) and µ(ab,R ◦ S) are

both defined, and µ(ab,R◦S) = µ(a,R)◦µ(b,S) holds;
• If R◦S and µ(c,R◦S) are defined, then there exist a,b∈Act such that c = ab, and µ(a,R)

and µ(b,S) are both defined;
• µ(1,R) = R.
If µ(a,R) is defined, then we say that action a is defined on resource R. We can use the par-

tiality of the resource monoid, along with the modification function, to model straightforwardly
key examples in systems modelling [8, 7], such as the following:
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Example 4 (Semaphores). Suppose a resource monoid ({s,e},◦,e), where s ◦ s is undefined.
Let a be an action. We define a modification function µ such that µ(a,s) = s. Note that µ
is undefined for any values that are neither specified explicitly nor required by properties of
Definition 3. We then have that, for all resources R ∈ R, µ(aa,R) is not defined. The resource s
acts like a semaphore, in that only one access action a can be performed at any given time.

From a resource monoid, action monoid, and modification function, we derive a transition
relation. If the modification function is defined for an action a on a resource R, and µ(a,R) = S,
then we say that there exists a transition R a−→ S, and that S is a successor of R. A notion of
bisimulation between resources is defined in the standard way.

Definition 5 (Bisimulation). A bisimulation is a relation R such that, for all RR S, then, for all
actions a ∈ Act,

• if R a−→ R′, then there exists S′ such that S a−→ S′ and R′R S′, and

• if S a−→ S′, then there exists R′ such that R a−→ R′ and R′R S′.

Let ∼⊆ R×R be the union of all bisimulations. The union of any two bisimulations is also
a bisimulation. Hence ∼ is well defined, and a bisimulation. In this simple setting, bisimulation
equivalence is the same as trace equivalence, but that is not generally true in the more general
location-resource-process framework, of which this is an example.

We can now obtain a key property: that bisimulation is a congruence; that is, an equivalence
relation that is respected by the composition operator.

Lemma 6 (Bisimulation congruence). The relation ∼ on resources is a congruence for the
operation ◦: if R1 ∼ S1, R2 ∼ S2, and R1 ◦R2 and S1 ◦S2 are defined, then R1 ◦R2 ∼ S1 ◦S2.

Proof. A straightforward argument, similar to many others.

We can use a substructural modal logic of resources to reason about our models (of dis-
tributed systems). The logic freely combines classical propositional logic with action modalities,
in the style of Hennessy–Milner logic [12, 8] or dynamic logic [11], and with BI’s multiplica-
tives [17]. Worlds are given by the resources R of a resource monoid. The classical connectives
are defined with respect to a fixed world in the usual way: R |=⊥ never, R |= φ1∨φ2 iff R |= φ1 or
R |= φ2, and R |= ¬φ iff R 6|= φ , with satisfying truth >= ¬⊥ and conjunction satisfying φ1∧φ2
= ¬(¬φ1∨¬φ2), so that, in its resulting semantics, a resource R is shared by the conjuncts.

Transitions between worlds, used to define the action modalities, are given by modifications:

R |= 〈a〉φ iff there exists R a→ R′ such that R′ |= φ

giving the possible truth of φ after the action a (with necessity satisfying [a]φ = ¬〈a〉¬φ ).
The substructural connectives — key to the analysis of resource usage in BI [17, 18, 10]

and Separation Logic [13, 19], including the Frame Rule, where the specific resource semantics
of a program’s stack/heap is analysed — use the monoidal structure of resources to separate
properties of different parts of a given model:

R |= φ1 ∗φ2 iff there exist R1 and R2, where R∼ R1 ◦R2, such that R1 |= φ1 and R2 |= φ2
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with the corresponding implication, −−∗, given as the right adjoint to ∗.
Recall Example 4 (semaphores). We can now formally state the property that the action

aa cannot be performed on each of the resources in the monoid. The formula φ = ¬(〈aa〉>)
denotes that there is no transition for the action aa. As µ(aa,e) and µ(aa,s) are not defined,
we have that e 6� 〈aa〉> and s 6� 〈aa〉>. We then straightforwardly have that e � φ and s � φ .
Note that, as e 6∼ s, the equivalence classes generated by ∼ are singleton sets, consisting of
each of the two resources. We can also state that, on each resource of the monoid, there is no
binary decomposition such that each of the two parts can perform an a action. This property
is represented by the formula ψ = ¬(〈a〉>∗ 〈a〉>). The only S and T such that e = S ◦T are
S = T = e. The only S and T such that s = S ◦T are S = s and T = e, or S = e and T = s. For
each of these possible binary decompositions, at least one of the two parts cannot perform an a
action, and hence at least one of the two parts does not satisfy 〈a〉>. Hence, e � ψ and s � ψ .

3 Strategies and cost

We address non-determinism in the transition systems generated by our resource semantics, as
introduced in the previous section. We introduce a notion of cost, that represents the prefer-
ences of an entity (or agent) in a system. We describe how to systematically determine the cost
associated with a resource. We conclude with a brief example.

The transition systems generated by our resource semantics can be non-deterministic, in the
sense that multiple actions can be defined on a given resource.

Example 7. Take a resource monoid ({0, . . . ,10} × {0, . . . ,10},◦,(0,0)), where (m1,m2) ◦
(n1,n2)=(m1+n1,m2+n2) only if m1 or m2 is 0 and n1 or n2 is 0 (and is undefined otherwise).
Suppose actions p and c. Let µ(p,(m,n))= (m,n+ 1), if n≤9, and µ(c,(m+ 1,n))= (m,n).
Then, for the resource (2,0), the actions p and c are both defined and, in the generated transition
system, there is non-determinism between the distinct, non-unit, actions, p and c.

When evolving such non-deterministic transition systems, it is necessary to have a method
to decide between possible options. A strategy can be used to determine, for a given resource,
which possible action is preferred.

Definition 8 (Strategies). A strategy is a total function σ : R→ Act such that, for all resources
R,S ∈ R, if R∼ S, then σ(R) = σ(S) and µ(σ(R),R) and µ(σ(R),S) are defined.

Example 9. We can define a strategy to resolve the non-determinism we saw in Example 7. Let
σ be a function such that, if 1 ≤ m, then σ((m,n)) = c, and σ((m,n)) = p, otherwise. This
strategy chooses the c action, whenever possible, and chooses the p action otherwise.

The resource semantics approach to distributed systems modelling abstracts away from the
entities that make decisions, and their mechanisms for doing so. A mechanism for resolving
choices can be re-introduced into the models through strategies: it does not, however, represent
the goals and interests of the entities making the choices. We can model the decision-making-
entities’ preferences through the use of a map from actions to the rationals. These numbers are
interpreted as measures of an agent’s level of happiness in the given states [20].
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Definition 10 (Action payoff function). An action payoff function is a partial function v : Act ⇀
Q s.t. v(1)=0 and, for all a,b∈Act, if v(a) and v(b) are defined, then v(ab)=v(a)+v(b).

Note that it is possible to have that v(ab) is defined, but that v(a) and v(b) are not defined
(c.f., Example 18). We use different action payoff functions to represent the preferences of
different decision-making entities. Fix an action payoff function v, a strategy σ , and let δ be
some rational number in the open interval (0,1). We can then straightforwardly extended the
notion of preference over actions to preferences over resources.

Definition 11 (Resource payoff function). A resource payoff function is a partial function
uv,σ ,δ : R ⇀Q such that

uv,σ ,δ (R) =
{

v(a)+δ ×uv,σ ,δ (µ(a,R)) if σ(R) = a, and v(a) and uv,σ ,δ (µ(a,R)) are defined
undefined otherwise.

The value that can be accumulated from actions performed at resources reachable in the
future are worth less than value that can be accumulated immediately. The discount factor δ is
used to discount future accumulated values. In the case that the set R is finite, we generate a
finite set of simultaneous equations which can be solved using the methods described in [14].
Henceforth, we assume that all resource monoids have finite carrier sets.

Lemma 12. For all action payoff functions v, strategies σ , and discount factors δ , if σ(R) = 1,
then uv,σ ,δ (R) = 0.

Proof. By Definitions 3 and 10, we have that µ(1,R) = R and v(1) = 0. By Definition 11, we
have that uv,σ ,δ (R) = 0+δ ×uv,σ ,δ (R). As (1−δ ) 6= 0, we have that uv,σ ,δ (R) = 0.

Example 13. We can now determine payoffs for various resources in Example 9 (which relies
on Example 7). This is a simplification of a distributed systems example, presented fully in
Example 16. Let v be an action payoff function such that v(p) =−1 and v(c) = 3, and δ = 0.8.
We then have that

uv,σ ,δ ((0,0)) = 0 uv,σ ,δ ((2,0)) = 3+0.8×uv,σ ,δ ((1,0))
uv,σ ,δ ((1,0)) = 3+0.8×uv,σ ,δ ((0,0)) = 5.4

= 3.

With a different strategy, and the same action payoff, discount factor, and underlying systems
model, different payoffs can be achieved.

4 A modal logic of resources and utilities

We define a modal predicate logic, MBIU, for expressing properties of resources and their utility.
Building directly on [8, 6], we define, in Figure 1, a semantics for MBIU in terms of the transition
relation of a resource monoid, action monoid, and modification function, and its corresponding
bisimulation relation.

Let term variables be denoted x, y, etc., and action variables be denoted α , β , etc.. The
action terms of MBIU, building on actions a, b, c, etc., are formed according to the grammar
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R � p(t1, . . . , tn) iff tU (R)
1 , . . . , tU (R)

n are defined and (tU (R)
1 , . . . , tU (R)

n ,R) ∈ V (p)
R � t1 = t2 iff tU (R)

1 and tU (R)
2 are defined and tU (R)

1 = tU (R)
2

R � s1 = s2 iff sU (R)
1 = sU (R)

2
R � ⊥ never
R � > always
R � φ1∨φ2 iff R � φ1 or R � φ2
R � φ1∧φ2 iff R � φ1 and R � φ2
R � ¬φ iff R 6� φ
R � φ1→ φ2 iff R � φ1 implies R � φ2
R � I iff R∼ e
R � φ1 ∗φ2 iff there exist R1, R2, with R∼ R1 ◦R2, such that R1 � φ1 and R2 � φ2
R � φ1−−∗φ2 iff for all S, S � φ1 implies R◦S � φ2

R � 〈s〉φ iff there exist a, R′ such that sU (R) = a, R a−→ R′, and R′ � φ
R � [s]φ iff for all a, R′, sU (R) = a and R a−→ R′ implies R′ � φ
R � ∃α.φ iff there exists a ∈ Act such that R � φ [a/α]
R � ∀α.φ iff for all a ∈ Act, R � φ [a/α]
R � ∃x.φ iff there exists q ∈Q such that R � φ [q/x]
R � ∀x.φ iff for all q ∈Q, R � φ [q/x]

Figure 1: Satisfaction Relation for MBIU

s ::= a | α | s � s, where a ranges over Act and α ranges over action variables. Closed action
terms are those that contain no variables. Fix a set of action payoff functions V.

Let q be rational, uv be a non-logical symbol denoting the resource payoff function uv,σ ,δ
corresponding to an action payoff function v∈V (for a strategy and discount factor that are fixed
in the interpretation of the logic). Let v(s) be the valuation of some action term, for some action
payoff function v ∈ V. Let the numerical terms, denoted t, t ′, etc., be formed according to the
grammar t ::= x | q | uv | v(s) | t + t | t× t. Let closed terms be those that contain no variables.

We assume a set Pred of predicate symbols, each with a given arity n, with elements denoted
p, q, etc.. Then, the formulae of MBIU are given by the following grammar:

φ ::= p(t, . . . , t) | t = t | s = s | ⊥ | > | φ ∨φ | φ ∧φ | ¬φ | φ → φ
| I | φ ∗φ | φ −−∗φ
| 〈s〉φ | [s]φ
| ∃α.φ | ∀α.φ | ∃x.φ | ∀x.φ ,

where |p|= n, (t, . . . , t) is an n-tuple of terms, = is syntactic equality of the rationals, and t, s, x,
and α range over terms, action terms, term variables, and action variables, respectively.

The (additive) modalities are the standard necessarily and possibly connectives familiar from
modal logics, in particular Hennessy–Milner-style logics for process algebras [12, 16]. As such,
they implicitly use meta-theoretic quantification to make statements about reachable resources.
Multiplicative modalities can also be defined [8, 7]. The connectives ∗ and −−∗ are the multi-
plicative conjunction (with unit I) and implication (right-adjoint to ∗), respectively.

We define how atomic predicates are interpreted with respect to resources in Figure 1. Let
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φ , ψ , etc. denote predicate formulae. The quantifiers ∃α and ∀α bind occurrences of ac-
tion variables within predicate formulae and the modalities, and ∃x and ∀y bind occurrences of
term variables within predicate formulae. Closed formulae contain no free term variables. The
formula φ [q/x] is the formula formed by the (capture-avoiding) substitution of q for the term
variable x that is free in φ . The formula φ [a/α] is defined similarly.

The mathematical structure in which we interpret MBIU is the cartesian product of the set⋃
n∈NQn of finite tuples of elements of the rationals and the set R of resources. In an interpreta-

tion, we fix a strategy σ and a discount factor δ . Recall that each resource generates a transition
structure, via the modification function. An interpretation is given with respect to a particular
resource R, and is written as U (R). The denotations of rationals and their addition and mul-
tiplication are the obvious ones in Q. The denotation of the symbol uv is given by uv,σ ,δ (R),
as specified in Definition 11. Note that the corresponding interpretation of uv is a constant,
at a given resource R, and is given with respect to the fixed strategy and discount factor. The
denotation of actions are themselves. The denotation of � is action composition ·.

Recall the bisimulation relation ∼. A set Σ of finite tuples of elements of the rational num-
bers and resources is said to be∼-closed if it satisfies the property that, for all resources R and S,
and for all rational numbers q1, . . . , qn, (q1, . . . ,qn,R) ∈ Σ and R∼ S implies (q1, . . . ,qn,S) ∈ Σ.
Let P∼(

⋃
n∈NQn×R) be the set of all ∼-closed sets of the cartesian product of the set of fi-

nite tuples of rational numbers and the set of resources. A valuation is a function V : Pred→
P∼(

⋃
n∈NQn×R), together with a fixed strategy and dicount factor. Every valuation extends

in a canonical way to an interpretation for closed MBIU-formulae, the satisfaction relation for
which is indicated in Figure 1. A model for MBIU consists of the resource monoid, action
monoid, and modification function, together with such an interpretation. Satisfaction in a given
model is then denoted R � φ , read as ‘for the given model, the resource R has property φ ’, and
is defined as in Figure 1.

An alternative formulation of MBIU with intuitionistic additives (cf. [17, 8]) can be taken if
desired. Its used in modelling applications remains to be explored in future work.

We can now formally describe payoff properties of resources, in the following sense:

Example 14. Recall Examples 7, 9, and 13. The formula

φ = ∃x,y.(〈p〉uv = x)∧ (〈c〉uv = y)∧ (v(p)+(δ × x)< v(c)+δ × y)

denotes that it is possible to perform actions p and c, and that the payoff obtained by performing
p is less than that obtained by performing c. Note that uv,σ ,δ ((2,1)) = 5.4 and uv,σ ,δ ((1,0)) = 3. As
a result, we have that (2,0) � φ .

To obtain some key theoretical properties of our resource modelling framework, we require
some additional properties. When we perform a composition of resources, it is necessary to
take account of the partiality of the composition operator. As a result, we shall also require the
following ◦-∼-closed property of resource monoids. A resource monoid is ◦-∼-closed if, for
all resources R1, S1, R2, S2 ∈ R, if R1 ∼ S1, R2 ∼ S2, and R1 ◦R1 are defined, then S1 ◦ S2 is
defined. Henceforth, all resource monoids are assumed to be ◦-∼-closed. When we interpret the
payoff of resources, it is necessary to take account of bisimilarity. A model is payoff-∼-closed
if, for all v ∈ V, R,S ∈ R, R ∼ S and uv,σ ,δ (R) is defined implies that uv,σ ,δ (S) is defined and
uv,σ ,δ (R) = uv,σ ,δ (S). From this point onwards, all models are assumed to be payoff-∼-closed.
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With this set-up, we can prove the Hennessy–Milner soundness and completeness theorem.
The soundness direction of the Hennessy–Milner completeness theorem — operational equiva-
lence implies logical equivalence — requires the congruence property.

Theorem 15. R∼ S iff, for any model of MBIU and all φ , R � φ iff S � φ .

Proof. For soundness — operational equivalence implies logical equivalence — by induction
over the structure of the formulae, using Theorem 6 and the satisfaction relation. Completeness
— logical equivalence implies operational equivalence — follows [8, 7].

Theorem 15 provides basic assurance that the logic is well formulated, and supports the
formulation of proof systems and reasoning tools, such as model checking.

5 Examples and optimality

To illustrate the logical set-up we have introduced, we begin with a classic example from dis-
tributed systems modelling: mutual producer–consumer. We then explain, using a generic exam-
ple, how our set-up can be used to express Pareto optimality. This example leads naturally into a
discussion of game-theoretic examples and concepts. We consider here the prisoner’s dilemma,
the best-response property, and Nash equilibrium.

Example 16 (Mutual producer–consumer). A classic example of distributed systems modelling
is distributed coordination without mutual exclusion, the most common form of which is that of
the producer–consumer system [7, Section 2.3.5]. In such a scenario, one entity generates work
that another entity can handle at a later point. We modify this slightly to the scenario with two
entities, where each entity can generate work for, and consume work from, the other.

We extend Example 7. Suppose a resource monoid ({0, . . . ,10} × {0, . . . ,10},◦,(0,0)),
where (m1,m2)◦ (n1,n2) = (m1 +n1,m2 +n2) if either m1 or m2 is 0 and either n1 or n2 is 0.

The elements of the resource monoid are pairs of natural numbers, where the first element of
the pair denotes the number of work packages that the first entity can consume, and the second
element of the pair denotes the number of work packages that the second entity can consume.

Suppose actions p1, p2, c1, and c2, where µ(p1,(m,n)) = (m,n+ 1) if n ≤ 9, µ(c1,(m+
1,n)) = (m,n), µ(p2,(m,n)) = (m+1,n) if m≤ 9, and µ(c2,(m,n+1)) = (m,n). The p1 action
denotes production of a work package by the first entity for the second entity, and the c1 action
denotes the consumption of a work package by the first entity. The p2 and c2 actions have the
obvious converse denotations.

Consider the situation where the processes ‘profit’ from the consumption of work packages,
and must ‘pay’ to create work packages. A pair of possible payoff functions v1 and v2, for the
two entities, which represents this situation is v1(p1) = −1, v1(c1) = 3, v1(p2) = 0, v1(c2) = 0
v2(p1) = 0, v2(c1) = 0, v2(p2) =−2, and v2(c2) = 4.

Let σ be a function such that, if 1 ≤ m and 1 ≤ n, then σ((m,n)) = c1c2, if 1 ≤ m, then
σ((m,0)) = c1, if 1≤ n, then σ((0,n)) = c2, and σ((0,0)) = p1 p2. Let the discount factor δ be
0.8. Consider the unit resource, (10,0). As there are only work packages available for the first
entity, the actions defined on the resource are the consume action c1, the produce action p1, and
the unit. Each entity incurs costs by performing a produce action, which only benefits the other
entity. We have v1(p1)+ δ × uv1,σ ,δ (10,1) ≈ −1+ δ ∗ 13.4 ≈ 9.7, v1(c1)+ δ × uv1,σ ,δ (9,0) ≈
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13.4, v2(p1) + δ × uv2,σ ,δ (10,1) = 0+ 0.8 ∗ 4 = 3.2, and v2(c1) + δ × uv2,σ ,δ (9,0) = 0. The
action c1 gains the most for the first entity and p1 gains the most for the second.

For either action, it is not possible to swap to an alternative action that makes one of the enti-
ties better off, without making the other entity worse off. This notion is called Pareto optimality.

Definition 17 (Pareto optimality). A state R is Pareto optimal if there exists an action a such
that, for all other actions b, if some entity (weakly) prefers that action b be performed, then
there is some other agent that strongly prefers that action a be performed. Formally, the state R
is Pareto optimal if, for entities with payoff functions v1, . . . , vn,

R |= ∃α .∀β .(¬(β = α))→



∀x,x′.∃y,y′.(
(〈α〉uv1 = x)∧ (〈β 〉uv1 = x′)∧ (x≤ x′)

)
→(

(〈α〉uv2 = y)∧ (〈β 〉uv2 = y′)∧ (y′ < y)
)

∨ . . .∨(
(〈α〉uvn = y)∧ (〈β 〉uvn = y′)∧ (y′ < y)

)



∨ . . .∨




∀x,x′.∃y,y′.(
(〈α〉uvn = x)∧ (〈β 〉uvn = x′)∧ (x≤ x′)

)
→(

(〈α〉uv1 = y)∧ (〈β 〉uv1 = y′)∧ (y′ < y)
)

∨ . . .∨(
(〈α〉uvn−1 = y)∧ (〈β 〉uvn−1 = y′)∧ (y′ < y)

)




We abbreviate the above formula as PO(v1, . . . ,vn).

In Example 16, the resource (10,0) is Pareto optimal, witnessed by both the actions p1 and
c1. Note that optimality is defined in terms of actions; this is as, here, we take seriously the
representation of actions that perform resource allocations. A transition is then an (actively
performed) resource allocation.

One field in which notions of optimality have been studied significantly is that of games and
decision theory. We can model games in our resource semantics. A classic decision-making
example from game theory is the prisoner’s dilemma.

Example 18 (Prisoner’s dilemma). Two individuals have been arrested, and are kept separately,
so that they cannot collude in their decision making. Each is offered the choice of attempting
to ‘defect’, and give evidence against their partner, or to ‘collaborate’, and say nothing. If one
person collaborates and the other defects, then the collaborating partner goes to jail for a long
time, and the defecting partner goes free. If both people defect, then they both go to jail for a
moderate time. If both people collaborate, then they both go to jail for a short time.

Suppose a resource monoid ({r1,r2,r1,2,e},◦,e), where r1 ◦ r2 = r1,2. The r1 resource
denotes a resource where the first person can make a choice, the r2 resource denotes a re-
source where the second person can make a choice, and the r1,2 resource denotes a resource
where both people can make a choice at the same time. Suppose actions c1, d1, c2, and d2,
where µ(c1,r1) = µ(d1,r1) = e, µ(c2,r2) = µ(d2,r2) = e, and µ(c1c2,r1,2) = µ(c1d2,r1,2) =
µ(d1c2,r1,2) = µ(d1d2,r1,2) = e. The c1 action denotes collaboration by the first person, and
the d1 action denotes defection by the person. The c2 and d2 actions have the obvious de-
notations for the second person. We make use of the trivial strategy σ(R) = 1. The action
payoff functions v1 and v2 for the two people are v1(c1c2) = −2, v1(c1d2) = −6, v1(d1c2) = 0,
v1(d1d2) =−4, v2(c1c2) =−2, v2(c1d2) = 0, v2(d1c2) =−6, and v2(d1d2) =−4. Hence, if the
first person collaborates and the second defects, then the first person receives six years in prison
(cost v1(c1d2) =−6), while the second receives no time in prison (cost v2(c1d2) = 0).



10 Substructural modal logic for optimal resource allocation

We can define notions of best response and Nash equilibrium.

Example 19 (Best response). An action a is a best response for a given entity to a particular
choice of action b by another entity, at a given resource, if the (former) entity has no other action
c available to it such that the action cb is defined on the resource and the entity (strongly) prefers
cb to ab. Formally, a is the best response to action b at resource R if

R |= ∀α.∃x,y.
((

(〈a〉>∧〈α〉>)∗ (〈b〉>)
)
∧
(
[ab](uv = x)∧ [αb](uv = y)

))

→
(
(v(αb)+δ × y)≤ (v(ab)+δ × x)

)
.

We abbreviate the above formula, denoting that a is the best response to action b for the
agent whose payoff function is v, as BR(a,b,v). In the prisoner’s dilemma example, the best
response for the first agent to the action c2 is d1, and BR(d1,c2,v1) holds.

We generalize this notation slightly, so that we write BR(a,b1, . . . ,bn,v) to denote that a1 is
the best response the the composite action b1 . . .bn, for the payoff function v. Formally,

R |= ∀α.∃x,y.
((

(〈a〉>∧〈α〉>)∗ (〈b1 . . .bn〉>)〉
)
∧
(
[ab1 . . .bn](uv = x)∧ [αb1 . . .bn](uv = y)

))

→
(
(v(αb1 . . .bn)+δ × y)≤ (v(ab1 . . .bn)+δ × x)

)
.

Here, for simplicity, we suppress all issues concerned with the structure of the composite action
b1 . . .bn: In general, a process-theoretic treatment, allowing control over the presumed nature of
the concurrent composition, can be given [8, 7]. Now we can express Nash equilibrium.

Example 20 (Nash equilibrium). A state R is a Nash equilibrium for a set of entities I =
{1, . . . ,n} if there is a collection of actions a1, . . . , an such that, for each entity i ∈ I with payoff
function vi, the action ai is the best response to the composition of actions a j, where j ∈ I \{i}.

Formally, the state R is a Nash equilibrium if

R |= ∃α1 . . .αn .BR(α1,α2, . . . ,αn,v1)∧ . . .∧BR(αn,α1, . . . ,αn−1,vn).

We abbreviate the above formula as NE(v1, . . . ,vn). In the prisoner’s dilemma example, the
Nash equilibrium is the state r1,2, witnessed by the actions d1 and d2, for payoff functions v1 and
v2, and the property NE(v1,v2) holds.

6 Discussion

Notice, in the examples of Section 5, the key role played in the formulae BR by the multiplicative
conjunction, ∗. Used with the additives, it allows the separation of the resources allocated locally
to different actions (the as and bs) to be enforced when required whilst allowing utility properties
of the overall system to be expressed relative to the overall resources, as required.

In a richer set-up, retaining explicit process structure — recall the discussion of Section 1 —
the trace leading to the optimal and equilibrium states, together with its history of resource usage,
would be represented explicitly (though at some technical cost in the development). Presentation
of this richer view is deferred to another occasion.

By developing such a view we should be able to incorporate the analysis of utility and opti-
mality presented here into the widely deployed systems and security modelling tools established
in, for example, [8, 6, 7], with deployments described in, for example, [15, 1, 5, 3, 4].
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In this work we consider simple extensive-form games with two players, Player A and Player B,
where Player B can make announcements about his strategy. Player A has then to revise her prefer-
ences about her strategies, so as to better respond to the strategy she believes Player B will play. We
propose a generic framework that combines methods and techniques from belief revision theory and
social choice theory to address this problem. Additionally, we design a logic that Player A can use
to reason and decide how to play in such games.

1 Introduction

Communication between players is a notion that arises naturally in a variety of contexts in game theory,
and that led to the theory of games where players can communicate [5, 6, 12]. We are interested in
non-cooperative games with two players, say Player A and B, in which Player B makes announcements
about his strategy, before the game starts. Just as the cheap talks in [5], this preliminary communication
round does not directly affect the payoffs of the game.

We illustrate our research problem with a classic example from [12] in which communication be-
tween players improves the payoff of both players. The extensive form game is described in Figure 1.
Player A can go left or right. If A goes left, she gets 1$ and B gets 0$. If A goes right, player B can in
turn choose to go left or right. If B goes left, he gets 100$ and A gets 0$, if B goes right both get 99$. The
solution given by the classic backward induction algorithm, which relies on the hypothesis that players
are rational, is the following: A thinks that if she goes right, B will go left to maximize his payoff, and
A will get 0$. Therefore, A prefers to move left, and gets 1$.

On the other hand, let us assume that the players communicate and trust each other, and that B tells
A: “If you move right, I will move right”. As a consequence, A thinks she would better move right since
she would collect 99$ instead of 1$: as such, A has revised her preferences about her own strategies.

A

1,0 B

0,100 99,99

Figure 1: Motivating example
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Notice that in this example, B’s announcement could have been reflected by pruning the game, in the
spirit of Public Announcement Logic [10]: we could have removed the moves (in the example, just one)
of B that do not conform to his announcement, in this very case by ruling out his left move, and have
recomputed a strategy of A by backward induction in the pruned game.

However, the pruning technique, although attractive in practice, has some serious limitations. First,
we cannot guarantee that in any game, every announcement of B amounts to pruning the game, in partic-
ular those relying on conditional statements. Second, B can make a series of successive announcements,
possibly conflicting each other. In that case, A will need to aggregate these announcements in order
to revise her beliefs on what B will play. This phenomenon cannot be represented straightforwardly
by means of a series of destructive prunings of the game, and we propose to work on the level of B’s
strategies instead.

Preliminary announcements can be motivated by various reasons, such as trying to coordinate with
the other player or to mislead him in order to get a better payoff. After these announcements, Player A
needs to revise her strategy so as to better respond to what Player B announces she will play. Notice that
depending on the context, the confidence Player A has on Player B’s commitment about his annouce-
ments varies widely. In this work, like in belief revision theory [7], we assume that Player A always
trusts Player B’s last announcement, which has also priority over the previous announcements.

The question we consider is the following:

How can Player A take into account the announcements of Player B about his strategy in
order to update her preferences on her strategies?

This question can be decomposed into:

Question 1: How can Player A revise her beliefs about Player B’s preferences on his strategies?

Question 2: How can Player A update her preference about her strategies on the basis of these
beliefs?

Regarding Question 1, we propose to apply classical belief-revision techniques1 to represent what A
believes about B’s strategy and update these beliefs when B makes announcements. There exist several
ways to perform this update/revision, but our approach aims at remaining as general as possible by not
selecting a particular one, and by leaving the choice to peak the update mechanism that reflects how
trustworthy B’s announcements are considered.

The main originality of our contribution lies in the solution we offer for Question 2, by combining
techniques and methods from game theory and from social choice theory [2]: informally, each possible
strategy of B is seen as a voter, who votes for strategies of A according to the payoff A would obtain
in the play defined by both strategies. Individual votes are then aggregated to define the new preferred
strategy of A. Here again we do not choose a particular type of ballot nor a precise aggregation method,
but rather leave it open and free to be set according to the kind of strategy one wants to obtain: for
instance, one that has best average payoff against B’s most plausible strategies, or one that is most often
a best response.

The paper is organized as follows. In Section 2, we set up the mathematical framework we use to
model games and communication/announcements. In Section 3, we develop the solution to the revision
of beliefs, and in Section 4 we expose our proposal for the revision of preferences. Based on the devel-
opped setting, we propose in Section 5 a logic that Player A can use to reason and decide how to play.
Section 6 illustrates our framework on a more complex example.

1Typically, A initially believes that B will play one of the strategies given by the classical backward-induction algorithm.
Then B may announce a piece of information that is in contradiction with this belief, which thus needs to be revised.
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2 Games and announcements

We consider two-player extensive-form games in which at each decision node two distinct moves are
available. A finite rooted binary tree (simply called tree from now on) is a prefix-closed finite set T ⊂
{0,1}∗. Elements of T are called nodes, ε is the root, if w · a ∈ T , with a ∈ {0,1}, then w is called the
parent of w · a and w · a is called the left (resp. right) child of w if a = 0 (resp. a = 1). If a node has
no child, it is a leaf, otherwise it is an interior node. A tree is called complete if every interior node has
exactly two children. If T,T ′ are trees such that T ⊆ T ′, we say that T is a subtree of T ′.

A game between A and B is a tuple G = (T,νA,νB) where T is a complete tree, and if we note L⊆ T
the set of leaves of T , then νA : L→N is the utility function for A, νB : L→N is the utility function for B.
Interior nodes are partitioned between nodes of A (NA) and those of B (NB), such that T = NA]NB]L.

Given a game G = (T,νA,νB), a strategy2 for A (resp. B) is a subtree σA (resp. σB) of T such that
every node in σA∩NA (resp. σB∩NB) has exactly one child, and every node in σA∩NB (resp. σB∩NA)
has exactly two children. Two strategies σA and σB define a unique path, hence a unique leaf in the tree
T , that we shall write ˆσAσB. We note ΣA and ΣB the set of all strategies for A and B, respectively.

For a strategy σA ∈ ΣA, we define its value val(σA) as the minimum utility it can bring about for A:
val(σA) := minw∈L νA(w). The value of a strategy for Player B is defined likewise.

The language Player B uses to make the announcements about his strategies is the bimodal language
L2, the syntax of which is:

ψ ::= p | ¬ψ | ψ ∧ψ | ♦iψ

where p ∈ {turnA, turnB} and i ∈ {0,1}.
For i ∈ {0,1}, we write > for ¬(p∧¬p), �iψ for ¬♦i¬ψ , �ϕ for �0ϕ ∧�1ϕ , and movei for ♦i>,

meaning that the strategy at this point chooses direction i.
Example 1. For instance, in the example of Figure 1, the strategy of B consisting in playing the action
leading to 99, 99 is ♦1♦1>.

Given a game G = (T,νA,νB), a strategy σ can be seen as a Kripke structure with two relations
(one for left child, one for right child). The valuations of propositions turnA and turnB are given by
the partition between positions of Player A and Player B. Formally, the truth conditions are defined
inductively as follows:

σ ,w |= turna if w ∈ Na, a ∈ {A,B}
σ ,w |= ¬ψ if σ ,w 6|= ψ
σ ,w |= ψ ∧ψ ′ if σ ,w |= ψ and σ ,w |= ψ ′
σ ,w |= ♦iψ if w · i ∈ σ and σ ,w · i |= ψ

3 Belief revision: from announcements to beliefs

We now represent the beliefs A has about what B is more likely to play, and how these beliefs evolve as
B makes new announcements.

From a purely semantic point of view, the framework of belief revision theory [1, 8] can be roughly
described as follows. Given a universe U of possible worlds, a player ranks each possible world via
a ranking function κ : U → N, also called belief state, such that κ−1(0) 6= /0. This ranking induces a
plausibility preorder between possible worlds: among two possible worlds, the one with the lowest rank

2To be precise these are reduced strategies, but they are sufficient for what we present here.
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is considered to be more plausible than the other by the player. Given a ranking function κ , the set of
most plausible worlds for the player is the set κ−1(0).

The impact of a new piece of information on these beliefs is modelled by a revision function which
takes a ranking function together with the new information, and returns the revised ranking function
that induces the new belief state of the player. Many such revision functions exist in the literature,
that correspond amongst other things to various degrees in the trust put in the received information,
the reluctance to modify one’s beliefs, etc (see e.g. [11]). Formally, if one chooses say formulas of
propositional logic PL to represent new pieces of information, a revision function is a binary function
∗ : (U → N)×PL→ (U → N), and given F ∈ PL, a belief state κ is changed into κ ∗F .

In our framework, the universe U = ΣB is the set of Player B’s strategies, and the new pieces of
information are modal formulas of L2, representing B’s announcements about his strategy. For a belief
state κ , κ−1(0) is then what A believes B is the most likely to play. Initially, we assume that A has an a
priori belief, represented by κ0, that may for example arise from the very values of the strategies:

κ0(σB) := max
σ ′B∈ΣB

val(σ ′B)−val(σB) (1)

The revision function signature is now (ΣB → N)×L2 → (ΣB → N), and we can use any kind of
revision function. For example here, we present the classic moderate revision [9, 11], written ∗m, and
defined by: for a belief state κ , ψ ∈L2 and σ ∈ ΣB,

(κ ∗m ψ)(σ) =





κ(σ)−minσ ′|=ψ κ(σ ′) if σ |= ψ
maxσ ′|=ψ κ(σ ′)+1+κ(σ)

−minσ ′ 6|=ψ κ(σ ′) if σ 6|= ψ

The moderate revision makes all the possible worlds that verify the announcement ψ more believed
than those which do not; it preserves the original order of preference otherwise.

4 Voting: from beliefs to preferences

The belief Player A has about B’s strategy induces some preference over A’s strategies. We describe a
mechanism that, given a belief state κ , computes a preference set Pκ ⊆ ΣA. This preference set is made
of all the strategies that should be preferred by A if she believes that B will play a strategy in κ−1(0).
This mechanism relies on voting systems.

A plethora of different voting systems have been proposed and studied [4], verifying different prop-
erties one may want a voting system to verify (majority criterion, Condorcet criterion etc). Since we are
interested in quantitative outcomes, we argue that a relevant choice is to use a cardinal voting system
[13]. In a cardinal voting system, a voter gives each candidate a rating from a set of grades; we take
here grades in N. Take a set of n candidates, C = {c1, . . . ,cn}, and a set of m voters, V = {v1, . . . ,vm}.
A ballot is a mapping b : C→ N and a voting correspondence is a function rC : (C→ N)m → 2C\{ /0}
that takes a vector (b1,b2, . . . ,bm) of ballots (one for each voter) and returns a nonempty set of winning
candidates3. In this work we take as an example the range voting system, but the method is generic and
any other cardinal voting system can be used. Range voting works as follows: for each candidate, we
sum the grades obtained in the different ballots, and the set of winners is the set of candidates who share

3It is called a voting rule if there is a unique winner.



G. Aucher, B. Maubert, S. Pinchinat, F. Schwarzentruber 5

the highest overall score: if bi is voter i’s ballot, for i ∈ {1, . . . ,m}, rC is defined by

rC(b1, . . . ,bm) := argmax
c∈C

m

∑
i=1

bi(c).

We aim at electing the strategies of Player A that she should prefer with regard to the most plausible
strategies of Player B. Therefore, the set of candidates consists in Player A’s possible strategies (C = ΣA),
and each of Player B’s most plausible strategie is seen as a voter (V = κ−1(0)). We assume that Player
A prefers strategies that in average give her the best payoff, which leads us to define ballots as follows.
For each strategy σB ∈ κ−1(0), we let bσB be the ballot that assigns to each σA ∈ ΣA the payoff of A in
the play ˆσAσB, that is bσB(σA) = νA( ˆσAσB). In other words, each voter ranks the candidates according
to the corresponding payoff for Player A. The voting system aggregates these “individual” preferences
in order to obtain a “collective” preference Pκ against all strategies of κ−1(0), defined by:

Pκ := rC(bσ1
B
, . . . ,bσm

B
), whenever κ−1(0) = {σ1

B, . . . ,σ
m
B }.

Remark 1. We could use more of the information we have by letting all strategies in ΣB vote, and weigh
their votes according to their respective plausibility.

5 A logic for strategies, announcements and preferences

We present the formal language LSAP, where SAP stands for “Strategies, Announcements and Prefer-
ences”, to reason about Player A’s preferences concerning her strategies, and how these evolve while
Player B makes announcements about his strategy. The syntax of LSAP is the following:

ϕ ::= ψ | ¬ϕ | ϕ ∧ϕ | PAϕ | [ψ!]ϕ

where ψ ∈L2.
The formula PAϕ reads as ‘ϕ holds in all the preferred strategies of Player A’; [ψ!]ϕ reads as ‘ϕ

holds after Player B announces that her strategy satisfies ψ’.
LSAP formulas are evaluated in models of the form (κ,σA), where κ is the belief state of Player A

and σA ∈ ΣA is the strategy A is considering. The truth conditions are given inductively as follows:

(κ,σA) |= ψ if (σA,ε) |= ψ
(κ,σA) |= ¬ϕ if (κ,σA) 6|= ϕ
(κ,σA) |= ϕ ∧ϕ ′ if (κ,σA) |= ϕ and (κ,σA) |= ϕ ′
(κ,σA) |= PAϕ if for all σ ′A ∈Pκ , (κ,σ ′A) |= ϕ
(κ,σA) |= [ψ!]ϕ if (κ ∗m ψ,σA) |= ϕ

6 Example

Consider the game in Figure 2. By backward induction, we get that B chooses r, A thus chooses γ , B
chooses L, and finally A chooses Γ, obtaining 60$ while B gets nothing. B would therefore like A to
change her mind and play ∆ on the first move, so that he can play L and get 100. The problem is that if
he announces that he will do so, then A will stick to her strategy, as she will know that changing it will
give her a payoff of 50 instead of 60. So B announces, instead, that he commits to play either L, or R
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A

60,0 B

50,100 A

50,50 B

100,50 0,100

Γ ∆

L R

γ δ

` r

Figure 2: Second example game

and then ` (we note this strategy R`), but not Rr. This announcement can be described by the following
L2-formula:

ψ =�(turnB→ move0)∨���(turnB→ move0)

Consider now the following LSAP-formula:

ϕ = turnA∧PAmove0∧ [ψ!]PAmove1

ϕ expresses that it is Player A’s turn to play, and that in all her preferred strategies she goes left (i.e.
she plays Γ), but in case Player B announces ψ , Player A prefers to play differently, namely moving
right.

Now, considering this game, moderate revision, range voting, with the initial belief ranking κ0 of
Equation (1) on Page 4, and any strategy σA ∈ ΣA, one can check that indeed we have:

(κ0,σA) |= ϕ

This is because going right ensures A a better mean-payoff against B’s most plausible strategies after
the announcement ψ , which are L and Rl. However, consider now the classic plurality voting system,
where each voter only gives one voice to its preffered candidate (here, the one that ensures A the best
outcome), and where the winner is the one with most votes for him. This amounts to electing A’s strategy
that is most often a best response against B’s most plausible strategies. Using this instead of range voting
system, one can verify that after the announcement, the vote results into a tie, with strategy Γ of A
obtaining one vote (from B’s strategy L), and strategy ∆δ receiving the other one (from strategy Rl).
Therefore, PAmove1 does not hold in the state resulting from the announcement, so that we have:

(κ0,σA) 6|= ϕ

7 Conclusion

Our work contributes to the study of games with communication. We have defined a generic frame-
work that uses belief revision techniques to take into account communication, and voting for choos-
ing strategies to play. A specific revision function and voting system may characterize the behavior of
Player A (trustful, optimistic, etc), and the kind of strategies she wants (best mean payoff, most often
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best-response. . . ). Investigating the theoretical properties of the agent’s behavior in terms of combina-
tions of revision and voting mechanisms is left for future work.
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In this work, we use Parikh and Ramanujam’s history based temporal-epistemic models to reason
about various epistemic game theoretical issues. First, we introduce a modal operator to express
subjective preferences to history based models, and present an analysis of the Prisoners’ Dilemma
in this framework. Finally, we extend Aumann’s celebrated agree-to-disagree result to history based
models.

... you act, and you know why you act, but
you don’t know why you know that you
know what you do.

The Name of the Rose, Umberto Eco

1 Introduction

1.1 Motivation

History based structures, proposed by Parikh and Ramanujam [16], suggest a formal framework which
lies between process models, interpreted systems and propositional dynamic logics. They have been used
to model epistemic messages and communication between agents, deontic obligations and the relation
between obligations and knowledge [16, 14, 15]. Moreover, history based models are technically similar
to interpreted systems [7, 14]. Epistemic and temporal reasoning in history based models depend on a
sequence of events, called history.

In this work, we consider history based structures from a game theoretical point of view with some
applications. In order to achieve this, we first make history-based models more game-theory friendly
by introducing a preference modality. Then, we apply our extended formalism to a fundamental game,
which is the Prisoners’ Dilemma, and show how history based models can be helpful to compute the
equilibrium. The choice of prisoners’ dilemma is not arbitrary. Because in this game, the epistemology
of the agents play a central role and the way their knowledge is formalized bear some similarities to some
other formalisms of epistemic games. Building on this observation, we use history based game models
to present an iteration of Aumann’s well-known “agree-to-disagree” theorem.

The overall goal of this research agenda is to introduce more expressive formalism for the analysis
of various foundational game theoretical issues. These issues include security games, epistemic games
and how they depend on the history of the game and how we can read off strategies from such a model.
We achieve this by discussing these topics in a model where histories are taken as the basic elements of
the model and by introducing a modal preference relation.
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1.2 Basic Logical Structure

Different from Kripke models, history based models are constructed by using a given set of events and
agents. Events can be seen as actions or moves which vary over time and affect the knowledge of the
agents. In such a model, agents’ epistemic capacities differ from local and global perspectives. When
a history is considered as a sequence of events, it is important to tell apart which events were carried
out by which agents, and which agents can see which events, and how all this affects the knowledge and
preferences of the agents.

Similar attempts have been made to apply history based models to deontic and epistemic issues [15,
14]. However, in that body of work, game theoretical reasoning was never clear or of prime importance
which left many interesting phenomena outside its boundaries. In this preliminary work, we take the first
step to formalize epistemic games with their histories and start from history based models. For this aim
of ours, we first introduce preferences. Let us proceed step by step in our formalism.

History based structures are constructed by using a fix set of events E and agents A. A finite set of
events is denoted as E∗, and for each agent i, Ei ⊆ E is the set of events which are “seen” or “accessible”
by the agent i. A finite sequence of events from E is denoted by lowercase h, whereas a possibly infinite
sequence of events is denoted by uppercase H. We call them both histories.

We denote the concatenation of finite history h with (possibly infinite) history H by hH. For a set
of events E, H ∗

E denotes the set of all finite histories with events from E and HE denotes the set of
all histories, finite and infinite, with events from E. By H , we denote any set of histories. Given two
histories H,H ′, H ≤H ′ denotes that H is a prefix of H ′. We denote the length of finite h with len(h). For
a history H, Ht denotes that Ht ≤ H with len(Ht) = t.

We define global history as a sequence of events, finite or infinite, where a local history is the history
of a particular agent. For any set of histories H , the set FinPre(H ) denotes the set of finite prefixes
of the histories in H . A set of histories H is called a protocol if it is closed, under set inclusion, for
all prefixes. In other words, in order for a history to make sense, its prefixes should be included in the
model, and there should be no jumps.

Now we can discuss temporal and epistemic operators in this framework. Given an agent i and
a global history H, the agent i can only access some of H. For two histories H,H ′, if the agent can
access to the same parts of H and H ′, then H and H ′ are indistinguishable for i. Then, a function
λi : FinPre(H)→ E∗i is called a locality function for agent i and a global history H. Based on locality
functions, the epistemic indistinguishability ∼i for agent i is defined between two histories H,H ′ as
follows: If H∼iH ′, then λi(H) = λi(H ′).

The locality function as given above is rather general. For that reason, we impose some conditions
on it [14]. First, we assume that agents’ clock is consistent with the global clock, that is all agents share
the same clock. Second, λi(H) is embeddable in H, that is the events in λi(H) appear in H in the same
order. In other words, “agents are not wrong on about the events that they witness” [ibid].

For obvious reasons, ∼i is an equivalence relation. Thus, the epistemic logic of history based struc-
tures is the standard multi-agent epistemic logic S5n.

Given a set P of propositional letters, the syntax of history based models can be given as follows in
the Backus - Naur form where p ∈ P and i ∈ A.

ϕ := p | ¬ϕ | ϕ ∧ϕ | Kiϕ | ©ϕ | ϕUϕ

The epistemic modality for agent i is Ki and the operator © is the next-time modality. We call U the
until operator.
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A history based model M is given as a tuple M = {H ,E1, . . . ,En,λ1, . . . ,λn,V } where V is a valu-
ation function which is defined in the standard fashion as follows: V : FinPre(H ) 7→℘(P).

History based models semantically evaluates formulas at history-time pairs. At history H and time t,
the satisfaction of a formula ϕ is denoted as H, t |= ϕ , and defined inductively as follows.

H, t |=M p iff Ht ∈V (p),
H, t |=M ¬ϕ iff H, t 6|=M ϕ ,
H, t |=M ϕ ∧ψ iff H, t |=M ϕ and H, t |=M ψ ,
H, t |=M ©ϕ iff H, t +1 |=M ϕ ,
H, t |=M Kiϕ iff ∀H ′ ∈H and Ht∼iH ′t implies H ′, t |=M ϕ ,
H, t |=M ϕUψ iff ∃k ≥ t such that H,k |=M ψ and ∀l, t ≤ l < k implies H, l |=M ϕ .

The dual of the epistemic modality will be denoted with Li and defined in the usual way. The
expression M |= ϕ denotes the truth of ϕ in a history based model M, independent from the current
history and time-stamp.

The axioms for history based models are given as follows.

• All tautologies of propositional logic,

• Ki(ϕ → ψ)→ (Kiϕ → Kiψ),

• Kiϕ → ϕ ∧KiKiϕ ,

• ¬Kiϕ → Ki¬Kiϕ ,

• ©(ϕ → ψ)→ (©ϕ →©ψ),

• ©¬ϕ ↔¬©ϕ ,

• ϕUψ ↔ ψ ∨ (ϕ ∧©(ϕUψ)).

The rules of inference are modus ponens, and normalization for all three modalities:

• |= ϕ,ϕ → ψ ∴ |= ψ ,

• |= ϕ ∴ |= Kiϕ ,

• |= ϕ ∴ |=©ϕ ,

• |= ϕ → (¬ψ ∧©ϕ) ∴ |= ϕ →¬(ϕ ′Uψ).

Additional axioms can be introduced to history based models to formalize variety of properties in-
cluding perfect recall and no learning [14]. It is also important to note that the above axiomatization does
not include any axioms that govern a possible interaction between the epistemic and temporal modali-
ties. The reason for this is the fact that the former quantifies over histories (up to a fixed t) whereas the
latter ranges over the time stamp only. However, as we argued earlier, further temporal and epistemic
conditions can be forced by introducing various interaction axioms.

History based models combine epistemic and temporal modalities in a complex way and they are
closely related to runs [7]. Furthermore, histories and runs can be translated to each other effectively
[14]. However, it still remains an unexplored direction to use history based models for game theoretical
purposes. We will illustrate it in due time.

Now, from a modal logical point of view, the immediate question is how bisimulations can be defined
within the context of history based models where we focus on events/actions as opposed to possible
worlds/states and possess complex temporal modalities such as the until modality.

Definition 1.1. For history based models M,M′, a bisimulation ./ between M and M′ is a tuple ./= (./0
,./1) where ./0⊆M×M′ and ./1⊆M2×M′2 such that
Propositional base case:

• If H, t ./0 H ′, t ′, then H, t and H ′, t ′ satisfy the same propositional variable,

Temporal forth case:
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• If H, t ./0 H ′, t ′ and t < u, then there is u′ in M′ such that t ′< u′, H,u ./0 H ′,u′ and (H, t),(H,u) ./1
(H ′, t ′),(H ′,u′),

• If (H, t),(H,u) ./1 (H ′, t ′),(H ′,u′) and if there is v′ with t ′ < v′ < u′, then there exists v such that
t < v < u and H,v ./0 H ′,v′,

Temporal back case:
• If H, t ./0 H ′, t ′ and t ′ < u′, then there is u in M such that t < u, H,u ./0 H ′,u′ and (H, t),(H,u) ./1

(H ′, t ′),(H ′,u′),

• If (H, t),(H,u) ./1 (H ′, t ′),(H ′,u′) and if there is v with t < v < u, then there exists v′ such that
t ′ < v′ < u′ and H,v ./0 H ′,v′,

Epistemic forth case:
• If H, t ./0 H ′, t ′ and Ht∼iKl , then there is K′, l′ in M′ such that K, l ./0 K′, l′ and H ′t ′∼iK′l′ ,

Epistemic back case:
• If H, t ./0 H ′, t ′ and H ′t ′∼iKl′ , then there is K, l in M such that K, l ./0 K′, l′ and Ht∼iKl ,
In the above definition, the interval bisimulations we defined in the temporal cases are needed for the

until modality, as the until modality is essentially an interval process equivalence. This definition clarifies
how history based models can simulate state-based models or interpreted systems, and how different
histories can be identified to form bisumulations. Based on this definition, the following theorem follows
immediately.
Theorem 1.2. For history based models M,M′, if M ./ M′, then they satisfy the same formula.

Proof. For the epistemic case see [3], for the temporal case see [11].

2 Adding Preferences

History based models provide sufficient tools to formalize simple epistemic games. If games are con-
sidered as formal representations of interactive situations in which agents make rational decisions, such
decisions then must rely on those agents’ subjective preferences. Moreover, these subjective preferences
may change depending on what stage of the game the players are in and how far ahead in the game
they have progressed. In short, preferences depend on the game history. This is the motivation behind
introducing subjective preferences into history based models.

For an agent i, and possibly infinite histories H,H ′, the expression H �i H ′ denotes that “the agent i
(weakly) prefers H ′ to H”. The preference relation will be taken as a pre-order satisfying reflexivity and
transitivity [2, 10].

We can amend the syntax of the logic of history based models with the modal operator ♦iϕ which
expresses that there is a history which is at least as good as the current one and satisfies ϕ for agent i. We
specify the semantics of this new modality as follows.

H, t |= ♦iϕ iff ∃H ′.H �i H ′ and H ′, t |= ϕ

The dual of the above modality is denoted by�i with the following semantics: H, t |=�iϕ whenever
∀H ′.H �i H ′→ H ′, t |= ϕ .

Notice that this formalism compares histories as opposed to propositions. For a history based model
M, the formula M |= ϕ → ♦iψ denotes that the agent i prefers ψ to ϕ . In other words, each ϕ has an
alternative history which is at least as good as the current one and satisfies ψ .

The additional axioms and rules of inference for the S4 preference modality can be given as follows.
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• ϕ → ♦iϕ ,

• ♦i♦iϕ → ♦iϕ ,
The additional rule of inference for the preference modality is the expected one.
• |= ϕ ∴ |=�iϕ
We call the logic of history based structures with preferences as HBPL after history based preference

logic. HBPL can be supplemented with various additional axioms to express some other interactive
epistemic, temporal and game theoretical properties. Here we consider a few.

Connectedness of Preferences The connectedness property for the preference relation suggests that
any two histories are comparable. Therefore, it can be formalized as ∀H,H ′.H �i H ′ ∨H ′ �i H. The
modal axiom that corresponds to it is the following axiom: �i(�iϕ→ ψ)∨�i(�iψ→ ϕ). This renders
the frame with preference modality as a total pre-order.

Epistemic Perfect Recall The agents with perfect recall retain knowledge once they acquired it. The
standard axiom for this property is given as follows: Ki©ϕ →©Kiϕ . It is rather easy to show that this
axiom is valid in HBPL. Given an arbitrary history H and a time-stamp t, we start with assuming H, t |=
Ki©ϕ . Our aim is to show that©Kiϕ holds at H, t. Now, by definition, ∀H ′.(H∼iH ′→ H ′, t |=©ϕ).
Unfolding the temporal modality gives ∀H ′.(H∼iH ′→ H ′, t +1 |= ϕ). Now, we can fold back, but this
time starting with the epistemic modality. By definition, we first obtain H, t +1 |= Kiϕ , which produces
H, t |=©Kiϕ . Thus, Ki©ϕ →©Kiϕ is valid in HBPL.1

Preferential Perfectness By preferential perfectness, we mean that agents do not change their prefer-
ences in time. Consider the scheme �i©ϕ→©�iϕ . It is also easy to show that this scheme is valid in
HBPL, so we skip it.

Epistemic Rationality By a slight abuse of terminology we will call the axiom scheme ♦iLiϕ→ Li♦iϕ
as the Church-Rosser axiom. The frames of HBPL which satisfies the Church-Rosser Property enjoys
the following condition:

H ′
�i // H ′′

∼i

��
H

∼i

OO

K//
�i

If H ∼i H ′ and H ′ �i H ′′, then there exists a history K such that H �i K and H ′′ ∼i K.
Consider the dual axiom scheme Ki�iϕ→�iKiϕ . This is valid in HBPL. Similar to above, consider

H, t |= Ki�iϕ . Then by definition, ∀H ′.(H∼iH ′ → H ′, t |= �iϕ). This reduces to ∀H ′,H ′′(H ∼i H ′ ∧
H ′ �i H ′′→ H ′′, t |= ϕ). By the Church-Rosser Property, then there exists a history K such that H �i K
and H ′′ ∼i K. So, by definition, K, t |= Kiϕ . Thus, H, t |=�iKiϕ , which shows the validity of the axiom
scheme in question.

Various other combinations of the modalities, such as�iKi©ϕ→©�iKiϕ or Ki�i©ϕ→©Ki�iϕ
remain valid in HBPL. Similarly, various commutativity properties of the modalities, such as KiK jϕ ↔
K jKiϕ , can be examined in order to shed light to epistemic interaction of the agents.

1However, as van der Meyden showed, the axiom Ki©ϕ →©Kiϕ is not sufficient to establish the completeness of frames
with respect to perfect recall [13, 12]. The additional axiom required for this task is a complicated one:
Kiϕ1∧©(Kiϕ2∧¬Kiϕ3)→¬Ki¬((Kiϕ1)U((Kiϕ2)U¬ϕ3)).
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3 Case Study: An Epistemic Analysis of the Prisoner’s Dilemma

Viewed as histories with imposed subjectives preferences, HBPL is helpful in formalizing epistemic
games. As an application, we consider how HBPL computes best responses in Prisoners’ Dilemma (PD,
for short).

A

B

(3,3)

c

(1,4)

d

c

B

(4,1)

c

(2,2)

d

d

(a) Extensive form representation

cc

dc dd

cd

(b) Equivalence classes of histories

Figure 1: Prisoners’ Dilemma

Let us consider PD in its extensive normal form where the utility pair (uA,uB) denotes the utility of
the players A and B respectively. Epistemic indistinguishability of the states for player B is denoted by
the dashed line given in Figure 1a. Based on the extensive normal form, we reproduce the epistemic
model of PD below where agents’ knowledge is represented by the equivalence classes in the standard
way in Figure 1b [2]. In the history xy, the first event denotes Player A’s move while the second one
denotes Player B’s move. Also, due to the utilities associated with the players at the possible end states
of the game, we have cc �B cd and dc �B dd. Similarly, cc �A dc and cd �A dd. The HBPL model for
PD can easily be read off from Figures 1a and 1b, hence skipped.

We define best response relation for agent i in a two-player game as follows where −i denotes the
players other than i.

BRi =∼−i ∩ �i

By a slight abuse of notation, we will use the same notation to denote the intersection modality. Put
informally, in this context, best response for an agent is a move that is indistinguishable by the opponent
yet more preferable for the agent himself.

Now let us see how we can verify the best responses of the players. Recall that for both players, the
best response is defect (the move d). What follows is a direct computation of best responses for each
players based on the game history and the subjective preferences of the players. Since PD is a one-shot
game, we use a fixed-time stamp t.

We start with Player A.

cc, t 6|= BRA since there is dc such that dc∼B cc and cc�A dc
cd, t 6|= BRA since there is dd such that dd∼B cd and cd�A dd
dc, t |= BRA since there is no compatible history with these properties.

The only alternative cc fails to bring a higher utility
dd, t |= BRA since there is no compatible history with these properties.

The only alternative cd fails to bring a higher utility
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Similarly for player B:

cc, t 6|= BRB since there is cd such that cd∼A cc and cc�A cd
dc, t 6|= BRB since there is dd such that dd∼A dc and dc�A dd
cd, t |= BRB since there is no compatible history with these properties.

The only alternative cc fails to bring a higher utility
dd, t |= BRB since there is no compatible history with these properties.

The only alternative dc fails to bring a higher utility

Based on the above analysis, Nash equilibrium can be observed at dd which is the state where neither
of the agents can unilaterally benefit by diverging from. If A diverges, then the history cd is obtained
which is not preferable for him. Similarly, if B diverges, then the history dc is obtained which is not
preferable for him either. Thus, dd is the Nash equilibrium of PD.

It can be noticed that we have not discussed strategies in HBPL. Therefore, the Nash equilibrium in
HBPL is simply a game history formed if the players follow a particular equilibrium strategy constructed
with respect to their best responses. Therefore, the equilibrium is expressed in terms of a game history.

This is a model of prisoner’s dilemma in HBPL.

4 Case Study: Set Based Analysis of Histories and Decisions - An Agree-
to-Disagree Result

The above analysis of PD considered epistemic states of the game as sequences of moves, or histories.
However, there was an additional layer of formalization on top of the histories, which considered the
structure of histories and their relation to each other in the form of equivalence classes. We can now
develop this idea further, and relate it to a well-known and foundational result in epistemic game theory.

Aumann’s celebrated agree-to-disagree theorem is a mile-stone in epistemic game theory [1]. Several
iteration of the agree-to-disagree result have been given in the literature [4]. In this section, we take one
of such variations, which is due to Dov Samet, and apply it to history based models. Samet’s model
uses a non-probabilistic model together with a set algebra where the knowledge is formalized using a
set operator [17]. In that case, Aumann’s original statement of the theorem becomes a special case of
Samet’s generalized formalism.

Our application of HBPL to agree-to-disagree theorem serves two goals. First, it shows the versatility
of HBPL by considering sets of histories as equivalence classes. Second, it shows that it is possible to
introduce two different levels of complexity to epistemic games. The first level of complexity deals with
the game play and constructs a history which includes the moves of all players and the local knowledge
of players. The second level of complexity, on the other hand, provides a global view of the model by
forming equivalence classes of histories introducing additional structure. In HBPL, unlike Kripkean
models, we can read off the epistemics of agents from the histories directly. This is one of the major
advantages of using history based models.

However, notice that HBPL evaluates truth at time stamps. The truth of a formula depends both
on the history and where we are at the history. Nevertheless, the epistemic modality and the preference
modality in HBPL does not quantify over the temporal parameter. For that reasons, in what follows we
assume that the time stamp is fixed and the same for all agents, for simplicity.

Let us now start with defining some standard epistemic operators following [17].

Definition 4.1. For a given set of agents A and a formula ϕ , we define EAϕ which reads “everyone in A
knows ϕ”. Formally, EAϕ =

∧
i∈A Kiϕ .
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We define the common knowledge operator CAϕ which reads “ϕ is common knowledge among A”
as follows

CAϕ = EAϕ ∧E2
Aϕ ∧·· ·∧ . . .Em

A ϕ ∧ . . .
where E1

A = EAϕ and Ek+1
A ϕ = EAEk

Aϕ , for k ≥ 1.

The epistemic indistinguishability relation ∼i for agent i makes it possible to redefine history based
models as epistemic set models in a way that we can compare agents’ knowledge relative to a given
protocol [17]. In order to achieve this, we define a set valued function which takes a set and returns
a partition in that set that belongs to the agent. Given a protocol H , we define κi : 2H 7→ 2H . For
simplicity, we will consider sets of finite histories, and denote the sets of histories with bold letters such
as h,h′ etc. In this model, for each agent, there exists a partitioning of the given protocol H .

Now, in a given model, let πi denote the agent i’s partitioning of the protocol H . That is, for each i,
there exists equivalence classes of histories in H . Similarly, πi(h) denotes the partition for agent i that
contains h. In other words, for an agent at history h, the histories in πi(h) are indistinguishable.

Now, we define κi(h) = {h : πi(h) ⊆ h}. Simply put, for a set of histories h, the set κi(h) includes
all the histories h whose partitions are contained in h. The operator κi is a set valued operator which
will express agent’s knowledge. In order to achieve this, we stipulate that κi satisfies the following three
properties, for given sets of histories h,h′ [7].

1. κi(h∩h′) = κi(h)∩κi(h′)

2. κi(h)⊆ h

3. −κi(h) = κi(−κi(h))
where − denotes the set theoretical complement. The above three property makes κi an epistemic oper-
ator where the first condition corresponds to normality, the second one to veridicality and the last one to
introspection in the traditional sense. Similarly, a common knowledge operator c can be defined for sets
of histories to express the common knowledge modality CA.

Extending the preference relation in HBPL, it is possible to compare agents’ knowledge relative to
each other, given a set of histories.

Definition 4.2. Define the set of histories [ j > i]H in which agent j is at least as knowledgeable as agent
i with respect to a given set of protocols H as follows.

[ j > i]H :=
⋂

h∈2H

−κi(h)∪κ j(h)

By a slight abuse of notation, we will denote the proposition whose extension is the set [ j > i]H by
the same symbol.

Since our epistemic model is based on equivalence classes and partitions, it is possible to compare
agents’ knowledge based on their partitions. The following lemma expresses the fact that the finer the
partitions, the more the epistemic knowledge.

Lemma 4.3 ([17]). h ∈ [ j > i]H iff π j(h)⊆ πi(h).

Proof. Let h∈ [ j > i]H . For h = πi(h), and by the above definition, we have h∈−κi(πi(h))∪κ j(πi(h)).
By definition, κi(πi(h)) = πi(h) and also h ∈ πi(h). Thus, h ∈ κ j(πi(h)). Then, by definition of κ ,
π j(h)⊆ πi(h).

For the converse direction, let κ , π j(h) ⊆ πi(h). Suppose for some set of histories h, we have h ∈
κi(πi(h)). Then, by definition, πi(h)⊆ h. By the initial assumption, we also have π j(h)⊆ h which means
that h ∈ κ j(πi(h)). Thus, for each h ∈ 2H , h ∈ −κi(h)∪κ j(h). Hence, h ∈ [ j > i]H .
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Another interesting lemma suggested by Samet shows how the comparison ordering of agents’
knowledge and epistemic partitions relate to each other. Let us prove it for HBPL.

Lemma 4.4 ([17]). h ∈ κi([ j > i]) iff πi(h) =
⋃

h′∈πi(h) π j(h′).

Proof. The proof directly follows from the definitions.
h ∈ κi[ j > i] amounts to πi(h)⊆ [ j > i] by definition. By the first lemma, this statement holds if and

only if for each h′ ∈ πi(h) we have π j(h′)⊆ πi(h). This is equivalent to πi(h) =
⋃

h′∈πi(h) π j(h′).

Next, we define a decision function δi : H 7→ D for a protocol H , agent i and any set of decisions
D. The vector δ = (δ1, . . . ,δn) is called a decision profile for n agents. In this context, we consider D as
any set of decisions, not necessarily probabilistic or propositional. Now, for a decision d ∈ D, we define
the proposition [δi = d]H with the following set as its extension.

[δi = d]H = {H ∈H : δi(H) = d for all H ∈H }

Similarly, we will use [δi = d]H to denote both the set and the proposition, if no confusion arises
from the context. If obvious, we will drop the superscript.

We assume each agent knows his decision [17]. In our notation, this amounts to the following
statement [δi = d]H ⊆ κi([δi = d]H ). In other words, agents agree with those agents who know better.
Let us put it formally and more carefully as follows.

Definition 4.5. κi([ j > i]H ∩ [δ j = d]H )⊆ [δi = d]H .

Sure Thing Principle suggests that if an agent j is at least as knowledgable as another agent i, and if
j’s decision is d, then i’s decision is also d.

If the knowledge comparison is an intuitive order, this means that there can be postulated some agents
that know less than all the other agents. Now, an agent i is called an epistemic dummy if all the agents are
at least as knowledgeable as i. Dummy agents can be introduced to decision making process if they do
not upset the sure thing principle. The following notion incorporates dummy agents into the sure thing
principle.

Definition 4.6. A decision profile d in a model with a protocol H with n agents is expandable if for any
additional epistemic dummy i, there exists a decision profile d′ which satisfies the sure thing principle.

It is important to stipulate that for an expandable decision profile d and dummy agent i, d and d′
agree on the decisions of agents who are not dummies. Expandable decision profiles play an important
role for the following theorem, which we adopt from [17].

Theorem 4.7. If δ is an expandable decision profile in a model with a protocol H with n agents, then
for any decisions d1, . . . ,dn in D which are not identical, C(

∧
i≤n[δi = di]

H ) is nowhere satisfiable, in
other words c(

⋂
i≤n[δi = di]

H ) = /0.

Proof. First, we will construct an epistemic dummy agent. Call him n+1. Now, define πn+1 as the finest
partition which is coarser than any of the partitions πi for 1 ≤ i ≤ n. Then, the epistemic set operator
κn+1 based on the partition πn+1 is the common knowledge operator CA [7].

Also κn+1([ j > n+1]) = H as κn+1 is common knowledge operator and [ j > n+1] = H for each
agent j for 1≤ j ≤ n. This shows that n+1 is an epistemic dummy.

Now, for an expandable decision profile δ , there is δn+1 such that (δ1, . . . ,δn+1) satisfies the sure
thing principle.

We will now prove the contrapositive. For this, let h ∈ c(
⋂

i[δi = di]). We showed that κn+1 is the
common knowledge operator. So, let h ∈ κn+1(

⋂
i[δi = di]).
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Since κ operator satisfies the property that κ(h∩h′) = κ(h)∩κ(h′), we have h ∈⋂
i κn+1([δi = di]).

Therefore, for each j, h ∈ κn+1([δ j = d j]).
By definition, πn+1 is coarser than π j for any j, and πn+1(h) =

⋃
h′∈πn+1(h) π j(h′). By the second

lemma, we observe that h ∈ κn+1([ j > i]).
Now, we have h∈ κn+1([δ j = d j]) and h∈ κn+1([ j > i]), so that we can apply the sure thing principle

to obtain h ∈ [δn+1 = d j] for each j. Therefore, all the decisions d j are identical to δn+1(h). This is also
why we need an epistemic dummy agent.

Thus, if the common knowledge is not an empty set, the decisions of the agents coincide.
This proves the theorem.

So far, we have adopted Aumann’s well-known theorem to history based structures via Samet’s
formalism [1, 17]. What is more interesting is, via our proof, the result can be extended to runs and
function based knowledge structures, and expands the domain of applicability of Aumann’s theorem
[5, 8, 6].

Now, it is worth mentioning the potential future applications of above results. First, Theorem 4.7
provides some good handles for systems security policies. In systems’ security, it can obviously be seen
that attacker’s and defender’s decisions cannot be the same for a successful attack. Also, it is not enough
that they will have different decisions, those decisions cannot be commonly known among them. The
theorem specifies under which conditions, agents’ decisions which are not identical cannot be common
knowledge. If they are common knowledge, then some agents cannot agree to disagree [1].

Also, it is noteworthy that the decision set D above is given arbitrarily. Therefore, it seems possible
to choose a probability measure to precise the decisions of the agents in a way close to the original set
up of the theorem by Aumann [1]. Such a set-up would facilitate the introduction of probabilistic issues
and mixed strategies into HBPL, which we leave to future work.

Finally, set based approaches to histories relate HBPL to topological spaces where agents’ indistin-
guishable histories may form an open set. In such a formalization, topological transformations and paths
might help us to transform histories in a continuous and knowledge-preserving fashion.

5 Conclusion

History based models provide a natural formalism for epistemic logic. In this work, we extended the
standard framework by introducing modal preferences in order to reason about subjective preferences
and epistemic games, and made a connection between logic and games via history based models. This
opens up a broad spectrum of theoretical and applied fields for future work including process algebras,
preference logics, deontological games and topologies.

History based models also seem to provide a richer understanding for agents’ rationality by intro-
ducing various tools for explicate agents’ decision and preferences based on the progress of the game,
preferences and the time. This potential can easily be extended to a broader and utilitarian analysis of
history based games, which we leave for future work.

In this preliminary work, apart from introducing a conceptual development, we argued that HBPL
fits rather well within the current research on epistemic game theory, modal logic and logic of games,
and provides a new and broad framework.

Acknowledgement The epigraph is taken from [9].
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Strategy Logic (SL) has recently come to the fore as a useful specification language to reason about
multi-agent systems. Its one-goal fragment, or SL[1G], is of particular interest as it strictly subsumes
widely used logics such as ATL*, while maintaining attractive complexity features. In this paper
we put forward an automata-based methodology for verifying and synthesising multi-agent systems
against specifications given in SL[1G]. We show that the algorithm is sound and optimal from a
computational point of view. A key feature of the approach is that all data structures and operations
on them can be performed on BDDs. We report on a BDD-based model checker implementing the
algorithm and evaluate its performance on the fair process scheduler synthesis.

1 Introduction

A concern in the deployment of autonomous multi-agent systems (MAS) is the limited availability of
efficient techniques and toolkits for their verification. The problem is compounded by the fact that MAS
require ad-hoc techniques and tools. This is because, while reactive systems are typically specified purely
by temporal properties, MAS are instead described by statements expressing a number of typical AI
concepts including knowledge, beliefs, intentions, and abilities.

Some progress in this direction has been achieved in the past decade. For example, several efficient
techniques are now available for the verification of MAS against temporal-epistemic languages [22, 27,
16, 21]. Some of these have been implemented into fully-fledged model checkers [11, 14, 18].

Less attention has so far been given to the verification of properties expressing cooperation and en-
forcement [19, 15]. While the underlying logics have been thoroughly investigated at theoretical level [3],
tool support is more sketchy and typically limited to alternating-time temporal logic (ATL) [1]. A number
of recent papers [8, 24] have however pointed out significant limitations of ATL when used in a MAS
setting. One of these is the syntactic impossibility of referring explicitly to what particular strategies a
group of agents ought to use when evaluating the realisability of temporal properties in a MAS. Being
able to do so would enable us to express typical MAS properties, including strategic game-theoretic
considerations for a group of agents in a cooperative or adversarial setting.

In response to this shortcoming, Strategy logic (SL), a strict extension of any logic in the ATL hier-
archy, has recently been put forward [24]. In SL, strategies are explicitly referred to by using first-order
quantifiers and bindings to agents. Sophisticated concepts such as Nash equilibria, which cannot be ex-
pressed in ATL, can naturally be encoded in SL.

Given this, a natural and compelling question that arises is whether automatic and efficient verifi-
cation methodologies for MAS against SL specifications can be devised. The answer to this is negative
in general: model checking systems against SL specifications is NONELEMENTARYSPACE-HARD [25],
thereby hindering any concrete application on large systems. It is therefore of interest to investigate
∗This is an expository contributions based on [6].
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whether computationally attractive methodologies can be put forward for fragments of SL. The only
contributions we are aware of in this regard are [4, 12], where model checking MAS against a memo-
ryless fragment of SL combined with epistemic modalities was studied. Although a tool was released,
memoryless strategies severely constrain the expressivity of the formalism.

To overcome this difficulty, we here put forward a technique for the verification and synthesis of
MAS against specifications given in One-Goal Strategy Logic, or SL[1G], an expressive variant of SL.
We claim there are several advantages of choosing this setting. Firstly, and differently from full SL, strate-
gies in SL[1G] are behavioural [25]. A consequence of this is that they can be synthesised automatically,
as we show later. Secondly, SL[1G], in the perfect recall setting we here consider, retains considerable
expressiveness and is strictly more expressive than any ATL variant, including ATL*. Thirdly, the com-
plexity of the model checking problem is the same as that for ATL*, thereby making its verification
attractive.

The rest of the paper is organised as follows. In Section 2 we recall the logic SL[1G], introduce
the model checking and synthesis problems and a few related concepts. In Section 3 we put forward
practical algorithms for the model checking and synthesis of MAS against SL[1G] specifications. We
also show that these are provably optimal when considered against the theoretical complexity known
for the problem. In Section 4 we show that the algorithms are amenable to symbolic implementation
with binary-decision diagrams and present an experimental model checker implementing the algorithms
discussed. We evaluate its performance on the fair process scheduler synthesis. We conclude in Section 5
where we also point to further work.

2 One-Goal Strategy Logic

In this section we introduce some basic concepts and recall SL[1G], a syntactic fragment of SL, intro-
duced in [25].

Underlying Framework. Differently from other treatments of SL, which were originally defined
on concurrent game structures, we here use interpreted systems, which are commonly used to reason
about knowledge and strategies in multi-agent systems [10, 19]. An interpreted system is a tuple I =
〈(Li,Acti,Pi, ti)i∈Agt, I,h〉, where each agent i ∈ Agt is modelled in terms of its set of local states Li, set of
actions Acti, protocol Pi : Li→ 2Acti specifying what actions can be performed at a given local state, and
evolution function ti : Li×Act→ Li returning the next local state given the current local state and a joint
action for all agents.

The set of global states G of the whole system consists of tuples of local states for all agents. As
a special subset G contains the set I of initial global states. The labelling function h maps each atomic
proposition p ∈ AP to the set of global states h(p)⊆ G in which it is true. Joint actions Act are tuples of
local actions for all the agents in the system; shared actions in the set ActA ,⋂i∈A Acti are actions for the
agents A⊆ Agt; The global protocol P : G→ 2Act and global evolution function t : G×Act→ G, which
are composed of their local counterparts Pi and ti, complete the description of the evolution of the entire
system.

Syntax of SL[1G]. SL has been introduced as a powerful formalism to reason about sophisticated
cooperation concepts in multi-agent systems [24]. Formally, it is defined as a syntactic extension of the
logic LTL by means of an existential strategy quantifier 〈〈x〉〉ϕ , a universal strategy quantifier [[x]]ϕ ,
and an agent binding operator (a,x)ϕ . Intuitively, 〈〈x〉〉ϕ is read as “there exists a strategy x such that
ϕ holds”, [[x]]ϕ is its dual, and (a,x)ϕ stands for “bind agent a to the strategy associated with the
variable x in ϕ”. In SL[1G], these three new constructs are merged into one rule ℘[ϕ , where ℘ is
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a quantification prefix over strategies (e.g. [[x]]〈〈y〉〉[[z]]) and [ is a binding prefix (e.g. (a,x)(b,y)(c,x)).
As this limits the use of strategy quantifiers and bindings in SL, SL[1G] is less expressive than SL [25].
Nevertheless, it still strictly subsumes commonly considered logics for strategic reasoning such as ATL*.
Additionally, several attractive features of ATL* hold in SL[1G], including the fact that satisfiability and
model checking are 2EXPTIME-COMPLETE [25]. Crucially, SL[1G] can be said to be behavioural, that is
the choice of a strategy for a group of agents at a given state depends only on the history of the game and
the actions performed by other agents. This is in contrast with the non-behavioural aspects of SL in which
strategy choices depend on other agents’ actions in the future or in counterfactual games. In summary,
SL[1G] is strictly more expressive than ATL*, whereas it retains ATL*’s elementary complexity of key
decision problems, including the strategy synthesis problem.

To define formally the syntax of SL[1G], we first introduce the concepts of a quantification and
binding prefix [25].

A quantification prefix over a set of variables V ⊆ Var is a finite word ℘∈ {〈〈x〉〉 , [[x]] | x ∈V}|V |
of length |V | such that each variable x ∈ V occurs in ℘ exactly once. QPreV denotes the set of all
quantification prefixes over V . QPre =

⋃
V⊆Var QPreV is the set of all quantification prefixes. A binding

prefix over a set of variables V ⊆ Var is a finite word [ ∈ {(i,x) | i ∈ Agt∧ x ∈V}|Agt| of length |Agt| such
that each agent i ∈ Agt occurs in [ exactly once. BPreV denotes the set of all binding prefixes over V .
BPre =

⋃
V⊆Var BPreV is the set of all binding prefixes. Similarly to first-order languages, we also use

free(ϕ) to represent the free agents and variables in a formula ϕ . Formally, free(ϕ)⊆ Agt∪Var contains
(i) all agents having no binding after the occurrence of a temporal operator and (ii) all variables having a
binding but no quantification.

Definition 1 (SL[1G] Syntax). SL[1G] formulas are built inductively from the set of atomic propositions
AP, strategy variables Var, agents Agt, quantification prefixes QPre, and binding prefixes BPre, by using
the following grammar, with p ∈ AP, x ∈ Var, a ∈ Agt, [ ∈ BPre, and ℘∈ QPre:

ϕ ::= p |>|¬ϕ |ϕ ∧ϕ |ϕ ∨ϕ |Xϕ |Fϕ |Gϕ |ϕ Uϕ |℘[ϕ

where ℘∈ QPrefree([ϕ).

The conditions on ℘ and [ ensure that ℘[ϕ is an SL[1G] sentence, i.e. , it does not have any free
agents or variables.

Semantics of SL[1G]. We assume perfect recall and complete information. So agents have full mem-
ory of the past and complete information of the global state they are in. Note that allowing incomplete
information would make the logic undecidable [9], whereas SL[1G] with incomplete information and
imperfect recall is equivalent to a proper fragment of the logic SLK already studied in [4].

To establish the truth of a formula, the set of strategies over which a variable can range needs to
be determined. For this purpose we introduce the set sharing(ϕ,x) representing the agents sharing the
variable x within the formula ϕ . Also, we make use of the general concepts of path, track, play, strategy,
and assignment for agents and variables. We refer to [25] for a detailed presentation. Intuitively, a strategy
identifies paths in the model on which a formula needs to be checked. So, for each track (i.e. a finite
prefix of a path), a strategy determines which action has to be performed by a variable, possibly shared
by a set of agents. More formally, given an SL[1G] formula ϕ , for each variable x in ϕ , the strategy
f : Trk ⇀ Actsharing(ϕ,x) determines the action to be taken by agents in sharing(ϕ,x).

Given an interpreted system I having a set of global states G, a global state g∈G, and an assignment
χ defined on free(ϕ), we write I ,χ,g |= ϕ to represent that the SL[1G] formula ϕ holds at g in I
under χ . The satisfaction relation for SL[1G] formulas is inductively defined by using the usual LTL

interpretation for the atomic propositions, the Boolean connectives ¬ and ∧, as well as the temporal
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operators X, F, G, and U. The inductive cases for the strategy quantification 〈〈x〉〉 and the agent binding
(a,x) are given as follows. The cases for universal quantification [[x]] are omitted as they can be given as
the dual of the existential ones.

• I ,χ,g |= 〈〈x〉〉ϕ iff there is a strategy f for the agents in sharing(ϕ,x) such that I ,χ[x 7→ f ],g |=ϕ
where χ[x 7→ f ] is the assignment equal to χ except for the variable x, for which it assumes the
value f .

• I ,χ,g |= (x,a)ϕ iff I ,χ[a 7→ χ(x)],g |= ϕ , where χ[a 7→ χ(x)] denotes the assignment χ in
which agent a is bound to the strategy χ(x).

Model Checking and Strategy Synthesis. The model checking problem is about deciding whether
an SL[1G] formula holds in a certain model. Precisely, given an interpreted system I , an initial global
state g0, an SL[1G] formula ϕ and an assignment χ defined on free(ϕ), the model checking problem
concerns determining whether I ,χ,g0 |= ϕ .

Synthesis can be further used as a witness for the model checking problem as it allows to construct
the strategies the agents need to perform to make the formula true. This amounts to deciding which
action has to be taken by each shared variable. More formally, let I be an interpreted system and ϕ
an SL[1G] formula. W.l.o.g., assume ϕ to be a so called principal sentence1 of the form ℘[ψ , with
℘∈ QPrefree([ψ), ℘=℘(0) ·℘(1) · · ·℘(|℘| − 1), and [ ∈ BPre. Additionally assume that there exists
an integer 0 ≤ k < |℘| such that for each 0 ≤ j < k there exists a strategy f j for variable ℘v( j) shared
by agents in sharing([ψ,℘v( j)). Then, strategy synthesis amounts to defining the strategy fk : Trk ⇀
Actsharing([ψ,℘v(k)) for variable ℘v(k) such that if I ,χ,g |=℘≥k[ψ , then I ,χ[℘v(k) 7→ fk],g |=℘>k[ψ ,
where χ is an assignment defined on {℘v( j) | 0≤ j < k} such that for all 0≤ j < k we have χ(℘v( j)),
f j, ℘≥k ,℘(k) · · ·℘(|℘|−1), and ℘>k ,℘(k+1) · · ·℘(|℘|−1).

3 Symbolic Model Checking SL[1G]

We now introduce a novel algorithm for model checking an interpreted system I against an arbitrary
SL[1G] sentence ϕ . For simplicity we assume that ϕ is a principal sentence of the form ℘[ψ .

Our aim is to find the set of all global reachable states ‖ϕ‖I ⊆ G at which the SL[1G] sentence
ϕ holds, i.e. ‖ϕ‖I , {g ∈ G |I , /0,g |= ϕ}. We proceed in a recursive manner over the structure of ϕ:
According to SL[1G] syntax, ψ is a formula which combines atoms AP and direct principal subsentences
of the form ϕ ′ = ℘′[′ψ ′ using only Boolean and temporal connectives. Since ϕ ′ is also an SL[1G]
principal sentence, we can recursively calculate ‖ϕ ′‖I ; then replace ϕ ′ in ϕ with a new atom pϕ ′ ∈ AP;
and finally update the assignment with h(pϕ ′), ‖ϕ ′‖I . This allows us to consider the simpler problem
of model checking an SL[1G] basic principal sentence ϕ =℘[ψ where ψ is an LTL formula. Our general
procedure is as follows:

1. We construct a deterministic parity automaton P
ψ
I equivalent to the LTL formula ψ .

2. We construct a two-player formula arena A ℘[
I representing the global state space G and the inter-

dependency of strategies in the prefix ℘[.

3. We combine A ℘[
I and P

ψ
I into an infinite two-player parity game G

℘[ψ
I . Solving the parity game

yields its winning regions and strategies, which can in turn be used to calculate ‖ϕ‖I and the
strategies in ℘.

1If this is not the case, one can simply add one quantifier and agent binding for each agent without changing the semantics
as ϕ is a sentence.
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We shall now expand on each of the steps above.
Formula automaton. The first step of our algorithm is the standard construction of a determin-

istic parity automaton P
ψ
I equivalent to the underlying LTL formula ψ . This is usually performed

in three steps: (i) ψ is converted to a non-deterministic generalised Büchi automaton A
ψ
I via stan-

dard translation [29]; (ii) A
ψ
I is translated to an equivalent non-deterministic Büchi automaton B

ψ
I

by adding a counter for fairness constraints [29]; (iii) Bψ
I is transformed into a deterministic parity au-

tomaton P
ψ
I = (S,sI,δ ,c) with a non-empty set of states S, an initial state sI ∈ S, a transition function

δ : S×G→ S, and a colouring function c : S→ N. While the third step is typically done using Safra’s
construction [28], we perform the determinisation using a recently put forward procedure [26] instead,
which is amenable to a symbolic implementation. It is worth pointing out that the recursive step (replac-
ing direct principal subsentences ϕ ′ with atoms pϕ ′) can be incorporated as an extra case of the standard
translation in the first step.

As an example, consider the simple interpreted system IRPS in Figure 1a with agents Agt , {1,2}
representing the Rock-Paper-Scissors game. The global states of the system are G ,

{
gg,g1,g2

}
mean-

ing “game”, “player 1 won”, and “player 2 won”, respectively. The actions available to both players are:
Act1 , Act2 , {r,p,s, i}meaning “rock”, “paper”, “scissors”, and “idle”. Finally, the atoms p1 and p2 en-
code that player 1 and player 2 won, respectively. The assignment is defined as h(p1), {g1} and h(p2),
{g2}. Furthermore, consider the SL[1G] basic principal sentence γ , [[x]]〈〈y〉〉(1,x)(2,y)G [¬p1∧¬p2]
which expresses that “Whichever action player 1 performs, there exists an action for player 2 such that
neither player will ever win”. The corresponding deterministic parity automaton P

γ
IRPS

constructed using
the three-step procedure described in the previous paragraph is shown in Figure 1b.

Formula arena. The second step of the algorithm involves building a two-player formula arena
A ℘[

I = (V0,V1,E), which encodes the state space of the interpreted system I and the interdependency
of strategies in the prefix ℘[. The vertices V of A ℘[

I are pairs (g,d) ∈ G×Dec℘[
I of global reachable

states and lists of actions such that for all 0≤ k < |d| we have d(k) ∈ ⋂i∈sharing([>,℘v(k)) Pi(li(g)), where

Dec℘[
I , ⋃|℘|

`=0 ∏`−1
k=0 Actsharing([>,℘v(k)) and li(g) is the local state of agent i in g. The existential player

vertices V0 ⊆V are vertices (g,d) ∈V such that |d|< |℘| and ℘(|d|) is an existential strategy quantifier.
Conversely, the universal player vertices are V1 =V \V0. The edge relation E ⊆V ×V is defined as:

E ,{((g,d) ,(g,d ·a)) ∈V ×V | |d|< |℘|}∪
{(

(g,d) ,
(
t(g,dAct), []

))
∈V ×V

∣∣ |d|= |℘|
}

where dAct ∈ Act is a joint action such that for all 0 ≤ k < |℘| and i ∈ sharing([>,℘v(k)) we have
acti(dAct) = d(k).

Intuitively, the existential (universal) player represents all existential (universal) quantifiers in the
quantification prefix ℘. Equivalently, the two players correspond to the existential-universal partition of
Agt. The game starts in some vertex (g, []). The players take turns to select actions d(0), . . . ,d(|℘|−1) for
the quantifiers℘(0), . . . ,℘(|℘|−1). The decision d then determines the joint action of all agents dAct and
a temporal transition to

(
t(g,dAct), []

)
is performed. This pattern is repeated forever. The formula arena

A γ
IRPS

of the Rock-Paper-Scissors game interpreted system IRPS for the SL[1G] formula γ introduced
earlier is shown in Figure 1d. Observe that the three grey blobs in A γ

IRPS
correspond to the three global

reachable states in Figure 1a.
We now consider a pseudo-LTL game L

℘[ψ
I based on the arena A ℘[

I . We define an infinite path
π ∈V ω in L

℘[ψ
I to be winning for the existential player iff the LTL formula ψ holds along the underlying

infinite path πI ∈ Gω in I .
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Figure 1: Interpreted system IRPS, parity automaton P
γ
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, delayed automaton D
γ
IRPS

, and for-
mula arena A γ

IRPS
of the Rock-Paper-Scissors game and the SL[1G] basic principal sentence γ ,

[[x]]〈〈y〉〉(1,x)(2,y)G [¬p1∧¬p2].
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Lemma 1. An SL[1G] principal sentence ℘[ψ holds at a global state g ∈G in an interpreted system I

iff the vertex (g, [])∈V is winning for the existential player in the pseudo-LTL game L℘[ψ
I defined above.

Proof. This follows from the fact that SL[1G] model checking can be reduced to solving a so-called
dependence-vs-valuation game [25] in which the existential player chooses a specific dependence map
θ :
(
[[℘]]→⋃

i∈Agt Acti
)
→
(
℘→⋃

i∈Agt Acti
)

for℘over actions in the current global state g∈G and then
the universal player chooses a valuation v : [[℘]]→ ⋃

i∈Agt Acti. The combination θ(v) : ℘→ ⋃
i∈Agt Acti

assigns actions to all variables and determines the next state g′ ∈ G. Instead of choosing the whole
dependence map and valuation at once, the players in L

℘[ψ
I assign actions to strategies one by one for

each quantifier. Furthermore, the order of the players’ moves in L
℘[ψ
I game ensures that the independence

constraints of θ are satisfied. Hence, our claim follows.

We shall next explain how this pseudo-LTL game can be converted to a standard parity game.
Combined game. In order to construct the combined parity game, the solving of which is equivalent

to model checking the basic principal sentence ℘[ψ , we need to combine the formula automaton P
ψ
I

and the formula arena A ℘[
I because Pψ

I represents the winning condition of the pseudo-LTL game L℘[ψ
I .

However, we cannot simply take their product because, informally, they work at different, albeit constant,
“speeds”. While P

ψ
I performs a temporal transition at every step, it takes exactly |℘|+1 turns before a

different underlying global state (grey blob in Figure 1d) is reached by A ℘[
I . To cater for this asynchrony,

we can make the parity automaton “wait” for |℘|+ 1 steps before each actual transition. We do this by
extending the state of P

ψ
I with a simple counter from 0 to |℘|. The resulting delayed (deterministic

parity) automaton D
γ
IRPS

for the basic principal sentence γ introduced earlier is shown in Figure 1c.

The delayed automaton D
℘ψ
I accepts precisely those paths in the formula arena A ℘[

I which are
winning for the existential player. Hence, by combining the two structures, we obtain the combined
parity game G℘[ψ

I , ((V0×S,V1×S,EG) ,cG) with edge relation and colouring function defined as EG ,
{((g,d,s) ,(g′,d′,s′)) ∈ (V × S)× (V × S) | E((g,d) ,(g,d))∧ δD((s, |d|) ,g)} and cG((g,d,s)) , c(s)
respectively, where δD is the transition function of the delayed automaton.

Model Checking. Model checking of an SL[1G] principal sentence can finally be performed by
solving the corresponding combined parity game (e.g. using Zielonka’s algorithm [30]) as formalised by
the following lemma:

Lemma 2. Let ℘[ψ be an SL[1G] principal sentence, g ∈ G a global state in an interpreted system I ,
and (W0,W1) the winning regions of the combined parity game G℘[ψ

I .℘[ψ holds at g (i.e. I , /0,g |=℘[ψ)
iff the vertex (g, [] ,sI) is in the winning region of the existential player (i.e. (g, [] ,sI) ∈W0).

Proof. Our claim follows directly from Lemma 1 and the correctness of the determinisation procedure.

Strategy Synthesis. The formula arena encodes the effects and interdependency of agents’ actions.
Therefore, the solution, i.e., the winning strategies, of the combined parity game can be used for strategy
synthesis.

Lemma 3. Let ℘[ψ be an SL[1G] principal sentence, I an interpreted system, (w0,w1) the winning
strategies of the combined parity game G℘ψ[

I , 0≤ k < |℘| an integer, and f0, . . . , fk−1 strategies for vari-
ables℘v(0), . . . ,℘v(k−1). Then the strategy fk : Trk→Actsharing([ψ,℘v(k)) is defined for all tracks π ∈ Trk
implicitly as ŵ((last(π), [ f0(π), . . . , fk−1(π)],δ (sI,π≤|π|−2)))= (last(π), [ f0(π), . . . , fk−1(π), fk(π)],δ (sI,
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π≤|π|−2)) where δ (sI,π≤|π|−2), δ (. . .δ (sI,π(0)) . . . ,π(|π|−2)) and ŵ : V →V is a total function such
that w0∪w1 ⊆ ŵ.

Proof. The correctness follows from the structure of the formula arena A ℘[
I . See [5] for more details.

Optimality. The theoretical complexity of SL[1G] model checking is 2EXPTIME-COMPLETE with
respect to the size of the formula and P-COMPLETE with respect to the size of the model [25]. Given this,
we show that our algorithm has optimal time complexity:

Lemma 4. Let ϕ be an arbitrary SL[1G] sentence and I an interpreted system. Our algorithm calcu-
lates the set of all global states ‖ϕ‖I ⊆ G satisfying ϕ in time |I |2O(|ϕ|)

.

Proof. Let us first consider an arbitrary SL[1G] basic principal sentence ℘[ψ . The automata A
ψ
I , Bψ

I ,
P

ψ
I , and D

℘ψ
I have O(2|ψ|), 2O(|ψ|), 22O(|ψ|)

, and |℘| × 22O(|ψ|)
states. Moreover, both parity automata

have 2O(|ψ|) colours. The arena A [℘
I and game G

℘[ψ
I have O(|I||℘|) and |I||℘|×22O(|ψ|)

states. Given the

number of states and colours, the game can be solved in time |I|2O(|℘[ψ|)
[13].

We model check ϕ in a recursive bottom-up manner as explained earlier. Hence, at most |ϕ| SL[1G]
basic principal sentences of size at most |ϕ| need to be checked. If ϕ is not a principal sentence, it must be
a Boolean combination of principal sentences, the results of which we can combine using set operations.
Thus, the model checking time is |ϕ|× |I|2O(|ϕ|)

+ |ϕ|× |I |= |I|2O(|ϕ|)
and our claim follows.

Note that SL[1G] subsumes ATL*, which has the same model checking complexity [17]. Hence, our
algorithm is also optimal for ATL* model checking. Moreover, the same complexity result applies to
SL[1G] and, consequently, ATL* strategy synthesis.

4 Implementation and Experimental Results

We implemented the algorithm presented in the previous section as part of the new experimental model
checker MCMAS-SL[1G]. The tool, available from [20], takes as input the system in the form of an ISPL
file [18] describing the agents in the system, their local states, actions, protocols, and evolution functions
as well as the SL[1G] specifications to be verified. Upon invocation MCMAS-SL[1G] calculates the set
of reachable states, encoded as BDDs, and then checks whether each specification holds in the system. If
requested, all quantified strategies in all formulas are synthesised (together with their interdependencies).
While MCMAS-SL[1G] is built from the existing open-source model checker MCMAS [18] and shares
some of its algorithms, it necessarily differs from MCMAS in several key components, including a more
complex encoding of the model, as described in the previous section, as well as the novel procedure for
computing the sets of states satisfying SL[1G] formulas.

Evaluation. To evaluate the proposed approach, we present the experimental results obtained for
the problem of fair process scheduler synthesis. The experiments were run on an Intel R© CoreTM i7-
3770 CPU 3.40GHz machine with 16GB RAM running Linux kernel version 3.8.0-35-generic. Table 1
reports the performance observed when synthesising a process scheduler satisfying the following SL[1G]
specification which asserts absence of starvation [23]:

φ , ξ
n∧

i=1

G(〈wt, i〉 → F¬〈wt, i〉)
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algo. processes
n

possible
states

reachable
states

reachability
time

model checking time (s) memory
(MB)total automaton arena game solve

un
op

tim
is

ed
2 72 9 0.00 0.09 0.00 0.00 0.02 0.06 4.44
3 432 21 0.00 10.11 0.01 0.02 1.06 9.02 15.14
4 2592 49 0.01 631.11 0.33 0.26 86.47 544.04 41.80
5 15552 113 0.02 29593.56 5.86 2.61 4323.81 25261.15 2792.22
6 93312 257 0.02 out of memory

op
tim

is
ed

2 72 9 0.00 0.12 0.00 0.00 0.02 0.10 4.52
3 432 21 0.00 6.39 0.00 0.01 0.65 5.72 14.54
4 2592 49 0.01 338.16 0.00 0.24 23.33 314.57 40.70
5 15552 113 0.02 6131.43 0.00 2.65 444.06 5684.69 306.41
6 93312 257 0.02 85976.57 0.00 38.27 8012.11 77925.96 2688.93

Table 1: Verification results for the fair process scheduler synthesis.

where ξ , 〈〈x〉〉[[y1]] · · · [[yn]](Sched,x)(1,y1) · · ·(n,yn) is a prefix and 〈wt, i〉 denotes that process 1≤ i≤ n
is waiting for the resource.

We ran the experiments with two different versions of the SL[1G] model checking algorithm: an
unoptimised one (described in the previous section) and an optimised one. Given an SL[1G] principal
sentence of the form ℘[(ψ0∧ψ1∧·· ·∧ψn−1), the optimised algorithm determinises each conjunct ψi

with 0≤ i < n separately, i.e. it constructs the delayed automata D
℘ψ0
I ,D

℘ψ1
I , . . . ,D

℘ψn−1
I . The resulting

combined game S
℘[ψ
I , A ℘[

I ×∏n−1
i=0 D

℘ψi
I is a generalised parity game [7]. The reasoning behind this

optimisation is that the size of the deterministic automata is doubly exponential in the size of the LTL

formulas. Hence, separate determinisation may lead to much smaller combined games.
In the experiments, MCMAS-SL[1G] synthesised correct strategies using both versions of the al-

gorithm. The results show that the main performance bottlenecks are the construction and solution of
the combined parity game; this is in line with the theoretical complexity results reported in the proof of
Lemma 4. We can observe that separate determinisation has indeed a significant impact on performance
in terms of both time and memory footprint, thereby allowing us to reason about more processes. Note
that the relative speedup increases with the number of processes with gains quickly reaching an order of
magnitude and more.

We tested the tool on various other scalable scenarios [5]. When verifying a fixed-size formula, the
tool has efficiently handled systems with 105 reachable global states. This is approximately an order
of magnitude worse than the MCMAS’s performance on plain ATL specifications. This is because the
expressiveness of SL[1G] requires a richer encoding for the models, as discussed earlier. We are not
aware of any other tool capable of verifying specifications richer than plain ATL under the assumptions
of perfect recall. Therefore, we cannot compare our results to any other in the literature.

5 Conclusions

Most approaches put forward over the past ten years for the verification of MAS are concerned with
temporal-epistemic properties so to assess the evolution of the knowledge of the agents over time. Con-
siderably less attention has been devoted so far to the problem of establishing what strategic properties
agents in a system have. We are aware of two lines of research concerning this. The first concerns the
verification of MAS against ATL specifications [2, 19, 15]; the second pertains to the verification of sys-
tems against an observational fragment of SL to which epistemic modalities are added [4, 12]. As argued
in the literature, the first line is limited by the fact that ATL specifications are not sufficiently rich to refer
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to strategies explicitly. The second direction suffers from the weakness of the observational fragments
analysed as they cannot account for the perfect recall abilities normally assumed in a strategic setting.

In this paper we attempted to overcome both difficulties above and put forward a fully symbolic
approach to the verification of MAS against specifications in SL[1G], a rich behaviourally fragment of
SL. We showed the algorithm developed is provably optimal and built a BDD-based checker to support
it. The experimental results obtained point to the feasibility of the practical verification problem for
MAS against SL[1G] specifications. Since SL[1G] strictly subsumes ATL*, an important byproduct of
the work presented is the fact that it also constitutes the first verification toolkit for ATL*. A further key
innovative feature of our approach is that it does not only support verification, but also strategy synthesis.
This enables us to use the synthesis engine for developing controllers or automatic planners in a MAS
context. We leave this to further work.

Acknowledgments. The research described in this paper was partly supported by the EPSRC Research
Project “Trusted Autonomous Systems” (grant EP/I00520X/1) and FP7 EU project 600958-SHERPA).
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[5] Petr Čermák (2014): A Model Checker for Strategy Logic. Master’s thesis, Department of Computing, Impe-
rial College London, UK.

[6] Petr Cermák, Alessio Lomuscio & Aniello Murano (2015): Verifying and Synthesising Multi-Agent Systems
against One-Goal Strategy Logic Specifications. In: Proceedings of the Twenty-Ninth AAAI Conference on
Artificial Intelligence, January 25-30, 2015, Austin, Texas, USA., AAAI Press, pp. 2038–2044.

[7] K. Chatterjee, T. Henzinger & N. Piterman (2006): Generalized Parity Games. Technical Report UCB/EECS-
2006-144, University of California, Berkeley. Available at http://chess.eecs.berkeley.edu/
pubs/318.html.

[8] Krishnendu Chatterjee, Thomas A. Henzinger & Nir Piterman (2010): Strategy logic. Inf. Comput. 208(6),
pp. 677–693.

[9] Catalin Dima & Ferucio Laurentiu Tiplea (2011): Model-checking ATL under imperfect information and
perfect recall semantics is undecidable. CoRR abs/1102.4225.

[10] R. Fagin, J. Y. Halpern, Y. Moses & M. Y. Vardi (1995): Reasoning about Knowledge. MIT Press, Cambridge.

[11] P. Gammie & R. van der Meyden (2004): MCK: Model Checking the Logic of Knowledge. In: Proceedings
of 16th International Conference on Computer Aided Verification (CAV’04), LNCS 3114, Springer, pp. 479–
483.
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P-Automata for Markov Decision Processes
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P-automata provide an automata-theoretic approach to probabilistic verification. Similar to alternat-
ing tree automata accepting labelled transition systems, p-automata accept labelled Markov chains
(MCs). This paper proposes an extension of p-automata that accept the set of all MCs (modulo
bisimulation) obtained from a Markov decision process under its schedulers.

1 Introduction

Model checking of µ-calculus [?] formulas on a Kripke structure (or labelled translation system) is a well
studied method for verifying the correctness of discrete state systems [?]. The problem entails whether
every execution (infinite tree) of a Kripke structure satisfies a given µ-calculus formula. The satisfiability
problem for µ-calculus, on the other hand, is to decide whether there exists an infinite tree which satisfies
a given µ-calculus formula. Both these problems are algorithmically feasible, and the key method is the
translation to alternating tree automata [?].

The notion of p-automata was introduced in [?] to provide a similar automata-theoretical foundation
for the verification of probabilistic systems as alternating tree automata provide for Kripke structures. As
alternating tree automata describe a complete framework for abstraction with respect to branching-time
logic like, µ-calculus, CTL and CTL∗ [?], p-automata similarly give a unifying framework for different
probabilistic logics.

Every p-automaton defines a set of labeled Markov chains, that is, a p-automaton reads an entire
Markov chain as input and it either accepts the Markov chain or rejects it. Analogous to alternating tree
automata where acceptance of a Kripke structure is decided by solving 2-player games [?], the acceptance
of a labelled Markov chain by a p-automaton is decided by solving stochastic 2-player games. In this
paper we revisit p-automata defined by [?] and extend it with a new construct for representing Markov
decision processes. We view a Markov decision process (MDP) as a set of Markov chains defined by
different schedulers and use the extended p-automata to represent this set. Modeling MDPs as p-automata
allows us to define a automata theoretical framework for abstraction of MDPs.

The main contribution of this paper is as follows: We extend the p-automata with a construct that
captures the non-determinism in the choice of probability distribution. This allows us to model Markov
decision processes as p-automata. We show that the extended p-automata are closed under bisimulation,
union and intersection, (though, in contrast to [?], the language is no longer closed under negation). We
show that the language of the p-automaton obtained from an MDP accepts exactly those Markov chains
that are bisimilar to the Markov chains induced by the schedulers of the MDP. In the rest of the paper,
when referring to p-automata we will assume the extended p-automata (as defined in Definition ??),
unless the contrary is stated explicitly.

The paper is organised as follows. In Section 2, we mention some important definitions and prelim-
inaries. In section 3 and 4, we introduce the p-automata and define the acceptance game. In Section 5,
we describe the embedding of an MDP as a p-automaton and conclude in Section 6. Details of some of
the proofs are present in the appendix.



2 MDPs as p-automata

2 Preliminaries and definitions

Let XY be the set of functions from the set Y to the set X . For ϕ ∈ XY let img(ϕ) ⊆ X be the image
and dom(ϕ) = Y be the domain of ϕ . The set of probability distributions over set X is denoted by
DX where d ∈ DX iff d ∈ RX

+ and dT ·1 = 1 (R+ is the set of non-negative reals). For µ ∈ DX , let
supp(µ) = {x ∈ X | µ(x)> 0} be the support of distribution µ .

Definition 1. A Markov chain (MC) M is a quintuple (S,P, AP,L,sin) where S is a (countable) set of
states, P(s) ∈DS for all s ∈ S, AP is a set of atomic propositions, L : S→ 2AP is a labeling function, and
sin ∈ S is the initial state (Figure ??).

An infinite path σ through MC M is a sequence of states σ = {σi}i≥0, where for all i≥ 0, P(σi,σi+1)>
0. Let path(s) denote the set of (finite or infinite) paths starting from state s. For a path σ , let
σ↓ denote the last state of σ if this exists (i.e., if σ is finite) and |σ | denote the length of σ . Let
succ(s) = {t | P(s, t)> 0} be the successors of state s. A probability measure on sets of infinite paths is
obtained in a standard way. Let (Ωs,F ,Pr) be the Borel σ -algebra where Ωs is the set of infinite paths
from state s, F is the smallest σ -field on cylinder sets of Ωs, and Pr is the probability measure on F ,
for a finite path σ , Pr(σ) = ∏0<i≤|σ |P(σi−1,σi) [?].

Definition 2. A Markov decision process (MDP) D is a quintuple (S,∆,AP,L,sin) where S, AP, L, and
sin are as before, and ∆ : S→ 2DS such that ∆(s) is a finite set of distributions. (Figure ??) We assume S
and ∆(s) for each s ∈ S to be finite (unless the contrary is explicitly specified).

A finite path of an MDP is a sequence of states σ = σ0 . . .σn such for each 0 < i ≤ n σi ∈ supp(µ)
for some µ ∈ ∆(σi−1). Let path(s) be the set of (finite and infinite) paths from the state s. Let succ(s) =
{t | t ∈⋃

µ∈∆(s) supp(µ)} be the set of successors of s. As usual, we use schedulers to resolve the possible
non-determinism in a state.

Definition 3. A scheduler of MDP D = (S,∆,AP,L,sin) is a function η : S+ → DDS with η(σ) ∈
D∆(σ↓). The scheduler η induces the MC Dη = (S+,P,AP,L′,sin) with L′(σ) = L(σ↓), and P(σ ,σ ·t) =
∑µ∈∆(σ↓) η(σ)(µ)·µ(t).

These schedulers are history-dependent and randomized. Let HR(D) denote the set of history-
dependent randomized schedulers of MDP D.

Definition 4. Let MC M = (S,P,AP,L, sin). The equivalence relation R ⊆ S× S is a probabilistic
bisimulation [?] iff for every (s,s′) ∈R it holds:

1. L(s) = L(s′), and

2. for every C ∈ S/R, we have ∑t∈C P(s, t) = ∑t ′∈C P(s′, t ′).

Let ∼ denote the largest probabilistic bisimulation on S. The MCs M1 and M2 are probabilistically
bisimilar, denoted M1 ∼M2, if s1

in ∼ s2
in in the disjoint union of M1 and M2.

Definition 5. A stochastic game G is a tuple (V,E,V0,V1,Vp,P,Ω), where (V,E) is a finite directed graph
and (V0,V1,Vp) is a partition of V . V0 is the set of Player 0 configurations, V1 is the set of Player
1 configurations and Vp is the set of stochastic (or probabilistic) configurations. P is a probability
transition function P : Vp → DV and Ω ⊆ V is a set of accepting configurations. A path (also called a
play) in the graph (V,E) is winning for Player 0 if it is finite and ends in Player 1 configuration, or it is
infinite and ends in a suffix of configurations in Ω. Otherwise, that play is winning for Player 1.
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Figure 1: A Markov chain M, with S = {s0,s1,s2}
P(s0,s0) = P(s0,s1) = P(s0,s2) =

1
3 ,

P(s1,s1) = P(s2,s2) = 1.
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s1 s2
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Figure 2: A Markov decision process D. ∆(s0) =
{µ1,µ2}, where µ1(s0) = 1

2 ,µ1(s1) = 1
2 and

µ2(s2) = 1.

A stochastic game is called a weak stochastic game iff for all maximal connected components
(MSCC) C in (V,E), either C ⊆ Ω or C∩Ω = /0. On the other hand, if Vp = /0 then it is called a weak
game. A strategy of a Player 0 is a function γ : V ∗×V0 → DV , with γ(w·u)(v) > 0 implies (u,v) ∈ E.
A play w = v0v1 . . . is consistent with strategy γ if for every i ≥ 0, vi ∈ V0 implies γ(v0 . . .vi)(vi+1) > 0.
Strategies of Player 1 are defined similarly. Let ϒ and Π be the set of all strategies for Player 0 and Player
1, respectively. A player 0 strategy γ is memoryless iff γ(w·v) = γ(w′·v), for any w,w′ ∈V ∗, and it pure
iff γ : V ∗×V0→V , (similarly definitions applies to strategies of player 1).

A pair of strategies (γ,π) ∈ ϒ×Π of a game G determines an MC Mγ,π (configurations with-
out an out-going transition are made absorbing) whose paths are plays of G according to γ , π . The
measure of the set of winning plays of Player 0 starting from a configuration c in Mγ,π is denoted
by val

γ,π
0 (c). We have val

γ,π
1 (c) = 1− val

γ,π
0 (c). The val0(c) = supγ∈ϒ infπ∈Π val

γ,π
0 (c) and val1(c) =

supπ∈Π infγ∈ϒ val
γ,π
1 (c). If a strategy achieves these values then it is called optimal.

Theorem 1. [?, ?, ?] Let G be a stochastic game and c be one of its configurations. Then G is determined,
that is val0(c)+val1(c) = 1. If G is finite and weak, then optimal strategies for both players exist and
they are memoryless and pure. If G is a stochastic weak game, then the problem whether val0(c) greater
than a given quantity v ∈ Q can be decided in NP∩co-NP, and if G is weak game then val0(c) = 1 can
be decided in linear time.

The theorem extends to cases where some configurations have predefined values in [0,1].

3 Weak p-automata

In this section we extend p-automata, as defined in [?] with a new operator ⊕.
Definition 6 (Boolean formulas on T ). Let T be any arbitrary set, then B+(T ) is the set of positive
boolean formulas generated by the following syntax:

ϕ ::= t | true | false | ϕ ∧ϕ | ϕ ∨ϕ (1)

where t ∈ T .
The closure of ϕ ∈ B+(T ) is defined as cl(ϕ), where ϕ ∈ cl(ϕ) and if ϕ1 ◦ϕ2 ∈ cl(ϕ) then ϕ1,ϕ2 ∈ cl(ϕ),
for ◦ ∈ {∧,∨}. Let Q be any set of states, the following sets are derived from Q:

‖Q‖> = {‖q‖./p | q ∈ Q,./∈ {≥,>}, p ∈ [0,1]∩Q} ‖Q‖∗ = {∗(t1, . . . , tn) | n ∈ N,∀i, ti ∈ ‖Q‖>}
‖Q‖∨ = {∨(t1, . . . , tn) | n ∈ N,∀i, ti ∈ ‖Q‖>} ‖Q‖⊕ = {⊕(r1, . . . ,rn) | n ∈ N,∀i,ri ∈ ‖Q‖∗}
‖Q‖ = ‖Q‖∗∪‖Q‖∨∪‖Q‖⊕
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We will call the elements of ‖Q‖> guarded states and elements of ‖Q‖⊕ terms. For brevity, we will
write ∗(t|t ∈ X) for ∗(t1, . . . , tn) where X = {t1, . . . , tn}, (similarly for ϕ ∈ ‖Q‖⊕ or ‖Q‖∨). For ϕ =
∗(‖q1‖./1 p1 , . . . ,‖qn‖./n pn) (or∨(‖q1‖./1 p1 , . . . ,‖qn‖./n pn)), let the set of guarded states be gs(ϕ)= {q1, . . . ,qn}.
If ϕ = ⊕(r1, . . . ,rn) then the set of terms is tm(ϕ) = {r1, . . . ,rn}. In particular, if |tm(ϕ)| = 1 then
ϕ =⊕(r) is the same as r where r = ∗(t1, . . . , tn). Thus, we consider ‖Q‖∗ a special case of ‖Q‖⊕.

We will see subsequently that, ϕ ∈ ‖Q‖∗ represents the different probabilistic branches, whereas
ϕ ∈ ‖Q‖⊕ represents the non-determinism among the possible probabilistic branching r ∈ tm(ϕ).

Definition 7. A p-automaton A is a tuple (Q,Σ,δ ,ϕin,F), where Q is a finite set of states, Σ is a finite
alphabet (2AP), δ : Q×Σ→B+(Q∪‖Q‖) is the transition function, ϕin ∈B+(‖Q‖) is an initial condition,
and F ⊆ Q is an accepting set of states.

As a convention, p-automata have states, MC have locations, and weak stochastic games have con-
figurations. We will make the following simplification, from hereon we assume that for each ϕ ∈ ‖Q‖⊕,
if a state q ∈ gs(r) and q ∈ gs(r′), where r,r′ ∈ tm(ϕ) then r = r′. A p-automaton A = (Q,Σ,δ ,ϕin,F)
defines a labeled directed graph GA = (Q′,E,Eb,Eu) (called the game graph):

Q′ = Q∪ cl(δ (Q,Σ))
E = {(ϕ1∧ϕ2,ϕi)|ϕi ∈ Q′ \Q,1≤ i≤ 2} ∪ {(q,δ (q,σ)) | q ∈ Q,σ ∈ Σ}

{(ϕ1∨ϕ2,ϕi)|ϕi ∈ Q′ \Q,1≤ i≤ 2}
Eu = {(ϕ ∧q,q),(q∧ϕ,q),(ϕ ∨q,q),(q∨ϕ,q) | ϕ ∈ Q′,q ∈ Q}
Eb = {(ϕ,q) |ϕ ∈ ‖Q‖∨,q ∈ gs(ϕ)} ∪ {(ϕ,q) |ϕ ∈ ‖Q‖⊕,q ∈ gs(tm(ϕ))}

where δ (Q,Σ) = {δ (q,σ) | q ∈ Q and σ ∈ Σ}∪{ϕin}.
Example 1. Let the p-automaton A = (Q,Σ,δ ,ϕ,F) be defined as follows: Q = {q1, . . . ,q5}, Σ =
{a,b,c}, ϕ = ⊕(∗(‖q1‖≥ 1

2
,‖q5‖≥ 1

2
),∗(‖q2‖≥1)), δ (q1,a) = ∗‖q3‖≥1, δ (q2,a) = ∗‖q4‖≥1,δ (q3,b) =

∗‖q3‖≥1, δ (q4,c) = ∗‖q4‖≥1, δ (q5,a) = ϕ and F = Q. The game graph is shown in Figure ??.

We add markings on the edges to distinguish them. Edges in Eu and E are unmarked and are called
unbounded and simple transitions, respectively. Edge (ϕ,q) ∈ Eb is called a bounded transition and is
marked with ⊕ if ϕ ∈ ‖Q‖⊕, else it is marked with ∨. Two formulas ϕ,ϕ ′ ∈ Q′ are related as ϕ �A ϕ ′
iff there is a path from ϕ to ϕ ′ in GA, and let �A ∩ �−1

A be defined as ≡A. The equivalence class JϕK
of ϕ with respect to ≡A forms a maximal strongly connected component (MSCC) in GA. An MSCC is
bounded iff every edge in an MSCC of GA, is either in E∪Eb, and an MSCC is unbounded iff every edge
of the MSCC is in E ∪Eu.

Definition 8 (uniform weak p-automata). A p-automaton A is called uniform if: 1.) Every MSCC of GA is
either bounded or unbounded. 2.) For every bounded MSCC marked edges are either all marked with ⊕
or (exclusively) with ∨. 3.) The set of equivalence classes {JϕK | ϕ ∈Q′} is finite. 4.) For every symbol σ
and ϕ =⊕(r1, . . . ,rn), either every q ∈ ri, δ (q,σ) ∈B+(‖Q‖) or every q ∈ ri, δ (q,σ) ∈B+(Q). A (not
necessarily uniform) p-automaton A is called weak if for all q ∈ Q, either JqK∩Q⊆ F or JqK∩F = /0.

In the rest of the paper we will only consider uniform weak p-automata.

4 Acceptance games

Let A = (Q,Σ,δ ,ϕin,Ω) be a p-automaton and M = (S,P,L,AP,sin) be an MC. The acceptance of
M by A depends on the results of a sequence of (stochastic) weak games. Let Φ = Q∪ cl(δ (Q,Σ))
be the set of formulas appearing in the vertices of the game graph GA. Consider the partial order
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ϕ

q5

q1

∗‖q3‖

q3 q2

∗‖q4‖

q4

aa a
cb

Figure 3: Game graph GA without unbounded edges.

V T,ϕ
0 = {〈T,ϕ〉} ∪ {〈T ′,ϕ ′,v〉 ∈ RT,ϕ ×ValT,ϕ | ⊥ 6= val(T ′,ϕ ′)< v} ∪

{〈T ′,ϕ1∨ϕ2,v〉 ∈ RT,ϕ ×ValT,ϕ | val(T ′,ϕ1∨ϕ2) =⊥}
V T,ϕ

1 = {〈T,ϕ, f 〉 | f ∈F⊕
T,ϕ} ∪ {〈T ′,ϕ ′,v〉 ∈ RT,ϕ ×ValT,ϕ | ⊥ 6= val(T ′,ϕ ′)≥ v} ∪

{〈T ′,ϕ1∧ϕ2,v〉 ∈ RT,ϕ ×ValT,ϕ | val(T ′,ϕ1∧ϕ2) =⊥}
ET,ϕ = {(〈T,ϕ〉,〈T,ϕ, f 〉) | f ∈F⊕

T,ϕ} ∪ {(〈T ′,ϕ1◦ϕ2,v〉,〈T ′,ϕi,v〉) | ◦ ∈ {∧,∨},1≤ i≤ 2,
(T ′,ϕ1◦ϕ2,v) ∈ RT,ϕ ×ValT,ϕ ,val(T ′,ϕ1◦ϕ2) =⊥} ∪

{(〈T ′,ϕ ′,v〉,〈T ′,ϕ ′〉) | T ′ ∈ succ(T ),ϕ ′ ∈ [ϕ],v ∈ ValT,ϕ ,val(T,ϕ ′) =⊥} ∪
{(〈T,ϕ, f 〉,〈T ′,δ (q,σ), f (q,T ′)〉) | T ′ ⊆ succ(T ),q ∈ Iϕ , f (q,T ′)> 0,} ∪
{(〈T,ϕ, f 〉,〈{s′},δ (q,σ), f (q,s′)〉) | s′ ∈ succ(T ),q ∈ Iϕ , f (q,T ′)> 0,δ (q,σ) ∈B+(Q)}

Table 1: Acceptance game G(M, [ϕ]), Case 1. σ = L(T ).

(Φ\ ≡A,≤A) where [ϕ]≤A [ϕ]′ iff ϕ �A ϕ ′. Let T ⊆ S non-empty set of locations, where for all s,s′ ∈ T ,
L(s) = L(s′) = σ . We assign σ to L(T ). For a formula ϕ ∈Φ, val(T,ϕ) is calculated for each MSCC [ϕ]
inductively according to the partial order ≤A. val(T,ϕ) is the value val0(T,ϕ) of Player 0 in the game
G(M, [ϕ]) = (V,E,V0,V1,Vp,P,Ω) (defined below). When calculating val(T,ϕ), the value of val(T ′,ϕ ′)
is pre-calculated for every ϕ ′ ∈ [ϕ ′], such that [ϕ]≤A [ϕ ′]. Initially, we set val(T,ϕ) =⊥. Depending on
the MSCC we have the following cases:

Case 1. Let [ϕ] be a non-trivial bounded MSCC where marked edges have marking ⊕. For ϕ =
⊕(r1, . . . ,rn), let Iϕ = {q | q ∈ gs(r),r ∈ tm(ϕ)}, and pi,q be the probability bound on the state q in
the term ri, i.e., ri = ∗(‖q‖≥pi,q | q ∈ gs(ri)). Consider any non empty subset of states of the Markov
chain, T ⊆ S, such that for any s,s′ ∈ T,L(s) = L(s′). Let the label of every state of T be σ . We define
the set RT,ϕ , which is the set of successor configurations of 〈T,ϕ〉, and Vals,ϕ , which is the set of possible
values of val(T,ϕ). We need to enforce that the value of every state of val(T,ϕ) is well defined. Thus, if
val(T ′,ϕ) 6= val(T ′′,ϕ), then for all sets T ⊇ T ′∪T ′′, val(T,ϕ) = 0.

RT,ϕ =
⋃

q∈Iϕ

{(T ′,ϕ ′) | T ′ ∈ succ(T ) and ϕ ′ ∈ cl(δ (q,L(T )))}

ValT,ϕ = {0,1}∪{val(T ′,ϕ ′) | 〈T ′,ϕ ′〉 ∈ RT,ϕ ,val(T ′,ϕ ′) 6=⊥}
(2)

Observe, RT,ϕ is finite and hence ValT,ϕ ⊆Q is also finite. Let F⊕
T,ϕ be a set of functions Iϕ×S→ValT,ϕ

where f ∈F⊕
T,ϕ iff there exists a d ∈Dtm(ϕ) and {aq,s′}q∈Iϕ ,s′∈S ∈ RIϕ×S such that:

∀q,∀s ∈ T ∈ Iϕ : ∑
s′∈succ(s)

aq,s′ f (q,s′)P(s,s′)≥ pi,qdri , and ∀s′ ∈ succ(s) : ∑
q∈Iϕ

aq,s′ = 1 (3)

d and {aq,s′} are called witness of the function f . Note that, the set F⊕
s,ϕ is finite, because both the domain

and the range are finite sets (but can be exponential in size). The game G(M, [ϕ]) = (V,V0,V1,Vp,E,P,Ω)
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{s0},ϕ

{s0},ϕ,





s0,q1 7→ 0 s1,q1 7→ 1 s2,q1 7→ 0
s0,q5 7→ 1 s1,q5 7→ 0 s2,q5 7→ 0
s0,q2 7→ 0 s1,q2 7→ 0 s2,q2 7→ 1

. . . . . . {s0},ϕ,





s0,q1 7→ 1 s1,q1 7→ 0 s2,q1 7→ 0
s0,q5 7→ 0 s1,q5 7→ 1 s2,q5 7→ 0
s0,q2 7→ 0 s1,q2 7→ 0 s2,q2 7→ 1

{s1},∗‖q3‖≥1 {s2},∗‖q4‖≥1
{s0},‖q3‖≥1 {s1},ϕ{s1},∗‖q3‖≥1,(s1,q3) 7→ 1

{s2},∗‖q4‖≥1,(s2,q4) 7→ 1 false

Figure 4: 2-player game (case 1.) generated by p-automaton A in Example ?? and MC M in Figure ??.
The oval states are Player 0 states and the rectangle states are Player 1 states. State 〈{s1},ϕ〉 belongs to
another game and val({s1},ϕ) has been pre-computed.

is defined as follows:

V0 =
⋃

T,ϕ
V T,ϕ

0 V1 =
⋃

T,ϕ
V T,ϕ

1 Vp = /0 E =
⋃

T,ϕ
ET,ϕ Ω = /0 or V

where V T,ϕ
0 ,V T,ϕ

1 , and ET,ϕ are defined in Table ??, and Ω = V if for some q ∈ [t], q ∈ F else Ω = /0.
Starting from the configuration 〈T,ϕ〉, the game progresses as follows: At 〈T,ϕ〉, Player 0 selects a
function f ∈F⊕

T,ϕ (i.e., there exist witnesses {aq,s′} and d). Player 1 can select any subset T ′ ⊆ succ(T ),
such that for every state s′ ∈ T ′ there is a q ∈ Iϕ , such that f (s′,q) = 1 and δ (q,a) ∈B+(‖Q‖). Or, it can
select T ′ = {s′}, where f (s′,q)> 0 and δ (q,σ)′ ∈B+(Q). Thus, Player 1 can move to 〈T ′,δ (q,σ),v〉,
where v = f (s′,q) for s′ ∈ T . A winning play of the game (see Figure ??) for Player 0 is determined by
the following rules:

a. A finite play reaches a configuration 〈T ′,ϕ ′,v〉 such that val(s′,ϕ ′) 6= ⊥, that is the value of the con-
figuration 〈s′,ϕ ′〉, was already determined. Player 0 wins if v ≤ val(T ′,ϕ ′) else player 1 wins. Observe
again that configuration 〈T ′,ϕ ′,v〉 is a player 1 configuration if ⊥ 6= v ≤ val(T ′,ϕ) and a player 0 con-
figuration if ⊥ 6= v > val(T ′,ϕ ′).

b. If at 〈T ′,ϕ ′,v〉, val(T ′,ϕ ′) =⊥ then the play continues with 〈T ′,ϕ ′〉. An infinite play is winning if it
satisfies the weak acceptance condition Ω. That is, if the play stays in V then player 0 wins if and V ⊆Ω
else player 1 wins.

Case 2. Let [ϕ] be a nontrivial MSCC such that every transition in the graph GA belonging to [ϕ] are not
in Eu and not marked ⊕. Details are present in the appendix.

Case 3. Let [ϕ] be a nontrivial MSCC such that all the transitions in [ϕ] of GA are in Eu∪E. This gives
rise to a weak stochastic game.

V = {〈{s},ϕ ′〉 | {s} ∈ S and ϕ ′ ∈ [ϕ]} V0 = {〈{s},ϕ1∨ϕ2〉 ∈V} Vp = (S×Q)∩V
V1 = {〈{s},ϕ1∧ϕ2〉 ∈V} P(〈s,q〉,〈s′,δ (q,L(s))〉) = P(s,s′) Ω = /0 or V
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where Ω is V if some q in [ϕ] is in F else Ω = /0.

E = {(〈{s},ϕ1∧ϕ2〉,〈{s},ϕi〉) ∈V ×V | 1≤ i≤ 2} ∪ {(〈{s},ϕ1∨ϕ2〉,〈{s},ϕi〉) ∈V ×V | 1≤ i≤ 2}
∪ {(〈{s},q〉,〈s′,δ (q,L(s))〉) ∈V ×V |P(s,s′)> 0}

By Theorem ??. a value val0(s,ϕ) of any configuration 〈s,ϕ〉 ∈V exists. We set val({s},ϕ) to this value.

Case 4. Let [ϕ] be a trivial MSCC. It is handled as one of the above cases. The value of the configura-
tions val(s,ϕ) is obtained from the val(s′,ϕ ′) which have already been calculated in G(M, [ϕ ′]).

M is accepted by A, iff val({sin},ϕin) = 1. The language of A, L (A) = {M : A accepts M}.

The p-automata defined here has two notable difference than p-automata in [?]. First is the syntactic
difference due to the presence of formula ⊕(ϕ1, . . . ,ϕn). Second is the semantic difference were we
deal with sets of states of the Markov chains for a bounded MSCC (case 1.). This is crucial for proving
correctness of Theorem ??. For unbounded MSCC the description of the acceptance game is same as the
original definition.

The number of configurations of the weak game G(M, [ϕ]) is exponential in the size of [ϕ] and
Markov chain, when [ϕ] is bounded (case 1.). It is exponential in the size of automaton due to the
different function f ∈F⊕

s,ϕ . Since, weak games can be solved in polynomial time in the size of the game
(and the weak stochastic game can be solved in NP∩co-NP), the problem whether a finite Markov chain
is accepted by a p-automaton can be decided in exponential time.

Next we show that the language of a extended p-automaton is closed under probabilistic bi-simulation.
Proposition 1. For a p-automaton A and MCs M1 and M2 with M1 ∼M2, M1 ∈L (A) iff M2 ∈L (A).

Proof. Let M1 = (S1,P,AP,L,s1,in) and M2 = (S2,P,AP,L,s2,in), with S1 disjoint from S2. Let A =
(Q,Σ,δ ,ϕin,Ω), G1 and G2 be the acceptance game for MCs M1 and M2, respectively. We show that
for each configurations 〈T1,ϕ〉 and 〈T2,ϕ〉 in G1 and G2, respectively, if for every s1 ∈ T1 there exists a
s2 ∈ T2 such that s1 ∼ s2 and vice-versa, then val(T1,ϕ) = val(T2,ϕ). Towards this end, we will construct
a winning strategy for player 0 in G2 from the game G1 and vice-versa. The details are present in the
appendix.

Theorem 2. The language of p-automata is closed under union, intersection, and bisimulation.

Proof. Closure under union and intersection follows from the presence of ∨ and ∧, respectively in the
syntax. Closure under bisimulation follows from Proposition ??.

5 Embedding MDP

In this section we will embed an MDP into an p-automaton. Let D = (S,∆,AP,L,sin) be an MDP.
Definition 9 (p-automata for an MDP). The p-automaton AD = (Q,Σ,δ ,ϕin,Ω) is defined as follows: 1

Q = S×S ; Ω = Q ; δ ((s,s′),L(s)) = ϕs′ and δ ((s,s′),σ) = false if σ 6= L(s)
ϕin = ⊕(ri | µi ∈ ∆(sin),ri = ∗(‖(sin,µi,s′)‖≥µi(s′) | µi(s′)> 0))
ϕs = ⊕(ri | µi ∈ ∆(s) and ri = ∗(‖(s,µi,s′)‖≥µi(s′) | µi(s′)> 0))

1It could be the case that there is some state q ∈ Q which a guarded state of more than one term of a formula ϕ ∈ ‖Q‖⊕.
This can be resolved by renaming and introducing new states.
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Example 2. The MDP in the Figure ?? is embedded in the automaton A defined in the Example ?? and
the MC of Figure ?? is accepted by A.

Theorem 3. Let D be an MDP and AD be its p-automaton. a.) For every scheduler η , Dη ∈L (AD) and
b.) for every MC M ∈L (AD) there exists a η ∈ HR(D) such that M ∼ Dη .

Proof. We first show that if for any η , Dη ∈ L(AD), and then we show that if a Markov chain M ∈ L(AD),
then there exists a scheduler η such that M ∼ Dη .

• Let the MDP D be (S,∆,Σ,L,sin). We will first show that for any scheduler η ∈ HR(D), Dη =
(S+,Σ,P′,L,s0) is in L (AD). We need to show that val({s0},ϕs0) = 1. We first prove that for any
state w ∈ S+ of Dη , with w↓= s the value val({w},ϕs) = val({w·u},ϕu) whenever P′(w,w·u)> 0.
Player 0 at the configuration 〈{w},ϕs〉 chooses function f ∈F⊕

{w},ϕs
, such that the witness are as

follows: d = η(w), aq,w·u = 1 and f (q,w·u) = 1, where q = (s,µ,u). Observe, that there exists
exactly one state w·u, such that f (w·u,q) = 1. Thus player can only move to configurations of the
type 〈{w·u},ϕu〉. Thus, val({w},ϕs) = val({w·u},ϕu). In an MSCC where non of the values are
known, val({w},ϕs)= 1, because the every infinite path is winning. This shows, val({s0},ϕs0)= 1.

• Suppose a finite path 〈T0,ϕs0〉, . . . ,〈Tn,ϕsn〉 is winning for Player 1. That is at 〈Tn,ϕsn〉 it is not the
case that Player 0 can find a distribution d such that,

∀ri ∈ tm(ϕsn) ∀q ∈ gs(ri) ∀s ∈ Tn : ∑
s′∈succ(s)

aq,s′ f (q,s′) = pi,qdi

and for each q ∈ gs(tm(ϕsn)) and any set T ′ ⊆ succ(Tn), where ∀s′ ∈ T ′ : f (q,s′) = 1, 〈T ′,ϕsn〉 is
winning for Player 0. Take any other (arbitrary) play 〈T ′0,ϕs0〉, . . . ,〈T ′n,ϕsn〉 (with T0 = T ′0 = {t0}).
Then 〈T0∪T ′0,ϕs0〉, . . . ,〈Tn∪T ′n,ϕsn〉 is also winning for Player 1. So it is in her best interest to
choose T ′ as large as possible

Let M = (T,Σ,P,L, t0), and M ∈L (AD). The value of configuration 〈{t0},ϕs0〉 is 1, and assume
Player 1 plays optimally, i.e., she chooses a set as large as possible. We will construct a map η? ⊆
(S+×DDs). For any possible finite run, ρn = 〈T0,ϕs0〉, . . . ,〈Tn,ϕsn〉, with T0 = {s0}, (s0, . . . ,sn,d)∈
η?, where d is the distribution chosen by Player 0 at 〈Tn,ϕsn〉. Since, Player 1 plays optimally, it
cannot be the case that two distinct play ρn = 〈T0,ϕs0〉, . . . ,〈Tn,ϕsn〉 and ρ ′n = 〈T ′0,ϕs0〉, . . . ,〈T ′n,ϕsn〉
exists. Thus, we see that η? ∈ HR(D).

Now consider an unrolling of M. Thus, states of M are subsets of T+. It suffices to show a
bisimulation relation between, Dη? and the unrolled M. Let R ⊆ (T+ ∪ S+)× (T+ ∪ S+) be the
smallest transitive, reflexive and symmetric relation with the following property:

– t0Rs0.

– For each play ρn = 〈T0,ϕs0〉, . . . ,〈Tn,ϕsn〉〈Tn+1,ϕs〉, all t ∈ Tn+1, tRs.

We will show that R is a bi-simulation relation.

– If tRw then L(t) = L′(w). If L(t) 6= L′(w) then 〈t,ϕw↓〉 cannot be winning for Player 0.

– For each q ∈ Iϕw↓ , we know, ∑t ′∈succ(t) P(t, t ′)aq,t ′ f (q, t ′) = pq,idi. From this we can deduce,
∑t ′∈C,(t ′,w·s′)∈R P(t, t ′) = ∑w·s′∈C P′(w,w·s′) (see Appendix for details).

Thus, R is a bi-simulation relation , and M ∼ Dη? .
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Figure 5: The MDP (left) and a Markov chain (right).

The embedding of MDP relies on the construct ϕ ∈ ‖Q‖⊕. Consider the MDP in Figure ??. At the
state s0 there are two choices of distribution. If we limit the definition of the p-automata to [?] then we
have only disjunction (or conjunction) to define the non-determinism at the state s0 and we cannot accept
the MC in Figure ??. We also store the subset of states T that were induced by the same q ∈ Iϕ . Refer to
the Figure ??. We need to remember that states t1 and t ′1, were induced by the same distribution. We end
this section by mentioning that any PCTL formula can be embedded as a p-automaton. That is, given
any PCTL formula, we can construct a p-automaton such that the set models of the formula is exactly
the language of the automaton [?].

6 Conclusion

We have presented an extension of the p-automata [?], and used it to represent the set of MCs which are
bisimilar to the MCs induced by the schedulers of an MDP. We have seen that the languages of the p-
automata are closed under bi-simulation (union and intersection, trivially). We have addressed the issue
of non-determinism of the probability distribution, observed in the concluding remark of [?], and shown
that the p-automata are powerful enough to represent various probabilistic systems and logics. Even
though the acceptance is still EXPTIME, the number configuration has become also exponential in the
size of the Markov chain. Unfortunately, the simulation relation gives only a sound characterize language
inclusion. It would be interesting to investigate well behaving fragments for which the simulation relation
exactly characterizes language inclusion.

Acknowledgment. Author thanks Prof. Nils Pitermann for his fruitful directions.
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This paper studies structural and algorithmic aspects concerning optimal positional strategies in Mean
Payoff Games. In particular, a pseudo-polynomial O(|V |2|E|W ) time algorithm for Optimal Strategy
Synthesis in MPGs is provided. This sharpens by a factor log(|V |W ) the best previously known
pseudo-polynomial upper bound due to Brim, et al. (2011). The improvement hinges on a suitable
description of optimal positional strategies in terms of reweighted games and small energy-progress
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1 Introduction and Preliminaries

A Mean-Payoff Game (MPG) is a two-player infinite game played on an arena Γ = 〈V,E,w,(V0,V1)〉,
where GΓ = 〈V,E,w〉 is a finite weighted directed graph whose vertices are partitioned in two classes,
V0 and V1, according to the player to which they belong [5, 9]. It is also assumed that GΓ has no sink,
i.e., that for every v ∈ V there exists v′ ∈ V such that (v,v′) ∈ E. Moreover, our weights are assumed
to be integers, i.e., w : E → Z. At the beginning of the game a pebble is placed on some vertex of the
arena Γ. Then, the two players named Player 0 and Player 1 move the pebble ad infinitum along the
arcs. In more detail, assuming the pebble is currently on Player 0’s vertex v, then she chooses an arc
(v,v′) going out of v and the pebble goes to the destination vertex v′. Similarly, assuming the pebble
is currently on Player 1’s vertex, then it is his turn to choose an outgoing arc. In order to play well,
Player 0 wants to maximize the limit inferior of the long-run average weight, that is to maximize the
liminfn→∞

1
n ∑n−1

i=0 w(vi,vi+1), whereas Player 1 wants to minimize the limsupn→∞
1
n ∑n−1

i=0 w(vi,vi+1).
Ehrenfeucht and Mycielski proved in [5] that each vertex v admits a value, denoted valΓ(v), which

each player can secure by means of a positional (or memoryless) strategy, i.e., one depending only on the
current vertex position and not on the previous choices. Formally, for any i∈ {0,1}, a strategy of Player i
is any function σi : V ∗×Vi → V such that for every finite path p′v in GΓ, where p′ ∈ V ∗ and v ∈ Vi, it
holds (v,σi(p′,v))∈ E. A strategy σi of Player i is positional (or memoryless) if σi(p,vn) = σi(p′,v′m) for
every finite paths pvn = v0 . . .vn−1vn and p′v′m = v′0 . . .v

′
m−1v′m in GΓ such that vn = v′m ∈Vi. The set of all

the positional strategies of Player i is denoted by ΣM
i . Solving an MPG consists in computing the optimal

∗This work was supported by the Department of Computer Science, University of Verona, Italy under PhD grant “Computa-
tional Mathematics and Biology” on a co-tutelle agreement with the Université Paris-Est in Marne-la-Vallée, Paris, France.
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values of all vertices (Value Problem) and, for each player, a positional strategy that secures such values
to that player (Optimal Strategy Synthesis). The corresponding decision problem lies in NP∩ coNP [9],
and it was later shown by Jurdziński [7] to be recognizable with unambiguous polynomial time non-
deterministic Turing machines, thus falling within the UP∩ coUP complexity class. The problem of
devising efficient algorithms for Optimal Strategy Synthesis in MPGs has been studied extensively in
the literature. The first milestone was the algorithm of Zwick and Paterson [9], which was the first
deterministic procedure for computing values, and optimal positional strategies securing them, within a
pseudo-polynomial time. In particular, Zwick and Paterson established an O(|V |3|E|W ) bound for the
time complexity of the Value Problem, as well as an O(|V |4|E|W log(|E|/|V |)) bound for that of Optimal
Strategy Synthesis [9]. Here and in the rest of this paper, W := maxe∈E |we|. Recently, several research
efforts have been spent in studying quantitative extensions of infinite games on graphs for modeling
quantitative aspects of reactive systems [2–4]. In that context quantities may represent, for example, the
power usage of an embedded component or the buffer size of a networking element [3]. These studies
unveiled interesting connections with MPGs and they recently led to the design of faster algorithms
for the strategy synthesis. For instance, Brim, et al. [3] devised a faster deterministic algorithm for
solving both Optimal Strategy Synthesis and the Value Problem in MPGs within a pseudo-polynomial
O(|V |2|E|W log(|V |W )) time and polynomial space. To the best of our knowledge, this is the tightest
pseudo-polynomial upper bound on the time complexity of Optimal Strategy Synthesis in MPGs which
is currently known. Table 1 offers a summary of results.

Table 1: Time Complexity of the main Algorithms for solving Optimal Strategy Synthesis in MPGs.

Algorithm Optimal Strategy Synthesis Value Problem

This paper O(|V |2|E|W ) O(|V |2|E|W )

[3] O(|V |2|E|W log(|V |W )) O(|V |2|E|W log(|V |W ))

[9] Θ(|V |4|E|W log |E||V |) Θ(|V |3|E|W )

In particular, the algorithm from [3] is based on a reduction to the so-called Energy Games (EGs),
whose decision problem was shown in [2, 4] to be log-space equivalent to that of MPGs. Recall that the
decision problem for MPGs asks, given any vertex v ∈ V , to decide whether or not valΓ(v) ≥ 0. The
corresponding winning regions are denoted W0 = {v ∈V | valΓ(v)≥ 0} and W1 =V \W0. On the other
side, in EGs, given an initial credit c ∈ N and a vertex v ∈ V , Player 0 wins the game starting from v if
she can maintain the sum of the encountered weights always non-negative, i.e., if c+∑ j

i=0 w(vi,vi+1)≥ 0
for all j ≥ 0; otherwise, the winner is Player 1. The decision problem for EGs asks whether there exists
an initial credit c∗ for which Player 0 wins from a given starting position vertex v. The corresponding
winning regions are also denoted W0 and W1. In more detail, Bouyer, et al. [2] and Brim, et al. [3] related
the decision problems of MPGs and EGs by means of reweighted EGs. Here, for any weight function w′ :
E→Z, the reweighting of Γ= 〈V,E,w,(V0,V1)〉with respect to w′ is defined as Γw′ := 〈V,E,w′,(V0,V1)〉.
Proposition 1 ([2, 3]). Let Γ = 〈V,E,w,(V0,V1)〉 be an arena. For all threshold ν ∈ Z, for all vertices
v ∈ V , Player 0 has a strategy in the MPG Γ that secures value at least ν from v if and only if for some
initial credit Player 0 has a winning strategy from v in the reweighted EG Γw−ν = 〈V,E,w−ν ,(V0,V1)〉.

Indeed, it is known that memoryless strategies are sufficient for EGs and that Player 0 essentially
needs to ensure that all cycles that can be formed by Player 1 have a non-negative total weight. In [3], EGs
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were solved efficiently using the notion of small energy-progress measure (SEPM). These are bounded,
non-negative, integer-valued functions that impose local conditions to ensure global properties on the
arena, in particular, witnessing that Player 0 has a way to enforce conservativity (i.e., non-negativity of
cycles) in the resulting game graph. Recovering standard notation, see e.g. [3], let us denote CΓ = {n ∈
N | n ≤ |V |W}∪{>} and let � be the total order on CΓ defined as: x � y if and only if either y = >
or x,y ∈ N and x ≤ y. Moreover, let us consider the operator 	 : CΓ×Z→ CΓ defined as follows: if
a 6=> and a−b≤ |V |W , then a	b = max(0,a−b); otherwise, a	b =>. Given an EG Γ on vertex set
V =V0∪V1, a function f : V → CΓ is a SEPM for Γ if and only if the following two conditions are met:

1. if v ∈V0, then f (v)� f (v′)	w(v,v′) for some (v,v′) ∈ E;

2. if v ∈V1, then f (v)� f (v′)	w(v,v′) for all (v,v′) ∈ E.
The values of a SEPM, i.e., the elements of the image set f (V ), are named energy-levels of f . It is worth
to denote Vf := {v ∈ V | f (v) 6= >}, i.e., the set of vertices having finite energy in f . Given a SEPM f
and any vertex v ∈V0, an arc (v,v′) ∈ E is said to be compatible with f whenever f (v)� f (v′)	w(v,v′);
moreover, a positional strategy σ0 ∈ ΣM

0 of Player 0 is compatible with f whenever for all v ∈ V0, if
σ0(v) = v′ then (v,v′) ∈ E is an arc compatible with f . Concerning compatible positional strategies, a
key observations made in [3] is the following, which was used to reduce Optimal Strategy Synthesis in
MPGs to the computation of SEPMs in EGs.
Proposition 2 ([3]). Given an MPG Γ = 〈V,E,w,(V0,V1)〉 and a threshold ν ∈ Z, let f : V → CΓ be a
SEPM for the reweighted EG Γw−ν = 〈V,E,w−ν ,(V0,V1)〉. All strategies σ0 ∈ ΣM

0 of Player 0 that are
compatible with f in the EG Γw−ν secure to Player 0 a payoff at least ν from all v ∈Vf in the MPG Γ.

Given ν ∈ Z, Proposition 2 provides a sufficient condition for a positional strategy to ensure payoff
at least ν . Notice that such condition is expressed in terms of SEPMs in reweighted EGs. In some sense,
Proposition 2 points out an interesting connection between positional strategies in MPGs and SEPMs
in reweighted EGs. Still, the counter-example given in Section 2 shows that the converse statement
of Proposition 2 is not true generally. In fact, given an MPG Γ, a threshold ν ∈ Z and a fixed SEPM
f : V → CΓ for the EG Γw−ν , there exist (in general) positional strategies of Player 0 that secure a payoff
at least ν from all v ∈Vf in the MPG Γ but that are not compatible with f . For this reason, Proposition 2
doesn’t provide yet a complete description of the whole space of all optimal positional strategies. Such a
description, if it existed, could be viewed as the “energy structure” of the space of all optimal positional
strategies in MPGs. We thought that the search for a description of the space of all optimal positional
strategies in MPGs in terms of SEPMs in reweighted EGs was an interesting subject of inquiry.

In addition, as shown in [3], if f and g are SEPMs for the EG Γ, then so is the function h defined
as follows: h(v) = min{ f (v),g(v)} for every v ∈V . This fact allows one to consider the least SEPM of
Γ, namely, the (unique) SEPM f ∗ : V → CΓ such that, for any other SEPM g : V → CΓ of Γ, it holds
that f ∗(v) � g(v) for every v ∈ V . The algorithm devised by Brim, et al. [3] for solving EGs is known
as Value-Iteration [3]. On input any EG Γ, the Value-Iteration aims to compute the least SEPM f ∗ of Γ.
This simple procedure basically relies on a lifting operator δ . Let us denote in and out neighbourhoods
by pre(·) and post(·), respectively. Given v ∈V , the lifting operator δ (·,v) : [V → CΓ]→ [V → CΓ] is
defined as δ ( f ,v) := g, where:

g(u) :=





f (u) if u 6= v
min{ f (v′)	w(v,v′) | v′ ∈ post(v)} if u = v ∈V0
max{ f (v′)	w(v,v′) | v′ ∈ post(v)} if u = v ∈V1

Given any function f : V → CΓ, we say that f is inconsistent in v whenever: 1. v ∈ V0 and for
all v′ ∈ post(v) it holds f (v) ≺ f (v′)	w(v,v′) or 2. v ∈ V1 and there exists v′ ∈ post(v) such that
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f (v)≺ f (v′)	w(v,v′). To start with, the Value-Iteration initializes f to the constant zero function: i.e.,
f (v)← 0 for every v ∈ V . Furthermore, the procedure maintains a list L of vertices that witness an
inconsistency of f . Initially, v ∈V0∩L if and only if all arcs going out of v are negative, while v ∈V1∩L
if and only if v is the source of at least one negative arc. Checking all these conditions takes time O(|E|).

As long as the list L is nonempty, the algorithm picks a vertex v from L and performs the following:

1. Apply the lifting operator δ ( f ,v) to f in order to resolve the inconsistency of f in v;

2. Insert into L all vertices u ∈ pre(v)\L witnessing a new inconsistency due to the increase of f (v).
Here, the same vertex can’t occur twice in L, i.e., the list never contains duplicate vertices.

The algorithm terminates when L is empty. This concludes the description of the Value-Iteration.
As shown in [3], the update of L following an application of the lifting operator δ ( f ,v) requires

O(|pre(v)|) time. Moreover, a single application of the lifting operator δ (·,v) takes O(|post(v)|) time at
most. This implies that the algorithm halts within O(|V | |E|W ) time (the reader is referred to [3] in order
to grasp all the details). The procedure lends itself to the following basic generalization, which turns out
to best suit our technical needs later on. Let f ∗ be the least SEPM of the EG Γ. Recall that, as a first step,
the Value-Iteration initializes f to be the constant zero function. Here, we remark that it is not necessary
to do that really. Indeed, it is sufficient to initialize f to any function f0 which bounds f ∗ from below,
that is to say, to initialize f ∗ to any f0 : V →CΓ such that f0(v)� f ∗(v) for every v∈V . Soon after, L can
be managed in the natural way, i.e., insert v into L if and only if f0 is inconsistent in v. This initialization
still requires O(|E|) time and it doesn’t affect the correctness nor the time complexity of the procedure.

So, in the rest of this paper, we assume to dispose of a procedure Value-Iteration(), which takes
as input an EG Γ = 〈V,W,w,(V0,V1)〉 and an initial function f0 that bounds from below the least SEPM
f ∗ of the EG Γ (i.e., such that f0(v) � f ∗(v) for every v ∈ V ). Then, Value-Iteration() outputs the
least SEPM f ∗ of the EG Γ within O(|V | |E|W ) time and, for this, it employs O(|V |) working space [3].

Contributions.
• The first contribution of this paper is a deterministic O(|V |2|E|W ) time algorithm for solving Opti-

mal Strategy Synthesis and the Value Problem in MPGs. The best previously known deterministic
procedure has time complexity O(|V |2|E|W log(|V |W )) and it is due to Brim, et al. [3]. In this
way, we improve the best previously known deterministic pseudo-polynomial time upper bound
by a factor log(|V |W ). The result is summarized in the following theorem.

Theorem 1. There exists an algorithm for solving Optimal Strategy Synthesis and the Value Prob-
lem within O(|V |2|E|W ) time and O(|V |) space on any input MPG Γ = 〈V,E,w,(V0,V1)〉.
In order to prove Theorem 1, we point out a characterization of the values and a suitable descrip-
tion of optimal strategies in terms of SEPMs in reweighted EGs. In particular, we show that the
optimal value valΓ(v) of any vertex v is actually the unique rational number for which v transits
from being winning for Player 0 to being winning for Player 1, with respect to certain reweightings
of the original arena. This will be clarified in Theorem 2 of Section 3. Moreover, concerning opti-
mal positional strategies, we show that an optimal positional strategy for any vertex v of Player 0
is given by any arc (v,v′) which is compatible with certain SEPMs of the same reweighted arenas
mentioned above. This will be clarified in Theorem 3 of Section 3. These observations are simple
and their proofs rely on elementary arguments. We believe that these findings contribute to clari-
fying the relation between optimal strategies, values, and SEPMs in reweighted EGs, with respect
to some previous literature [2–4]. Indeed, they allow us to prove Theorem 1.

• The second contribution is an energy decomposition theorem, i.e., Theorem 4 in Section 5, which
describes the whole space of all the optimal positional strategies of MPGs in terms of so-called



C. Comin, R. Rizzi 5

extremal SEPMs in reweighted EGs. This describes the “energy structure” of the whole space
of all optimal positional strategies in MPGs, as it allows for a disjoint-set decomposition (of that
space) which is expressed in terms of certain SEPMs (that we named extremal SEPMs).

2 An Example

An example MPG Γex is depicted in Fig. 1. It is not difficult to see that valΓex(v) = ν = 1 for every v∈V .
Indeed, Γex contains only two cycles, i.e., the left one CL = [A,B,C,D] and the right cycle CR = [F,G],
and notice they satisfy w(CL)

|CL| = w(CR)
|CR| = 1.

EC

B

A

D

F G
0

0

0

0
+3 +3

−1−1

−1

+3

Figure 1: An example MPG Γex = 〈V,E,w,(V0,V1)〉. Here, V = {A,B,C,D,E,F,G} and E =
{(A,B,+3),(B,C,+3),(C,D,−1),(D,A,−1),(E,A,0),(E,C,0),(E,F,0),(E,G,0),
(F,G,−1),(G,F,+3)}. Also, V0 = {B,D,E,G} is colored in red, while V1 = {A,C,F} is filled in blue.

It is not difficult to compute the least SEPM f ∗ for the reweighted EG Γw−ν
ex = Γw−1

ex , this can easily
be done with the Value-Iteration algorithm of [3]. Taking the reweighting w ; w− 1 into account, it
turns out that f ∗(A) = f ∗(G) = 0, f ∗(E) = 1, f ∗(B) = f ∗(D) = f ∗(F) = 2, and f ∗(C) = 4.

We now argue that Γex shows that neither the converse statement of Proposition 2 nor that of The-
orem 3 hold generally. For this, let us focus on the least SEPM f ∗ of the reweighted EG Γw−1

ex . To
begin, notice that the only vertex of Γex at which Player 0 really has a choice is E. It is clear that every
arc going out of E is optimal in the MPG Γex. Still, observe that (E,C) and (E,F) are not compatible
with f ∗ in Γw−1

ex , only (E,A) and (E,G) are. For instance, the positional strategy σ0 ∈ ΣM
0 , defined as

σ0(E) := F , σ0(B) :=C, σ0(D) := A, σ0(G) := F , ensures a payoff valΓex(v) = 1 for every v ∈V , but it
is not compatible with the least SEPM f ∗ of Γw−1

ex (because f ∗(E) = 1< 3= 2	−1= f ∗(F)	w(E,F)).

3 Values and Optimal Positional Strategies from Reweightings

Optimal Values and Farey Sequences. Let Γ = 〈V,E,w,(V0,V1)〉 be an MPG. To begin with, it is well
known (see e.g. [3]) that each optimal value valΓ(v), for every v ∈V , is contained within the following
set of rational numbers:

SΓ =
{N

D

∣∣ D ∈ [1, |V |]∩Z, N ∈ [−DW,DW ]∩Z
}
.

Let us introduce some notation in order to handle SΓ in a way that is suitable for our purposes. Firstly,
we shall write every ν ∈ SΓ as ν = i+F , where i = i(ν) = bνc and F = F(ν) = ν − i. Notice that
i ∈ [−W,W ]∩Z and that F is a non-negative rational number having denominator at most |V |.

As a consequence, it is natural to consider the Farey sequence Fn of order n = |V |. This is the
increasing sequence of all irreducible fractions from the rational interval [0,1]∩Q with denominators
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less than or equal to n. In the rest of the paper Fn denotes the following sorted set:

Fn =
{N

D

∣∣∣ 0≤ N ≤ D≤ n,gcd(N,D) = 1
}
.

Farey sequences have numerous and interesting properties, in particular, many algorithms for gener-
ating the entire sequence Fn in time O(n2) are known in the literature [6]. Moreover, efficient algorithms
(i.e., with a running time sublinear in n) are known for computing the size and the j-th term of the se-
quence, on the fly without generating it entirely [8]. Notice that the above mentioned quadratic running
time is optimal, in fact Fn has s(n) = 3n2

π2 +O(n lnn) = Θ(n2) terms, see e.g. [6].
Throughout the paper, we shall assume that F0, . . . ,Fs−1 is an ascending ordering of Fn, so that

Fn = {Fj}s−1
j=0 and Fj < Fj+1 for every j. Also notice that F0 = 0 and Fs−1 = 1.

For example, F5 =
{

0, 1
5 ,

1
4 ,

1
3 ,

2
5 ,

1
2 ,

3
5 ,

2
3 ,

3
4 ,

4
5 ,1
}

.
At this point, we remark that SΓ can thus be rewritten in the following manner:

SΓ = [−W,W )∩Z+F|V | =
{

i+Fj
∣∣ i ∈ [−W,W )∩Z, j ∈ [0,s−1]∩Z

}
.

The above represention of SΓ, in terms of Farey sequences, turns out to be convenient in a while. In-
deed, we shall consider reweighted games of the form Γw−i−Fj , for some (i+Fj) ∈ SΓ. Notice that the
corresponding weight function w′ : E →Q : e 7→ w(e)− i−Fj is rational valued, while we required that
the weights of the arenas are always integers. To overcome this issue, it is sufficient (for our purposes)
to re-define Γw−i−Fj scaling all of its weights by a factor equal to the denominator of Fj, namely, to
re-define: Γw−i−Fj := ΓD(w−i)−N , where N,D ∈ N are such that Fj = N/D and gcd(N,D) = 1. Observe
that this scaling operation doesn’t change the winning regions of the corresponding games, and it has the
significant advantage of allowing for a discussion strictly based on arenas with integer weights only.

Optimal Values from Reweightings. In the following theorem we observe that the value valΓ(v) of
any vertex v ∈ V is actually the unique rational number for which v transits from being winning for
Player 0 to being winning for Player 1, with respect to certain reweightings of the original arena.
Theorem 2. Given an MPG Γ = 〈V,E,w,(V0,V1)〉, let us consider the following reweightings:

Γi, j := Γw−i−Fj , for any i ∈ [−W,W ]∩Z and j ∈ [1,s−1]∩Z,

where s = |F|V || and Fj is the j-th term of the Farey sequence F|V |. Then, the following holds:

valΓ(v) = i+Fj−1 if and only if v ∈W0(Γi, j−1)∩W1(Γi, j).

3.1 Optimal Positional Strategies from Reweightings

In this section we point out a sufficient condition, for a positional strategy of Player 0 to ensure an optimal
payoff from any starting vertex position, which is expressed in terms of SEPM in reweighted EGs.
Theorem 3. Let Γ = 〈V,E,w,(V0,V1)〉 be an MPG. For each vertex v ∈V0, consider the reweighted EG
Γv := Γw−valΓ(v). Let fv : V → CΓv be any SEPM of the EG Γv such that Vf = W0(Γv) = V , and let v′fv

denote any vertex out of v ∈V such that (v,v′fv
) ∈ E is compatible with fv in the EG Γv.

Now, consider the positional strategy σ∗0 ∈ ΣM
0 defined as follows:

σ∗0 (v) := v′fv
for every v ∈V0.

Then, σ∗0 is an optimal positional strategy for Player 0 in the MPG Γ.
Remark 1. Theorem 3 holds, in particular, when f is the least SEPM f ∗ of the EG Γv. In fact, it is not
difficult to show that Vf ∗ = W0(Γv) =V always holds for the least SEPM f ∗ of Γv.
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4 An O(|V |2|E|W ) time Algorithm for Optimal Strategy Synthesis

The present section describes an algorithm for solving Optimal Strategy Synthesis and the Value Problem
of MPGs within time O(|V |2|E|W ) on any input 〈V,E,w,(V0,V1)〉. As mentioned, W = maxe∈E |we|.

In order to describe our algorithm in a suitable way, let us first mention some notation.
Given an MPG Γ = 〈V,E,w,(V0,V1)〉, we will consider once again the following reweightings:

Γi, j := Γw−i−Fj , for any i ∈ [−W,W ]∩Z and j ∈ [0,s−1]∩Z,

where s = |F|V || and Fj is the j-th term of the Farey sequence F|V |.
Assuming Fj = N j/D j for some N j,D j ∈N, we thus consider the following weight functions, for any

i ∈ [−W,W ]∩Z and j ∈ [0,s−1]∩Z:

wi, j =w− i−Fj = w− i− N j

D j
;

w′i, j =D j wi, j = (w− i)D j−N j.

In fact, recall that Γi, j is thus Γi, j := Γw′i, j , which is an arena with integer weights. We also remark
that, since F0 < .. . < Fs−1 is an ordered rational sequence, then the corresponding weight functions wi, j

can be ordered in a natural way, i.e., w−W,1 > w−W,2 > .. . > wW−1,s−1 > .. . > wW,s−1. In the rest of this
section, we denote by f ∗w′i, j : V → CΓi, j the least SEPM of the EG Γi, j. Moreover, we say that the function

f ∗i, j : V →Q, defined as f ∗i, j(v) := 1
D j

f ∗w′i, j(v) for every v ∈V , is the rational scaling of f ∗w′i, j .

4.1 Description of the Algorithm

We now describe a procedure named solve MPG(), whose pseudocode is given below in Algorithm 1. It
takes as input an arena Γ = 〈V,E,w,(V0,V1)〉, and it aims to return a tuple 〈W0,W1,ν ,σ∗0 〉 such that: W0
and W1 are the winning regions of Player 0 and Player 1 in the MPG Γ (respectively), ν : V → SΓ is a map
sending each starting position v ∈V to its optimal value, i.e., ν(v) = valΓ(v), and finally, σ∗0 : V0→V is
an optimal positional strategy for Player 0 in Γ.

The intuition underlying Algorithm 1 is that of considering the following sequence of weights:

w−W,1 > w−W,2 > .. . > w−W,s−1 > w−W+1,1 > w−W+1,2 > .. . > wW−1,s−1 > .. . > wW,s−1

where the key idea is that to rely on Theorem 2 at each one of these steps, thus testing whether a transition
of winning regions has occurred. Stated otherwise, the idea is to test, for each vertex v ∈V , whether v is
winning for Player 1 with respect to the current weight wi, j, and to recall whether or not v was winning
for Player 0 with respect to the immediately preceding weight wprev(i, j) in the sequence above.

If such transition actually occurs, say for some v̂ ∈W0(Γprev(i, j))∩W1(Γi, j), then the procedure can
easily compute the value valΓ(v̂) by relying on Theorem 2, and it can also compute an optimal positional
strategy, provided that v̂ ∈V0, by relying on Theorem 3 and Remark 1 in this case.

Each one of these phases, in which we look at transitions of winning regions, is dubbed Scan Phase.
An in-depth description of the algorithm and of its pseudocode now follows.

• Initialization Phase. To start with, the algorithm performs an initialization phase. At line 1,
Algorithm 1 initializes the output variables W0 and W1 to be empty sets. Notice that, within the
pseudocode, the variables W0 and W1 represent the winning regions of Player 0 and Player 1,
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respectively; also recall that the variable ν represents the optimal values of the input MPG Γ, and
the variable σ∗0 represents an optimal positional strategy for Player 0 in the input MPG Γ. Secondly,
at line 2, an array variable f : V → CΓ is initialized to f (v) = 0 for every v ∈ V ; throughtout the
computation, the variable f represents a SEPM. Next, at line 3, the greatest absolute weight value
W is assigned as W = maxe∈E |we|, an auxiliary weight function w′ is initialized as w′ = w+W ,
and a “denominator” variable is initialized as D = 1. Concluding the initialization phase, at line 4
the size (i.e., the total number of terms) of F|V | is computed and assigned to the variable s. This
size can be computed very efficiently with the algorithm devised by Pawlewicz and Pătraşcu in [8].

Algorithm 1: Solving Optimal Strategy Synthesis and the Value Problem in MPGs.
Procedure solve MPG(Γ)

input : an MPG Γ = 〈V,E,w,(V0,V1)〉.
output: a tuple (W0,W1,ν ,σ∗0 ) such that: W0 and W1 are the winning regions of Player 0 and Player 1

(respectively) in the MPG Γ; ν : V → SΓ is a map sending each starting position v ∈V to its
corresponding optimal value, i.e., ν(v) = valΓ(v); σ∗0 : V0→V is an optimal positional
strategy for Player 0 in the MPG Γ.

// Init Phase
1 W0← /0; W1← /0;
2 f (v)← 0 ∀ v ∈V ;
3 W ←maxe∈E |we|; w′← w+W ; D← 1;
4 s← compute the size |F|V || of the Farey sequence F|V |; // e.g. with the algorithm given in [8]

// Scan Phases
5 for i =−W to W do
6 F ← 0;
7 for j = 1 to s−1 do
8 prev f ← f ;
9 prev w← 1

D w′;
10 prev F ← F ;
11 F ← generate the j-th term of the Farey sequence F|V |; // e.g. with the algorithm of [8]

12 N← numerator of F ;
13 D← denominator of F ;
14 w′← (w− i)D−N;
15 f ← 1

D Value-Iteration(Γw′ ,dDprev f e);
16 for v ∈V do
17 if prev f (v) 6=> and f (v) => then
18 ν(v)← i+prev F ; // set optimal value ν
19 if ν(v)≥ 0 then
20 W0←W0∪{v}; // v is winning for Player 0

21 else
22 W1←W1∪{v}; // v is winning for Player 1

23 if v ∈V0 then
24 for u ∈ post(v) do
25 if prev f (v)� prev f (u)	prev w(v,u) then
26 σ∗0 (v)← u; break;

27 return (W0,W1,ν ,σ∗0 )

• Scan Phases. After initialization, the procedure performs multiple scan phases. Each one of those
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is indexed by a pair of integers (i, j), where i ∈ [−W,W ]∩Z (at line 5) and j ∈ [1,s− 1]∩Z (at
line 7). Thus, the index i goes from −W to W , and for each i, the index j goes from 1 to s−1.

Hence, at each step, we say that the algorithm goes through the (i, j)-th scan phase. For each
scan phase, we would also need to consider the previous scan phase, so that the previous index
prev(i, j) is defined as follows: the predecessor of the first index is prev(−W,1) = (−W,0); if
j > 1, then prev(i, j) = (i, j−1); finally, if j = 1 and i >−W , then prev(i, j) = (i−1,s−1).

At the (i, j)-th scan phase, the algorithm considers the rational number zi, j ∈ SΓ defined as zi, j :=
i + F [ j], where F [ j] denotes the j-th term of the Farey sequence F|V |. For each j, F [ j] can
be computed very efficiently with the algorithm of Pawlewicz and Pătraşcu [8]. Notice that, since
F [0]< .. . <F [s−1] is a monotonically increasing sequence, in this way the values zi, j are scanned
in ascending order as well. At this point, the procedure aims to compute the rational scaling
f := f ∗i, j =

1
D j

f ∗w′i, j of the least SEPM f ∗w′i, j . This computation is really at the heart of the algorithm
and it goes from line 8 to line 15. To start with, at line 8 and line 9, the previous rational scaling
f ∗
prev(i, j) and the previous weight function wprev(i, j) (i.e., those considered during the previous scan

phase) are saved into the auxiliary variables prev f and prev w.

Remark. Since the values zi, j are scanned in an ascending order of magnitude, then prev f =
f ∗
prev(i, j) bounds from below f ∗i, j. That is, it holds prev f (v) = f ∗

prev(i, j)(v)� f (v) for every v∈V .
The underlying intuition, at this point, is that of computing the energy-levels of f = f ∗i, j firstly by
initializing them to the energy-levels of the previous scan phase, i.e., prev f = f ∗

prev(i, j), and then
to update them monotonically upwards by executing the Value-Iteration algorithm for EGs.

Further details of this pivotal step now follow. Firstly, since the Value-Iteration has been designed
to work with integer numerical weights only [3], then the weights wi, j = w− zi, j have to be scaled
from Q to Z: this is performed in a standard way, from line 12 to line 15, by considering the
numerator N and the denominator D of F [ j], and then by setting w′e = (we− i)D−N for every
e ∈ E. Moreover, the initial energy-levels are also scaled up from Q to Z by considering the
values: dDprev f (v)e, for every v ∈V (line 15). At this point the least SEPM of Γw′ is computed,
at line 15, by invoking the procedure Value-Iteration(Γw′ ,dDprev f e), that is, by executing
on input Γw′ the Value-Iteration algoritm with initial energy-levels: dDprev f (v)e for every v∈V .
Soon after that, the energy-levels have to be scaled back from Z to Q; so that, in summary, the
energy-levels becomes f = f ∗i, j =

1
D Value-Iteration(Γw′ ,dDprev f e) at line 15.

Once f = f ∗i, j is finally determined, then for each v ∈V the condition v ∈W0(Γprev(i, j))∩W1(Γi, j)
is checked at line 17: it is not difficult to show that, in order to do that, it is sufficient to test whether
both prev f(v) 6=> and f (v) => hold on v.

If v ∈W0(Γprev(i, j))∩W1(Γi, j) holds, then the algorithm relies on Theorem 2 in order to assign the
optimal value as follows: ν(v) = valΓ(v) = zprev(i, j) (line 18). If ν(v)≥ 0, then v is added to the
winning region W0 at line 20. Otherwise, ν(v)< 0 and v is added to W1 at line 22.

To conclude, from line 23 to line 27, the algorithm proceeds as follows: if v ∈V0, then it computes
an optimal positional strategy σ∗0 (v) for Player 0 at v in Γ: this is done by testing for each u ∈
post(v) whether (v,u) is an arc compatible with prev f in Γprev(i, j); namely, whether prev f (v)�
prev f (u)	 prev w(v,u) for u ∈ post(v). If (v,u) is found to be compatible with prev f at that
point, then σ∗0 (v)← u gets assigned and then (v,u) becomes part of the returned optimal positional
strategy. Indeed, the correctness of such an assignment relies on Theorem 3 and Remark 1.

This concludes the description of the scan phases and also that of Algorithm 1.
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4.2 Correctness and Complexity

The following proposition asserts that Algorithm 1 is correct and it points out time and space complexity.

Proposition 3. Assume that Algorithm 1 is invoked on some input MPG Γ = 〈V,E,w,(V0,V1)〉, and that
it returns (W0,W1,ν ,σ∗0 ) as output. Then, W0 and W1 are the winning regions of Player 0 and Player 1 in
the MPG Γ (respectively), the map ν : V → SΓ satisfies ν(v) = valΓ(v) for every v ∈V , and σ∗0 : V0→V
is an optimal positional strategy for Player 0 in the MPG Γ.

Moreover, Algorithm 1 always halts within O(|V |2|E|W ) time and it employs O(|V |) working space.

5 Energy Structure of the Space of Optimal Positional Strategies

This section presents a complete decomposition of the space of all optimal positional strategies in MPGs,
which is expressed in terms of so-called extremal SEPMs in reweighted EGs. In a sense, the result
complements both Proposition 2 and Theorem 3. To begin with, let Γ = 〈V,E,w,(V0,V1)〉 be an MPG,
given a positional strategy σ0 ∈ ΣM

0 of Player 0, we denote by valΓ
σ0
(v) the payoff value ensured by σ0

when the game starts from v ∈V . We aim to study the space of all optimal positional strategies of Γ, i.e.,

opt(ΣM
0 ) =

{
σ0 ∈ ΣM

0 | ∀ v ∈V valΓ
σ0
(v) = valΓ(v)

}
,

for this, no loss of generality occurs 1 if we assume, for some ν ∈Q, that valΓ(v) = ν for every v ∈ Γ.
In order to proceed, we need to introduce some further definitions.
Given any Γ = 〈V,E,w,(V0,V1)〉 and σ0 ∈ ΣM

0 , let GΓ
σ0

:= (V,E ′,w′) be the graph obtained from Γ
by deleting all those arcs that are not consistent with σ0, namely, let E ′ := {(u,v) ∈ E | u ∈ V0 and v =
σ0(u)}∪{(u,v) ∈ E | u ∈V1} where all arcs e ∈ E ′ are weighted as in Γ, i.e., w′ : E ′→ Z : e 7→ w(e).

Furthermore, let π∗GΓ
σ0

be the least feasible potential 2 of GΓ
σ0

.

Definition 1 (Energy-Tight Positional Strategies). Let Γ = 〈V,E,w,(V0,V1)〉 and let f : V → CΓ be a
SEPM for the EG Γ. Define ∆Γ, f

0 ⊆ ΣM
0 to be the family of all and only those positional strategies of

Player 0 in Γ such that π∗GΓ
σ0

coincides with f pointwisely, i.e.,

∆Γ, f
0 :=

{
σ0 ∈ ΣM

0

∣∣∣ ∀ v ∈V π∗GΓ
σ0
(v) = f (v)

}
.

In what follows we introduce the notion of Energy Basis for the space opt(ΣM
0 ).

Definition 2 (Energy Basis). Let Γ = 〈V,E,w,(V0,V1)〉 be an MPG such that, for some ν ∈ Q, it holds
valΓ(v) = ν for every v ∈ V . Moreover, let B = { f1, . . . , fk} be a family of SEPMs for the reweighted
EG Γw−ν . We say that B is an Energy Basis for the MPG Γ if the following disjoint-set decomposition
holds for the space of all optimal positional strategies:

opt(ΣM
0 ) =

⊔

f∈B
∆Γw−ν , f

0 .

1No generality is lost here thanks to the “Ergodic Partition” (EP) property of MPGs, (see e.g. Theorem 7.4 in [1]). The
EP property allows one to partition Γ into several domains {Γ|Ci

}i each one satisfying, for some rational νi ∈Q, the following
condition: valΓ|Ci (v) = νi for every vertex v ∈ Ci. Then, one can study the structure of the space opt(ΣM

0 ) within each Ci
independently with respect to the others C j for j 6= i.

2When G = (V,E,w) is a weighted directed graph, a feasible potential for G is any function π : V → CG such that π(u) �
π(v)	w(u,v) for every u ∈ V and every v ∈ post(u). The least feasible potential π∗ = π∗G is the (unique) feasible potential
such that, for any other feasible potential π , it holds π∗(v) � π(v) for every v ∈ V . Notice that, given G = (V,E,w) in input,
the Bellman-Ford algorithm can be used to produce π∗G in polynomial O(|V | |E|) time.
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The following theorem asserts the actual decomposition of opt(ΣM
0 ) in terms of SEPMs in EGs.

Theorem 4. Let Γ = 〈V,E,w,(V0,V1)〉 be an MPG such that, for some ν ∈ Q, it holds valΓ(v) = ν for
every v ∈V . Then, the MPG Γ admits one and only one Energy Basis, which is denoted by B∗ = B∗Γ.

Example. Consider the MPG Γex, as defined in Fig. 1. Then, B∗Γex
= { f ∗, f1, f2}, where f ∗ is the

least SEPM of the reweighted EG Γw−1
ex , and where the following holds: f1(A) = f2(A) = f ∗(A) = 0;

f1(B) = f2(B) = f ∗(B) = 2; f1(C) = f2(C) = f ∗(C) = 4; f1(D) = f2(D) = f ∗(D) = 2; f1(F) = f2(F) =
f ∗(F) = 2; f1(G) = f2(G) = f ∗(G) = 0; finally, f ∗(E) = 1, f1(E) = 3, f2(E) = 5.

Each element f ∈B∗ is said to be an extremal SEPM, and the following properties hold on it.
Proposition 4. Let Γ = 〈V,E,w,(V0,V1)〉 be an MPG such that, for some ν ∈Q, it holds valΓ(v) = ν for
every v ∈V . Let B∗Γ be the Energy Basis of the MPG Γ. Let f : V → CΓ be a SEPM for the reweighted
EG Γw−ν . Then, the following three properties are equivalent:

1. f ∈B∗Γ;

2. Vf = W0(Γw−ν) =V and ∆Γw−ν , f
0 6= /0;

3. There exists σ0 ∈ opt(ΣM
0 ) such that π∗

GΓw−ν
σ0

(v) = f (v) for every v ∈V .

Conclusion. In this work, we presented an improved pseudo-polynomial O(|V |2|E|W ) bound on the
time complexity of Optimal Strategy Synthesis in MPGs. In addition, we provided an energy decom-
position theorem describing the whole space of all optimal positional strategies in terms of SEPMs in
reweighted EGs. We ask whether it is possible to improve over the O(|V |2 |E|W ) bound. Also, in future
works, it would be interesting to study further properties enjoyed by B∗ and by the extremal SEPMs.
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Boolean games are a succinct representation of strategic games with a logical flavour. While they
have proved to be a popular formalism in the multiagent community, a commonly cited shortcoming
is their inability to express richer utilities than success or failure. In addition to being a modelling
limitation, this parsimony of preference has made proving complexity bounds difficult. We address
the second of these issues by demonstrating how cardinal utilities can be simulated via expected
utility. This allows us to prove that RATIONALNASH and IRRATIONALNASH are NEXP-hard.

1 Introduction

Since their introduction in [20], Boolean games have acquired a wide following (e.g. [13, 7, 15, 16,
23, 22, 19]). Their success is perhaps due to the fact that they strike a happy middle ground between
succinctness of representation and intuitive play—one need neither write down the normal form of a
strategic game explicitly, nor scratch one’s head as to why a mysterious machine churns out the utilities
that it does. That said, a commonly cited concern with the framework is the extremely simple preferences
one is restricted to—a player in a Boolean game either satisfies his formula or he does not, he is either
perfectly happy or about to compose the next Gloomy Sunday. This has sparked various attempts to
introduce richer preferences into the Boolean games framework, be it through the medium of a richer
language ([24, 8, 25]), taxation schemes ([23, 34, 31]), or by adding weights to the players’ formulae
([2, 26]).

Computational issues about Boolean games were first considered in [13] and have since been studied
from a number of angles, including player dependency ([5, 29]), restrictions on player goals ([7, 15]), and
the complexity of coalition formation ([14, 6, 28]). Until the work of [21], however, the focus has been
exclusively on problems concerning pure equilibria; this was a serious restriction, as Boolean games are
a representation of strategic games, and mixed strategies are first class citizens of that framework. One
may wonder whether the two phenomena are related: were complexity results about mixed equilibria
difficult to prove because we did not have any numbers to play with? After all, in the case of explicitly
represented games the study of binary valued, or win-lose games required novel constructions to get
around the fact that players can only win or lose ([9, 10, 4]).

This is the focus of the current work. We introduce a useful family of gadget games in Section 4
which mimic cardinal preferences by giving the players a fixed probability of winning the gadget game.
This allows us to construct proofs that RATIONALNASH and IRRATIONALNASH, the problems of deter-
mining whether a game has a rational or an irrational equilibrium respectively (first studied by [3, 4]),
are NEXP-hard in Section 5.
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2 Strategic and Boolean games

Definition 2.1. A strategic game is a triple (N,{S1, . . . ,Sn },{u1, . . . ,un }). N is a finite set of players, of
cardinality n. Si is a finite set of Player i’s pure strategies. An n-tuple of pure strategies, i.e. a member of
S = S1×·· ·×Sn is called a pure-strategy profile. The function ui : S →R is Player i’s utility function.

A strategic game is called zero-sum just if there exists a c ∈ R such that for every sss ∈S :1

∑
i∈N

ui(sss) = c.

�
Example 2.2. Battle of the Sexes is played by two players coordinating on a venue for a date. The
choices are boxing and ballet. Player One prefers ballet and Player Two prefers boxing, but both players
prefer successful coordination to choosing different venues.

This game could be represented by giving the players the strategies S1 = {Box1,Bal1 } and S2 =
{Box2,Bal2 }. Their utility functions would be given by setting u1(Box1,Bal2) = u1(Bal1,Box2) =
0, u1(Bal1,Bal2) = 2 and u1(Box1,Box2) = 1 for Player One, u2(Box1,Bal2) = u2(Bal1,Box2) = 0,
u2(Bal1,Bal2) = 1 and u2(Box1,Box2) = 2 for Player Two.

Matching Pennies is played by having two players reveal a coin heads or tails up. Player Two wins
if the coins have the same orientation, Player One if the orientation differs.

In the given formalism this game is S1 = {H1,T1 }, S2 = {H2,T2 }, u1(H1,T2) = u1(T1,H2) = 1,
u1(H1,H2) = u1(T1,T2) = 0, u2(H1,H2) = u2(T1,T2) = 1 and u2(H1,T2) = u2(T1,H2) = 0.

This explicit representation of a strategic game, obtained by listing the graph of the utility functions,
is often referred to as the normal form and in the two-player case it can be conveniently visualised as a
table:

Box2 Bal2
Box1 (1,2) (0,0)
Bal1 (0,0) (2,1)

H2 T2
H1 (0,1) (1,0)
T1 (1,0) (0,1)

Battle of the Sexes Matching Pennies

�
The most common solution concept for a strategic game is the Nash equilibrium, which is a strategy

profile from which no player would opt to deviate unilaterally. In other words, the utility the player is
currently getting is at least as high as in any alternative profile that differs only by that player’s own
choice of strategy.

Definition 2.3. A pure-strategy profile sss is called a pure-strategy equilibrium just if for each i ∈ N, for
all s′ ∈ Si:

ui(sss)≥ ui(sss−i(s′)),

where sss−i(s′) denotes the profile obtained by replacing Player i’s strategy in sss with s′. �
Example 2.4. Battle of the Sexes has two pure-strategy equilibria: either both players go to ballet or to
boxing. One player will be getting a utility of 2 the other of 1, but even the player that is getting a utility
of 1 would rather stay at the venue than deviate and get a utility of 0.

Matching Pennies has no pure-strategy equilibria. No matter what profile we choose, one of the
players would rather switch the orientation of their coin.

1This is of course more correctly called a constant-sum game, but the two are functionally equivalent.
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In the tabular representation the pure-strategy equilibria are precisely those cells where Player One’s
utility is maximal in the column, and Player Two’s is maximal in the row, as the reader can verify
above. �

The fact that even games as simple as Matching Pennies can fail to have a pure-strategy equilibrium
motivates us to consider broader solution concepts. It helps to consider how one would actually play a
game like Matching Pennies (e.g. Rock-Paper-Scissors) were one to find oneself stuck at a horrendous
dinner party. Displaying a strong preference for either heads or tails would allow the opponent to take
advantage of this, and hence the optimal way to play is to randomise. This is the concept of a mixed
strategy.

Definition 2.5. Let P(Si) denote the space of probability distributions over Si. A mixed strategy for
Player i is a member of P(Si). The weight assigned to a pure strategy s by a mixed strategy σ , or
P(s | σ), is called the strategy weight of s.

An n-tuple of mixed strategies, σσσ ∈P(S ), is called a mixed-strategy profile. We extend Player i’s
utility function to the space of mixed-strategy profiles on the principle of expected utility. That is:

ui(σσσ) = ∑
sss∈S

ui(sss)P(sss | σσσ).

A mixed-strategy profile is called a mixed-strategy equilibrium just if for all s′ ∈ Si:

ui(σσσ)≥ ui(σσσ−i(s′)).

�
Clearly a pure equilibrium is just a specific type of mixed equilibrium, so when we say “equilibrium”

without qualifications we mean a mixed equilibrium.
The reader will also note that in the definition above we define a mixed-strategy equilibrium as a

profile that is robust to any deviation with a pure strategy, and do not consider deviations with mixed
strategies. There is no generality lost here—if we are considering a unilateral deviation by Player i we
can fix the strategy choice of other players, leaving Player i with a linear function to maximise. Such a
function will attain its maxima at the extreme points, which are precisely the pure strategies.

Example 2.6. Matching Pennies has a unique equilibrium where Player One randomises equally between
H1 and T1, and Player Two randomises equally between H2 and T2. The payoff for either player is 1/2.
This is also the payoff Player One would get by playing H1, as Player Two plays T2 with probability 1/2,
or for playing T1, as Player Two plays H2 with probability 1/2. Player One is indifferent between any
deviation, and, mutatis mutandis, so is Player Two.

Battle of the Sexes has an additional equilibrium where Player One plays Bal1 with probability 2/3

and Box1 with probability 1/3, whilst Player Two plays Bal2 with probability 1/3 and Box2 with probability
2/3. The utility of either player is 2/3—the utility Player One would get by playing Bal1 with probability
1 (1/3 chance of getting 2), or Box1 with probability 1 (2/3 chance of getting 1). �

Two foundational theorems of game theory are of interest to us here. The first, due to Nash, tells us
that mixed equilibria exist.

Theorem 2.7 ([27]). Every strategic game has an equilibrium in mixed strategies.

The second (albeit first chronologically), due to von Neumann, tells us that equilibria in two-player
zero-sum games have a special property.
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Theorem 2.8 ([32]). In every two-player zero-sum game there exists a v such that Player One gets a
utility of v in every equilibrium. This v is called the value of the game.

While the normal form has the advantage of lucidity, the representation size does not scale well;
the graph of Player i’s utility function is of order O(|S |n)—not only is this exponential in the number
of players, but the polynomial dependence on the number of strategies alone is untenable in all but the
most simple of games (consider checkers). As a result many concise representations of games have been
studied in the literature. In this work, we are interested in one in particular.

These are Boolean games, first defined as a two-player zero-sum affair by [20] and later redefined
as the multiplayer variable-sum entity we study today by [7]. A Boolean game operates by partitioning
a set of propositional variables among a set of players. A player may assign true or false values to the
variables under his control in the hope of satisfying his goal formula, a formula of propositional logic.
As his goal formula may depend on variables outside of his control he cannot achieve this unilaterally,
and has to reason strategically to choose the best possible truth assignment.
Definition 2.9 ([20, 7]). A Boolean game is a representation of a strategic game given by the triple
(N,{Φ1, . . . ,Φn },{γ1, . . . ,γn }). The Φi are mutually disjoint sets of propositional variables and each γi

is a formula of propositional logic defined over
⊎

i∈N Φi. Player i’s pure strategies are truth assignments
to Φi, i.e. Si = 2Φi . Player i’s utility function is:

ui(ννν) =

{
1 if ννν � γi,

0 otherwise.

�
Example 2.10. Matching Pennies can be represented as a Boolean game in the following fashion:

Φ1 = { p},
Φ2 = {q},
γ1 = ¬(p↔ q),

γ2 = p↔ q.

Battle of the Sexes cannot be represented as a Boolean game because the payoffs are not all 0 and 1. �
A Boolean game can potentially achieve exponential succinctness—after all, we need only k variables

to represent 2k strategies. However this comes at the cost of some of the lucidity of a game in normal
form—even determining whether a player ought to bother playing the game (whether γi is satisfiable) is
NP-complete.

3 Decision problems

It now pays to introduce a specific kind of equilibrium, that is of natural interest from a computational
perspective.
Definition 3.1. An equilibrium σσσ is rational if every strategy weight in σσσ is rational. It is irrational if
at least one strategy weight is not. �

Rational numbers are convenient as they allow us to reason algorithmically about a wide range of
problems without delving into the representational issues concerning algebraic or computable reals. It
is fortuitous, then, that a consequence of the linear programming characterisation of two-player games
establishes that these have rational equilibria.
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∃GUARANTEENASH

Input: A Boolean game G and a v ∈ [0,1]Q.
Output: YES if G has a rational equilibrium σσσ for which u1(σσσ)≥ v.

RATIONALNASH

Input: A Boolean game G.
Output: YES if G has a rational equilibrium.

IRRATIONALNASH

Input: A Boolean game G.
Output: Yes if G has an irrational equilibrium.

Figure 1: Three decision problems for Boolean games.

Proposition 3.2 ([12]). Every two-player strategic game has a rational equilibrium, and the size of this
equilibrium is polynomial in the size of the normal form.

Unfortunately, the fun stops at n = 2.

Proposition 3.3 ([27]). There exist three-player games with rational payoffs that have only irrational
equilibria.

This is the reason behind a general trend observed in algorithmic game theory: nontrivial questions
about the properties of equilibria of games in normal form tend to be NP-complete for the two-player
case, as one could nondeterministically choose an equilibrium and verify the property, but NP-hard in
the general case, as then the equilibria may not have finite representations (e.g. [18, 11, 4]).
∃GUARANTEENASH, in Figure 1, belongs to this class of problems applied to Boolean games. The

multiplayer variant has been shown to be NEXP-hard by [21], and the two-player variant in an unpub-
lished work. The reader will note that the way we state ∃GUARANTEENASH differs from the definition
in [21], however careful observation of thr proof will show that hardness holds for this version as well.
As Boolean games are a concise representation of strategic games, it is perhaps not surprising that these
complexities experience an exponential jump.

RATIONALNASH however, is a very different animal—it trivialises completely in the two-player
case: the answer is YES. As we shall see, hardness reasserts itself as soon as we add a third. IRRA-
TIONALNASH is seemingly a tamer beast—we do not have a result for the two-player case in the present
work, but we suspect a closer analysis of the linear programming characterisations of strategic games
will reveal some connection to the degeneracy problem—but it is included due to its spiritual kinship
with RATIONALNASH.

4 Games of any value

The reader will note that while the payoff for Player One in any pure profile in a Boolean game need be 1
or 0, there is no such restriction on mixed profiles—after all, the unique mixed equilibrium of Matching
Pennies gives either player 1/2. This motivates the main proof idea: we can use two-player, zero-sum
gadget games of a specific value to simulate fine-grained preferences.

The key here is to interpret truth assignments numerically, and imitate arithmetic operations via
propositional logic.
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Definition 4.1. Let vm represent v1, . . . ,vm ∈ Φi. I.e., a sequence of m propositional variables, all con-
trolled by the same player. Let JvmK(ννν) represent the numeric value assigned to vm by ννν in the natural
fashion. I.e., v1 is true is interpreted as the most significant bit of the m-bit integer JvmK(ννν) being a 1.

If the truth assignment is clear from context, we omit it. �
Proposition 4.2. We can, in polynomial time, construct the formulae LLLeeessssss(am,bm), LLLeeessssssEEEqqq(am,bm),
AAAdddddd(am,bm,cm) and SSSuuubbb(am,bm,cm) that are true under ννν just if JamK(ννν)< JbmK(ννν), JamK(ννν)≤ JbmK(ννν),
JamK(ννν)+ JbmK(ννν) = JcmK(ννν), and JamK(ννν)− JbmK(ννν) = JcmK(ννν).

We stress that the key here is that this can be done in polynomial time, and hence the formulae are of
polynomial size—the fact that such formulae exist at all is obvious from the expressive completeness of
propositional logic.

Now consider the game where Player One chooses an interval of length a in [0,b−1]N (this interval
is allowed to loop around the edges), and Player Two chooses a single number in the same range. Player
One wins if his interval captures Player Two’s number, and loses otherwise. Clearly, the value of the
game is a/b, as can be evidenced by the equilibrium where Player One randomises equally over every
interval and Player Two over every number. Note also that if a and b are coprime (which we can assume
because all that means is that the fraction a/b is maximally reduced) then this equilibrium is unique.2

This game has a Boolean representation that is polynomial in the bit-length of b.

Proposition 4.3. Let G(v) be a two-player zero-sum Boolean game of value v∈ [0,1]Q. We can construct
G(v) in time polynomial in |v|.

The idea is to allow Player One to choose, via truth assignments, the start and end points of his
interval and Player Two to choose her number in the same fashion. We use the AAAdddddd formula to ensure
Player One is picking an interval of the right length, with the SSSuuubbb and LLLeeessssss formulae coming into play
in the case of a looping interval. To ensure both players stay within [0,b−1]N, we use the LLLeeessssss formula.

Proof. Let v = a/b. We introduce the notation xxx to represent the sequence of the logical constants > and
⊥ that represents the binary representation of the integer x. Terms such as LLLeeessssss(ym,xxx) are interpreted in
the obvious way.

The desired game is the following:

Φ1 ={p1, . . . , pm,q1, . . . ,qm,s1, . . . ,sm, t1, . . . , tm}
Φ2 ={r1, . . . ,rm}
γ1 =

(
SSSuuubbb(qm, pm,aaa)∧LLLeeessssssEEEqqq(qm,bbb−−−111)∧LLLeeessssssEEEqqq(rm,qm)∧LLLeeessssssEEEqqq(pm,rm)

∧AAAdddddd(JsmK,000,000)∧AAAdddddd(JtmK,000,000)
)

∨
(

AAAdddddd(sm, tm,aaa))∧SSSuuubbb(qm,000,sm)∧SSSuuubbb(bbb−−−111, pm, tm)

∧
(
LLLeeessssssEEEqqq(rm,qm)∨LLLeeessssssEEEqqq(pm,rm)

))

∨LLLeeessssss(bbb−−−111,rm).

The endpoints of Player One’s interval are JpmK and JqmK. The first disjunct deals with the case where
Player One names a non-looping interval and captures Player Two’s choice, JrmK. Extraneous variables
are set to false (JsmK+0 = 0) to ensure the equilibrium is unique.

In the case where Player One’s interval is looping, we require him to tell us how much of it is on
the right end (JtmK) and on the left (JsmK). The second disjunct verifies that JtmK and JsmK add to a, that

2Intuitively obvious, though the search for a proof took longer than the author would care to admit.
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JsmK is equal to JqmK (that is JqmK− 0), and that JtmK is the difference between JpmK and the end of the
interval. This established, the victory is awarded to Player One should JrmK lie between JtmK and b−1,
or 0 and JsmK.

The last disjunct captures the case where Player Two picks a number outside of [0,b−1]N, in which
case Player One is awarded the win. As the game is zero-sum, there is no need to explicitly specify
Player Two’s goal formula as it is simply ¬γ1.

While G(v) is powerful and allows us to encode many things, it has a stark limitation—v has to be
set ex ante. This means, among other things, that if a game has a large range of payoffs then we would
need to define a new gadget game for every possible outcome; at that point it is worth asking whether we
would not be better off simply using the normal form instead.

We can improve on this—it is possible to construct gadget games the value of which adapts to the
state of the play, although we do not have need of these in the current work.

Proposition 4.4. Let G (vm) be a two-player zero-sum Boolean game of value JvmK/2m. I.e., the value
of G (vm) is contingent on the strategies chosen by the controller of the vi variables. We can construct
G (vm) in time polynomial in m.

The difference between this construction and G(v) is that instead of verifying that the length of the
interval is the numerator of v, it now has to be of length JvmK(ννν). Obviously if Player One controls vm

then he would have a strong incentive to rig the dice somewhat, and within any construction this would
need to be addressed by imposing restrictions on what he can do with vm elsewhere in the game.

5 RATIONALNASH and IRRATIONALNASH

Theorem 5.1. RATIONALNASH for Boolean games is NEXP-hard.

Proof. Theorem 3 in [4] gives an example of a three-player win-lose game, call it G′1, that has only
irrational equilibria. Players One and Two have two strategies each, but Player Three has three, and as
such the game as given does not have a Boolean representation. However, the game has the positive
utility property: for any choice of strategies by two players, the third has a response that will yield him
strictly positive utility. We can thus extend G′1 into G1 that has a fourth strategy for Player Three, which
operates as follows:

1. Player Three’s payoff for choosing the fourth strategy is zero.

2. Player One and Two’s payoff from any profile where Player Three chooses the fourth strategy are
the same as if Player Three chose his first (this is arbitrary) strategy instead.

Observe that in no equilibrium of G1 would Player Three attach positive weight to his fourth strategy.
Thus every equilibrium of G1 would correspond to an equilibrium of G′1, and hence be irrational, and G1
has a Boolean representation.

Let (G2,v) be an instance of ∃GUARANTEENASH with three players.3

The idea of the construction is to let the players choose to play in G1 or G2 in such a way that every
equilibrium involves all the players choosing the same game to play in, and that there is an equilibrium in
which the players choose to play in G2 if and only if (G2,v) is a positive instance of ∃GUARANTEENASH.
This will prove the theorem—if (G2,v) ∈ ∃GUARANTEENASH then there is an equilibrium where the
players play in G2, and hence there is a rational-valued equilibrium (namely, the equilibrium of G2 that

3The proof in [21] uses six, but the reduction to three is trivial.
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guarantees Player One a payoff of v). If (G2,v) /∈ ∃GUARANTEENASH then every equilibrium of the
game must be in G1, and those are irrational.

The desired Boolean game G consists of four players, the three from G1 and G2 as well as a new O,
and is defined as follows:

Φi≤3 = vari(G1)∪vari(G2)∪{Choicei }∪vari(Gi),

ΦO = varO(G1(v))∪varO(G2(1/2))∪varO(G3(1/2)),

γ1 =
(∧

i≤3

Choicei∧ γ1(G2)
)
∨
(∧

i≤3

¬Choicei∧ γ1(G1)
)

∨
(
¬Choice1∧ (Choice2∨Choice2)∧ γ1(G1(v))

)
,

γ2 =
(∧

i≤3

Choicei∧ γ2(G2)∨ γ2(G2(1/2))
)
∨
(∧

i≤3

¬Choicei∧ γ2(G1)
)

∨
(
¬Choice2∧ (Choice1∨Choice3)∧ γ2(G2(1/2))

)
,

γ3 =
(∧

i≤3

Choicei∧ γ3(G2)∨ γ3(G3(1/2))
)
∨
(∧

i≤3

¬Choicei∧ γ3(G1)
)

∨
(
¬Choice3∧ (Choice1∨Choice2)∧ γ3(G3(1/2))

)
,

γO = γO(G1(v))∧ γO(G2(1/2))∧ γO(G3(1/2)).

In the above we use vari(G′) to denote the set of Player i’s variables in the game G′, and γi(G′) to denote
Player i’s goal formula. In the gadget games Gi(v), Player i is the interval-player (and hence can expect
a utility of v) and Player O is the number-player.

To aid the reader in interpreting the goal formulae of players One, Two and Three, note that they
consist of three mutually exclusive disjuncts. The first of these, where all the players set their Choicei

variable to true, represents the players agreeing to play in G2. The second, with every Choicei set to false,
represents the players agreeing to play in G1. The last disjunct represents the case of failed coordination;
note that in that case only the players who have chosen to play in G1 can expect to get any utility.

Suppose (G2,v)∈ ∃GUARANTEENASH. We claim there is a rational-valued equilibrium where Play-
ers One through Three set Choicei to true, play the rational-valued equilibrium of G2 that satisfies the
payoff constraint over vari(G2), the equilibrium strategy over vari(Gi) and every other variable to false.
Player O plays the equilibrium strategy in all his gadget games.

Player O has no incentive to deviate as he wins if and only if he wins three independent games, and
all those are currently in equilibrium. Player One has no incentive to deviate while Choice1 is true: he is
indifferent about what he does with var1(G1) and var1(G1(v)) as those variables do not affect his ability
to satisfy γ1(G2), and he has no incentive to deviate over var1(G2) as G2 is in equilibrium. Should he
set Choice1 to false, then his utility will depend only on his ability to satisfy γ1(G1(v)). The probability
of that is v, which is at least how much he is getting in the current profile. Player Two (symmetrically,
Three) has no incentive to deviate over var2(G2(1/2)) or var2(G2) as those games are in equilibrium, and
the variables in var2(G1) do not affect her current utility. If she deviates by setting Choice2 to false, then
she will be getting a utility of 1/2; whereas in the current profile she is getting 1− 1/2 · x, where x is her
probability of losing G2. As x is at most 1, such a deviation could do no better.

Now suppose (G2,v) /∈ ∃GUARANTEENASH. We claim that every equilibrium of G involves Choicei

being set to false with probability 1. Suppose otherwise, and consider an equilibrium σσσ in which p,q
and r are the probabilities of players One, Two and Three respectively opting to play in G2. Note that
this means there is a pqr chance of the players ending up in G2; if all three are non-zero, then that
means the players must be playing an equilibrium strategy in G2, as otherwise they could replicate the
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profitable deviation over vari(G2), keeping the rest of the strategy the same, and they would get the same
gain in utility scaled by pqr. This being the case, observe that Player One’s utility from the profile is
pqr ·y+(1− p)(1− (1−q)(1− r)) ·v+(1− p)(1−q)(1− r) ·x (payoff from G2, from miscoordination,
and from G1), with y being strictly less than v. Player One could increase his payoff by reducing p to
zero. This means that σσσ must have at least one of p,q or r equal to zero, and hence a play in G2 can
never eventuate. This established, suppose, without loss of generality, that q 6= 0. This gives Player Two
a q chance of landing in a situation where she sets Choice2 to true whilst the other Choicei variables are
not, and hence giving her a utility of zero. This cannot be an equilibrium, as Player Two could deviate
by reducing q to zero. But this means that p = q = r = 0, which leads us to accept that every equilibrium
of G involves the players playing in G1. As those equilibria are irrational, this proves the theorem.

Theorem 5.2. IRRATIONALNASH for Boolean games is NEXP-hard.

Proof. Let G1 be a Boolean game with the positive payoff property as before, and (G2,v) an instance
of ∃GUARANTEENASH. Unlike the previous proof, however, we assume the players of G1 and G2 are
disjoint. The constructed Boolean game, G, has all the players of G1 and G2 as well as two new players
C and O.

The idea of the proof here is that player C is given the power to decide whether or not the games in
G1 and G2 will be played. If they are, he gets Player One’s utility from G2; if they are not, he gets v.
This will ensure that if (G2,v) is a positive instance then there will be an equilibrium where Player C
decides to play, and the players in G1 will ensure that this equilibrium is irrational. If (G2,v) is a negative
instance, our construction will ensure that the game will have a unique, rational equilibrium in which the
component games are not played.

We give every player except O a new variable, abstaini. Player C is characterised as follows:

ΦC = {abstainC },
γC = (¬abstainC ∧¬abstain1∧ γ1(G2))∨ (abstainC ∧ γC(GC(v))).

That is, he can choose to abstain and get a utility of v, or if both C and Player One choose to play, C gets
Player One’s utility in G2.

Player i, without loss of generality from G1, is as follows:

Φi = vari(G1)∪{abstaini },
γi = (γi(G1)∧¬abstaini∧¬abstainC)∨

(
(
∧

i∈N

abstaini)∧ (
∧

p∈vari(G1)

¬p)
)
.

If both Player C and Player i chooses to play, then Player i gets the utility from G1. If every player chooses
to abstain and Player i sets all his variables to false, then Player i wins. In any other circumstance, he
loses.

Player O simply plays GC(v) against C.
Suppose (G2,v) ∈ ∃GUARANTEENASH. Consider the profile where the players in G1 play any equi-

librium of G1, the players in G2 the rational-valued equilibrium satisfying the payoff constraint in G2,
Player C sets abstainC to false and Player O plays the equilibrium strategy. This profile is in equilibrium:
the players in G1 and G2 have no incentive to deviate within their games because they are in equilib-
rium, and deviating with abstaini would yield them a utility of zero because Player C is choosing to play.
Player O is playing the equilibrium strategy, and Player C is getting Player One’s utility—which is at
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least v—and should he deviate to abstaining, then v is all he would get from GC(v). This equilibrium is
irrational because every equilibrium of G1 is irrational.

Now suppose (G2,v) /∈ ∃GUARANTEENASH. We claim the game has a unique rational equilibrium
where every player abstains, the players from G1 and G2 set all their variables to false, and C plays the
equilibrium strategy of GC(v) against O. First observe that this is indeed a rational equilibrium—any
Player who chooses to play will get a utility of 0 because C is abstaining, and C would get a utility of 0
from playing because Player One is abstaining.

Next, we claim that every equilibrium involves Player C abstaining with probability 1. As in the
previous proof, if Player C chooses to play then the subgame G2 would have to be in equilibrium, and
Player One’s (hence C’s) payoff in that would be strictly less than v, which is what he could get from
the gadget game against O. Given that Player C is abstaining, every i would have an incentive to abstain.
This proves the theorem.

6 Future work

Two directions for future research are apparent. The first is the case of function, or search problems as
opposed to the decision problems studied so far. Precious little has been said about functions even in the
broader literature on concise representations, let alone for Boolean games—the best known bounds for
FINDNASH are TFNEXP and EXP-hard (not even FEXP-hard). This is something that bears addressing
as for all the convenience of decision problems, the more natural algorithmic questions in game theory
require a richer response than YES or NO.

The second is on approximate or probabilistic reasoning. So far the picture we have painted suggests
that despite their apparent simplicity, Boolean games are every bit as hard as the seemingly much more
complicated frameworks of Turing machine ([1] or circuit ([17],[30]) games. One has to wonder whether
that remains true when we consider the approximation problems studied by [17] and [30].
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We propose an extension of Strategy Logic (SL), in which one can both reason about strategizing
under imperfect information and about players’ knowledge. One original aspect of our approach is
that we do not force strategies to be uniform, i.e. consistent with the players’ information, at the
semantic level; instead, one can express in the logic itself that a strategy should be uniform. To do
so, we first develop a “branching-time” version of SL with perfect information, that we call BSL, in
which one can quantify over the different outcomes defined by a partial assignment of strategies to
the players; this contrasts with SL, where temporal operators are allowed only when all strategies are
fixed, leaving only one possible play. Next, we further extend BSL by adding distributed knowledge
operators, the semantics of which rely on equivalence relations on partial plays. The logic we obtain
subsumes most strategic logics with imperfect information, epistemic or not.

1 Introduction

Over the past decade, investigation of logical systems for studying strategic abilities has thrived in
the areas of artificial intelligence and multi-agent systems. However, there is still no satisfying logi-
cal framework to model, specify and analyze such systems. One of the proposals most studied so far
is Alternating-time Temporal Logic (ATL) [1], in which one can specify what objectives coalitions of
agents can achieve. Several extensions were introduced (ATL∗, game logics. . . ), but all of these logics
fail to model non-cooperative situations where agents follow individual objectives. It is well known that
studying this kind of situation requires solution concepts from game theory, such as Nash equilibria, that
cannot be expressed in ATL or its extensions.

To address this shortcoming, Chatterjee, Henzinger and Piterman recently introduced Strategy Logic
(SL) [9]. This logic subsumes all extensions of ATL, and because it considers strategies as first-order
citizens in the language, it can express fundamental game-theoretic concepts such as Nash Equilibria
or dominated strategies. SL has recently been extended and intensively studied [19, 17, 18]. Relevant
fragments enjoying nice computational characteristics have been identified. In particular, the syntactic
fragment SL[1G] (One-Goal Strategy Logic) is strictly more expressive than ATL∗, but not computation-
ally more expensive [17].

However, despite its great expressiveness, there is one fundamental feature of most real-life situations
that SL lacks, which is imperfect information. An agent has imperfect information if she does not know
the exact state of the system at every moment, but only has access to an approximation of it. Considering
agents with imperfect information raises two major theoretical issues. The first one concerns strategizing
under imperfect information. Indeed, in this context an agent’s strategy must prescribe the same choice in
all situations that are indistinguishable to the agent. Such strategies are called uniform strategies, and this
requirement deeply impacts the task of computing strategies [21]. The second main theoretical challenge
relates to uncertainty, deeply intertwined with imperfect information, and it consists of representing and
reasoning about agents’ knowledge. Over the past decades, much effort has been put into devising logical
systems that address this issue, first in static settings [10] and later adding dynamics [11, 5].
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Concerning ATL, many variants have been introduced that deal with imperfect information [12, 14,
22, 13]. Some of these numerous logics deal with strategizing under imperfect information, some with
reasoning about knowledge; because it is not natural to reason about the knowledge of agents with
imperfect information without treating the strategic aspects accordingly, as argued in [14], some treat
both aspects. But there still remain a number of logics that do so, and that essentially differ in the
semantics of the strategic operator: how much memory do agents have? should agents simply have a
strategy to achieve some goal? Or should they know that there is a strategy to do so? Or know a strategy
that works? The two last notions are usually referred to as de dicto and de re strategies, respectively [14].

About SL, very few works have considered imperfect information. [2] and [8] propose epistemic
extensions of SL, but they do not require strategies to be uniform i.e. being consistent with the agents’
information. In [3], an epistemic strategy logic is proposed in which uniform strategies are considered,
and interestingly the de re semantics of the strategic operator can be expressed in the de dicto semantics,
providing some flexibility. However, how much memory strategies use, and whether they should be
uniform or not, still has to be hardwired in the semantics.

In this work, we propose yet another epistemic strategy logic, with the purpose of getting rid of the
constraint of enforcing what kind of strategies are to be used at the semantic level. To do so, we first de-
velop a “branching-time” version of SL with perfect information. In SL, temporal operators are allowed
only when all strategies are fixed, leaving only one possible play. We relax this constraint by introducing
a path quantifier, which quantifies over the different outcomes defined by a partial assignment of strate-
gies to the agents. This enables the comparison of the various outcomes of a strategy. Because it will be
important, for instance to express the uniformity of a strategy, to consider all the possible outcomes of
a strategy assigned to an agent a, we need a way to remove in an assignment the bindings of all agents
but a. We thus introduce an unbinding operator. We call the resulting logic Branching-time Strategy
Logic (BSL), and we prove by providing linear translations in both directions that it has the same expres-
sive power and same computational complexity as SL. We also present a variant of BSL, called BSL+,
which can in addition refer to the actions chosen by each agent at each moment, and we conjecture that
it is strictly more expressive than SL and BSL. Next, we define our Epistemic Strategy Logic (ESL) by
further extending BSL with distributed knowledge operators, the semantics of which rely on equivalence
relations on partial plays. We do not change the semantics of the strategy quantifier to require them to be
uniform, or de re, or de dicto, or memoryless, but we rather show that all of these properties of strategies
can be expressed in the language, which thus subsumes most, if not all, the variants of epistemic strategic
logics with imperfect information that we know about.

The paper is structured as follows. In Section 2 we recall the models, syntax and semantics of SL. In
Section 3, we define BSL and BSL+, and we prove that SL and BSL are equiexpressive. We then present
ESL in Section 4, where we also show how it can express various classic properties of strategies. We
conclude and discuss future work in Section 5. Some proofs are omitted by lack of space.

2 Preliminaries

Let AP be a countable non-empty set of atomic propositions, Ag a non-empty finite set of agents and Ac
a non-empty finite set of actions. We let Dc = AcAg be the set of possible decisions. For d ∈ Dc and
a ∈ Ag, d(a) is the action taken by Agent a in decision d.
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2.1 Concurrent game structures

A concurrent game structure (CGS) is a tuple G = (Q,δ ,sι ,µ), where Q is a countable non-empty set
of states, δ : Q×Dc→ Q is a transition function, sι is the initial state and µ : Q→ 2AP is a valu-
ation function. A path is an infinite word π = s0(d1,s1) . . . ∈ Q · (Dc×Q)ω such that for all i ≥ 0,
si+1 = δ (si,di+1), and an initial path ρ is a finite prefix of a path. In the following, we shall write
s0d1s1 . . . instead of s0(d1,s1) . . ., and similarly for initial paths. For a state s we denote by Pathsω(s)
(resp. Paths∗(s)) the set of paths (resp. initial paths) that start in s, i.e. for which s0 = s. We also let
Pathsω (resp. Paths∗) be the set of all paths (resp. initial paths). For a path π = s0d1s1 . . ., for i, j ≥ 0,
we let π[i] := si, π≤i := s0 . . .disi, π≥i := sidi+1si+1 . . . and π[i, j] := sidi+1 . . .d js j. For an initial path
ρ = s0 . . .dnsn, last(ρ) := sn is its last state and |ρ| := n is the index of its last state. Given two initial paths
ρ = s0d1s1 . . .dnsn and ρ ′ = s′0d′1s′1 . . .d

′
ms′m such that sn = s′0, we let ρ ·ρ ′ := s0d1s1 . . .dnsnd′1s′1 . . .d

′
ms′m

be their concatenation.
A strategy is a total function σ : Paths∗ → Ac that assigns an action to each initial path, and we

let Str be the set of all strategies. Also, given a strategy σ and an initial path ρ ∈ Paths∗ ending in
state s, we define the ρ-translation of σ as the strategy σρ such that for all initial paths ρ ′ ∈ Paths∗(s),
σρ(ρ ′) := σ(ρ ·ρ ′), and for all initial paths ρ ′ ∈ Paths∗(s′) with s′ 6= s, σρ(ρ ′) = σ(ρ ′).

Let Var be a countably infinite set of variables. An assignment is a partial function χ : Ag∪Var⇀ Str,
assigning to each agent and variable in its domain a strategy. For an assignment χ , an agent a and a
strategy σ , χ[a 7→ σ ] is the assignment of domain dom(χ)∪{a} that maps a to σ and is equal to χ on
the rest of its domain, and similarly for χ[x 7→ σ ] where x is a variable; also, χ[a 7→ ?] is the assignment
of domain dom(χ)\ {a}, on which it is equal to χ . Given an assignment χ and a state s, we define the
outcome of χ in s, written Out(s,χ), as the set of paths π = s0d1s1 . . . such that s0 = s, and for all k ≥ 0,
for every agent a in the domain of χ , dk+1(a) = χ(a)(π≤k). We say that an assignment χ is complete if
it assigns a strategy to each agent, i.e. Ag⊆ dom(χ). Given an assignment χ and an initial path ρ ending
in state s, we define the ρ-translation of χ as the assignment χρ such that dom(χρ) = dom(χ), and for
all l ∈ dom(χρ), χρ(l) := χ(l)ρ (l being either a variable or an agent).

Finally, we want (some of) our logics to be able to talk about the precise actions taken by agents. To
do so, we consider the following set of action propositions: AcP := {pa

c | c ∈ Ac and a ∈ Ag}, and we
let AP+ := AP]AcP. In the following, we will therefore always assume that CGSs are unfolded, such
that each state s is reached by one unique transition through some decision ds, except the initial state
sι which has no incoming transition. We can thus extend the valuation function µ into µ+ as follows:
µ+(sι) := µ(sι), and for every state s 6= sι , µ+(s) := µ(s)∪{pa

ds(a)
| a ∈ Ag}.

2.2 Strategy Logic

We recall the syntax and semantics of Strategy Logic (SL). First, the set of formulas in SL is given by
the following grammar:

ϕ := p | ¬ϕ | ϕ ∨ϕ | Xϕ | ϕUϕ | 〈〈x〉〉ϕ | (a,x)ϕ

where p ∈ AP, x ∈ Var and a ∈ Ag.
Notice that SL-formulas cannot talk about agents’ actions.
We define > as p ∨ ¬p. Dual operators can be defined as usual: ⊥:= ¬>,ϕ ∧ ϕ ′ := ¬(¬ϕ ∨

¬ϕ ′),ϕRϕ ′ := ¬(¬ϕU¬ϕ ′) and [[x]]ϕ := ¬〈〈x〉〉¬ϕ , and we also define the classic temporal operators
“eventually” and “always”: Fϕ := >Uϕ , and Gϕ := ϕU ⊥. Recall that 〈〈x〉〉 is the strategy quantifier,
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and (a,x) is the binding operator: 〈〈x〉〉ϕ reads as “there exists a strategy x such that ϕ”, and (a,x)ϕ
reads as “ϕ holds after agent a is bound to the strategy denoted by x”.

For a formula ϕ , Free(ϕ)⊆ Var is the set of free variables in ϕ , i.e. the set of variables x that occur
in ϕ without being under the scope of some quantification 〈〈x〉〉. In the following, given a formula ϕ , an
assignment for ϕ refers to an assignment χ such that Free(ϕ)⊆ dom(χ).

Let ϕ be an SL-formula. Given a CGS G = (Q,δ ,sι ,µ), an assignment χ for ϕ and a state s ∈Q, the
semantics of ϕ in G with assignment χ at state s is defined inductively as follows:

G,χ,s |=SL p if p ∈ µ(s)
G,χ,s |=SL ¬ϕ if G,χ,s 6|=SL ϕ
G,χ,s |=SL ϕ ∨ϕ ′ if G,χ,s |=SL ϕ or G,χ,s |=SL ϕ ′
G,χ,s |=SL 〈〈x〉〉ϕ if there exists σ ∈ Str(s) such that G,χ[x 7→ σ ],s |=SL ϕ
G,χ,s |=SL (a,x)ϕ if G,χ[a 7→ χ(x)],s |=SL ϕ

If, in addition, χ is complete, then

G,χ,s |=SL Xϕ if G,χπ≤1 ,π[1] |=SL ϕ , where π is the only path in Out(s,χ)
G,χ,s |=SL ϕUϕ ′ if there is i≥ 0 such that, letting π be the only path in Out(s,χ),

G,χπ≤i ,π[i] |=SL ϕ ′, and for all 0≤ j < i, G,χπ≤ j ,π[ j] |=SL ϕ .
Finally, we define an SL-sentence to be an SL-formula ϕ such that Free(ϕ) = /0 and every temporal

operator in ϕ is under the scope of a binding for each agent.

3 Branching-time Strategy Logic

We now present a first extension of Strategy Logic. In SL, temporal operators are allowed only when
every agent has been assigned a strategy, which leaves only one possible outcome. Here we relax this
constraint: a temporal formula can be evaluated on the outcome of a partial strategy assignment. The
outcome of such an assignment is a tree that contains all paths corresponding to all possible completions
of the assignment, which is why we use the path quantification of branching-time temporal logic. We
also add the unbinding operator as considered in e.g. [16], making it possible to unbind an agent from
its strategy. We first show that the logic thus obtained, called BSL, has the same expressivity as SL, by
providing linear translations in both directions. The unbinding operator is thus just convenient syntactic
sugar. Then we further extend BSL by allowing it to refer to actions taken by agents, and obtain the logic
BSL+ that, we postulate, is strictly more expressive than SL and BSL. BSL has two advantages: first, the
semantics is slightly cleaner than that of SL, as it is defined for all formulas and all assignments; second,
the unbinding operator makes it possible to easily express that we unbind an agent, at no complexity
cost. Finally, because it can explicitly refer to actions and consider outcomes of partial assignments, it is
possible in BSL+ to express properties of strategies, such as being memoryless or uniform, as we show
in Section 4.

3.1 Syntax

The syntax of BSL adds two operators to SL. First, the path quantifier, borrowed from classic branching-
time temporal logics: Eψ intuitively reads as “there exists an outcome of the currently fixed strategies
in which ϕ holds”. Second, the unbinding operator: (a,?)ϕ means “ϕ holds after Agent a has been
unbound from her strategy, if any”. We define two variants, one (BSL) where formulas cannot talk about
the actions taken by the agents, and one (BSL+) where they can. Also, as for CTL∗, we find it convenient
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to distinguish between state and path formulas. Finally, the set of BSL-formulas (resp. BSL+-formulas)
is the set of state formulas given by the following grammar:

State formulas: ϕ ::= p | ¬ϕ | ϕ ∨ϕ | 〈〈x〉〉ϕ | (a,x)ϕ | (a,?)ϕ | Eψ
Path formulas: ψ ::= ϕ | ¬ψ | ψ ∨ψ | Xψ | ψUψ,

where p ∈ AP (resp. p ∈ AP+), x ∈ Var and a ∈ Ag.
Observe that BSL ⊂ BSL+. In addition to the shorthand defined in Section 2.2, we also define the

dual of the path quantifier: Aϕ := ¬E¬ϕ . Finally, we write BSL+ψ (resp. BSLψ ) for the set of BSL+

(resp. BSL) path formulas.

3.2 Semantics

State formulas are evaluated in a state of (the unfolding of) a CGS, and path formulas in paths. Since
BSL is a syntactical fragment of BSL+, it is enough to define the latter’s semantics.

Let ϕ ∈ BSL+ be a state formula (resp. let ψ ∈ BSL+ψ be a path formula), and let G = (Q,δ ,qι ,µ)
be a CGS. Let s ∈ G be a state, π ∈ Pathsω a path, and let χ be an assignment for ϕ (resp. for ψ). The
semantics of BSL+ is defined inductively as follows:

G,χ,s |=BSL p if p ∈ µ+(s)
G,χ,s |=BSL ¬ϕ if G,χ,s 6|=BSL ϕ
G,χ,s |=BSL ϕ ∨ϕ ′ if G,χ,s |=BSL ϕ or G,χ,s |=BSL ϕ ′
G,χ,s |=BSL 〈〈x〉〉ϕ if there exists σ ∈ Str such that G,χ[x 7→ σ ],s |=BSL ϕ
G,χ,s |=BSL (a,x)ϕ if G,χ[a 7→ χ(x)],s |=BSL ϕ
G,χ,s |=BSL (a,?)ϕ if G,χ[a 7→ ?],s |=BSL ϕ
G,χ,s |=BSL Eψ if there exists π ∈ Out(s,χ) such that G,χ,π |=BSL ψ

G,χ,π |=BSL ϕ if G,χ,π[0] |=BSL ϕ
G,χ,π |=BSL ¬ψ if G,χ,π 6|=BSL ψ
G,χ,π |=BSL ψ ∨ψ ′ if G,χ,π |=BSL ψ or G,χ,π |=BSL ψ ′
G,χ,π |=BSL Xψ if G,χπ≤1 ,π≥1 |=BSL ψ
G,χ,π |=BSL ψUψ ′ if there is i≥ 0 such that G,χπ≤i ,π≥i |=BSL ψ ′, and

for all 0≤ j < i, G,χπ≤ j ,π≥ j |=BSL ψ

The semantics of the unbinding operator comes without surprise: (a,?)ϕ holds in an assignment if ϕ
holds after we have removed a from the domain of this assignment. For the path quantifier, Eψ holds if
there is an outcome of the current assignment in the current state that verifies ψ .

For a BSL+-formula ϕ , we write G,χ |=BSL ϕ if Pathsω(sι),χ,sι |=BSL ϕ . Classically, a BSL+-
sentence is a BSL+-formula without free variables, and similarly for BSL-sentences. For a BSL+-
sentence ϕ , we write G |=BSL ϕ if G,χ |=BSL ϕ for any assignment χ .

3.3 Expressivity of BSL

We establish that BSL and SL have the same expressivity, and postulate that BSL+ is strictly more
expressive than both logics. First, given two logics L and L ′ whose sentences are evaluated on CGS’s,
we say that L ′ subsumes L , written L 4 L ′, if for every L -sentence ϕ there is an L ′-sentence ϕ ′
such that, for every CGS G, G |= ϕ if, and only if, G |= ϕ ′. We say that L and L ′ are equiexpressive if
L 4L ′ and L ′ 4L . We say that L ′ strictly subsumes L , written L ≺L ′, if L 4L ′ and L ′ 64L .

We start with the easy direction, showing that BSL subsumes SL.
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Definition 1 The translation tr : SL→ BSL is defined by induction as follows:
tr(p) = p tr(¬ϕ) = ¬tr(ϕ) tr(ϕ ∨ϕ ′) = tr(ϕ)∨ tr(ϕ ′)
tr(Xϕ) = EXtr(ϕ) tr(ϕUϕ ′) = Etr(ϕ)Utr(ϕ ′)
tr(〈〈x〉〉ϕ) = 〈〈x〉〉tr(ϕ) tr((a,x)ϕ) = (a,x)tr(ϕ)

The following proposition easily follows from the fact that a complete assignment defines a unique
path from any state.

Proposition 1 For every CGS G, for every formula ϕ ∈ SL, assignment χ for ϕ state s ∈ G such that
G,χ,s |=SL ϕ is defined, it holds that G,χ,s |=SL ϕ if, and only if, G,χ,s |=BSL tr(ϕ).

Proof sketch We only treat the case of the “next” operator, the one for “until” is similar and all the
others are trivial. Assume that G,χ,s |=SL Xϕ is defined. This means that χ is a complete assignment,
hence Out(s,χ) is a singleton, and the result follows from the semantics of SL and BSL.

We now show that SL also subsumes BSL. Indeed, the path quantifier can be simulated by a series
of existential strategy quantifications and corresponding bindings for the agents whose strategies are
undefined in the current assignment. Concerning the unbinding operator, the idea is to remember, along
the translation, which agents have been unbound, and use this information to correctly translate path
quantifiers, as described above. Formally, we define a translation from BSL to SL, parameterized by the
set of agents who are “currently” not bound to a strategy.

Definition 2 Let A⊆ Ag. The translations tr′A : BSL→ SL and tr′ψA : BSLψ → SL are defined by mutual
induction as follows:

tr′A(p) = p tr′ψA (ψ) = tr′A(ϕ)
tr′A(¬ϕ) = ¬tr′A(ϕ) tr′ψA (¬ψ) = ¬tr′ψA (ψ)
tr′A(ϕ ∨ϕ ′) = tr′A(ϕ)∨ tr′A(ϕ ′) tr′ψA (ψ ∨ψ ′) = tr′ψA (ψ)∨ tr′ψA (ψ

′)
tr′A(〈〈x〉〉ϕ) = 〈〈x〉〉tr′A(ϕ) tr′ψA (Xψ) = Xtr′ψA (ψ)
tr′A((a,x)ϕ) = (a,x)tr′A\{a}(ϕ) tr′ψA (ψUψ ′) = tr′ψA (ψ)Utr′ψA (ψ

′)
tr′A((a,?)ϕ) = tr′A∪{a}(ϕ)
tr′A(Eψ) = 〈〈x1〉〉 . . .〈〈xk〉〉(ai1 ,x1) . . .(aik ,xk)tr′

ψ
A (ψ),

where x1, . . . ,xk are fresh variables and {ai1 , . . . ,aik}= A.

First, observe that if p is a BSL-formula, then it is in AP and not in AcP, so that p is indeed an
SL formula. Before establishing the correctness of the translation, we need the following lemma. It
essentially says that the evaluation of a formula tr′A(ϕ) in an assignment χ is independent of how χ is
defined on A: for an agent a ∈ A, whether χ is defined on a or not, and in the former case how it is
defined, is of no consequence as the translation tr′A remembers that a is not supposed to be bound to a
strategy.

Lemma 1 Let G be a CGS, s ∈ G a state, ϕ ∈ BSL a state formula and χ an s-total assignment for ϕ .
For all A ⊆ Ag, {ai1 , . . . ,aik} ⊆ A and for all σ1, . . . ,σk ∈ Str(s), letting χ1 = χ[ai1 7→ σ1, . . . ,aik 7→ σk]
and χ2 = χ[ai1 7→ ?, . . . ,aik 7→ ?], it holds that:

P1: G,χ,s |=SL tr′A(ϕ) if, and only if, G,χ1,s |=SL tr′A(ϕ), and

P2: G,χ,s |=SL tr′A(ϕ) if, and only if, G,χ2,s |=SL tr′A(ϕ).

Proposition 2 Let G be a CGS. For every state formula ϕ ∈ BSL, assignment χ for ϕ and state s ∈G, it
holds that G,χ,s |=BSL ϕ if, and only if, G,χ,s |=SL tr′Ag\dom(χ)(ϕ).

We can now prove that SL and BSL have the same expressivity on the level of sentences.
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Theorem 1 SL and BSL are equiexpressive, with linear translations in both directions.

Proof We first prove that SL4 BSL. Let ϕ be an SL-sentence. Clearly, tr(ϕ) is a BSL-sentence. Let G
be a CGS with initial state sι , and let χ be any assignment. By definition, G |=SL ϕ iff G,χ,sι |=SL ϕ .
By Proposition 1, G,χ,sι |=SL ϕ iff G,χ,sι |=BSL tr(ϕ), and by definition, the latter is equivalent to
G |=BSL tr(ϕ).

Now, to prove that BSL 4 SL, let ϕ be a BSL-sentence, and let ϕ ′ = tr′Ag(ϕ). Observe that ϕ ′ is
an SL-sentence: indeed, every temporal operator in ϕ is under the scope of some path quantifier, and
by definition of tr′Ag, every temporal operator in ϕ ′ is thus under the scope of a binding for each agent.
Now, let G be a CGS and χ an assignment such that Ag \ dom(χ) = Ag. By definition, G |=BSL ϕ iff
G,χ,sι |=BSL ϕ (recall that since ϕ is a sentence, the choice of χ does not matter for the evaluation
of ϕ). By Proposition 2, the latter is equivalent to G,χ,sι |=SL ϕ ′, which by definition is equivalent to
G |=SL ϕ ′.

Concerning the size of the translations, the one of Definition 1 is clearly linear, and the one in
Definition 2 is in O(2|Ag||ϕ|), where |Ag| is the number of agents and |ϕ| the number of symbols in ϕ .
The translation is thus linear in the size of the formula.

We can therefore transfer to BSL the following results known about SL [18]:

Corollary 1 The model-checking problem for BSL is nonelementary decidable.

Corollary 2 The satisfiability problem for BSL is Σ1
1-hard.

On the other hand, because BSL+ can express properties about the actions taken by agents, it should
clearly be strictly more expressive than BSL and thus also SL, but we have not yet proved this.

Conjecture 1 BSL+ strictly subsumes BSL and SL.

4 Epistemic Strategy Logic

In this section, we further extend the framework to account for imperfect information. For the logic to be
expressive enough to express uniformity of strategies, we need to talk about actions played by the agents,
and we therefore allow the use of atomic propositions in AcP.

4.1 Syntax

We add distributed knowledge operators to the language, one for each group of agents. The syntax of
ESL is therefore described by the following grammar:

State formulas: ϕ ::= p | ¬ϕ | ϕ ∨ϕ | Eϕ | 〈〈x〉〉ϕ | (a,x)ϕ | (a,?)ϕ | DAϕ
Path formulas: ψ ::= ϕ | ¬ψ | ψ ∨ψ | Xψ | ψUψ,

where p ∈ AP+, x ∈ Var and A⊆ Ag.
We define, for each a ∈ Ag, Kaϕ := D{a}ϕ , and as for BSL and BSL+, we write ESLψ for the set of

ESL-path formulas.
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4.2 Semantics

To represent the agents’ imperfect information about the current situation in the game, we add binary
indistinguishability relations in CGSs. Most works consider equivalence relations on states, which are
extended to initial paths according to how much memory agents are supposed to have. Because in this
work we do not want to make any such assumptions, we adopt a more general approach and directly take
equivalence relations on initial paths.

We call imperfect information concurrent game structure (ICGS) a tuple Gi = (G,{∼a}a∈Ag), where
G is a CGS and for each a ∈ Ag, ∼a ⊆ (2AP+

)∗× (2AP+
)∗ is an indistinguishability equivalence relation

for Agent a. For A ⊆ Ag, we let ∼A:= ∩a∈A ∼a: it is the distributed knowledge relation of agents in A.
Given two initial paths ρ = s0d1s1 . . .dnsn and ρ ′ = s′0d1s′1 . . .dms′m and a set of agents A ⊆ Ag, we shall
write ρ ∼A ρ ′ whenever µ+(s0) . . .µ+(sn) ∼A µ+(s′0) . . .µ+(s′m), i.e. when the sequences of extended
valuations along the plays are related by ∼A. As usual in epistemic logic, the intended meaning of
ρ ∼a ρ ′ is that in initial path ρ , Agent a considers it possible that ρ ′ is the actual initial path.

Because agents may infer knowledge from what they recall of the past of an initial path, we cannot
evaluate state formulas merely in states of the game as we do for BSL+, but we evaluate them in initial
paths instead. Also, in order not to forget the past when we consider outcomes of an assignment, we
define for every initial path ρ and assignment χ , Out(ρ,χ) := {ρ ·ρ ′ | ρ ′ ∈ Out(last(ρ),χ)}.

Let ϕ ∈ ESL be a state formula (resp. let ψ ∈ ESLψ be a path formula), and let G = (Q,δ ,qι ,µ) be
a CGS. Let χ be an assignment for ϕ (resp. for ψ), let ρ ∈ Paths∗ be an initial path, π ∈ Pathsω a path,
and i≥ 0. The semantics of ESL is defined inductively as follows:

Gi,χ,ρ |=ESL p if p ∈ µ+(last(ρ))
Gi,χ,ρ |=ESL ¬ϕ if Gi,χ,ρ 6|=ESL ϕ
Gi,χ,ρ |=ESL ϕ ∨ϕ ′ if Gi,χ,ρ |=ESL ϕ or Gi,χ,ρ |=ESL ϕ ′
Gi,χ,ρ |=ESL 〈〈x〉〉ϕ if there exists σ ∈ Str such that Gi,χ[x 7→ σ ],ρ |=ESL ϕ
Gi,χ,ρ |=ESL (a,x)ϕ if Gi,χ[a 7→ χ(x)],ρ |=ESL ϕ
Gi,χ,ρ |=ESL (a,?)ϕ if Gi,χ[a 7→ ?],ρ |=ESL ϕ
Gi,χ,ρ |=ESL Eψ if there exists π ∈ Out(ρ,χ) such that Gi,χ,π, |ρ| |=ESL ψ
Gi,χ,ρ |=ESL DAϕ if for every initial path ρ ′ ∈ Paths∗ such that ρ ∼A ρ ′, Gi,χ,ρ ′ |=ESL ϕ

Gi,χ,π, i |=ESL ϕ if Gi,χ,π≤i |=ESL ϕ
Gi,χ,π, i |=ESL ¬ψ if Gi,χ,π, i 6|=ESL ψ
Gi,χ,π, i |=ESL ψ ∨ψ ′ if Gi,χ,π, i |=ESL ψ or Gi,χ,π, i |=ESL ψ ′

Gi,χ,π, i |=ESL Xψ if Gi,χπ[i,i+1],π, i+1 |=ESL ψ
Gi,χ,π, i |=ESL ψUψ ′ if there is j ≥ i such that Gi,χπ[i, j],π, j |=ESL ψ ′, and

for all i≤ k < j, Gi,χπ[i,k],π,k |=ESL ψ

We now give an example of a property that can be expressed in ESL but not in SL, BSL or BSL+.
The property we consider is the uniformity property of strategies, which is central in the paradigm of
imperfect information.

4.3 Properties of strategies

A uniform strategy, in the context of games with imperfect information, usually means a strategy that
respects the player’s information, i.e. a strategy that assigns the same action in situations that are indistin-
guishable to the player [4, 14]. In SL, temporal formulas being only evaluated in complete assignments,
it is clear that one cannot compare several outcomes of a given strategy for a player, so that it is hopeless
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to express such uniformity properties. In BSL, one can consider all the possible outcomes of a strategy,
but one cannot talk about the actions taken by agents, so that expressing that a strategy assigns the same
action in different situations is not possible either. In BSL+, we can refer to the precise actions taken by
the agents, but we have no way of relating situations that are indistinguishable to an agent. However, as
we show below, ESL is expressive enough for this sort of properties.

We define a notion of uniformity, that we call weak uniformity, and that asks for a strategy to be
uniform on all its outcomes from the current situation.

Definition 3 Let Gi = (G,{∼a}a∈Ag) be an ICGS, let ρ ∈ Paths∗ be an initial path and a ∈ Ag an agent.
A strategy σ is weakly uniform for a in ρ if, for all initial paths ρ ′ ∈ Out(ρ, [a 7→ σ ]) and ρ ′′ ∈ Paths∗
such that ρ ′ ∼a ρ ′′, σ(ρ ′) = σ(ρ ′′).

Now let us define the following ESL-formula.

Definition 4 For each a ∈ Ag, we define the formula

a-wUniform-aux := AG(
∨

c∈Ac

KaAXpa
c).

To understand the meaning of this formula, first observe that if an assignment χ binds an agent a to
a strategy σ , i.e. χ(a) = σ , then for every initial path ρ ∈ Paths∗, there is an action c ∈ Ac such that pa

c
holds in all continuations of ρ of the form ρ ′ = ρ ·ds that follow χ: this action is σ(ρ) = d(a), the action
played by Agent a in initial path ρ according to σ . Therefore, Gi,χ,ρ |= AXpa

σ(ρ). It follows that, when
evaluated in an initial path ρ and assignment [a 7→ σ ], where σ is a strategy, formula a-wUniform says
that at every point of every outcome in Out(ρ,χ), there is an action that Agent a plays in all ∼a-related
nodes. Let us fix an ICGS Gi = (G,{∼a}a∈Ag).

Proposition 3 For every initial path ρ ∈ Paths∗ and agent a ∈ Ag, a strategy σ is weakly uniform for
Agent a in ρ if, and only if, Gi, [a 7→ σ ],ρ |= a-wUniform-aux.

However, a-wUniform only has the intended meaning in an assignment that does not bind any other
agent: indeed, otherwise we would only have that the strategy considered is uniform on the subset of its
outcomes that follow the strategies assigned to the other agents. Consider now the following formula:

Definition 5 For each a ∈ Ag, noting {a1, . . . ,ak}= Ag\{a}, we define the formula

a-wUniform := (a1,?) . . .(ak,?)a-wUniform-aux.

The following proposition holds:

Proposition 4 For every initial path ρ ∈ Paths∗, assignment χ and agent a ∈ Ag, a strategy σ is weakly
uniform for Agent a in ρ if, and only if, Gi,χ[a 7→ σ ],ρ |= a-wUniform.

We now illustrate how various semantics of ATL with imperfect information can be expressed in
ESL. We take the example of the ATL formula 〈〈A〉〉Fp, where A ⊆ Ag. Assume that A = {a1, . . . ,ak}
and Ag \A = {ak+1, . . . ,an}. We consider three semantics: the basic one from [15], in which strategies
are just required to be uniform, the de dicto semantics, where in addition the players must know that
there is a strategy to achieve their goal, but may ignore what that strategy is, and the de re semantics, in
which there must exist a strategy that the players know it ensures their goal (see [14], Sec. 3.2). With the
first semantics, 〈〈A〉〉Fp would be translated in ESL as:

〈〈x1〉〉 . . .〈〈xk〉〉(a1,x1) . . .(ak,xk)(
∧

1≤i≤k

ai-wUniform∧AFp).
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For the de dicto semantics, one would write instead:

DA〈〈x1〉〉 . . .〈〈xk〉〉(a1,x1) . . .(ak,xk)(
∧

1≤i≤k

ai-wUniform∧AFp),

while for the de re semantics, one would write:

〈〈x1〉〉 . . .〈〈xk〉〉DA(a1,x1) . . .(ak,xk)(
∧

1≤i≤k

ai-wUniform∧AFp).

One may object that the notion of weak uniformity we consider is too weak compared to the usual
one, which is that a strategy should be equal on all pairs of related initial paths. We argue that it is enough
for a strategy to be uniform on all the initial paths it may be involved in while evaluating the formula.

For instance, in the example above, the objective is AFp, so that it is enough to ensure that strategies
for the agents are uniform on their outcome: if a satisfying set of strategies contains one σi that is not
defined uniformly on some initial paths that are outside its outcome, this σi can easily be turned into a
uniform strategy in the usual sense, it will still satisfy the formula.

Should we consider a more complex objective, in particular involving knowledge, weak uniformity
may not be sufficient though. Consider the ESL formula 〈〈x〉〉(a,x)AGKaAFp, where a ∈ Ag, which
means that Agent a wants a strategy such that she always knows that p will eventually be reached. This
objective not only considers outcomes of the strategy from the current situation, but also outcomes from
initial paths equivalent to the latter outcomes. In this case, we could strengthen the requirement on
Agent a’s strategy by repeating the weak-uniformity requirement after each knowledge operator. In the
example:

〈〈x〉〉(a,x)(a-wUniform∧AGKa(a-wUniform∧AFp)).

Finally, observe that if we introduced an artificial agent amem associated to the relation that relates
two initial paths if they end up in the same state, then the formula amem-wUniform would characterize
strategies that are memoryless on their outcomes from the current initial path, in the sense that their
definition only depends on the last state of each initial path.

5 Conclusion

We have enriched SL with two operators, the path quantifier and the unbinding operator, which are con-
venient but do not add expressivity in the perfect information case; interestingly though, they do not in-
crease complexity either. In the context of imperfect information however, these operators together with
knowledge operators and the ability to talk about actions, allowed us to express properties of strategies
which are usually fixed in the semantics of the logics, such as being uniform, de re, de dicto, memory-
less. . . This feature makes our Epistemic Strategy Logic able to deal with a vast class of agents without
having to change the semantics, and thus unifies many of the previous proposals in the area.

Of course this comes at a price, and the model-checking problem for this logic is certainly un-
decidable with perfect-recall relations and several agents. We believe that the next steps are, first, to
see whether the syntactical fragments studied for SL with perfect information, such as One-Goal or
Boolean-Goal Strategy Logic, can be transferred to BSL and then to ESL, and see whether they enjoy
better complexity properties. The second natural move would be to look at structures which are known
to work well with multiple agents with imperfect information: hierarchical knowledge [7, 20], recurring
common knowledge of the state [6]. . .
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An Arrow-based Dynamic Logic of Norms

Louwe B. Kuijer

We introduce a Normative Arrow Update Logic (NAUL), which combines the formalisms of Arrow
Update Logic (a variant of Dynamic Epistemic Logic) with concepts from Normative Temporal Logic
(a type of Normative System). Using NAUL, we can draw distinctions between dynamic and static
applications of norms, and between additive, multiplicative and sequential combination of norms.
We show that the model checking problem for NAUL can be solved in polynomial time, and that
NAUL is strictly more expressive than both CTL and Arrow Update Logic.

1 Introduction

In many situations an agent will be able to choose between a number of different actions. Sometimes
each choice is as good as another, but usually some constraints will apply. For example, some of the
actions available to the agent may be irrational, illegal, immoral, impolite or in breach of some code of
conduct the agent has agreed to. We refer to such constraints as norms. A norm guides the behavior
of an agent by dividing the available actions into those that are allowed (by the norm) and those that
are disallowed. For example, “don’t commit murder”, “don’t make a losing move if a winning move is
available” and “use knife and fork when eating” are norms (of law, rationality and etiquette respectively).

In order to choose a course of action, we need to be able to make two kinds of decisions. Firstly, we
need to decide whether we will adopt a norm. Secondly, we need to determine whether a given action is
allowed by a norm.1 In order to assist with both decision making procedures we need a logic that allows
us to (a) formally represent norms and (b) determine the consequences of adopting a norm. In this paper,
we introduce Normative Arrow Update Logic (NAUL) for this purpose. In the language of NAUL, we
have two kinds of objects: norms and formulas. A norm N specifies the actions that are allowed by N.
Formulas can contain norm-operators, which allows us to determine the consequences of a norm: [N]ϕ
holds if ϕ is guaranteed to be true under the assumption that all agents obey the norm N.2 For example,
if we want to prevent deadlock, then a norm N will satisfy our goal if and only if [N]G¬deadlock holds.

In addition to allowing agents to determine whether an action is allowed, the explicit representation
of norms in NAUL also allows us to combine norms in three different ways:

Additive an action is allowed by the norm N1 +N2 if it is allowed by either N1 or N2. Example: sup-
pose N1 requires agents to use knife and fork when they eat, and that N2 requires agents to use
chopsticks. Then N1 +N2 allows agents the choice between knife and fork or chopsticks.

Multiplicative an action is allowed by the norm N1×N2 if it is allowed by both N1 and N2. Example:
suppose N1 requires agents to drive on the right side of the road, and that N2 requires agents to
yield to traffic that comes from the right. Then N1×N2 requires agents to do both.

Sequential an action is allowed by the norm N1 ◦N2 if it is among the actions that are allowed by N2
after all actions that are disallowed by N1 are removed. Example: suppose N1 requires agents to

1Note that the agents who decide whether a norm gets accepted are not necessarily the same agents that need to follow the
norm. For example, laws generally do not apply only to the people who wrote them.

2In addition to the “dynamic” norm operator [N], NAUL also uses “static” norm operators �N ,GN and FN . See Section 4.1
for an explanation of the difference between these normative operators.



2 An Arrow-based Dynamic Logic of Norms

obey the law, and that N2 requires agents to pursue their self-interest. Then N1 ◦N2 is a norm that
tells agents to pursue their self-interest, but only within the limits of the law.3

1.1 Overview

The remainder of this paper is organized as follows. First, in Section 2, we compare NAUL to a few
other normative systems. Then, in Section 4, we use an example to illustrate the three different ways of
combining norms, as well as the difference between the static and dynamic normative operators. Finally,
in Section 5, we show that NAUL is strictly more expressive than CTL and AUL*.

2 Comparison to Other Logics

For reasons of brevity we cannot give a full overview of the history of normative systems here, nor can
we compare NAUL to every other logic of norms. We do compare NAUL to four existing logics that are
especially relevant to this paper, because they can be seen as direct predecessors to NAUL. Specifically,
we compare it to AUL* [7], NTL [1], CTL [4] and the social laws from [9].

NAUL combines the technical methods of Arrow Update Logic (AUL*) [7] with ideas from Nor-
mative Temporal Logic (NTL) [1]. There are two differences between NAUL and AUL*. The first
difference is technical in nature: NAUL has G and F temporal operators, while AUL* only has G. The
second difference is non-technical: in AUL* we would interpret an update [N] as an epistemic event,
while in NAUL we interpret [N] as the application of a norm.

The main difference between NAUL and NTL is that, unlike in NAUL, norms in NTL are (to some
extent) meta-logical objects. Specifically, a norm η in NTL is simply a subset of all possible actions. In
NAUL a norm N is not identical to a subset of actions; instead it consists of a number of formulas that
determine a subset of actions that are allowed. Defining norms in this way has three advantages.

Firstly, in NAUL there can be interaction between norms and formulas. As a very simple example,
consider the triple (>,A , p). This triple defines a norm that, roughly speaking, means “do not take any
action that would cause ¬p to hold.” The formula p→ [(>,A , p)]Gp is valid: if everyone obeys the
norm (>,A , p) then p will hold forever. For this validity it is critical that p occurs in both (>,A , p)
and in Gp, so there is interaction between the norm and Gp. Such interaction is impossible if a norm
is simple a set of actions. Secondly, in NTL a norm η could allow an action in one situation while
disallowing it in another, even if the two situations are indistinguishable. If such a norm η were to be
adopted, an agent would be incapable of determining whether the action is allowed. The norm therefore
fails to be action-guiding. In NAUL every norm must be defined using NAUL formulas, so a norm N
automatically treats two situations the same if they are indistinguishable. As such, it is always possible
to determine whether an action is allowed by N.4 Thirdly, because norms are defined we can combine
them sequentially. Consider the sequential example given above, so N1 requires an agent to obey the
law whereas N2 requires an agent to pursue its own self-interest. The effect of N2 changes, depending
on whether we apply it by itself or after first applying N1. Since NTL norms η1,η2 are simply sets of
actions there is no systematic way to change the effect of η2 depending on the application of η1.

NAUL uses a number of temporal operators to describe the consequences of a norm. Specifically, the
operators �, G and F . These correspond to the CTL [4] operators AX ,AG and AF . Normally, EU cannot

3Note that this is different from N1×N2, which would allow an action only if it is both legal and in the agent’s interest. In
cases where following the law is not in the agent’s interest, N1×N2 would forbid every action.

4A side effect of the requirement that norms are defined by NAUL formulas is that NAUL, unlike NTL, is invariant under
bisimulation.
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be defined using only AX ,AG and AF . In NAUL, however, it is possible to see EU as an abbreviation of
other operators. As a result, NAUL is strictly more expressive than CTL, see Section 5.1.

Norms in NAUL are similar to the social laws from [9], except that where social laws in [9] define
forbidden actions only be a precondition, NAUL defines them by both a precondition and a postcondition.
This allows NAUL To model certain norms that cannot be represented as social laws in [9].

3 Normative Arrow Update Logic

3.1 The Setting

We want norms that guide our behavior by telling us whether a given action is allowed. In order to do
this we first need a model of agency. We will use a relatively simple kind of transitions system. Let A
be a finite set of agents and P a countably infinite set of propositional variables.

Definition 1. A model M is a triple M = (S,R,v) where S is a set of states, R : A → S×S maps each
agent to an accessibility relation on S, and v : P → 2S is a valuation. A pointed model is a pair M ,s
where M = (S,R,v) is a model and s ∈ S.

Definition 2. Let M = (S,R,v) be a model. A transition in M is a triple (s1,a,s2) where (s1,s2)∈ R(a).
The transition (s1,a,s2) starts in s1 and ends in s2, and is denoted by s1

a7−→ s2.

The intended meaning of a transition s1
a7−→ s2 is that, if the system is in state s1, then agent a can

take an action that changes the system’s state to s2. We use paths to represent sequences of actions.

Definition 3. A path in M is a (possibly finite) sequence s1
a17−→ s2,s2

a27−→ s3, · · · of transitions in M
where each transitions begins in the state where the previous transition ends. A single state s is considered
a degenerate path that contains no transitions. A path P′ extends a path P if P is an initial segment of P′.

We abuse notation by writing s ∈ P if s is one of the states that occur in P. We also omit the starting
state of all but the first transition in a path, so we write s1

a17−→ s2
a27−→ s3 · · · for s1

a17−→ s2,s2
a27−→ s3, · · · .

Note that we do not require paths to be infinite. By ending paths with · · · we do not imply that they are
infinite, so s1

a17−→ s2
a27−→ s3 · · · may or may not be finite. A path s1

a17−→ s2 · · ·sn
an7−→ sn+1 is always finite,

though.
Remark 1. The transition systems that we use here cannot model simultaneous actions. Simultaneity can
be added to the framework in a relatively straightforward way, but doing so requires significantly more
complicated notation so we will not do so here.

3.2 Defining NAUL

Having dealt with the necessary technical preliminaries we can define Normative Arrow Update Logic.

Definition 4. The formulas of LNAUL are given by

ϕ ::= p | ¬ϕ | ϕ ∨ϕ | [N]ϕ |�Nϕ | GNϕ | FNϕ
N ::= (ϕ,a,ϕ) | N,(ϕ,a,ϕ)

where p,∈P and a ∈A .

Strictly speaking a norm N is a list of clauses, but we abuse notation by identifying it with the set of
its clauses. Additionally, we use a number of abbreviations.
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Definition 5. We use ∧,→,↔,
∧
,
∨

and ♦N in the usual way as abbreviations. Furthermore, we use ĜN

and F̂N as abbreviations for ¬GN¬ and ¬FN¬. Given B ⊆A we write (ϕ,B,ψ) for {(ϕ,a,ψ) | a ∈ B},
�B for �(>,B,>), GB for G(>,B,>) and FB for F(>,B,>). Finally, we use �,G and F for �A , GA and FA .
Remark 2. The operator [N] does not add expressivity; for every formula ϕ containing [N] there is an
equivalent formula ϕ ′ that does not contain [N]. The way to define [N] as an abbreviation for other
operators is rather complicated, however, so it is convenient to define [N] directly.

The semantics of LNAUL are given by the following two interdependent definitions.
Definition 6. Let a model M = (S,R,v) and a norm N be given. A transition s1

a7−→s2 satisfies N if there
is a clause (ϕ,a,ψ) ∈ N such that M ,s1 |= ϕ and M ,s2 |= ψ . A path s1

a17−→ s2
a27−→ s3 · · · is an N-path if

every transition si
ai7−→ si+1 in the path satisfies N. An N-path is full if there is no N-path that extends it.

Definition 7. Let M = (S,R,v) be a transition system and s ∈ S. The relation |= is given as follows.
M ,s |= p ⇔ s ∈ v(p) for p ∈P ,
M ,s |= ¬ϕ ⇔ M ,s 6|= ϕ ,
M ,s |= ϕ1∨ϕ2 ⇔ M ,s |= ϕ1 or M ,s |= ϕ2,
M ,s |=�Nϕ ⇔ for every N-path s a7−→ s′ we have M ,s′ |= ϕ ,
M ,s |= GNϕ ⇔ for every N-path P starting in s and

every s′ ∈ P we have M ,s′ |= ϕ ,
M ,s |= FNϕ ⇔ for every full N-path starting in s there is

some s′ ∈ P such that M ,s′ |= ϕ ,
M ,s |= [N]ϕ ⇔ M ∗N,s |= ϕ

where M ∗N = (W,R∗N,v) and, for every a ∈A ,

R∗N(a) = {(s,s′) ∈ R(a) | s a7−→ s′ satisfies N}.
Note that the single state s is an N-path for every norm N, so M ,s |= GNϕ implies M ,s |= ϕ . Each

of the operators has an intended meaning. For the non-Boolean operators, this meaning is as follows:
�Nϕ “ϕ holds after any single action that is allowed by N”
GNϕ “ϕ holds after every sequence of actions that is allowed by N”
FNϕ “every full sequence of actions that is allowed by N contains at least one ϕ state”
[N]ϕ “if all agents forever obey the norm N from now on, the formula ϕ will hold”

3.3 Combining Norms

As mentioned in the introduction, we want to be able to combine norms in three different ways: addi-
tively, multiplicatively and sequentially. An action is allowed by N1 +N2 if it is allowed by either N1 or
N2, allowed by N1×N2 if it is allowed by both N1 and N2, and allowed by N1 ◦N2 if it is allowed by N2
after all options that do not satisfy N1 are discarded. Using NAUL we can define these norm operators.
Definition 8. Let N1 and N2 be norms. Then

N1 +N2 := N1∪N2

N1×N2 := {(ϕ1∧ψ1,a,ϕ2∧ψ2) | (ϕ1,a,ϕ2) ∈ N1,(ψ1,a,ψ2) ∈ N2}
N1 ◦N2 := N1×{([N1]ψ1,a, [N1]ψ2) | (ψ1,a,ψ2) ∈ N2}

Proposition 1. Let s1
a7−→ s2 be a transition in M . Then

1. s1
a7−→ s2 satisfies N1 +N2 if and only if it satisfies either N1 or N2,

2. s1
a7−→ s2 satisfies N1×N2 if and only if it satisfies both N1 and N2,

3. s1
a7−→ s2 satisfies N1 ◦N2 if and only if it satisfies N1, and it satisfies N2 in M ∗N1.
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3.4 Complexity

Let M = (S,R,v), s ∈ S and ψ be given. We want to determine whether M ,s |= ψ . We can find a
polynomial time algorithm for this problem by modifying the CTL algorithm from [4]. The modified
algorithm works as follows. Start by making a list of all subformulas of ψ and all norms occurring in ψ .
Order this list in the following way. Let ξ1,ξ2 be formulas or norms. Then ξ1 comes before ξ2 if ξ1 is
a part of ξ2, or if neither ξ1 nor ξ2 is part of the other and ξ1 appears to the left of ξ2 in ψ . Now, label
each norm and subformula by the sequence of norms inside the scope of which they appear. Consider,
for example, ψ = [N1][N2]ϕ3 with N2 = (ϕ1,a,ϕ2). Here we would label ϕ3 as ϕN1,N2

3 , N2 as NN1
2 and ϕ1

as ϕN1
1 . Now, go through the list one element at a time. If the element is a norm Nσ , label some of the

transitions in M by σ ,N in the following way.

for each a ∈A
for each (s1,s2) ∈ R(a)

for each (ϕσ
1 ,a,ϕ

σ
2 ) ∈ Nσ

if (s1,s2) is labeled σ and s1 is labeled ϕσ
1 and s2 is labeled ϕσ

2
then label (s1,s2) with σ ,N

If the element is a formula χσ , then label the states by either χσ or χσ . The way to do this labeling
depend on the main connective of χ . For the Boolean and temporal connectives, the labeling is very
similar to that in the CTL algorithm, the only difference is that we ignore transitions that do not have the
right label. We give pseudo-code for the case χσ = GNϕσ , the other cases are as one would expect.

for each s ∈ S
if s is labeled ϕσ

then label s with GNϕσ

for i = 1 to |S|
for each s ∈ S

for each (s,s′) ∈⋃
a∈A R(a)

if (s,s′) is labeled σ ,N and s′ is labeled GNϕσ

then label s with GNϕσ

for each s ∈ S
if s is not labeled GNϕσ

then label s with GNϕσ

The only type of formula that is left is χσ = [N]ϕσ .

for each s ∈ S
if s is labeled ϕN,σ

then label s with [N]ϕσ

else

label s with [N]ϕσ

Note that the way we ordered the list of subformulas and norms guarantees that the labels are avail-
able when needed. The preliminary steps can be done in O(|ψ|2). Labeling transitions with N takes
O(|R| · |N|) ≤ O(|R| · |ψ|). Labeling states takes O(|S| · |R|). There are O(|ψ|) different formulas and
norms with which transitions/states need to be labeled, so the entire algorithm takes O(|S| · |R| · |ψ|2).
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4 Example: Self-driving Cars

Suppose we have a racetrack5 where a number of self-driving cars operate. We want to equip the cars
with norms that will guarantee that they will (a) avoid collisions with each other and with stationary
objects and (b) avoid “deadlock” situations where no one can act.

First, we need to represent a number of relevant facts in NAUL. Let coll, drive right, approach righta
and intersecta be propositional variables that represent “a collision happens”, “the car is driving on the
right side of the road”, “a car approaches from the right (from a’s point of view)” and “a is on an
intersection” respectively. Also note that situations where no one can act are represented by �⊥.

We will first create a norm Nc that is supposed to prevent collisions. The norm should prevent
collisions for every point in the future, but of course it cannot do so if a collision has already occurred.
Nc is therefore successful if we have ¬coll→ [Nc]G¬coll. The simplest way to guarantee this property
is to disallow every action; we have |= ¬coll→ [(⊥,A ,⊥)]G¬coll. Forbidding every action is not a
very suitable solutions, however. Even though we did not explicitly encode this in the goal formula, we
would like to have a reasonable norm, in the sense that (whenever possible) the norm allows at least
one action. We therefore take Nc := (>,A ,¬Fcoll), so agents are not allowed to take any action that
will inevitably lead to a collision at some point in the future. This norm is indeed successful, we have
|= ¬coll→ [Nc]G¬coll.

Next, let us construct a norm Nd that prevents deadlock. Here we have to be a bit careful. We
want Nd to prevent situations where no one can act. We can interpret this either as “there must be some
available action that is, in principle, possible” or as “there must be some available action that is not only
possible but also allowed.” The norm Nd satisfies the first requirement if GNd♦> holds, and the second
requirement if [Nd ]G♦> holds. We will assume that [Nd ]G♦> is a more faithful representation of the
natural language requirement to avoid deadlock. This means (⊥,A ,⊥) will not do. Instead, we should
take Nd := (>,A ,¬F�⊥). This gives us |= ¬F�⊥→ [Nd ]G♦>. In other words, as long as there is an
infinite path the norm Nd forces agents to follow such a path.

Now that we have two norms Nc and Nd that individually prevent collisions and deadlock we only
need to combine the norms. As discussed above, there are three ways to do so. The additive way of
combining the norms is clearly not what we are looking for: Nc +Nd allows agents to collide as long as
they do not cause deadlock at the same time. The multiplicative combination Nc×Nd is more suitable,
it prevents collisions as well as certain kinds of deadlock. However, the norm Nc×Nd is not quite what
we are looking for either. The problem is that Nc ×Nd allows agents to perform actions that result
in a situation where movement, while possible, is disallowed because it will lead to a collision. The
compositional combination solves this problem: the norm Nc ◦Nd allows exactly those actions that lead
to neither collisions nor situations where agents cannot or are not allowed to act. In other words, we have
|= ¬F(coll∨�⊥)→ [Nc ◦Nd ]G(¬coll∧♦>).

4.1 Static and Dynamic Operators

The self-driving cars example is also useful for illustrating the difference between the static operators �N ,
GN , and FN on the one hand, and the dynamic operator [N] on the other. We have M ,s |= GNϕ if ϕ holds
after every sequence of action that starts in s and is allowed by N. Importantly, during the evaluation of
ϕ it is not assumed that everyone follows N. We have M ,s |= [N]Gϕ if, under the assumption that all

5Setting our example on a closed racetrack allows us to ignore complications arising from interaction between robots and
humans. NAUL can, of course, be used to model norms in human-machine interactions as well. That would require more
complicated norms, however, and we want to provide a relatively simple example.
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agents follow N permanently from now on, every sequence of actions leads to a ϕ state. In this case,
during the evaluation of ϕ , we do assume that all agents follow N.

Recall that Nc prevents collisions, we have |= ¬coll→ [Nc]G¬coll. So, under the assumption that all
agents permanently follows Nc, there will be no collisions. But now suppose that we do not completely
trust the agents to follow the norm. If the agents do not follow norms at all, no norm can prevent
collisions. A more interesting situation is if the agents try to follow the norm, but occasionally make
mistakes. Under these circumstances we cannot fully eliminate the possibility of collisions. But we may
be able to make them highly unlikely, by requiring that Nc not only avoids collisions, but also situations
where a single mistake could cause a collision. We cannot phrase this stronger success condition as
[Nc]ϕ for any ϕ . After all, the ϕ in [Nc]ϕ is evaluated under the assumption that all agents follow the
norm Nc—so no mistakes are made. This is where the static operator GNc is useful. Consider the formula
GNc(¬coll∧�¬coll). The � in that formula is not evaluated under the assumption that the agents follow
Nc, so GNc(¬coll∧�¬coll) holds exactly if every sequence of actions allowed by Nc leads to a state
where there is no collision and no single action can cause a collision.

4.2 Simpler norms

Usually, the decision whether to adopt a norm is made in advance, while the decision whether an action
is allowed by a norm has to be made in the heat of the moment. As such, the second type of decisions
is more time-sensitive than the first. Now, consider what we need to know in order to decide whether to
adopt N. Typically, we will have some goal formula ϕg and we have to compute whether N guarantees
this goal, so whether [N]ϕg holds. If, on the other hand, we want to determine whether an action is
allowed by N, the goal formula is irrelevant. All we need to do is determine in which worlds the formulas
contained in N hold. While the model checking problem for NAUL can be solved in polynomial time,
some operators still take more time than others. In particular, GN and FN are relatively expensive while
�N and the Boolean connectives are relatively cheap. As such, it is a good idea to avoid GN and FN

inside norms. That way the most time sensitive decision can be made quickly.
Recall that we chose Nc = (>,A ,¬F�coll). The formula ¬F�coll is relatively expensive, so ideally

we would replace it by a simpler formula. It may be useful to compare our norm Nc to traffic regulations.
The primary purpose of such regulations is to prevent collisions, but instead of the general rule “don’t
cause collisions” they tend to contain a lot of specific instructions such as “drive on the right” and “stop
at a red traffic light.”6 The result is that while it is hard for the lawmakers to decide which rules should
be adopted, it is easy for a driver to determine whether an action is allowed by the rules.

We should try to do something similar for our anti-collision norm. We could, for example, create two
new norms Nr := (>,A ,drive right) and Ny :=

⋃
a∈A {(¬approach righta,a,>),(>,a,¬intersecta)},

which state that agents should drive on the right and that they should not move on to an intersection if
another agent is approaching from the right. Whether the combined norm Nr×Ny is effective (so whether
[Nr×Ny]G¬coll holds) depends on the details of the racetrack on which the agents operate. But if Nr×Ny

is effective, it is a more suitable norm than Nc.

5 Expressivity

In order to better determine the place of NAUL in the landscape of different logics, we will compare its
expressivity to that of two other salient logics: Computation Tree Logic (CTL) [4] and Arrow Update

6Many jurisdictions do have a few general rules in addition to the specific ones, like a ban on reckless driving.
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· · ·
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Figure 1: The model MCTL. The states si and ti satisfy p iff i is odd.

Logic (AUL*) [7].7 For reasons of brevity we do not provide definitions of the logics that we compare
NAUL to, full definitions can be found in the cited publications. We show that NAUL is strictly more
expressive than CTL and AUL*.

Remark 3. CTL is usually interpreted over different models than AUL* and NAUL. In particular, CTL
tends to use single-agent serial models. Strictly speaking, this makes it impossible to compare the ex-
pressivity of NAUL to that of CTL. This problem can be solved by either extending CTL to multi-agent
non-serial models—which can be done in a straightforward way—or by restricting AUL* and NAUL to
single-agent serial models. The results presented here hold regardless of which of these solutions we use.

5.1 NAUL vs. CTL

First, we show that NAUL is at least as expressive as CTL. The subset ¬,∨,AX , AF and EU of CTL
operators is sufficient to define all of CTL. The operators ¬,∨,AX and AF are also NAUL operators,
although AX and AF are denoted � and F in NAUL. As such, it suffices to show that EU can be defined
in NAUL.

Lemma 1. We have |= E(ϕUψ)↔¬G(ϕ,A ,>)¬ψ .

Proof. We have M ,s |= ¬G(ϕ,A ,>)¬ψ if and only if there is a (ϕ,A ,>) path from s that contains a ψ
state. Because such a path is a (ϕ,A ,>) path, it contains only ϕ states before the ψ state. As such,
M ,s |= E(ϕUψ)↔¬G(ϕ,A ,>)¬ψ . This is true for any M ,s, so |= E(ϕUψ)↔¬G(ϕ,A ,>)¬ψ .

Left to show is that CTL is not at least as expressive as NAUL. Consider the model MCTL shown in
Figure 1, and note that the NAUL formula [(p,A ,¬p),(¬p,A , p)]G¬q distinguishes between MCTL,si

and MCTL, ti for all i ∈ N. We show that there is no CTL formula that similarly distinguishes si from ti.

Lemma 2. Let ϕ be any CTL formula, and let n be the modal depth of ϕ . Then ϕ does not distinguish
between MCTL,si and MCTL, ti for i > n.

Proof. By induction. As base case, suppose n = 0. Then ϕ is a Boolean formula, so it cannot distinguish
between si and ti for i 6= 0. Assume as induction hypothesis that the lemma holds for all n′ < n.

If a Boolean combination distinguishes between two states then so does at least one of the combined
formulas, so we can assume without loss of generality that the main connective of ϕ is AX , AF or EU .

• Suppose ϕ = AXψ . In order for ϕ to distinguish between si and ti, ψ must distinguish between ti
and si or si−1 and ti−1. This contradicts the induction hypothesis, since ψ is of modal depth n−1.

7For technical reasons NAUL and NTL are trivially incomparable in expressivity.
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Figure 2: The model M n
AUL.

• Suppose ϕ = AFψ . There are two possibilities. Firstly, ψ may hold on either si or ti. Then, by the
induction hypothesis it holds on both si and ti. As such, ϕ holds on both si and ti, and therefore
does not distinguish between them.
The second possibility is that ψ holds on neither si nor ti. Suppose ϕ does not hold on si, so there
is some path si 7−→ x1 7−→ x2 7−→ ·· · that does not contain a ψ state. Then the path ti 7−→ si 7−→
x1 7−→ x2 7−→·· · also does not contain a ψ state. So ϕ does not hold on ti. Analogously, if ϕ does
not hold on ti then it does not hold on si. This shows that ϕ does not distinguish between si and ti.

• Suppose ϕ = E(ψ1Uψ2). There are three possibilities. The first possibility is that ψ2 holds on
either of si and ti and therefore—by the induction hypothesis—on both. Then ϕ holds on both
states, and therefore does not distinguish between them.
The second possibility is that both ψ1 and ψ2 hold on neither state. Then ϕ holds on neither state,
and therefore does not distinguish between them.
The final possibility is that ψ1 holds on neither state, but ψ1 holds on either and therefore—by the
induction hypothesis—both states. Suppose ϕ holds on si. Then there is some path si 7−→ x1 7−→
x2 7−→ ·· · that satisfies ψ1 until ψ2. This implies that the path ti 7−→ si 7−→ x1 7−→ x2 7−→ ·· · also
satisfies ψ1 until ψ2, so ϕ holds on ti as well. Analogously, this reasoning shows that if ϕ holds on
ti then it also holds on si. This shows that ϕ does not distinguish between si and ti.

In all cases, ϕ doesn’t distinguish si from ti. This completes the induction step and thereby the proof.

Theorem 1. NAUL is strictly more expressive than CTL.

Proof. Lemma 1 shows that NAUL is at least as expressive as CTL. Lemma 2 shows that there is no CTL
formula equivalent to [(p,A ,¬p),(¬p,A , p)]G¬q, so CTL is not at least as expressive as NAUL.

5.2 NAUL vs. AUL*

The only difference between NAUL and AUL* is that NAUL has an FN operator while AUL* does not.
NAUL is therefore trivially at least as expressive as AUL*. Left to show is that AUL* is not at least
as expressive as NAUL. In order to do so, we will use a sequence of models M n

AUL, which is shown in
Figure 2. For reasons of brevity we will assume that AUL* does not contain the [N] operator; we can
safely do this because [N] can be seen as an abbreviation in both NAUL and AUL*.

Lemma 3. Let ϕ be any AUL* formula, and let m be the modal depth of ϕ . Then, for every n > m
and every n ≥ i, j > m, ϕ does not distinguish between M n

AUL,si and M n
AUL, t j. Furthermore, for every

n > i≥ 0, ϕ does not distinguish between M n
AUL,si and M n

AUL, ti.
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Proof. The second claim in the lemma is trivial: for every i < n, the states si and ti are bisimilar and these
logics respect bisimilarity. It remains to show that ϕ cannot distinguish between si and t j for i, j > m.
We do this by induction. As base case, suppose m = 0. For every i, j > 0, the states si and t j agree on all
propositional variables, so ϕ does not distinguish between them.

Suppose then as induction hypothesis that m> 0 and that the lemma holds for all m′<m. If a Boolean
combination of formulas distinguishes between two states then so does at least one of the combined
formulas, so we can assume without loss of generality that the main connective of ϕ is �N or GN .
• Suppose ϕ = �Nψ . In order for ϕ to distinguish between si and t j it is necessary for either ψ or

one of the formulas in N to distinguish between si and t j, or between si−1 and t j−1. Each of the
formulas in N as well as ψ are of modal depth≤m−1, so by the induction hypothesis they cannot
distinguish between these states. This implies that ϕ does not distinguish between si and t j.

• Suppose ϕ = GNψ . In order to distinguish between si and t j, exactly one of the states must have a
path containing a ¬ψ state. There are two ways this could happen: either there is some k such that
exactly one of sk and tk satisfies ψ , or there is a k such that sk and tk both satisfy ¬ψ , but only one
of them is reachable from si or t j by an N-path.
The first option cannot occur; the induction hypothesis implies that ψ cannot distinguish between
sk and tk for any k. The second option also cannot occur. Such a reachability difference would
require some formula in N to distinguish between sk and tk with k < n or between sk and tl with
k, l > m−1. The induction hypothesis implies that neither distinction is possible.

In both cases, ϕ doesn’t distinguish si from t j. This completes the induction step and thereby the proof.

Theorem 2. NAUL is strictly more expressive than AUL*.

Proof. NAUL is trivially at least as expressive as AUL*. From Lemma 3 it follows that there is no AUL*
formula equivalent to the NAUL formula F p.

6 Conclusion

We introduced Normative Arrow Update Logic (NAUL), a logic that used techniques from Arrow Update
Logic (AUL*) and applies them to ideas from Normative Temporal Logic (NTL). Using NAUL, we can
distinguish between additive, multiplicative and sequential combination of norms, as well as between
dynamic and static ways to consider norms. We have shown that the model checking problem of NAUL
can be solved in polynomial time. Furthermore, we have shown and that NAUL is strictly more expres-
sive than AUL* and CTL. In particular, this means that the EU operator from CTL can be simulated in
NAUL, and that the FN operator from NAUL cannot be simulated in AUL*.

We will close by mentioning a few salient topics for further research. Firstly, we still need to find
an axiomatization, as well as an algorithm that solves the satisfiability problem for NAUL. Secondly, in
NAUL an action can only be completely allowed, or completely disallowed. In effect, this means NAUL
makes use of an Andersonian sanction [2]. As a result, NAUL cannot model so-called contrary-to-duty
obligations, see [3, 6, 8]. It may therefore be interesting to extend NAUL with operators that allow
actions to be somewhere in between allowed and disallowed. Thirdly, the model checking algorithm
presented in this paper runs in polynomial time but is still rather inefficient. Developing a more efficient
algorithm might therefore be interesting. Finally, it may be interesting to develop a variant of Arbitrary
Arrow Update Logic (AAUL) [5] that can be applied to NAUL. Such a variant of AAUL would provide
us with formulas of the form [·]ϕ , meaning “there is some norm that guarantees the truth of ϕ .”
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We present infinite extensive strategy profiles with perfect information and we
show that replacing finite by infinite changes the notions and the reasoning tools.
The presentation uses a formalism recently developed by logicians and computer
science theoreticians, called coinduction. This builds a bridge between economic
game theory and the most recent advance in theoretical computer science and
logic. The key result is that rational agents may have strategy leading to diver-
gence.
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1 Introduction

Strategies are well described in the framework of sequential games, aka. games in
extensive forms with perfect information. In this paper, we describe rational strategies
leading to divergence.1 Indeed divergence understands that the games, the strategies
and the strategy profiles are infinite. We present the notion of infinite strategy profiles
together with the logical framework to reason on those objects, namely coinduction.

2 Decisions in Finite Strategy Profiles

To present strategy reasoning, we use one of the most popular framework, namely
extensive games with perfect information ([12] Chapter 5 or [3]) and we adopt its ter-
minology. In particular we call strategy profile an organized set of strategies, merging
the decisions of the agents. This organization mimics this of the game and has the
same structure as the game itself. They form the set2 StratProf. By “organized”, we
mean that the strategic decisions are associated with the nodes of a tree which cor-
respond to positions where agents have to take decisions. In our approach strategy
profiles are first class citizens and games are byproduct. In other words, strategy pro-
files are defined first and extensive games are no more than strategy profiles where all
the decisions have been erased. Therefore we will only speak about strategy profiles,
keeping in mind the underlying extensive game, but without giving them a formal defi-
nition3. For simplicity and without loss of generality, we consider only dyadic strategy
profiles (i.e.; double choice strategy profiles) , that are strategy profiles with only two
choices at each position. Indeed it is easy to figure out how multiple choice extensive

1In this paper we use “divergence” instead of “escalation” since it is somewhat dual convergence a
concept which plays a key role in what follows.

2To be correct, we should say the “they form the coalgebra”.
3A direct definition of games is possible, but is not necessary in this paper.
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strategy profiles can be represented by double choice extensive strategy profiles. We
let the reader imagine such an embedding. Therefore, we consider a set of choices:
Choice= {1,2}.

Along the paper, our examples need only a set of two agents: Agent= {A,B}. In
this paper we use coinduction and corecursion as basic tools for reasoning correctly
about and defining properly infinite objects. Readers who want to know more about
those concepts are advised to read introductory papers [5, 14], while specific applica-
tions to infinite strategy profiles and games are introduced in [9].

Definition 1 A finite strategy profile is defined by induction as follows:

• either given a utility assignment u (i.e., a function u :Agent→R) 〈〈u〉〉 is a finite
strategy profile, which corresponds to an ending position.

• or given an agent a, a choice c and two finite strategy profiles s1 and s2, 〈〈a,c,s1,s2〉〉
is a finite strategy profile.

For instance, a strategy profile can be drawn easily with the convention that 1 is
represented by going down and 2 is represented by going right. The chosen transition
is represented by a double arrow %- . The other transition is represented by a
simple arrow )) . For instance

// A

2
!)

1
		

B

2
%%

1
�

0,5

1,0.5 2,1

is a graphic representation of the strategy profile

sα = 〈〈A,2,〈〈A 7→ 1,B 7→ 0.5〉〉,〈〈B,1,〈〈A 7→ 2,B 7→ 1〉〉,〈〈A 7→ 0,B 7→ 5〉〉〉〉〉〉.

From a finite strategy profile, say s, we can define a utility assignment, which we
write ŝ and which we define as follows:

• 〈̂〈u〉〉= u

• ̂〈〈a,c,s1,s2〉〉= case c of 1→ ŝ1 | 2→ ŝ2

For instance ŝα(A) = 2 and ŝα(B) = 1.
We define an equivalence s =g s′ among finite strategy profiles, which we read as

“s and s′ have the same (underlying) game”.

Definition 2 We say that two strategy profiles s and s′ have the same game and we
write s =g s′ iff by induction

• either s = 〈〈u〉〉 and s′ = 〈〈u〉〉
• or s = 〈〈a,c,s1,s2〉〉 and s′ = 〈〈a′,c′,s′1,s′2〉〉 and a = a′, s1 =g s1 and s2 =g s′2.

We can define a family of finite strategy profiles that are of interest for decisions.
First we start with backward induction. Following [20], we consider ‘backward in-
duction’, not as a reasoning method, but as a predicate that specifies some strategy
profiles.
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Definition 3 (Backward induction) A finite strategy profile s is backward induction
if it satisfies the predicate BI, where BI is defined recursively as follows:

• BI(〈〈u〉〉), i.e., by definition an ending position is ‘backward induction’.

• BI(〈〈a,1,s1,s2〉〉) ⇔ BI(s1)∧BI(s2)∧ ŝ1 ≥ ŝ2.

• BI(〈〈a,2,s1,s2〉〉) ⇔ BI(s1)∧BI(s2)∧ ŝ2 ≥ ŝ1.

In other words, a strategy profile which is not an ending position is ‘backward in-
duction’ if both its direct strategy subprofiles are and if the choice leads to a better util-
ity, as shown by the comparison of the utility assignments to the direct strategy subpro-
files. The two following strategy profiles are ‘backward induction’ [12](Example 158.1)

// A

2
%%

1
�

B

2
%%

1
�

2,1

1,2 0,1

// A

2
!)

1
		

B

2
!)

1
		

2,1

1,2 0,1

An agent is rational if she makes a choice dictated by backward induction and if
she keeps being rational in the future. We write this predicate Rat f where the index
f insists on finiteness making it distinct from the predicate Rat∞ on infinite strategy
profiles.

Definition 4 (Rationality for finite strategy profiles) The predicate Rat f is defined
recursively as follows:

• Rat f (〈〈u〉〉),
• Rat f (〈〈a,c,s1,s2〉〉)⇔∃〈〈a,c,s′1,s′2〉〉 ∈ StratProf,

– 〈〈a,c,s′1,s′2〉〉=g 〈〈a,c,s1,s2〉〉
– BI(〈〈a,c,s′1,s′2〉〉)
– Rat f (sc)

Then we can state a variant of Aumann theorem [1] saying that backward induction
coincides with rationality.

Theorem 5 ∀s ∈ StratProf,Rat f (s)⇔ BI(s).

3 Decisions in Infinite Strategy Profiles

We extend the concept of backward induction and the concept of rationality to infinite
strategy profiles. For that, we replace induction by coinduction.4 Notice that we mix
up recursive and corecursive definitions, and that we reason sometime by induction
and sometime by coinduction. Therefore we advise the reader to be cautious and to
pay attention to when we use one or the other. We write InfStratProf the set of finite
or infinite strategy profiles.

4For readers not familiar with coinduction and not willing to read [5] or [14], we advise her to pretend
just that corecursive definitions define infinite objects and coinduction allows reasoning specifically on
their infinite aspects, whereas recursive definition define finite objects and induction allows reasoning on
their finite aspects.
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Definition 6 The set finite or infinite strategy profiles InfStratProf is defined corecur-
sively as follows:

• either given a utility assignment u, then 〈〈u〉〉 ∈ InfStratProf, which corresponds
to an ending position.

• or given an agent a, a choice c and two strategy profiles s1 ∈ InfStratProf and
s2 ∈ InfStratProf, then 〈〈a,c,s1,s2〉〉 ∈ InfStratProf.

We cannot define the utility assignments on all infinite strategy profiles, only on
those on which the utility can be “computed”. The strategy profiles on which utility
assignments are defined are called convergent, since when one follows the path indi-
cated by the choices one “converges”, that is that one gets to an ending position, i.e., a
position where utilities are actually attributed. The predicate convergent is defined by
induction, meaning that, on s, after finitely many steps following the choices of s an
ending position is reached. “Finitely many steps” is a finite aspect and this is why we
use an inductive definition.

Definition 7 (Convergent) Saying that s is convergent is written ↓ s. ↓ s is defined
by induction as follows:

• ↓ 〈〈u〉〉 or

• if ↓ s1 then ↓ 〈〈a,1,s1,s2〉〉 or

• if ↓ s2 then ↓ 〈〈a,2,s1,s2〉〉 or

On convergent strategy profiles we can assign utilities. The resulting function is
written ŝ when applied to a strategy profile s.

Definition 8 (Utility assignment) ŝ is defined corecursively on every strategy profile.

when s = 〈〈u〉〉 ŝ = f
when s = 〈〈a,1,s1,s2〉〉 ŝ = ŝ1
when s = 〈〈a,2,s1,s2〉〉 ŝ = ŝ2

The function ·̂′ has to be specified on an infinite object and this is why we use a core-
cursive definition.

Proposition 9 If ↓ s, then ŝ returns a value.

Actually convergent strategy profiles are not enough as we need to know the utility
assignment not only on the whole strategy profile but also on strategy subprofiles. For
that, we need to insure that from any internal position we can reach an ending position,
which yields that on any position we can assign a utility. We call always-convergent
such a predicate5 and we write it 2↓.
Definition 10 (Always-convergent)

• 2↓ 〈〈u〉〉 that is that for whatever u, 〈〈u〉〉 is always-convergent

• 2↓ 〈〈a,c,s1,s2〉〉 if

– 〈〈a,c,s1,s2〉〉 is convergent (i.e., ↓ 〈〈a,c,s1,s2〉〉), and
– s1 is always-convergent (i.e., 2↓ s1), and
– s2 is always-convergent (i.e., 2↓ s2).
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Figure 1: Two examples of strategy profiles

Proposition 11 2↓ s ⇒ ↓ s.

s22 in Figure 1 is a typically non convergent strategy profile, wherever s1222 in the
same figure is a typically convergent and not always-convergent strategy profile.

Using the concept of always-convergence we can generalize the notion of back-
ward induction to this that the tradition calls subgame perfect equilibrium [15] and
which we write here SPE. In short SPE is a corecursive generalization of BI. First we
define an auxiliary predicate.

Definition 12 (PE)

PE(s) ⇔ 2↓ s ∧ s = 〈〈a,1,s1,s2〉〉 ⇒ ŝ1(a)≥ ŝ2(a)
∧ s = 〈〈a,2,s1,s2〉〉 ⇒ ŝ2(a)≥ ŝ1(a)

We define SPE as always-PE. In other words, a strategy profile s is a subgame perfect
equilibrium if 2PE(s). 2 applies to a predicate.

Definition 13 (Always) Given a predicate P, the predicate 2P is defined corecur-
sively as follows.

• if P(〈〈u〉〉) then 2P(〈〈u〉〉) and

• if 2P(s1), 2P(s2) and P(〈〈a,c,s1,s2〉〉) then 2P(〈〈a,c,s1,s2〉〉)
Formally SPE is 2PE. Besides we may notice that the notation used for always-
convergence (Definition 10) is consistent with Definition 13. Now thanks to SPE we
can give a notion of rationality for infinite strategy profiles. Like for finite strategy
profiles we define corecursively, this time, an equivalence s =g s′ on infinite strategy
profiles (read s and s′ have the same game). Two strategy profiles have the same game
if at each step, they have the same agent and their respective direct strategy subprofiles
have the same game and only the choices differ.

Definition 14 We say that two strategy profiles s and s′ have the same game and we
write s =g s′ iff corecursively

• either s = 〈〈u〉〉 and s′ = 〈〈u〉〉
• or s = 〈〈a,c,s1,s2〉〉 and s′ = 〈〈a′,c′,s′1,s′2〉〉 and a = a′, s1 =g s1 and s2 =g s′2.

Definition 15 (Rationality for finite or infinite strategy profiles) Rat∞ is defined core-
cursively as follows.

5Traditionally 2 is the notation for the modality (i.e., the predicate transformer) always.
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• Rat∞(〈〈u〉〉),
• Rat∞(〈〈a,c,s1,s2〉〉)⇔∃〈〈a,c,s′1,s′2〉〉 ∈ InfStratProf,

〈〈a,c,s′1,s′2〉〉=g 〈〈a,c,s1,s2〉〉∧SPE(〈〈a,c,s′1,s′2〉〉)∧Rat∞(sc)

The reader may notice the similarity with Definition 4 of rationality for finite games.
The difference is twofold: the definition is corecursive instead of recursive and BI
has been replaced by SPE. Let us now define a predicate that states the opposite of
convergence 6

Definition 16 (Divergence) ↑ s is defined corecursively as follows:

• if ↑ s1 then ↑ 〈〈a,1,s1,s2〉〉,
• if ↑ s2 then ↑ 〈〈a,2,s1,s2〉〉.

s22 in Figure 1 is a typical divergent strategy profile. The main theorem of this paper
can then be stated, saying that there exists a strategy profile that is both divergent and
rational.

Theorem 17 (Risk of divergence) ∃s ∈ InfStratProf,Rat∞(s) ∧ ↑ s.

4 Extrapolating the centipede

As an illustration of the above concepts, we show, in this section, two simple exten-
sions to infinity of a folklore example. The centipede has been proposed by Rosen-
thal [13]. Starting from a wording suggested by Aumann [1] we study two infinite
generalization7. Wikipedia [24] says:

Consider two players: Alice and Bob. Alice moves first. At the start
of the game, Alice has two piles of coins in front of her: one pile contains
4 coins and the other pile contains 1 coin. Each player has two moves
available: either ”take” the larger pile of coins and give the smaller pile
to the other player or ”push” both piles across the table to the other player.
Each time the piles of coins pass across the table, the quantity of coins in
each pile doubles.
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Figure 2: A sketch of a strategy profile of the ∞pede.

6People used to coinduction know why it is better to define divergence directly instead of defining it
as the negation of convergence.

7The reason why we call them ∞pede and ωpede.
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4.1 The ∞pede

P∞(s) is a set of strategy profiles extending the strategy profiles of the centipede. Such
an infinite strategy profile can only be is sketched on Figure 2 . Actually proposing
an infinite extension of the centipede is quite natural for two reasons. First there is
no natural way to make the game finite. Indeed in the definition of the game, nothing
precise is said about its end, when no player decides to take a pile. For instance,
Wikipedia [24] says:

The game continues for a fixed number of rounds or until a player
decides to end the game by pocketing a pile of coins.

We do no know what the utilities are in the end position described as “a fixed number
of rounds”. Since A started, we can assume that the end after a fixed number of rounds
is B’s turn and that there are outcomes like:

1. B receives 2n+1 coins and A receives 2n+3 coins like for the previous B rounds
and that is all.

2. B chooses between

(a) receiving 2n+1 coins whereas A receives 2n+3 or
(b) sharing with A, each one receiving 2n+2.

3. Both A and B receive nothing.

Moreover the statement “Each player has two moves available: either “take” ... or
push...” is not true, in the ending position. We are not hair-splitting since the end
positions are the initializations of the (backward) induction and must be defined as
precisely as the induction step. Ending with 2.(b) does not produce the same backward
induction as the others. Let us consider the strategy profiles

pn = 〈〈A,1,〈〈A 7→ 22n+2,B 7→ 22n〉〉,πn〉〉
πn = 〈〈B,1,〈〈A 7→ 22n+1,B 7→ 22n+3〉〉, pn+1〉〉

In words, the pn’s and the πn’s are the strategy subprofiles of the ∞pede in which Alice
and Bob stop always. Notice that

p̂n(A) = 22n+2 p̂n(B) = 22n

π̂n(A) = 22n+1 π̂n(B) = 22n+3

Theorem 18
1. ∀n ∈ N,SPE(pn)∧SPE(πn),

2. ∀s ∈ InfStratProf,s =g p0∧SPE(s) ⇔ s = p0.

In other words, all the pn’s and the πn’s are ‘backward induction’. Moreover for the
∞pede, p0 is the only ‘backward induction’. strategy profile.

Proof: One can easily prove that for all n, 2↓ pn and 2↓ πn.
Assuming SPE(πn) and SPE(pn+1) (coinduction) and since

̂〈〈A 7→ 22n+2,B 7→ 22n〉〉(A)≥ π̂n(A)

we conclude that SPE(〈〈A,1,〈〈A 7→ 22n+2,B 7→ 22n〉〉,πn〉〉) that is SPE(pn).
The proof of SPE(πn) is similar.
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For the proof of 2. we notice that in a strategy profile in SPE with
the same game as p0, there is no strategy subprofile such that the agent
chooses 2 and the next agent chooses 1. Assume the strategy subprofile is
sn = 〈〈A,2,〈〈A 7→ 22n+2,B 7→ 22n〉〉,〈〈B,1,〈〈A 7→ 22n+1,B 7→ 22n+3〉〉,σn〉〉〉〉.
ans that SPE(sn) and SPE(σn). If it would be the case and if we write
t = 〈〈A 7→ 22n+2,B 7→ 22n〉〉 and t ′= 〈〈B,1,〈〈A 7→ 22n+1,B 7→ 22n+3〉〉,σn〉〉,
we notice that t̂(A) = 22n+2 > t̂ ′(A) = 22n+1. This is in contradiction with
SPE(sn). 2

We deduce that the strategy profile d0, which diverges, is not in Rat∞ and more gener-
ally there is no strategy profile in Rat∞ for the ∞pede.

dn = 〈〈A,2,〈〈A 7→ 22n+2,B 7→ 22n〉〉,πn〉〉
δn = 〈〈B,2,〈〈A 7→ 22n+1,B 7→ 22n+3〉〉, pn+1〉〉
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Figure 3: Strategy profiles p0 and d0 of the ∞pede.

4.2 The ωpede

We know8 that “trees don’t grow to the sky”. In our case this means that there is a
natural number ω after which piles cannot be doubled.footnotePeople speak of limited
payroll. In other words, after ω , the piles keep the same size 2ω . An example of strat-
egy profile is sketched on Figure 4. In this family of strategy profiles, which we write
Pω , the utilities stay stable after the ω th positions. Every always-convergent strategy
profile of Pω , such that agents push until ω is in SPE. We conclude the existence of
rational divergent strategy profiles in Pω . In other words in the ω pede there is a risk
of divergence.

Theorem 19 ∃s ∈ Pω ,Rat∞(s)∧ ↑ s.

One may imagine that divergence is when optimistic agents hope a reverse of the
reverse of tendency.

8Usually agents do not believe this. See [9] for a discussion of the beliefs of the agents w.r.t. the
infiniteness of the world.
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Figure 4: A ‘backward induction‘ strategy profile for the ωpede.

Comments: The ωpede example is degenerated, but it is interesting in two respects.
First, it shows a very simple and naive case of rational divergence. Second it shows
that cutting the infinite game, case 2. (b) is the most natural way, with a equilibrium in
which agents take until the end.

5 Two examples

0,1 strategy profiles 0,1 strategy profiles are strategy profiles with the shape of an
infinite “comb” in which the utilities are 0 for the agent who quits and 1 for the other
agent. It can be shown [8] that strategy profiles where one agent continues always and
the other quits infinitely often (in other words the other agent never continues always)
are in SPE. For this reason, the strategy profile where both agents continue always is
in Rat∞, which shows that divergence is rational.

The dollar auction The dollar auction is a well known game [16, 6, 11]. Its strategy
profiles have the same infinite comb shape as the 0,1 strategy profiles, the ∞pede and
the ωpede with the sequence of pairs of utilities:

(0,100) (95,0) (−5,95) (90,−5) (−10,90) (85,−10) . . . (−5n,100−5n) (100−5(n+1),−5n) . . .

and corresponds to an auction in which the bet of the looser is not returned to her.
We have shown [10] that the dollar auction may diverge with rational agents. People
speak of escalation in this case. The divergent strategy profile of the dollar auction is
in Rat∞.

6 Reflection

Examples like the dollar auction or the 0,1 raise the following question: “How is it
possible in an escalation that the agents do not see that they are entering a hopeless
process?”. The answer is “reflection”. Indeed, when reasoning, betting and choosing,
the agents should leave the world where they live and act in order to observe the diver-
gence. If they are wise, they change their beliefs in an infinite world as soon as they
realize that they go nowhere [17]. This ability is called reflection and is connected
to observability, from the theoretical computer science point of view, which is itself
connected to coalgebras and to coinduction [5]. In other words, agents should leave
the environment in which they are enclosed and observe themselves.
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7 Singularities and divergence

Divergence is called singularity, bubble, crash, escalation, or turbulence according to
the context or the scientific field. In mechanics this is considered as a topics by itself.
Leonardo da Vinci’s drawings show that he considered early turbulence and vortices
and only Reynolds during the XIXth century studied it from a scientific point of view.
In many other domains, phenomena of this family are rejected from the core of the
field, despite they have been observed experimentally. Scientists, among them main-
stream economists [2], prefer smoothness, continuity and equilibria [23] and they often
claim that departing from this leads to “paradoxes” [16]. In [7], we surveyed Zeno of
Elea’s paradox from the point of view of coinduction, as well as Weierstrass func-
tion [22], the first mathematical example showing discontinuity at the infinite. Here
we would like to address two other cases. In 1935, that is one year before his fa-
mous article in the Proceedings of the London Mathematical Society [19], Alan Turing
wrote a paper [18] presenting his result for a publication in the Proceedings of the
French Academy of Science. In this paper he calls “nasty” a machine that terminates
and “nice” a machine that does not terminate, showing his positive view of non termi-
nating computations.9 In 1795, Laplace published his book Exposition du Système du
Monde and proposed the first clear vision of the notion of blackhole, but probably in
order not to hurt his contemporaries, he found wiser to remove this presentation from
the third edition of his book. Then we had to wait Schwartzschild in 1915, few months
after the publication by Einstein of the general theory of relativity, for a second pro-
posal of the concept of blackhole. But at that time the general relativity was not yet
fully accepted as were not blackholes. Only recently, at the end of the last century,
the general relativity has been considered as “the” theory of gravitation and there is no
more doubt on the existence of blackholes. Since blackholes are singularities in gravi-
tation, they are for the general theory of relativity the equivalent of divergent strategy
profiles for game theory.

Contribution of this paper

Unlike previous presentations of similar results [10, 8, 21] here we focus on the con-
cept of strategy profile which is central for the those of convergence, of divergence
and of equilibrium and is more targeted for a workshop on strategy reasoning. More-
over we introduce the ωpede (a new infinite version of the centipede) and “divergent”
strategy profiles are those that where called “escalation” in previous literature. This
terminology seems better fitted for its duality with convergence.

8 Conclusion

We have shown that strategy profiles in which no fixed limit is set must be studied as
infinite objects using coinduction and corecursion. In these infinite objects, the risk of
divergence is real and should be considered seriously.

9Notice that he changed his terminology in [18] and calls “circular” the terminating machine and
“circular-free” the non terminating machine.
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In this paper we start with augmenting weighted boolean game with norms. Using ideas from in-
put/output logic, the normative status of strategies are discussed. The preference relation in boolean
games are refined by the normative status of strategies. Normative boolean game and notions like
normative Nash equilibrium are then introduced. After formally presenting the model, we use an
example to show that non-optimal Nash equilibrium can be avoided by making use of norms. We
study the complexity issues related to normative status and normative Nash equilibrium.
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1 Introduction

Generally speaking, the study of the interplay of games and norms can be divided into two main branches:
the first, mostly originating from economics and game theory [20], treats norms as mechanisms that
enforce desirable properties of social interactions; the second, that has its roots in social sciences and
evolutionary game theory [13] views norms as (Nash or correlated) equilibrium that result from the
interaction of rational agents. This paper belongs to the first branch. Our research question is:

How to regulate agents’ behaviors using norms in boolean games?

Boolean game is a class of games based on propositional logic. It was firstly introduced by Harrenstein
et al. [19] and further developed by several researchers [18, 15, 8]. In a boolean game, each agent
i is assumed to have a goal, represented by a propositional formula φi over some set of propositional
variables P. Each agent i is associated with some subset Pi of the variables, which are under the unique
control of agent i. The choices, or strategies, available to i correspond to all the possible assignment of
truth or falsity to the variables in Pi. An agent will try to choose an assignment so as to satisfy his goal
φi. Strategic concerns arise because whether i’s goal is in fact satisfied will depend on the choices made
by other agents.

Norms are social rules regulating agents’ behavior by prescribing which actions are obligatory, for-
bidden or permitted. In the boolean game theoretical setting, norms classify strategies as moral, legal or
illegal. Such classification transforms the game by updating the preference relation in the boolean game.
By designing norms appropriately, non-optimal equilibrium in the original game might be avoided. To
represent (conditional) norms in boolean games, we need a logic of norms, which has been extensively
studied in the deontic logic community.

In the first volume of the handbook of deontic logic [16], input/output logic [23] appears as one of
the new achievement in deontic logic in recent years. Input/output logic takes its origin in the study of
conditional norms. The basic idea is: norms are conceived as a deductive machine, like a black box
which produces normative statements as output, when we feed it factual statements as input.



2 Preference Refinement in Normative Multi-agent System

In this paper, using ideas from input/output logic, the normative status of strategies are discussed. The
preference relation in boolean games are refined by the normative status of strategies. We understand
this as the mechanism of norms regulate agents’ behaviors. Normative boolean game and notions like
normative Nash equilibrium are then introduced. We show in this paper non-optimal Nash equilibrium
can be avoided by making use of norms.

The structure of this paper is the following: We present some background knowledge, including
boolean game, input/output logic and complexity theory in Section 2. Normative boolean game is intro-
duced and its complexity issues are studied in Section 3. We conclude this paper in Section 4.

2 Background

2.1 Propositional logic

Let P= {p0, p1, . . .} be a finite set of propositional variables and LP be the propositional language built
from P and boolean constants > (true) and ⊥ (false) with the usual connectives ¬,∨,∧,→ and ↔.
Formulas of LP are denoted by φ ,ψ etc. A literal is a variable p ∈ P or its negation. 2P is the set of the
valuations for P, with the usual convention that for V ∈ 2P and p ∈V , V gives the value true to p if p ∈V
and false otherwise. � denotes the classical logical consequence relation.

Let X ⊆ P, 2X is the set of X-valuations. A partial valuation (for P) is an X-valuation for some X ⊆ P.
Partial valuations are denoted by listing all variables of X , with a “+ ” symbol when the variable is set
to be true and a “− ” symbol when the variable is set to be false: for instance, let X = {p,q,r}, then
the X-valuation V = {p,r} is denoted {+p,−q,+r}. If {P1, . . . ,Pn} is a partition of P and V1, . . . ,Vn are
partial valuations, where Vi ∈ 2Pi , (V1, . . . ,Vn) denotes the valuation V1∪ . . .∪Vn.

2.2 Boolean game

Boolean games introduced by Harrenstein et al [19] are zero-sum games with two players, where the
strategies available to each player consist in assigning a truth value to each variable in a given subset of
P. Bonzon et al [7] give a more general definition of a boolean game with any number of players and not
necessarily zero-sum. Sun [36] further generalizes boolean games such that the utility of each agent is
not necessarily in {0,1}. Such generalization is reached by representing the goals of each agent as a set
of weighted formulas. We call such boolean game weighted boolean game. The idea of using weighted
formulas to define utility can also be found in many literature among which we mention satisfiability
game [4] and weighted boolean formula game [27].

Definition 1 (weighted boolean game) A weighted boolean game is a 4-tuple (Agent, P,π,Goal), where

1. Agent = {1, . . . ,n} is a set of agents.

2. P is a finite set of propositional variables.

3. π : Agent 7→ 2P is a control assignment function such that {π(1), . . . ,π(n)} forms a partition of P.
For each agent i, 2π(i) is the strategy space of i.

4. Goal = {Goal1, . . . ,Goaln} is a set of weighted formulas of LP. That is, each Goali is a finite set
{〈φ1,m1〉, . . . ,〈φk,mk〉} where φ j ∈ LP and m j is a real number representing the weight of φ j.

A strategy for agent i is a partial valuation for all the variables i controls. Note that since {π(1), . . . ,
π(n)} forms a partition of P, a strategy profile S is a valuation for P. In the rest of the paper we make use
of the following notation, which is standard in game theory. Let G = (Agent,P,π,Goal) be a weighted
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boolean game with Agent = {1, . . . ,n}, S = (s1, . . . ,sn) be a strategy profile, we use S−i to denote the
projection of S on Agent−{i}: S−i = (s1, . . . ,si−1,si+1, . . . ,sn) and Si to denote the projection of S on i’s
strategy.

Agents’ utilities in weighted boolean games are induced by their goals. For every agent i and every
strategy profiles S, ui(S) = Σ{m j : 〈φ j,m j〉 ∈ Goali,S � φ j}. Agent’s preference over strategy profile
is induced by his utility function naturally: S ≤i S′ iff ui(S) ≤ ui(S′). Dominating strategies and pure-
strategy Nash equilibria are defined as usual in game theory [28].

2.3 Input/output logic

In input/output logic, a norm is an ordered pair of formulas (φ ,ψ) ∈ LP×LP. There are two types of
norms which are used in input/output logic, obligatory norms and permissive norms. Let N = O∪P be a
set of obligatory and permissive norms. A pair (φ ,ψ)∈O, call it an obligatory norm, is read as “given φ ,
it is obligatory to be ψ”. A pair (φ ,ψ) ∈ P, call it a permissive norm, is read as “given φ , it is permitted
to be ψ”.

Obligatory norms O can be viewed as a function from 2LP to 2LP such that for a set Φ of formulas,
O(Φ) = {ψ ∈ LP : (φ ,ψ) ∈ O for some φ ∈Φ}.

Definition 2 (Semantics of input/output logic [23]) Given a finite set of obligatory norms O and a fi-
nite set of formulas Φ, out(O,Φ) = Cn(O(Cn(Φ))), where Cn is the consequence relation of proposi-
tional logic, i.e Cn(Φ) = {φ ∈ LP : Φ � φ}.1

Intuitively, the procedure of the semantics is as following: We first have in hand a set of formulas Φ (call
it the input) as a description of the current state. We then close it by logical consequence Cn(Φ). The
set of norms, like a deductive machine, accepts this logically closed set and produces a set of formulas
O(Cn(Φ)). We finally get the output Cn(O(Cn(Φ))) by applying the logical closure again. ψ ∈ out(O,φ)
is understood as “ψ is obligatory given facts Φ and norms O”.

2.3.1 Permission in input/output logic

Philosophically, it is common to distinguish between two kinds of permission: negative permission and
positive permission. Negative permission is straightforward to describe: something is negatively permit-
ted according to certain norms iff it is not prohibited by those norms. That is, iff there is no obligation to
the contrary. Positive permission is more elusive. Makinson and van der Torre [25] distinguish two types
of positive permission: static and dynamic permission. For the sake of simplicity, in this paper when
discussing positive permission we only mean static permission.

Definition 3 (negative permission [25]) Given a finite set of norms N = O∪P and a finite set of formu-
las Φ, NegPerm(N,Φ) = {ψ ∈ LP : ¬ψ 6∈ out(O,Φ)}.

Intuitively, φ is negatively permitted iff φ is not forbidden. Since a formula is forbidden iff its
negation is obligatory, φ is not forbidden is equivalent to ¬φ is not obligatory. Permissive norms plays
no role in negative permission.

1In Makinson and van der Torre [23], this logic is called simple-minded input/output logic. Different input/output logics are
developed in Makinson and van der Torre [23] as well. For example reusable input/output logic validates transitivity. In that
logic we can derive r from Φ = {p} and O = {(p,q),(q,r)}. A technical introduction of input/output logic can be found in Sun
[35].
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Definition 4 (positive permission [25]) Given a finite set of formulas Φ, a finite set of norms N = O∪P
where O is a set of obligatory norms and P is a set of permissive norms.

• If P 6= /0, then PosPerm(N,Φ) = {ψ ∈ LP : ψ ∈ out(O∪{(φ ′,ψ ′)},Φ), for some (φ ′,ψ ′) ∈ P}}.
• If P = /0, then PosPerm(N,Φ) = out(O,Φ).

Intuitively, permissive norms are treated like weak obligatory norms, the basic difference is that
while the latter may be used jointly, the former may only be applied one by one. As an illustration of
such difference, image a situation in which a man is permitted to date one of several girls, but not all of
them.

2.4 Complexity theory

Complexity theory is the theory to investigate the time, memory, or other resources required for solving
computational problems. In this subsection we briefly review those concepts and results from complexity
theory which will be used in this paper. More comprehensive introduction of complexity theory can be
found in Arora and Barak [3].

We assume the readers are familiar with notions like Turing machine and the complexity class P,
NP and coNP. The boolean hierarchy is the hierarchy of boolean combinations (intersection, union and
complementation) of NP classes. BH1 is the same as NP. BH2 is the class of languages which are the
intersection of a language in NP and a language in coNP. Wagner [40] shows that the following 2-parity
SAT problem is complete for BH2:

Given two propositional formulas φ1 and φ2 such that if φ2 is satisfiable then φ1 is satisfiable, is it true
that φ1 is satisfiable while φ2 is not?

Oracle Turing machine and two complexity classes related to oracle Turing machine will be used in
this paper.

Definition 5 (oracle Turing machine [3]) An oracle for a language L is a device that is capable of
reporting whether any string w is a member of L. An oracle Truing machine ML is a modified Turing
machine that has the additional capability of querying an oracle. Whenever ML writes a string on a
special oracle tape it is informed whether that string is a member of L, in a single computation step.

PNP is the class of problems solvable by a deterministic polynomial time Turing machine with an NP
oracle. NPNP is the class of problems solvable by a non-deterministic polynomial time Turing machine
with an NP oracle.

3 Normative status

Definition 6 (normative multi-agent system) A normative multi-agent system is a triple (G,N,E) where

• G = (Agent,P,π,Goal) is a weighted boolean game.

• N = O∪P⊆ LP×LP is a finite set of obligatory and permissive norms.

• E ⊆ LP is a finite set of formulas representing the environment.

In a normative multi-agent system, strategies are classified as moral, legal or illegal. Such classifica-
tion is sensitive to not only the normative system but also the environment.
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+q −q
+p (1,1) (0,1)
−p (0,1) (0,0)

Definition 7 (moral, legal and illegal strategy) Given a normative multi-agent system (G,N,E), for
each agent i, a strategy (+p1, . . . ,+pm,−q1, . . . ,−qn) is moral if

p1∧ . . .∧ pm∧¬q1∧ . . .∧¬qn ∈ out(O,E).

The strategy is positively legal if

p1∧ . . .∧ pm∧¬q1∧ . . .∧¬qn ∈ PosPerm(N,E).

The strategy is negatively legal if

p1∧ . . .∧ pm∧¬q1∧ . . .∧¬qn ∈ NegPerm(N,E).

The strategy is illegal if

¬(p1∧ . . .∧ pm∧¬q1∧ . . .∧¬qn) ∈ out(O,E).

Moral, positively legal, negatively legal and illegal are the four normative positions of strategies. We
assume the normative position degrades from moral to positively legal, then further to negatively illegal,
and finally to illegal. The normative status of a strategy is the highest normative position it has.

Example 1 Let (G,N,E) be a normative multi-agent system as following:

• G = (Agent,P,π,Goal) is a weighted boolean game with

– Agent = {1,2},
– P= {p,q},
– π(1) = {p}, π(2) = {q},
– Goal1 = {〈p∧q,1〉}, Goal2 = {〈p∨q,1〉}.

• N = O∪P where O = {(>, p)},P = {(>,q)}.
• E = /0.

Then out(O,E)=Cn({p}), Perm(O,E)=Cn({p,q}). Therefore normative status of +p,+q,−q,−p
is respectively moral, positively legal, negatively legal and illegal. a

Theorem 1 Given a normative multi-agent system (G,N,E) and a strategy (+p1, . . . ,+pm,−q1, . . . ,−qn),
deciding whether this strategy is negatively legal is NP complete.

Proof: Concerning the NP hardness, we prove by reducing the satisfiability problem of propositional
logic to our problem: Let φ ∈ LP be a formula. Let O = {(¬φ ,¬p)}, E = /0. Then p ∈ NegPerm(N,E)
iff ¬p 6∈ out(O,E) =Cn(O(Cn(E))) =Cn(O(Cn(>))) iff 6� ¬φ iff φ is satisfiable.

Now we prove the NP membership. We provide the following non-deterministic Turing machine to
solve our problem. Let O = {(φ1,ψ1), . . . ,(φn,ψn)}, E be a finite set of formulas and p1 ∧ . . .∧ pm ∧
¬q1∧ . . .∧¬qk be a formula.

1. Guess a sequence of valuation V1, . . . ,Vn,V ′ on the propositional letters appears in E∪{φ1, . . . ,φn}∪
{ψ1, . . . ,ψn}∪{p1∧ . . .∧ pm∧¬q1∧ . . .∧¬qk}.
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2. Let N′ ⊆ N be the set of obligatory norms which contains all (φi,ψi) such that Vi(E) = 1 and
Vi(φi) = 0.

3. Let Ψ = {ψ : (φ ,ψ) ∈ N−N′}.
4. If V ′(Ψ) = 1 and V ′(¬(p1∧ . . .∧ pm∧¬q1∧ . . .∧¬qk)) = 0. Then return “accept” on this branch.

Otherwise return “reject” on this branch.

The main intuition of the proof is: N′ collects all norms which cannot be triggered by E. 2 In
some branches we much have that N′ contains exactly those norms which are not triggered by E. In
those lucky branches Ψ is the same as N(Cn(E)). If there is a valuation V ′ such that V ′(Ψ) = 1 and
V ′(¬(p1∧ . . .∧ pm∧¬q1∧ . . .∧¬qk)) = 0, then we know ¬(p1∧ . . .∧ pm∧¬q1∧ . . .∧¬qk) 6∈Cn(Ψ) =
Cn(N(Cn(E))).

It can be verified that ¬(p1 ∧ . . .∧ pm ∧¬q1 ∧ . . .∧¬qk) 6∈ Cn(O(Cn(E))) iff the algorithm returns
“accept” on some branches and the time complexity of the Turing machine is polynomial. a
Corollary 1 Given a normative multi-agent system (G,N,E) and a strategy (+p1, . . . ,+pm,−q1, . . . ,−qn),
deciding whether this strategy is moral/illegal is co-NP complete.

Corollary 2 Given a normative multi-agent system (G,N,E) and a strategy (+p1, . . . ,+pm,−q1, . . . ,−qn),
deciding whether the normative status of this strategy is moral is co-NP complete.

Theorem 2 Given a normative multi-agent system (G,N,E) and a strategy (+p1, . . . ,+pm,−q1, . . . ,−qn),
deciding whether this strategy is positively legal is coNP complete.

Proof: The coNP hardness can be proved by a reduction from the tautology problem of propositional
logic. Here we omit the details.

Concerning the coNP membership, let N =O∪P, P= {(φ1,ψ1), . . . ,(φm,ψm)}. Note that PosPerm(N,
E) = out(O∪{(φ1,ψ1)} ,E)∪ . . .∪out(O∪{(φm,ψm)},E). The NP membership follows from the fact
that the NP class is closed under union. a
Theorem 3 Given a normative multi-agent system (G,N,E) and a strategy (+p1, . . . ,+pm,−q1, . . . ,−qn),
deciding whether the normative status of this strategy is positively legal is BH2 complete.

Proof: The BH2 hardness can be proved by a reduction from the 2-Parity SAT problem. Given two
propositional formulas φ1 and φ2 such that if φ2 is satisfiable then φ1 is satisfiable. Our aim is to decide
if φ1 is satisfiable and φ2 is not satisfiable.

Let N = O∪P, O = (¬φ1, p), P = (¬φ2, p), E = /0. Then the normative status of +p is positively
legal iff p 6∈ out(O, /0) and p ∈ out(O∪P, /0) iff p 6∈Cn(O(Cn( /0)) and p 6∈Cn(O∪P(Cn( /0)) iff ¬φ1 is not
a tautology and ¬φ2 is a tautology, which is equivalent to φ1 is satisfiable and φ2 is not satisfiable.

The BH2 membership is proved by showing that deciding whether the normative status of a strategy
is positively legal is in fact a intersection of a NP problem (the strategy is not moral) and a coNP problem
(the strategy is positively legal). Here we omit the details. a
Theorem 4 Given a normative multi-agent system (G,N,E) and a strategy (+p1, . . . ,+pm,−q1, . . . ,−qn),
deciding whether the normative status of this strategy is negatively legal is NP complete.

Proof: The NP hardness is easy to prove. Here we focus on the NP membership. Let N = O∪ P,
P = {(φ1,ψ1), . . . ,(φk,ψk)}.

The normative status of this strategy is negatively legal iff the following are true:

2We say a norm (φ ,ψ) is triggered by E if φ ∈Cn(E)).
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• p1∧ . . .∧ pm∧¬q1∧¬qn 6∈ out(O,E).

• p1∧ . . .∧ pm∧¬q1∧¬qn 6∈ out(O∪{(φ1,ψ1)},E).
• . . . . . .

• p1∧ . . .∧ pm∧¬q1∧¬qn 6∈ out(O∪{(φk,ψk)},E).
• ¬(p1∧ . . .∧ pm∧¬q1∧¬qn) 6∈ out(O,E).

The NP membership follows from the fact that the NP class is closed under intersection. a
Theorem 5 Given a normative multi-agent system (G,N,E) and a strategy (+p1, . . . ,+pm,−q1, . . . ,−qn),
deciding whether the normative status of this strategy is illegal is BH2 complete.

Proof: Similar to the proof of Theorem 3. a

3.1 Normative boolean game

In a normative multi-agent system, agent’s preference over strategy profiles is changed by the normative
status of strategies. The basic ideas is:

1. an agent prefers strategy profiles with higher utility.

2. for two strategy profiles of the same utility, the agent prefers the one which contains his strategy
of higher normative status.

Definition 8 (normative boolean game) Given a normative multi-agent system (G,N,E) where G =
(Agent,P,π,Goal), it induces a normative boolean game GN = (Agent,P, π,≺1, . . .≺n) where ≺i is the
preference of i over strategy profiles such that S≺i S′ if either

ui(S)< ui(S′)

or

ui(S) = ui(S′) and the normative status of S′i is higher than that of Si.

Theorem 6 Given a normative multi-agent system (G,N,E), an agent i and two strategy profiles S and
S′, deciding whether S≺i S′ is in PNP.

Proof: (sketch) This problem can be solved by a polynomial time deterministic Turing machine with an
NP oracle. We only need to call the oracle to test if S is moral, positively legal, negative legal or illegal.
And the same test for S′. The utility of S and S′ can be calculated in polynomial time. a
Definition 9 (normative Nash equilibrium) Given a normative multi-agent system (G,N,E), a strat-
egy profile S is a normative Nash equilibrium if it is a Nash equilibrium in the normative boolean game
GN .

Normative Nash equilibrium, as a solution concept of normative boolean games, is a refined notion
of Nash equilibrium. Every normative Nash equilibrium is a Nash equilibrium, but not vice verse.

Example 2 Let (G,N,E) be a normative system as following:

• G = (Agent,P,π,Goal) is a boolean game with

– Agent = {1,2},
– P= {p,q},
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+q −p
+p (2,1) (1,1)
−p (0,0) (0,0)

– π(1) = {p}, π(2) = {q},
– Goal1 = {〈p∧q,2〉,〈p∧¬q,1〉} Goal2 = {〈p,1〉}.

• N = O∪P where O = {(>,q)}, P = /0.

• E = /0.

There are two Nash equilibria: ({+p},{+q}) and ({+p},{−q}). There is only one normative Nash
equilibrium: ({+p},{+q}). From the perspective of social welfare, ({+p},{−q}) is not an optimal
equilibrium because its social welfare is 1+1= 2, while the social welfare of ({+p},{+q}) is 2+1= 3.
Therefore this example shows that by designing norms appropriately, non-optimal equilibrium is avoided.

Theorem 7 Given a normative multi-agent system (G,N,E) and a strategy profile S, deciding whether
S is normative Nash equilibrium is in coNPNP.

Proof: (sketch) The complement of this problem can be solved by a polynomial time non-deterministic
Turing machine with an NP oracle: if S is not a normative Nash equilibrium, then we can guess a strategy
S′ = (s′i,S−i) such that S ≺i S′ for some agent i. With the help of an NP oracle, testing if S ≺i S′ can be
done in polynomial time.

a

4 Conclusion

In the present paper we augment weighted boolean game with norms. Using ideas from input/output
logic, the normative status of strategies are discussed. The preference relation in boolean games are
refined by the normative status of strategies. Normative boolean game and notions like normative Nash
equilibrium are then introduced. After formally presenting the model, we use an example to show that
non-optimal Nash equilibrium can be avoided by making use of norms. We study the complexity issues
related to normative status and normative Nash equilibrium. Some of our complexity results are not
complete, which leaves rooms for future work.
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