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Abstract Ransomware encrypts files on a target’s computer, demand-
ing a payment in return for decrypting the files. However, ransomware
authors do not know the value of the data their malware has encrypted.
We present a dynamic pricing approach using a logit model to learn the
willingness to pay of a population of companies, allowing better pricing.
We then explore how price perturbations, the reliability of ransomware,
and the amount of information sharing between companies affects ran-
somware revenue. Finally, we draw insights from the model about ran-
somware prevention.

1 Introduction

Ransomware is a type of malware that denies access to files on an infected device
until a ransom has been paid. Typically, the files are encrypted and payment
of the ransom results in the return of the cryptographic key that allows their
decryption. Ransomware has been growing as a threat; recent varieties, such as
WannaCry, Petya, and BadRabbit show increasing sophistication and ability to
infect devices. Many businesses choose to pay the ransom in order to recover
their data [5], with average ransom demands of over $500 (in 2017) and over
$1000 (in 2016) [10].

In this paper we model a dynamic pricing strategy for ransomware, where the
ransomware authors — unaware of the value of the data they have encrypted or
whether backups of the data exist — learn the willingness to pay of a population
of companies through the companies’ decisions to pay or not pay the ransom.
Understanding how ransom demands can be priced can give insights into the
effects of businesses’ decisions to employ backups or to share information about
payments on the profits of ransomware authors.

In Section 2, next, we discuss related work. Then, in Section 3 we present the
structure of the model. Section 4 explores the results of simulating the model
under a number of different parameters. Finally, Section 5 concludes the paper
with insights from the model about ransomware prevention.



2 Related Work

There has been a limited, but growing, amount of research into economic aspects
of ransomware. In [4], the authors discuss ransomware profitability and pricing,
including how ransomware authors should adjust the ransom price to maximise
profit. The paper also discusses how price discrimination and bargaining can
affect ransomware profits, along with the determinants of victims’ willingess to
pay.

Other research has taken game theoretic approach: [6] looks at the interac-
tions of the attacker and defender, and focuses particularly on the investment in
mitigations (such as backup technologies). Some variants of ransomware allow
the ransomware authors and victims to communicate, which makes it possible
to bargain about the price of the ransom. This case, in which the victim can
make a counter-offer is explored in [1], where the authors relate ransomware to
kidnapping and build a game theoretic model.

Other work looks at the payments made to ransomware authors. Bitcoin
transactions, which are commonly used for ransomware payments are publibly
visible; [8] traces the payments made to known ransomware addresses using
bitcoin, and finds that a minimum of nearly $12.8 million was paid.

In this paper, we consider dynamic pricing that uses a logit model to learn
the population’s willingess to pay, which has has been studied extensively. The
basic model, introduced in work such as [9], looks at a company making pric-
ing decisions as it sells to a sequence of customers; there is a trade-off between
learning the demand curve and maximising revenue. Finding optimal policies
is a very difficult problem, so much work explores the effectiveness of different
heuristics for myopic policies. In [3], heuristics for learning between two possi-
ble demand models with a myopic Bayesian policy are developed. Similarly, [2]
finds upper and lower bounds for the pricing problem, and finds near-optimal
heuristics. In [7], dithering strategies are analysed, in which perturbations of
myopically optimal price can lead to increased rates of learning.

3 The Model

There are many different types of ransomware that operate in many different
ways. For example, some ransomware allows communication between the ran-
somware authors and the owner of the affected device, meaning that bargaining
about the price is possible; other types increase the payment amount after some
amount of time. Similarly, companies may employ many different defenses and
countermeasures to prevent or reduce the cost of ransomware infection.

This model looks at a simplified picture of ransomware. We consider only
ransomware variants where communication is not possible, and the price is fixed
once announced to the target — there is no bargaining or negotiation. We also re-
strict the model to consider just one type of countermeasure against ransomware:
the use of backups, which allow the hostage data to be restored without paying
the ransom, for a small cost (representative of time or effort).



3.1 Companies

We model a population of N companies. Each company has a value for the
data that gets encrypted by the ransomware. Some proportion of companies use
backup technology, which can restore the lost data for a small cost.

The reward, rp,i, for a company i that pays the ransom is defined as

rp,i = di E[ρ]

where di ∼ N(1000, 150) is the value of the data for the company, and E[ρ] is
the expected reliability of the ransomware — essentially, how likely paying the
ransom will result in the return of data.

The reward, rn,i for a company that does not pay the ransom is defined as

rn,i =

{
0 if bi = 0

di − ci if bi = 1

where bi indicates whether the company uses backup technology that can allow
it to recover the data for a cost ci ∼ N(150, 50).

The willingness to pay of a company is then given by

wi = rp,i − rn,i

which describes how much the are willing to pay to a ransomware author in
order to recover their data. Figure 1 shows how the willingness to pay values of
the companies are distributed. It is bimodal, split between the companies using
backups and those that are not.
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Figure 1: Distribution of the ransom values companies are willing to pay, when
30% of the population is using backups.



3.2 Ransomware Author
We assume that the ransomware author does not know the value of the data
that the ransomware has encrypted on the company’s machine, nor do they
know whether or not the company employs some sort of backup mechanism
which would allow the company to recover its data relatively inexpensively. They
should select a price that gives the greatest expected revenue given their belief
about the population’s willingness to pay, and can learn from the prices and
results (whether or not the company paid the ransom) in order to improve their
ability to predict the best price.

We model this as a sequence of price decisions and feedback. At each time
period t, the ransomware infects a company i and the ransomware author de-
cides a ransom price, xt; the company then chooses to either pay the ransom,
if the price is less than their willingness to pay, or not pay, if it is greater. The
ransomware author then uses this binary feedback, st, to update their model of
the population:

st =

{
1 if xt < wi

0 if xt ≥ wi

and receives revenue vt:

vt =

{
xt if st = 1

0 if st = 0

The goal of the malware author is to maximise total revenue V :

V =

T∑
t=1

vt

The population of companies is represented (from the ransomware author’s
perspective) using a logit model, which describes how the binary purchase deci-
sion of companies depends on the price. The model estimates the probability of
a decision to pay the ransom for a given price. The parameters of this model are
determined using a Bayesian logistic regression, which gets updated after each
time period. We assume that the ransomware author has some knowledge of the
willingness to pay distribution, and so we create a prior by generating a small
number of companies and random price points, and fitting the logit model to
this data.

Figures 2a and 2b show the probability of a successful ransom payment for
each price, along with the expected revenue at each price, according to the logit
model after a number of time period. In Figure 2a, the use of backups in the
population is low, at 20%; accordingly, the maximum expected price is higher
than that of Figure 2b, where a higher number (80%) of companies use backups.

We model the ransomware author’s pricing decisions using a myopic policy:
the price selected has the highest expected revenue given the current state of
the logit model. After the model is updated, a new best price is selected for the
next time period. Figure 3 shows the history of pricing over time as the model
learns the willingnes to pay distribution of the population.
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(a) Low use of backups.
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(b) High use of backups.

Figure 2: Probability of sale and expected revenue for low (20%) and high (80%)
use of backups, according to the logit model.
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Figure 3: Price offered each iteration

4 Results

In this section we present the results from a number of simulations of the model
using different parameters. We start with the basic model and then extend it
to explore different price perturbation strategies, different reliabilities, and the
impact of information sharing among the population of companies. For each
simulation, we use a sequence of 2000 companies, with 1000 iterations for each
parameter combination.

4.1 Dynamic Pricing

First, we consider the basic model. We fix E[ρ] = 1, meaning that the ransomware
is perfectly reliable — any company that pays the ransom gets their data back.
The ransomware author picks the best price in each time period, according to
the logit model, and updates the model after learning whether the company does
or does not pay.

Figure 4 shows the revenue earned by the ransomware author for a range of
different levels of backup use in the company population. Increasing the percent-
age of companies using backups has only a small effect on the total revenue until
70% of the population are using backups, after which it drops significantly. Until
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Figure 4: Revenue for ransomware author for different levels of backup use in the
population.

this point, it is more profitable to continue charging higher fees, even though
much of the population does not pay.

4.2 Price Perturbation

Setting a ransom price has consequences for the ransomware author. The first
is, naturally, to create revenue. The second is to learn more about the willingnes
to pay of the population. The basic policy is to use the myopic best price at
each time period. However, dithering, or perturbing the price may increase the
amount of information learned, leading to greater longer-term revenue [7].

We try three different perturbation policies. The first two are drawn from
skew-normal distributions (with scale parameter 50), using skew parameter val-
ues of 4 or −4; this affects the price either positively or negatively. The final
policy uses normally-distributed perturbations, affecting the price in either di-
rection.
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Figure 5: Revenue using different skew values for perturbing the offered price,
for different levels of backup use in the population.



Figure 5 shows the results for these three perturbation policies at different
backup percentages, compared to the basic, non-perturbed policy. In most cases,
using a negative perturbation improves the total revenue over the original policy;
the neutral perturbations result in roughly similar performance; and, the positive
skew results in a decrease in performance compared to the basic policy. The
exception is at the 70% use of backups. Here, the best expected price is between
the two modes of the willingness to pay distribution, meaning that increasing
the price means that extra revenue is earned with a small chance of exceeding
a firm’s willingness to pay. Similarly, reducing the price does not make it more
likely that backup-users will pay, but still reduces overall revenue.

4.3 Changing Reliability

We now introduce into the model the notion of ransomware reliability. As with all
software, ransomware sometimes has bugs that affect performance; here, it means
that companies that pay the ransom might not get their data back. A company
that knows a particular ransomware variant is unreliable will be less willing to
pay the ransom. For example, WannaCry and Petya, despite their sophistication,
were not capable of—or perhaps not designed to allow—decrypting the files after
payment

This expected reliability, E[ρ], affects the expected reward companies get for
paying the ransom. As reliablity goes down, so does the reward, and thus so does
the company’s willingness to pay.

For simplicity, we assume that all companies share the same estimation of
reliability. We model this using a beta distribution ρ ∼ β(a, b) where a and b
are the number of successes (data restored) or failures (data lost) respectively,
with initial values a = 1, b = 1. The expected value of this initial state is 0.5:
companies have no knowledge of the reliability. The parameters for ρ are updated
after each successful or unsuccessful ransom payment, where success or failure is
stochastic, based on the reliability assigned to the ransomware in the simulation.

Figure 6 shows the revenue for high-reliability ransomware (P (success) =
0.95). The total revenues are similar to, but slightly lower than those from the
previous example (Figure 5), which had fixed perfect reliability. The reason for
the decrease is that the initial belief among the population about the reliability
is .5, depressing the willingness to pay until the high reliability is learned.

Figure 7 shows the revenue for low-reliablity ransomware (P (success) = 0.2).
The total revenue in all cases is much lower here, reflecting the populations low
willingnes to pay for an unreliable return of data. For low levels of backup in the
population, the positively skewed price policy seems to have a slight advantage.
This is possibly because the updates about reliability occur only after a firm
decides to pay; by increasing the ransom price, the revenue collected will be
greater before information about the poor reliability spreads.
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Figure 6: Revenue for high-reliability ransomware.

4.4 Information Sharing

Finally, we look at the effects of the rate at which information about reliabil-
ity is shared. Many firms do not publicly announce that they have been hit
by ransomware, nor do they announce whether the payment was successful in
restoring their data. We introduce a connectivity parameter to model the rate
at which firms share information, which determines the probability of the reli-
ability estimate being updated after a payment. A small probability models a
less-connected network where companies are less willing to share data; a large
probability models a more-connected network, where firms are happy to disclose.

Figure 8 shows the effects of different levels of connectivity at different ran-
somware reliability levels for a population with a low (20%) backup rate. Figure 9
shows the same, but for a 70% backup rate.

There are two interesting observations here. First, at low reliability levels,
ransomware revenue is boosted by low connectivity: if news about the poor
reliability does not spread, more companies will likely pay the ransom and not
recieve their data. Second, more reliable ransomware tends to be boosted by
higher connectivity: greater information sharing leads to increased awareness of
the high reliability, increasing the willingness to pay.

5 Conclusions

Although this paper is focused on policies for pricing ransomware ransoms, there
are useful conclusions and insights to draw for the purposes of preventing ran-
somware.

First, there will be no herd immunity or ability to freeride, at least un-
til extremely high levels of backup use in the population. The profitability of
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Figure 7: Revenue for low-reliability ransomware
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Figure 8: Information sharing: low percent of backup use (%20).

ransomware does not really decrease significantly until at least 70% of the pop-
ulation is using backups; until this point, there is still a lot of incentive to create
and spread ransomware. Firms should implement their own backup strategies.

Second, once a high rate of backup use among companies has been achieved,
the revenue possible will drop sharply; this will reduce the incentive to spend a
lot on the development of sophisticated, reliable ransomware (assuming that in-
creased reliability has increased development cost). Ransomware produced after
this will likely be lower-cost and less reliable—and hopefully easier to prevent—
aiming to target the limited revenue available from the remaining firms who have
not yet implemented a backup strategy.

Finally, information sharing between firms is important. Although there is
a trade-off—slow (or less) information sharing helps low-reliability ransomware,
and fast information sharing helps high-reliablity ransomware—it is better to
share more information and help the more reliable version. If ransomware is
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Figure 9: Information sharing: high percent of backup use (%70).

reliable, it means that companies are likely to get their data back if the ransom
is paid. For low-reliability ransomware, this is not the case. It is better to increase
awareness and avoid the potential twin costs of lost data and unsuccessful ransom
payment.
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